WO2021127968A1 - 一种gnss/imu测绘系统和方法 - Google Patents

一种gnss/imu测绘系统和方法 Download PDF

Info

Publication number
WO2021127968A1
WO2021127968A1 PCT/CN2019/127824 CN2019127824W WO2021127968A1 WO 2021127968 A1 WO2021127968 A1 WO 2021127968A1 CN 2019127824 W CN2019127824 W CN 2019127824W WO 2021127968 A1 WO2021127968 A1 WO 2021127968A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnss
imu
relative position
receiver
stakeout
Prior art date
Application number
PCT/CN2019/127824
Other languages
English (en)
French (fr)
Inventor
邓海峰
袁本银
沈雪峰
Original Assignee
上海华测导航技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华测导航技术股份有限公司 filed Critical 上海华测导航技术股份有限公司
Priority to US17/257,021 priority Critical patent/US11598886B2/en
Priority to EP19934347.6A priority patent/EP3865914A4/en
Publication of WO2021127968A1 publication Critical patent/WO2021127968A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/51Relative positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Definitions

  • the invention relates to the product form of a high-precision GNSS/IMU receiver system and its measurement method, which is suitable for surveying and mapping, engineering surveying, monitoring and other surveying fields using GNSS receivers for point surveying and lofting, and the use of GNSS receivers or GNSS/INS integrated navigation equipment for navigation and positioning of vehicles, aircraft, ships and other navigation and positioning fields.
  • the GNSS receiver generally includes a GNSS antenna and a GNSS positioning board.
  • the GNSS positioning board calculates the phase center position of the GNSS antenna according to the GNSS satellite positioning signal received by the GNSS antenna, but the GNSS antenna phase center is located inside the GNSS receiver, and the point to be measured Located outside the GNSS receiver, the GNSS antenna phase center position inside the GNSS receiver needs to be transferred to the point to be measured outside the GNSS to achieve the measurement of the point to be measured.
  • the traditional surveying and mapping method realizes the transfer of the phase center of the internal antenna of the GNSS receiver to the external measurement point through the centering pole or tripod.
  • the geometric center of the GNSS antenna and the installation center of the GNSS receiver shell are coaxial during the structural design of the GNSS receiver. Realize the connection between the GNSS antenna phase center and the outside, and calibrate the deviation of the GNSS antenna phase center relative to the external installation center at the factory. In actual measurement, install the GNSS receiver on the centering pole, and place the bottom tip of the centering pole on the center.
  • Tilt measurement is an example of relative position point measurement.
  • the magnetic tilt measurement scheme based on AHRS technology uses the AHRS algorithm to calculate the three-dimensional attitude of the GNSS receiver, that is, use the accelerometer or accelerometer and gyroscope to track the pitch and roll angle of the GNSS receiver, and use the magnetometer to track
  • the heading angle of the GNSS receiver uses the pitch angle, roll angle, and heading angle to generate the direction cosine matrix to realize the coordinate conversion of the space vector and compensate the antenna phase center position to the ground measurement point.
  • the absolute accuracy of GNSS receiver pitch angle and roll angle tracking depends on the accelerometer measurement accuracy.
  • the zero offset of the accelerometer needs to be calibrated regularly.
  • the calibration accuracy directly affects the accuracy of the GNSS receiver pitch angle and roll angle tracking. , And general customers do not have the professional knowledge and equipment conditions for accelerometer calibration;
  • the premise of tracking the pitch and roll angles of the GNSS receiver based on the accelerometer is that the accelerometer is only sensitive to gravity, so this solution can only be used under quasi-static conditions, and the angle tracking accuracy under dynamic conditions is not reliable, even if it is used
  • the gyroscope can only improve the dynamics of angle tracking and achieve the effect of smooth angle tracking.
  • the absolute accuracy of angle tracking still depends on the accuracy of acceleration under long-term dynamic conditions;
  • the multi-position measurement method based on the space rendezvous theory places the bottom tip of a fixed centering rod on a known point and moves the centering rod to collect the coordinates of the GNSS receiver at multiple positions, taking the length of the centering rod as a constraint condition Carry out space rendezvous to calculate the position of the bottom tip of the centering rod, but the measurement accuracy of this method is limited by the geometric structure of the spatial distribution of the GNSS receiver multi-position acquisition points, but the space for the centering rod to move in the occlusion environment such as a wall corner is limited Therefore, the geometric structure of the multi-position measuring point is very poor, the measurement accuracy can only reach the decimeter level, and it is necessary to move the centering rod multiple times to collect the coordinates of multiple positions to complete the measurement, which is inefficient.
