WO2021128211A1 - 光纤 - Google Patents

光纤 Download PDF

Info

Publication number
WO2021128211A1
WO2021128211A1 PCT/CN2019/128870 CN2019128870W WO2021128211A1 WO 2021128211 A1 WO2021128211 A1 WO 2021128211A1 CN 2019128870 W CN2019128870 W CN 2019128870W WO 2021128211 A1 WO2021128211 A1 WO 2021128211A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
polyimide
coating
tetracarboxylic dianhydride
fiber according
Prior art date
Application number
PCT/CN2019/128870
Other languages
English (en)
French (fr)
Inventor
丁春来
杨郭杰
曹珊珊
王震
徐海涛
油光磊
刘志忠
苏海燕
薛驰
薛济萍
Original Assignee
中天科技光纤有限公司
江苏中天科技股份有限公司
江东科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技光纤有限公司, 江苏中天科技股份有限公司, 江东科技有限公司 filed Critical 中天科技光纤有限公司
Priority to PCT/CN2019/128870 priority Critical patent/WO2021128211A1/zh
Priority to EP19937358.0A priority patent/EP3872045A4/en
Publication of WO2021128211A1 publication Critical patent/WO2021128211A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture

Definitions

  • the invention relates to the technical field of optical fibers, in particular to an optical fiber with a temperature resistance of 300-350°C.
  • optical fiber sensors Compared with traditional sensors, optical fiber sensors have the advantages of high sensitivity, anti-electromagnetic interference, good electrical insulation, corrosion resistance, simple structure, and small size.
  • sensing technology optical fiber sensors are developing in the direction of extreme application environments, such as oil and gas, steam pipeline monitoring, aerospace, and ships.
  • the existing conventional UV-curable polyacrylate-coated optical fiber coating material will age and lose its protective effect on the optical fiber, causing failures and transmission problems. For this reason, domestic and foreign optical fiber and cable manufacturers have launched the design and development of high-temperature resistant optical fibers.
  • high temperature resistant optical fibers there are mainly four types of coating materials for high temperature resistant optical fibers: high temperature resistant polyacrylate, organic silica gel, polyimide and metal.
  • polyimide has excellent comprehensive performance. Theoretically, it can be used for a long time at 300°C, and for short-term use at 350-400°C. At the same time, it can maintain good performance in a high-pressure or vacuum environment, and has biological characteristics. Friendly, is used in aerospace, biomedicine and other fields.
  • the existing double-layer polyimide-coated optical fiber production process is relatively complicated, and the finished optical fiber has large attenuation and poor mechanical strength.
  • an optical fiber comprising a quartz core layer and a quartz cladding layer in turn from the core layer to the outer layer, a primary coating formed by the first polyimide paint with a viscosity of 5000-8000 cps and the viscosity It is a secondary coating formed by the second polyimide coating of 6000-7000 cps, and the temperature resistance grade of the optical fiber is 300-350°C.
  • the first polyimide coating includes modified polyimide or/and photosensitive polyimide, and the viscosity is 5000-6500 cps and 5000-8000 cps, respectively.
  • the modified polyimide is mainly prepared by reacting a tetracarboxylic dianhydride compound and a diamine compound as raw materials in the first solvent; the photosensitive polyimide includes the dianhydride and the diamine compound. After amine copolymerization, it is obtained by end capping modification with acrylic anhydride or acryloyl chloride.
  • the tetracarboxylic dianhydride compound includes pyromellitic dianhydride, 3,3'4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-diphenylmethyl
  • ketotetracarboxylic dianhydride, 3,3',4,4'-triphenyldiether tetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene) phthalic anhydride 4,4'-(hexafluoroisopropylidene) phthalic anhydride .
  • the diamine compound includes p-phenylenediamine, m-phenylenediamine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-diamino One or more of diphenyl ether, amino-modified polysiloxane, and 1,3-bis(3-aminophenoxy)benzene.
  • the first solvent includes one of N,N-dimethylformamide, N,N-diethylacetamide, and N-methylpyrrolidone.
  • the second polyimide coating includes ordinary polyimide or modified polyimide prepared by reacting tetracarboxylic dianhydride compounds and diamine compounds as raw materials in a second solvent.
  • the tetracarboxylic dianhydride compound is 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 4,4 '-(Hexafluoroisopropylidene)phthalic anhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride One or more of.
  • the diamine compound is p-phenylenediamine, m-phenylenediamine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-bis(4-amino) One or more of phenoxy)biphenyl.
  • the second solvent is one of N,N-dimethylformamide, N,N-diethylacetamide, and N-methylpyrrolidone.
  • the solid content of the first polyimide coating is 10-25%
  • the solid content of the second polyimide material is 10-28%.
  • optical fiber is a single-mode optical fiber or a multi-mode optical fiber.
  • the sum of the thickness of one side of the primary coating and the secondary coating is 15-23 ⁇ m.
  • the optical fiber provided by the present invention has a double-layer polyimide coating.
  • the optical fiber has both the high temperature resistance characteristics of polyimide material and Lower attenuation and better mechanical properties, meet the use in harsh environments, corrosion resistance, high reliability, and can also be used on the seabed.
  • FIG. 1 is a schematic diagram of the structure of an optical fiber in an embodiment of the present invention.
  • FIG. 1 shows a schematic structural diagram of an optical fiber 100 provided by the present invention. From the core layer to the outer layer, it includes a quartz core layer 101 and a quartz cladding layer 102, and a first polyimide with a viscosity of 5000-8000 cps is used.
  • the primary coating 103 formed by the paint and the secondary coating 104 formed by the second polyimide paint with a viscosity of 6000-7000 cps, and the temperature resistance grade of the optical fiber is 300-350°C.
  • the sum of the unilateral thickness of the primary coating 103 and the secondary coating is 15-23 ⁇ m.
  • the total thickness of the coating should not be too thin, and the strength of the coated optical fiber cannot reach 100kpsi. ;
  • the total thickness of the coating is too thick.
  • the backlog (internal stress) of the thick coating on the silica glass fiber is large, which deteriorates the attenuation and warpage characteristics of the fiber, and the fiber is more prone to brittle fracture during subsequent use. .
  • the optical fiber 100 may be single-mode or multi-mode quartz glass.
  • the first polyimide coating includes modified polyimide with a viscosity of 5000-6500 cps, and the solid content of the first polyimide coating is 10-25%. among them,
  • the modified polyimide is mainly prepared by reacting tetracarboxylic dianhydride compounds and diamine compounds as raw materials in the first solvent;
  • the tetracarboxylic dianhydride compounds include pyromellitic dianhydride, 3,3'4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-triphenyl diether
  • One or more of tetracarboxylic dianhydride and 4,4'-(hexafluoroisopropylidene) phthalic anhydride are examples of tetracarboxylic dianhydride and 4,4'-(hexafluoroisopropylidene) phthalic anhydride.
  • the diamine compounds include p-phenylenediamine, m-phenylenediamine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-diaminodiphenyl ether , One or more of amino-modified polysiloxane, 1,3-bis(3-aminophenoxy)benzene.
  • the first solvent includes one of N,N-dimethylformamide, N,N-diethylacetamide, and N-methylpyrrolidone.
  • the first polyimide coating can also be photosensitive polyimide with a viscosity of 5000-8000 cps.
  • the photosensitive polyimide includes end-blocking modification with acrylic anhydride or acryloyl chloride after copolymerization of dianhydride and diamine.
  • the first polyimide coating may also be a combination of photosensitive polyimide and the above-mentioned modified polyimide.
  • the second polyimide coating includes ordinary polyimide (that is, a polyimide coating that is commercially available or directly obtained from commercial purchase) or is mainly composed of tetracarboxylic dianhydride compounds and two
  • the amine compound is a modified polyimide prepared by reacting the raw material in the second solvent.
  • the solid content of the second polyimide coating is 10-28%, and the viscosity is 6000-7000 cps. among them,
  • the tetracarboxylic dianhydride compound is 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 4,4 '-(Hexafluoroisopropylidene)phthalic anhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride One or more of.
  • the diamine compound is p-phenylenediamine, m-phenylenediamine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-bis(4-amino) One or more of phenoxy)biphenyl.
  • the second solvent is one of N,N-dimethylformamide, N,N-diethylacetamide, and N-methylpyrrolidone.
  • the viscosity range of the coating is strictly controlled. Specifically, it can be adjusted by external heating. For example, if the viscosity of the coating is too large, heating treatment is required, and the temperature should not be too high. In the present invention, if the coating viscosity is too small, it will cause the coating to sag and the thermal curing effect is not good; when the coating viscosity is too high, the coating will have poor adhesion and long curing time, and on the other hand, internal stress will easily occur after curing. , Causing embrittlement.
  • the first polyimide coating and the second polyimide coating prepared under the following experimental conditions are taken as examples to characterize the performance of the optical fiber after coating.
  • the photosensitive polyimide coating can be obtained by adding 90 g of acryloyl chloride to react under the condition of not more than 5° C. after the reaction in the above step, that is, the first polyimide coating. Among them, it is not more than 5°C, preferably 5°C to 0°C.