  • the present invention aims to design a new type of GNSS/IMU receiver measurement system and method to achieve reliable and high-precision relative position point measurement to replace traditional GNSS measurement methods and based on AHRS technology and space rendezvous technology
  • the inclination measurement method improves the work efficiency of GNSS receiver field measurement, reduces the labor intensity of users, and broadens the application of GNSS receiver in the fields of digital construction, precision agriculture and intelligent driving.
  • a GNSS/IMU-based tilt measurement system which includes: (1) GNSS/IMU receiver, (2) relative position transfer medium, (3) display terminal ;
  • GNSS/IMU receiver includes GNSS antenna, GNSS positioning board, IMU inertial sensor, and position transfer device.
  • GNSS antenna is used to receive satellite navigation and positioning signals
  • GNSS positioning board is used to calculate the GNSS antenna phase center based on the signal received by the GNSS antenna.
  • IMU inertial sensors are used to measure the acceleration and angular velocity of the receiver, and the position transfer device is used to calculate the three-dimensional coordinates, tilt angle and measurement state of the receiver’s relative position points, and through sound or light Feedback on the measurement status;
  • the relative position transmission medium is the physical medium that transmits the defined spatial relationship between the relative position measurement point and the GNSS/IMU receiver antenna phase center;
  • the display terminal is used to display the measurement results and status of the relative position of the GNSS/INS receiver, and is used to interact with the user;
  • the GNSS/IMU receiver includes an IMU inertial sensor, which is installed inside the GNSS/IMU receiver in a specific spatial relationship, and the IMU inertial sensor includes an accelerometer and a gyroscope;
  • the GNSS/IMU surveying and mapping system includes a relative position transfer medium.
  • the relative position transfer medium is a physical medium that transfers a defined spatial relationship. It can be abstracted as a three-dimensional coordinate vector, describing the relative position measurement point in a Cartesian establishment with the GNSS antenna phase center as the origin. The coordinate vector in the coordinate system;
  • the GNSS/IMU receiver contains a position transfer device, which processes the reference position calculated by the GNSS board, the observation data of the IMU sensor and the relative position transfer medium data, calculates the coordinates of the relative position point, the tilt angle of the receiver and the measurement state ;
  • the GNSS/IMU surveying and mapping system includes a display terminal, which is used to interact with users and display the relative position point measurement results and measurement status output by the position transfer device. It is an optional equipment for the GNSS/IMU surveying and mapping system and does not affect the GNSS/ The realization of the relative position point measurement function of the IMU surveying and mapping system;
  • the IMU inertial sensor is designed in the form of a microelectromechanical system (MEMS), the IMU sensor includes at least a three-axis MEMS accelerometer and a three-axis MEMS gyroscope, and the three axis systems of the accelerometer and the gyroscope are correspondingly designed in parallel ;
  • the IMU inertial sensor adopts industrial grade or lower precision accelerometer and gyroscope design;
  • the IMU is installed inside the GNSS/IMU receiver in a specific spatial relationship, and the installation method includes: the IMU sensor is fixed on the internal structural support of the receiver, the power supply and data transmission are realized through the header or the cable, or the IMU sensor is The patch method is fixed on the PCB board, and the power supply and data transmission are realized through the PCB circuit design;
  • the relative position transfer medium is a three-dimensional vector in Cartesian coordinates with the GNSS antenna phase center as the origin, and the coordinate axis system pointing definition is the same as that of the IMU's gyroscope and accelerometer coordinate axis system.
  • the Karl coordinate system is the airframe coordinate system, which describes the projection coordinates of the space vector of the relative position point to be measured relative to the GNSS antenna phase center in the airframe coordinate system;
  • the relative position transfer medium wherein the physical medium is a centering pole, a tripod, an AVG vehicle, a drone, an unmanned boat, a ferry, a tractor, a rice transplanter, a planter, a harvester, a bulldozer, and a grader , Excavator, paver, road roller, loader, crane, drilling machine, forklift, snow removal truck, sprinkler, sanitation truck, fire truck.