  • the first polyimide coating can also be prepared by adding 333.46g of amino-modified polysiloxane and 500mL of N,N-dimethylacetamide in a four-necked flask equipped with a stirrer, installing a thermometer, Stir and dissolve at 50°C-60°C, and then add 111.06g of 4,4'-(hexafluoroisopropylidene)phthalic anhydride and 3,3',4,4'-triphenyldiether tetracarboxylic acid in batches 101.32 g of dianhydride was reacted at 40° C. for 18 h to obtain organosilicon-modified polyimide.
  • the introduction of silicone fragments into the polyimide resin is beneficial to reduce the modulus of the polyimide.
  • the single-mode optical fiber 100 for communication has a quartz core layer 101 with a diameter of 9 ⁇ m and a quartz cladding layer 102 with a diameter of 125 ⁇ m.
  • the preform After the preform is melted, it passes through a mold containing a photosensitive polyimide coating with a viscosity of 5000 cps and a common polyimide coating with a viscosity of 6000 cps at a drawing speed of 30m/min, and the coating is coated after the second coating.
  • the diameter reaches 155 ⁇ m, that is, the sum of the single side thickness of the primary coating 103 and the secondary coating 104 is 15 ⁇ m.
  • the structure of the optical fiber 100 is shown in Figure 1, and the package/coating concentricity error is ⁇ 4% (generally ⁇ 6 %).
  • the attenuation value of the fiber at 1310nm is 0.428dB/km
  • the attenuation value at 1550nm is 0.312dB/km
  • the screening strength of the fiber is 100kpsi
  • the single-mode optical fiber for communication has a quartz core layer 101 with a diameter of 9 ⁇ m and a quartz cladding layer 102 with a diameter of 125 ⁇ m.
  • the preform After the preform is melted, it passes through the mold containing the silicone modified polyimide paint with a viscosity of 6500 cps and the modified polyimide paint with a viscosity of 7000 cps from top to bottom.
  • the coating is applied after the second coating.
  • the diameter reaches 165 ⁇ m, that is, the sum of the single-side thickness of the primary coating 103 and the secondary coating 104 is 20 ⁇ m.
  • the structure of the optical fiber 100 is shown in Fig. 1, and the package/coating concentricity error is ⁇ 4%.
  • Example 2 Replace the single-mode fiber in Example 2 with a multi-mode fiber.
  • the diameter of the silica core layer 101 is 62.5 ⁇ m, and the diameter of the silica cladding layer 102 is 125 ⁇ m.
  • the coating diameter of the fiber reaches 165 ⁇ m, that is, the primary coating
  • the sum of the thickness of one side of 103 and secondary coating 104 is 20 ⁇ m.
  • the attenuation value of the optical fiber 100 at 850 nm is 2.73 dB/km, the attenuation value at 1300 nm is 0.78 dB/km, and the screening strength of the optical fiber is 100 kpsi.
  • the settings are basically the same as in Example 1, except that the secondary coatings are all thermally cured commercial polyimide coatings (common polyimide).
  • the prepared optical fiber 100 has good temperature resistance, reaching 350°C, but the coating diameter of the optical fiber is only 140 ⁇ m, that is to say, the sum of the single-sided thickness of the primary coating and the secondary coating is 7.5 ⁇ m.
  • the solid content is low, the screening strength of the optical fiber is less than 100kpsi, the attenuation value of the optical fiber at 1310nm is 2.68dB/km, and the attenuation value at 1550nm is 2.12dB/km.
  • Comparing Example 1 with Comparative Example 1 it can be seen that the optical fiber with double-layer coatings using ordinary polyimide coating has a low screening strength, less than 100kpsi; especially, the attenuation characteristics are far inferior to the product of the present invention (1310nm ⁇ 0.8dB/ km, 1550nm ⁇ 0.6dB/km).
  • the polyimide coating used in the present invention is made into the bis-polyimide coating of the optical fiber, which not only retains the high temperature resistance characteristics of polyimide, but also solves the problem of double-layer common polyimide coating.
  • the amine-coated optical fiber has high attenuation and low screening strength, and other performance deficiencies, resulting in an optical fiber with excellent comprehensive performance.
  • the polyimide coating of the present invention can be composed of other formulations or composite formulations mentioned above, and can obtain the equivalent performance of Examples 1-3, that is, temperature resistance 300-350°C, attenuation (1310nm ⁇ 0.8dB/km, 1550nm ⁇ 0.6dB/km), the screening strength of optical fiber is higher than 100kpsi.
  • the present invention can effectively control the total thickness of the coating by improving the coating formulation and its viscosity, and produce an optical fiber that can withstand high temperatures of 300-350°C with attenuation (1310nm ⁇ 0.8dB/km, 1550nm ⁇ 0.6dB/km) ,
  • the screening strength of the optical fiber is higher than 100kpsi, which is suitable for use in harsh environments, with corrosion resistance and high reliability. It can also be used on the seabed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