  • the physical medium is a centering pole, a tripod, an AVG vehicle, a drone, an unmanned boat, a ferry, a tractor, a rice transplanter, a planter, a harvester, a bulldozer, and a grader , Excavator, paver, road roller, loader, crane, drilling machine, forklift, snow removal truck, sprinkler, sanitation truck, fire truck.
  • the relative position transmission medium Since the GNSS antenna phase center is inside the receiver, the user cannot directly touch it and needs to be connected to the external points of the receiver.
  • the characteristic is that the three-dimensional vector is composed of at least two parts: 1) GNSS/IMU reception The first three-dimensional vector of the external connection point relative to the GNSS antenna phase center in the body coordinate system, which is a fixed value and stored in the receiver memory; 2) Translate the origin of the body coordinate system to the external connection point, and record the new coordinate system
  • the connection system the second three-dimensional vector of the relative position to be measured relative to the external connection point of the GNSS/INS receiver under the connection system, which is set by the user; the three-dimensional vector defined by the relative position transfer medium is determined by the first and second
  • the geometric relationship of the three-dimensional vector is determined, such as the calculation of translation addition and subtraction or trigonometric function relationship, as a position transfer vector.
  • the center of the GNSS/IMU receiver installation surface is an example of the external connection point of the receiver.
  • the position transfer device is configured to obtain GNSS board navigation positioning data and IMU observation data, and calculate the pitch angle ( ⁇ 90°) of the GNSS/IMU receiver through the GNSS/INS integrated navigation algorithm,
  • the roll angle ( ⁇ 180°) and the heading angle ( ⁇ 180°/0-360°) are used as the reference three-dimensional posture.
  • the three-dimensional coordinates of the relative position to be measured are derived through the reference coordinates, the reference three-dimensional posture and the position transfer vector, and the three-dimensional coordinates of the relative position to be measured are derived through the reference three-dimensional Calculate the tilt angle of the GNSS/IMU receiver relative to the local horizontal coordinate system, and output the reference coordinates, reference three-dimensional attitude, position transfer vector, relative position point coordinates, tilt angle, and relative status of the relative position point measurement function through sound/light Form feedback of the relative position point measurement results and related status, relative position point coordinates, tilt angle and relative position point measurement function related status are mandatory outputs, and the rest are optional outputs;
  • the reference three-dimensional attitude of the GNSS/IMU receiver is defined according to the coordinate axis system defined by the IMU, which represents the angle of rotation of the GNSS/IMU receiver relative to the navigation coordinate system around the IMU coordinate axis system;
  • the inclination angle of the GNSS/IMU receiver relative to the local horizontal coordinate system is composed of the vertical inclination angle and the directional inclination angle.
  • the vertical inclination angle represents the angle between the Z axis of the IMU and the vertical line (0-180 °) (Z-axis generally refers to the direction pointed by the middle finger of the right-hand coordinate system), and the direction inclination represents the angle between the plane formed by the Z-axis of the IMU and the vertical line and the true north direction ( ⁇ 180°);
  • the present invention also provides a surveying and mapping method for implementing the relative position point measurement function by means of a centering rod.
  • the surveying and mapping method includes at least two processes of 1) the relative position point measurement function initialization and 2) the relative position point measurement;
  • the initialization process of the relative position point measurement function includes at least the following two steps: 1. Set the three-dimensional projection vector of the space vector of the relative measurement point relative to the external connection point under the connection system. In this surveying method, the external connection point can be selected as the receiver The center of the installation surface, then the three-dimensional vector is the three-dimensional projection coordinates of the vector length from the top center of the centering rod to the bottom tip of the centering rod under the connection system. 2.
  • the reference attitude is initialized through a specific operation and used as a GNSS/INS combination The initial value of the attitude of the navigation algorithm, so as to enter the GNSS/INS integrated navigation filtering solution; the order of steps 1 and 2 can be reversed;
  • the relative position point measurement process includes at least the following two steps: 1. Place the bottom tip of the centering rod on the measuring point to be measured to realize the connection between the relative position point and the actual point to be measured, 2. Collect the output of the position transfer device The three-dimensional coordinates of the relative measuring point;
  • the specific operation actions for completing the initialization of the reference attitude include the following:
  • the operation of shaking the centering rod can be any combination of front and rear, left and right, circular motions
  • the static time can be set to 1 to 5 seconds
  • the walking distance can be set to 1-10 meters
  • the number of repeated shaking and the number of circular motions can be set 1-10 times
  • the length of static time the length of walking distance, and the combination sequence of shaking and the number of repetitions do not affect the implementation of the initialization process
  • the user holds the centering rod or leans the centering rod on/over his shoulder, and places the bottom tip of the centering rod on the point to be measured.
  • the vertical inclination of the GNSS/IMU receiver is 0-90 ° It can be within the range, which is different from the traditional surveying method that uses the centering rod to achieve the measurement function. It does not need to keep the leveling bubble on the centering rod in the center to ensure that the vertical inclination of the receiver is 0° or approximately 0°;
  • the methods for collecting the three-dimensional coordinates of the relative measurement point are as follows:
  • the display terminal or receiver After the user sends a collection command through a button or voice, the display terminal or receiver saves the first relative measurement point three-dimensional coordinates output by the position transfer device after receiving the command as the measurement result;
  • the display terminal or receiver After the user sends a collection command through a button or voice, the display terminal or receiver saves the three-dimensional coordinates of multiple relative measurement points outputted by the position transfer device after receiving the command, and takes their average value as the measurement result;
  • Multi-position single collection After the user sends a collection command through a button or voice, the display terminal or receiver saves the first relative measurement point three-dimensional coordinates output by the position transfer device after receiving the command, as the first position measurement value, and keeps the correct Place the tip of the center rod on the point to be measured and move the center rod to the second position. After the user sends out the acquisition command again through buttons or voice, the display terminal or receiver saves the first relative output output by the position transfer device after receiving the command.
  • the three-dimensional coordinates of the measuring point are used as the second position measurement value, repeat the above steps, collect the measurement values of multiple positions, and take their average value as the measurement result;
  • Multi-position collection After the user sends a collection command through a button or voice, the display terminal or receiver saves the three-dimensional coordinates of multiple relative measurement points outputted by the position transfer device after receiving the command, and takes their average value as the first position Measure the value, keep the centering rod tip placed on the point to be measured, move the centering rod to the second position, after the user sends out the acquisition command again through buttons or sound, the display terminal or receiver saves the output of the position transfer device after receiving the command
  • the three-dimensional coordinates of multiple consecutive relative measurement points take their average value as the second position measurement value, repeat the above steps, collect the measurement values of multiple positions, and take their average value as the measurement result;
  • the state of the center pole only needs to meet the conditions of claim 9, and the number of collection points and the number of moving positions in multi-position measurement do not affect the implementation of the data collection process;
  • the bottom tip of the centering rod can leave the point to be measured during position switching, just trigger the acquisition command and place the bottom tip of the centering rod on the same point to be measured during the data acquisition process;
  • the present invention also provides a surveying and mapping method for realizing the lofting function by means of the relative position point measurement function, and the method includes the following processes:
  • the display terminal receives the three-dimensional coordinate information of the relative position point of the bottom tip of the centering rod and the inclination angle information of the GNSS/IMU receiver from the position transmitting device in real time;
  • the display terminal calculates the three-dimensional coordinate vector between the two points according to the position information of the bottom tip of the centering rod received in real time and the position information of the point to be staked, and projects the three-dimensional coordinate vector on the local horizontal coordinate system.
  • the vector sum of the horizontal plane projected coordinates is the horizontal distance to be staked out, and its projected coordinates in the elevation direction is the height to be staked out distance.
  • the horizontal distance to be staked out and the height to be staked out distance together constitute the distance to be staked out;
  • the display terminal calculates the three-dimensional coordinate vector between the two points according to the position information of the bottom tip of the centering rod received in real time and the position information of the point to be staked, and calculates its angle with the true north direction through the three-dimensional coordinate vector. Recorded as direction angle 1, the direction inclination angle of the GNSS/IMU receiver output by the position transfer device received by the display terminal in real time is recorded as direction angle 2, and the difference between direction angle 2 and direction angle 1 is the direction to be staked;
  • the display terminal prompts the distance to be staked and the direction to be staked through the display or voice, and the user performs the stakeout operation according to the prompt.
  • the stakeout operation can be divided into two types, one is to find a point, the other is to stake out;
  • the stakeout operations include:
  • Stakeout operations are divided into two types: find point and stakeout according to the level of the distance to be staked out indicated by the display terminal.