一种光纤(100),由芯层至外层依次包括石英芯层(101)和石英包层(102)、采用粘度为5000-8000cps的第一聚酰亚胺涂料形成的一次涂层(103)和采用粘度为6000-7000cps的第二聚酰亚胺涂料成型的二次涂层(104),该光纤(100)的耐温等级300-350℃。该光纤(100)具有双层聚酰亚胺涂层,通过控制聚酰亚胺的粘度和材料设计,使得光纤(100)既具有聚酰亚胺材料的耐高温特性,又具有较低的衰减和较好的机械性能,生产出可耐300-350℃高温的光纤(100),光纤(100)在1310nm处的衰减≤0.8dB/km,1550nm处的衰减≤0.6dB/km,光纤(100)的筛选强度高于100kpsi,满足在恶劣环境下使用,耐腐蚀,可靠性高,也可以在海底进行使用。

Description

光纤 技术领域
本发明涉及光纤技术领域,特别是指一种耐温300-350℃的光纤。
背景技术
相比于传统的各类传感器,光纤传感器具有灵敏度高、抗电磁干扰、电绝缘性好、耐腐蚀、结构简单、体积小等优点。随着传感技术的发展,光纤传感器向着极端应用环境方向发展,如石油天然气、蒸汽管道监测、航空航天、船舶等。在这些环境下,现有常规的紫外固化聚丙烯酸酯涂层光纤的涂层材料会老化失效,失去对光纤的保护作用,引起故障,造成传输问题。为此,国内外光纤光缆厂商展开了针对耐高温光纤的设计和开发。
目前,耐高温光纤的涂层材料主要有四种:耐高温聚丙烯酸脂、有机硅胶、聚酰亚胺及金属。其中,聚酰亚胺综合性能极佳,理论上,其在300℃环境下可以长期使用,在350~400℃下可短期使用;同时其能够在高压或真空环境中保持良好的性能,具有生物友好性,被应用于航空航天及生物医药等领域。但是,现有双层聚酰亚胺涂覆光纤生产工艺相对复杂,成品光纤衰减大且机械强度较差。
发明内容
鉴于以上内容,有必要提供一种改进的光纤,具备300-350℃的 耐温等级,衰减小且机械强度好。
本发明提供的技术方案为:一种光纤,由芯层至外层依次包括石英芯层和石英包层、采用粘度为5000-8000cps的第一聚酰亚胺涂料形成的一次涂层和采用粘度为6000-7000cps的第二聚酰亚胺涂料成型的二次涂层,所述光纤的耐温等级300-350℃。
进一步的,所述第一聚酰亚胺涂料包括改性聚酰亚胺或/和光敏性聚酰亚胺,粘度分别为5000-6500cps和5000-8000cps。
进一步的,所述改性聚酰亚胺主要由四羧酸二酐类化合物与二胺类化合物为原料在第一溶剂中反应制得;所述光敏性聚酰亚胺包括在二酐和二胺共聚后采用丙烯酸酐或丙烯酰氯封端改性所得。
进一步的,所述四羧酸二酐类化合物包括均苯四甲酸二酐、3,3'4,4'-二苯醚四甲酸二酐、3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-三苯双醚四甲酸二酐、4,4'-(六氟亚异丙基)邻苯二甲酸酐中的一种或多种。
进一步的,所述二胺类化合物包括对苯二胺、间苯二胺、2,2'-双(三氟甲基)-4,4'-二氨基联苯、4,4'-二氨基二苯醚、氨基改性聚硅氧烷、1,3-双(3-氨基苯氧基)苯中的一种或多种。
进一步的,所述第一溶剂包括N,N-二甲基甲酰胺、N,N-二乙基乙酰胺、N-甲基吡咯烷酮中的一种。
进一步的,所述第二聚酰亚胺涂料包括普通聚酰亚胺或主要由四羧酸二酐类化合物与二胺类化合物为原料在第二溶剂中反应制得的改性聚酰亚胺。所述四羧酸二酐类化合物为3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-二苯醚四甲酸二酐、4,4'-(六氟亚异丙基)邻苯二甲酸酐、 2,3,3',4'-联苯四甲酸二酐、3,4,3',4'-联苯四甲酸二酐中的一种或多种。所述二胺类化合物为对苯二胺、间苯二胺、2,2'-双(三氟甲基)-4,4'-二氨基联苯、4,4'-二(4-氨基苯氧基)联苯的一种或多种。所述第二溶剂为N,N-二甲基甲酰胺、N,N-二乙基乙酰胺、N-甲基吡咯烷酮中的一种。
进一步的,所述第一聚酰亚胺涂料的固含量为10-25%,第二聚酰亚胺料的固含量为10-28%。
进一步的,所述光纤为单模光纤或多模光纤。
进一步的,所述一次涂层和所述二次涂层的单边厚度之和为15-23μm。
与现有技术相比,本发明提供的光纤具有双层聚酰亚胺涂层,通过控制聚酰亚胺的粘度和材料设计,使得光纤既具有聚酰亚胺材料的耐高温特性,又具有较低的衰减和较好的机械性能,满足在恶劣环境下使用,耐腐蚀,可靠性高,也可以在海底进行使用。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明一实施方式中光纤的结构示意图。
附图标记说明:
光纤        100
石英纤芯    101
石英包层    102
一次涂层    103
二次涂层    104
如下具体实施方式将结合上述附图进一步说明本发明实施例。
具体实施方式
为了能够更清楚地理解本发明实施例的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明实施例,所描述的实施方式仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明实施例保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明实施例。
请参阅图1示出的本发明提供的一种光纤100的结构示意图,由芯层至外层依次包括石英芯层101和石英包层102、采用粘度为5000-8000cps的第一聚酰亚胺涂料形成的一次涂层103和采用粘度为6000-7000cps的第二聚酰亚胺涂料成型的二次涂层104,所述光纤的耐温等级300-350℃。其中形成的一次涂层103和二次涂层的单边厚 度之和(涂层总厚度)为15-23μm,在具体实施方式中,涂层总厚度不宜太薄,涂覆光纤强度无法达到100kpsi;涂层总厚度太厚也不好,厚涂层对石英玻璃光纤的积压(内应力)较大,使光纤的衰减、翘曲度特性发生恶化,光纤在后续使用过程中更容易发生脆断。
在具体实施方式中,该光纤100可以是单模或多模的石英玻璃。
在具体实施方式中,所述第一聚酰亚胺涂料包括改性聚酰亚胺,粘度为5000-6500cps,所述第一聚酰亚胺涂料的固含量为10-25%。其中,
所述改性聚酰亚胺主要由四羧酸二酐类化合物与二胺类化合物为原料在第一溶剂中反应制得;所述四羧酸二酐类化合物包括均苯四甲酸二酐、3,3'4,4'-二苯醚四甲酸二酐、3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-三苯双醚四甲酸二酐、4,4'-(六氟亚异丙基)邻苯二甲酸酐中的一种或多种。所述二胺类化合物包括对苯二胺、间苯二胺、2,2'-双(三氟甲基)-4,4'-二氨基联苯、4,4'-二氨基二苯醚、氨基改性聚硅氧烷、1,3-双(3-氨基苯氧基)苯中的一种或多种。所述第一溶剂包括N,N-二甲基甲酰胺、N,N-二乙基乙酰胺、N-甲基吡咯烷酮中的一种。
在另一具体实施方式中,所述第一聚酰亚胺涂料还可以是光敏性聚酰亚胺,粘度为5000-8000cps。所述光敏性聚酰亚胺包括在二酐和二胺共聚后采用丙烯酸酐或丙烯酰氯封端改性所得。
在又一具体实施方式中,所述第一聚酰亚胺涂料也可以是光敏性聚酰亚胺和上述改性聚酰亚胺的组合物。
在具体实施方式中,所述第二聚酰亚胺涂料包括普通聚酰亚胺(即是市购、商业购买直接取得的聚酰亚胺涂料)或主要由四羧酸二 酐类化合物与二胺类化合物为原料在第二溶剂中反应制得的改性聚酰亚胺。所述第二聚酰亚胺涂料的固含量为10-28%,粘度为6000-7000cps。其中,
所述四羧酸二酐类化合物为3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-二苯醚四甲酸二酐、4,4'-(六氟亚异丙基)邻苯二甲酸酐、2,3,3',4'-联苯四甲酸二酐、3,4,3',4'-联苯四甲酸二酐中的一种或多种。所述二胺类化合物为对苯二胺、间苯二胺、2,2'-双(三氟甲基)-4,4'-二氨基联苯、4,4'-二(4-氨基苯氧基)联苯的一种或多种。所述第二溶剂为N,N-二甲基甲酰胺、N,N-二乙基乙酰胺、N-甲基吡咯烷酮中的一种。
本发明设计过程中严格控制涂料的粘度范围,具体的可以通过外加温的方式进行调节,如涂料粘度太大,需要加温处理,且温度不宜太高。本发明中涂料粘度太小,会导致涂料流挂,热固化效果不好;而涂料粘度太大时涂覆,一方面粘附力不好,固化时间长,另一方面固化后易产生内应力,造成脆裂。
下面举例对本发明的光纤的性能与现有产品进行比较。
本发明以按下述实验条件配制的第一聚酰亚胺涂料和第二聚酰亚胺涂料为例,对光纤进行涂覆后性能进行表征。