  • find point When the horizontal stakeout distance indicated by the display terminal is greater than the stakeout distance threshold, it is the point find operation.
  • the stakeout distance threshold is a stakeout operation.
  • the stakeout distance threshold is an empirical reference value, which is only to remind the user to distinguish between two types of operations, and 0.3m is recommended;
  • the process of finding a spot is as follows: the user holds the centering rod in hand, or leans the centering rod on/over his shoulder, the vertical inclination of the GNSS/IMU receiver can be within the range of 0-90°, and the user follows the prompts of the display terminal Walk in the direction to be staked out to reduce the horizontal distance to be staked as prompted by the display terminal until the horizontal distance to be staked out as prompted by the display terminal is less than the stakeout distance threshold, and enter the stakeout operation process;
  • the stakeout process can be divided into two steps: coarse stakeout and fine stakeout according to the stakeout accuracy requirements.
  • Rough stakeout the user holds the centering rod, or leans the team member on his shoulder, and moves the centering rod in the direction to be staked as prompted by the display terminal The tip of the bottom of the center until the display terminal prompts the level to be staked distance and the height to be staked distance to meet the requirements of stakeout accuracy; fine stakeout: on the basis of rough stakeout, the user keeps the position of the bottom tip of the centering rod unchanged, and holds the centering rod.
  • the centering rod is lean the centering rod on your shoulder and move the centering rod so that the vertical inclination of the GNSS/IMU receiver is less than 10 degrees (that is, the centering rod is approximately vertical), if the display terminal prompts the horizontal distance and elevation to be staked out The stakeout distance still meets the stakeout accuracy requirements, then the stakeout is completed. If the horizontal stakeout distance or the elevation stakeout distance does not meet the stakeout accuracy requirements, move the centering rod slightly according to the stakeout direction prompted by the display terminal to make the horizontal stakeout distance The distance to be staked from the elevation meets the requirements of stakeout accuracy, and the stakeout is completed;
  • a fine stakeout step can be performed to ensure that the stakeout accuracy meets the requirements.
  • the fine stakeout step does not affect the realization of the GNSS/IMU receiver's stakeout function.
  • the present invention integrates an IMU inertial sensor inside a traditional GNSS receiver, and realizes inertial navigation and positioning by fusing the inertial navigation positioning results and the satellite navigation positioning results through the Kalman filter.
  • Complementary with the advantages of satellite navigation and positioning give full play to the high precision of satellite navigation and positioning and the high dynamic and fully autonomous advantages of inertial navigation, and achieve high-precision, high-reliability GNSS/IMU receiver three-dimensional dynamic tracking.
  • the GNSS/IMU receiver's relative position point measurement function allows the user to get rid of the restriction of the centering of the level bubble, which reduces the user's labor intensity and greatly improves the measurement efficiency;
  • the Kalman filter is used to fuse the calculation results of the inertial navigation mechanical arrangement and the GNSS solution to estimate the attitude error, velocity error and position error of the mechanical arrangement and the residual zero offset error of the inertial sensor, and perform feedback correction to achieve three-dimensional
  • the high-frequency and high-precision dynamic tracking calculation of the attitude because no magnetometer is used, fundamentally avoids the problem of magnetometer correction and poor reliability due to electromagnetic environment interference; due to the complete construction of the motion state Therefore, the tracking of the three-dimensional posture will not be affected by the changes in the motion state of the GNSS receiver, so the present invention can achieve high-precision and high-dynamic three-dimensional posture tracking, and real-time relative position point measurement based on the three-dimensional posture, without the need for quasi-static conditions get on;
  • the present invention makes full use of the speed and position information of GNSS to realize the state initialization of the GNSS/INS loose combination solution, including the three-dimensional position, three-dimensional velocity and three-dimensional attitude information.
  • the initial values of the three-dimensional position and the three-dimensional velocity can be obtained by the GNSS receiver .
  • the initial values of pitch and roll angles can be obtained from the measurement information of the accelerometer.
  • the focus is on the acquisition of the initial value of the heading angle.
  • the initial value of the heading angle calculated by the loose combination of GNSS/INS is essentially the coordinate axis system of the inertial sensor. The included angle with the true north direction.