在一个装有搅拌器的四口烧瓶中加入4,4'-二(4-氨基苯氧基)联苯123.06g和N,N-二甲基乙酰胺500mL,安装温度计,在50℃-60℃进行搅拌溶解,随后分批加入4,4'-(六氟亚异丙基)邻苯二甲酸酐222.12g,然后在40℃下反应18h,得到改性聚酰亚胺,也即第二聚酰亚胺涂料。
光敏性的聚酰亚胺涂料在上面步骤中反应后再在不大于5℃条件下加入90g丙烯酰氯进行反应即可得到,也即第一聚酰亚胺涂料。其中不大于5℃,优选5℃-0℃。
第一聚酰亚胺涂料的制备还可以是:在一个装有搅拌器的四口烧瓶中加入氨基改性聚硅氧烷333.46g和N,N-二甲基乙酰胺500mL,安装温度计,在50℃-60℃进行搅拌溶解,随后分批加入4,4'-(六氟亚异丙基)邻苯二甲酸酐111.06g和3,3',4,4'-三苯双醚四甲酸二酐101.32g,然后在40℃下反应18h,得到有机硅改性聚酰亚胺。此中,聚酰亚胺的树脂中引入有机硅的片段,有利于降低聚酰亚胺的模量。
实施例1
通信用单模光纤100,其石英芯层101直径为9μm,石英包层102直径125μm。预制棒熔融后在30m/min的牵引速度下,依次经过装有粘度为5000cps的光敏性的聚酰亚胺涂料及粘度为6000cps的普通聚酰亚胺涂料的模具,二次涂覆后涂层直径达到155μm,也就是说,一次涂层103和二次涂层104的单边厚度之和为15μm,光纤100结构如图1所示,且包/涂同心度误差≤4%(一般≤6%)。光纤在1310nm处的衰减值为0.428dB/km,1550nm处的衰减值为0.312dB/km,光纤的筛选强度100kpsi,光纤的疲劳为ND=22。
实施例2
通信用单模光纤,其石英芯层101直径为9μm,石英包层102直径125μm。预制棒熔融后,由上至下依次分别穿过装有粘度为6500cps的有机硅改性聚酰亚胺涂料和粘度为7000cps的改性聚酰亚胺涂料的模具,二次涂覆后涂层直径达到165μm,也就是说,一次 涂层103和二次涂层104的单边厚度之和为20μm,光纤100结构如图1所示,且包/涂同心度误差≤4%。光纤在1310nm处的衰减值为0.342dB/km,1550nm处的衰减值为0.228dB/km,光纤的筛选强度200kpsi,光纤的疲劳为ND=23。
实施例3
将实施例2中单模光纤替换为多模光纤,石英芯层101直径为62.5μm,石英包层102直径125μm,二次涂覆后,光纤的涂层直径达到165μm也就是说,一次涂层103和二次涂层104的单边厚度之和为20μm。光纤100在850nm处的衰减值为2.73dB/km,1300nm处的衰减值为0.78dB/km,光纤的筛选强度100kpsi。
对比例1
基本与实施例1设定相同,区别在于将二次涂覆的涂料均采用热固化商业化聚酰亚胺涂料(普通聚酰亚胺)。所制得的光纤100,耐温性能较好,达到350℃,但是光纤的涂层直径只有140μm,也就是说,一次涂层和二次涂层的单边厚度之和为7.5μm,涂料的固含量低,光纤的筛选强度小于100kpsi,光纤在1310nm处的衰减值为2.68dB/km,1550nm处的衰减值为2.12dB/km。
比较实施例1与对比例1,可以看出,双层均采用普通聚酰亚胺涂料的光纤筛选强度低,达不到100kpsi;尤其是衰减特性远不如本发明的产品(1310nm≤0.8dB/km,1550nm≤0.6dB/km)。结合实施例1-3可见,本发明采用的聚酰亚胺涂料制成光纤的双聚酰亚胺涂层,既保留了聚酰亚胺的耐高温特性,又解决了双层普通聚酰亚胺涂覆的光纤衰减大、筛选强度低等性能上的不足,制备出综合性能优异的光 纤。在其他具体实施方式中,本发明聚酰亚胺涂料可以是上述提及的其他配方或复合配方组成,均能得到实施例1-3相当的性能,即耐温300-350℃,衰减(1310nm≤0.8dB/km,1550nm≤0.6dB/km),光纤的筛选强度高于100kpsi。
综上,本发明通过改进涂覆涂料配方和其粘度可以有效控制涂层总厚度,生产出可耐300-350℃高温的光纤,衰减(1310nm≤0.8dB/km,1550nm≤0.6dB/km),光纤的筛选强度高于100kpsi,满足在恶劣环境下使用,耐腐蚀,可靠性高,也可以在海底进行使用。
以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。

Claims (10)

  1. 一种光纤,其特征在于:由芯层至外层依次包括石英芯层和石英包层、采用粘度为5000-8000cps的第一聚酰亚胺涂料形成的一次涂层和采用粘度为6000-7000cps的第二聚酰亚胺涂料成型的二次涂层,所述光纤的耐温等级300-350℃。
  2. 根据权利要求1所述的光纤,其特征在于:所述第一聚酰亚胺涂料包括改性聚酰亚胺或/和光敏性聚酰亚胺,粘度分别为5000-6500cps和5000-8000cps。
  3. 根据权利要求2所述的光纤,其特征在于:所述改性聚酰亚胺主要由四羧酸二酐类化合物与二胺类化合物为原料在第一溶剂中反应制得;所述光敏性聚酰亚胺包括在二酐和二胺共聚后采用丙烯酸酐或丙烯酰氯封端改性所得。
  4. 根据权利要求3所述的光纤,其特征在于:所述四羧酸二酐类化合物包括均苯四甲酸二酐、3,3'4,4'-二苯醚四甲酸二酐、3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-三苯双醚四甲酸二酐、4,4'-(六氟亚异丙基)邻苯二甲酸酐中的一种或多种。
  5. 根据权利要求3所述的光纤,其特征在于:所述二胺类化合物包括对苯二胺、间苯二胺、2,2'-双(三氟甲基)-4,4'-二氨基联苯、4,4'-二氨基二苯醚、氨基改性聚硅氧烷、1,3-双(3-氨基苯氧基)苯中的一种或多种。
  6. 根据权利要求3所述的光纤,其特征在于:所述第一溶剂包括N,N-二甲基甲酰胺、N,N-二乙基乙酰胺、N-甲基吡咯烷酮中的一种。
  7. 根据权利要求1所述的光纤,其特征在于:所述第二聚酰亚胺 涂料包括普通聚酰亚胺或主要由四羧酸二酐类化合物与二胺类化合物为原料在第二溶剂中反应制得的改性聚酰亚胺,其中,所述四羧酸二酐类化合物为3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-二苯醚四甲酸二酐、4,4'-(六氟亚异丙基)邻苯二甲酸酐、2,3,3',4'-联苯四甲酸二酐、3,4,3',4'-联苯四甲酸二酐中的一种或多种;所述二胺类化合物为对苯二胺、间苯二胺、2,2'-双(三氟甲基)-4,4'-二氨基联苯、4,4'-二(4-氨基苯氧基)联苯的一种或多种;所述第二溶剂为N,N-二甲基甲酰胺、N,N-二乙基乙酰胺、N-甲基吡咯烷酮中的一种。
  8. 根据权利要求1所述的光纤,其特征在于:所述第一聚酰亚胺涂料的固含量为10-25%,第二聚酰亚胺涂料的固含量为10-28%。
  9. 根据权利要求1所述的光纤,其特征在于:所述光纤为单模光纤或多模光纤。
  10. 根据权利要求1所述的光纤,其特征在于:所述一次涂层和所述二次涂层的单边厚度之和为15-23μm。
PCT/CN2019/128870 2019-12-26 2019-12-26 光纤 WO2021128211A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/128870 WO2021128211A1 (zh) 2019-12-26 2019-12-26 光纤
EP19937358.0A EP3872045A4 (en) 2019-12-26 2019-12-26 GLASS FIBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128870 WO2021128211A1 (zh) 2019-12-26 2019-12-26 光纤