  • the GNSS/IMU receiver is a non-fixed installation device, the included angle between the coordinate axis system of the inertial sensor and the true north direction is arbitrary and non-fixed at the initial moment, which leads to the looseness of the traditional GNSS/INS.
  • the combined algorithm model does not satisfy the linearization condition, and the present invention linearizes the nonlinear model by reconstructing the state quantity of the Kalman filter ("Carrier initial heading estimation method based on the transformation estimator modeling scheme", CN 109764870 A).
  • the user needs to hold the GNSS/IMU receiver and operate it for a period of time according to a specific action, and the initial value of the heading angle that meets the small angle error required by the GNSS/INS loose combination algorithm model can be estimated under the premise that the initial value of the heading angle is any value. Enter the GNSS/INS loose combination solution process, and then achieve high-precision, high-dynamic 3D attitude tracking;
  • the present invention sets a specific operation to complete the initialization of the relative position point measurement function.
  • the user only needs to hold the GNSS/IMU receiver and keep it stationary for a period of time, or walk for a certain distance, and then shake the receiver to complete the initialization.
  • the operation is simple and easy, and the user can complete it within 10 seconds, which hardly affects the normal measurement process;
  • the present invention sets a specific operation to realize the stakeout function.
  • the traditional stakeout method is based on the magnetometer on the display terminal to determine the direction to be staked, which has poor accuracy and reliability, especially when it reaches the vicinity of the point to be staked due to the display terminal and GNSS
  • the receiver space is inconsistent, the direction to be staked on the display terminal has no reference meaning, the experience is poor, and the centering rod level bubble must be kept in the middle to achieve accurate stakeout near the point to be staked, low efficiency, and high labor intensity.
  • the present invention calculates GNSS/ The tilt angle of the IMU receiver itself has high accuracy and high reliability. After reaching the point to be staked, just move the bottom tip of the centering rod to complete the stakeout.
  • the operation is simple and convenient, which can greatly improve the efficiency of stakeout and reduce The user's work intensity.
  • Figures 1a and 1b are schematic diagrams of installation and factory calibration of GNSS receivers involved in traditional surveying and mapping methods;
  • Figure 1c is a diagram of the GNSS/IMU receiver system structure involved in the present invention;
  • Figure 3 An explanatory diagram of the initialization process of the relative position point measurement function
  • Figure 4 An explanatory diagram of the measurement process of the relative position point measurement function
  • FIG. 5 An explanatory diagram of the point finding process of the stakeout function
  • FIG. 6a and Figure 6b are explanatory diagrams of the stakeout process of the stakeout function.
  • a GNSS/IMU surveying and mapping system includes: a GNSS/IMU receiver, a relative position transfer medium, and a display terminal: the GNSS/IMU receiver includes at least a GNSS antenna and a GNSS Positioning board, IMU inertial sensor, position transfer device: The function of the GNSS antenna is to track and receive the electromagnetic wave signal emitted by the navigation and positioning satellite. The function of the GNSS positioning board is to analyze the electromagnetic wave signal received by the GNSS antenna, and run the satellite navigation and positioning program to calculate the coordinate position of the phase center of the GNSS antenna as the reference coordinate of the relative position point measurement.
  • the function of the IMU inertial sensor is to measure the three-axis acceleration and the three-axis angular velocity of the GNSS/IMU receiver in the inertial space.
  • the IMU inertial sensor is installed inside the GNSS/IMU receiver in a specific spatial relationship, including the three-axis Accelerometer and three-axis gyroscope, and the three axis systems of accelerometer and gyroscope are correspondingly designed in parallel.
  • the definition of the axis system meets the right-hand rule.
  • the accelerometer and gyroscope are designed in the form of micro-electromechanical systems, using industrial grade or consumer grade Accelerometers and gyroscopes, IMU inertial sensors can be fixed on the internal structure of the GNSS/IMU receiver or on the PCB board, and power supply and data transmission can be realized through cable or pin headers, or the IMU inertial sensors can be fixed to GNSS in a patch mode On the PCB inside the INS receiver, power supply and data transmission are realized through PCB circuit design.
  • the function of the position transmission device is to calculate the three-dimensional coordinate position of the relative position of the GNSS/IMU receiver, the inclination angle of the GNS/IMU receiver, and the state of the relative position point measurement, and to control the GNSS/IMU receiver through the sound or light pair
  • the relative position point measurement results and status are fed back.