Publications (1)

Publication Number Publication Date
WO2021128211A1 true WO2021128211A1 (zh) 2021-07-01

Family

ID=76573815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128870 WO2021128211A1 (zh) 2019-12-26 2019-12-26 光纤

Country Status (2)

Country Link
EP (1) EP3872045A4 (zh)
WO (1) WO2021128211A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2214653A (en) * 1988-01-21 1989-09-06 Stc Plc High Temperature optical cables
JPH01278436A (ja) * 1988-04-28 1989-11-08 Mitsubishi Cable Ind Ltd ガラス系光ファイバの製造方法
US5264545A (en) * 1991-10-24 1993-11-23 Basf Lacke+Farben Aktiengesellschaft Solutions of polyimide-forming starting materials
US6711335B1 (en) * 1999-06-11 2004-03-23 Sumitomo Electric Industries, Ltd. Heat resistant optical fiber core
US20050135763A1 (en) * 2003-12-17 2005-06-23 Gary Drenzek Optical fiber with a mechanically strippable coating and methods of making the same
CN102770387A (zh) * 2010-02-24 2012-11-07 康宁股份有限公司 双涂层光纤以及用于形成该双涂层光纤的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595548A (en) * 1984-08-23 1986-06-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for preparing essentially colorless polyimide film containing phenoxy-linked diamines
JP2587679B2 (ja) * 1988-04-28 1997-03-05 三菱電線工業株式会社 ガラス系光ファイバの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2214653A (en) * 1988-01-21 1989-09-06 Stc Plc High Temperature optical cables
JPH01278436A (ja) * 1988-04-28 1989-11-08 Mitsubishi Cable Ind Ltd ガラス系光ファイバの製造方法
US5264545A (en) * 1991-10-24 1993-11-23 Basf Lacke+Farben Aktiengesellschaft Solutions of polyimide-forming starting materials
US6711335B1 (en) * 1999-06-11 2004-03-23 Sumitomo Electric Industries, Ltd. Heat resistant optical fiber core
US20050135763A1 (en) * 2003-12-17 2005-06-23 Gary Drenzek Optical fiber with a mechanically strippable coating and methods of making the same
CN102770387A (zh) * 2010-02-24 2012-11-07 康宁股份有限公司 双涂层光纤以及用于形成该双涂层光纤的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872045A4 *

Also Published As

Publication number Publication date
EP3872045A1 (en) 2021-09-01
EP3872045A4 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP7037534B2 (ja) 空隙を有するポリイミドフィルム及びその製造方法
US9063268B2 (en) Dual coated optical fibers and methods for forming the same
JP6669074B2 (ja) ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
JP5822352B2 (ja) 透明可撓性積層体及び積層体ロール
CN102453326B (zh) 白色聚酰亚胺膜及其制备方法
JP6257302B2 (ja) ポリイミド前駆体及びそれを含有する樹脂組成物、ポリイミドフィルム及びその製造方法、並びに、積層体及びその製造方法
JP2014152327A (ja) ポリイミド、それから形成されるコーティング組成物、およびそれらの使用
KR102213893B1 (ko) 폴리이미드 필름 제조방법 및 이에 의해 제조된 폴리이미드 필름
US6418260B1 (en) Optical fiber and fiber-optic sensing system using the same
CN111153597A (zh) 光纤
WO2021128211A1 (zh) 光纤
TW201311764A (zh) 低色度聚醯亞胺膜及其製法
JP2006312680A (ja) 高分子−無機ハイブリッド光学材料
WO2000076931A1 (fr) Ame de fibre optique resistant a la chaleur
CN111087617A (zh) 低雾度聚合物膜和电子装置
US20200165391A1 (en) Polyimide polymer, and polyimide film including the same, and manufacturing method of polyimide film
JPH08143666A (ja) 一定の複屈折を有するポリイミド共重合体、及びその製造方法
US6842576B2 (en) Polymer lightguide
WO2021117960A1 (ko) 우수한 항복변형 및 굴곡 특성을 갖는 폴리이미드 필름
JPH03110508A (ja) 光ファイバ
JP2010254792A (ja) ポリイミドおよび光導波路用ポリイミド
JP2018080344A (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
CN116879999A (zh) 低损耗耐温光纤及制备方法
WO2008041636A1 (fr) Polyimide et guide d'ondes optique utilisant celui-ci
TW202325785A (zh) 用於電子設備的薄膜、多層電子設備以及其製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019937358

Country of ref document: EP

Effective date: 20210119

NENP Non-entry into the national phase

Ref country code: DE