  • It is a computer executable program.
  • the position transfer device is configured to obtain GNSS board positioning data and IMU observation data, and calculate the pitch of the GNSS/IMU receiver through the GNSS/INS integrated navigation algorithm Angle, roll angle and heading angle are used as the reference three-dimensional attitude.
  • the three-dimensional coordinates of the relative position point to be measured are calculated through the reference coordinate, the reference attitude and the position transfer vector defined by the position transfer medium, and the relative locality of the GNSS/IMU receiver is calculated by the reference attitude
  • the vertical inclination angle and direction inclination angle of the horizontal coordinate system record the vertical inclination angle and the direction inclination angle as the inclination angle, and externally output the reference coordinates, reference 3D attitude, position transfer vector, 3D coordinates of the relative position to be measured, inclination angle, and relative position measurement
  • the related status of the function control the GNSS/IMU receiver to feedback the results and related status of the relative position point measurement function in the form of sound or light.
  • the three-dimensional coordinates of the relative position point to be measured, the inclination angle and the relevant status of the relative position point measurement function are necessary.
  • Select the output, the rest are optional outputs;
  • the tilt angle is composed of the vertical tilt angle and the direction tilt angle, which is defined according to the coordinate axis system defined by the IMU.
  • the vertical tilt angle represents the angle between the Z axis of the IMU and the vertical line (0-180°) (Z-axis generally refers to the direction pointed by the middle finger of the right-hand coordinate system), the inclination of the direction represents the angle ( ⁇ 180°) between the plane formed by the Z-axis of the IMU and the vertical line and the true north direction.
  • the relative position transfer medium is the physical medium used to transfer the spatial relationship between the GNSS/IMU receiver antenna phase center and the relative position measurement point, including the centering pole for measurement, tripod, and AVG vehicle with GNSS/IMU receiver installed.
  • Carriers such as fire trucks, unmanned aerial vehicles, and unmanned ships can abstract the physical medium as a three-dimensional coordinate vector, which is used to describe the limited spatial relationship between the relative position point to be measured and the phase center of the GNSS/IMU receiver antenna, which is defined as follows
  • Coordinate system take the GNSS antenna phase center as the coordinate origin, the coordinate axis system pointing definition is the same as the Cartesian coordinate system definition of the coordinate axis system of the IMU inertial sensor, record this Cartesian coordinate system
  • the space vector of the center of the installation surface relative to the phase center of the GNSS antenna is recorded in the body coordinate system
  • the three-dimensional coordinate vector of is the first three-dimensional vector, which is a fixed value stored in the memory of the GNSS/IMU receiver; translate the origin of the body coordinate system to the center of the mounting surface, which is recorded as the connection system, and the relative position points to be measured are relative
  • the three-dimensional coordinate vector of the space vector of the center of the installation surface in the connection system is the second three-dimensional vector, which is set by the user, and the abstract relative position transfers the three-dimensional coordinate vector defined by the physical medium.
  • the three-dimensional coordinate vector is composed of the first three-dimensional vector and the second three-dimensional vector.
  • the center of the installation surface of the GNSS/IMU receiver is an example of an external connection point.
  • the connection point can be any fixed and accessible point outside the GNSS/IMU receiver relative to the GNSS/IMU receiver.
  • the function of the display terminal is to display the results and status of the relative position point measurement of the GNSS/IMU receiver and interact with the user. It is an optional equipment for the GNSS/IMU surveying and mapping system and does not affect the GNSS/IMU receiver.
  • the basic realization of the relative position point measurement function is to display the results and status of the relative position point measurement of the GNSS/IMU receiver and interact with the user. It is an optional equipment for the GNSS/IMU surveying and mapping system and does not affect the GNSS/IMU receiver. The basic realization of the relative position point measurement function.
  • a surveying and mapping method for implementing the relative position point measurement function by means of a centering rod.
  • the surveying and mapping method includes at least two processes of the relative position point measurement function initialization and the relative position point measurement:
  • the initialization process of the relative position point measurement function includes at least two steps: one is to set the second three-dimensional vector of the relative position point to be measured relative to the external connection point.
  • the external connection point is the installation of the GNSS/IMU receiver.
  • the center of the plane, the relative position to be measured is the bottom tip of the centering rod, and the second three-dimensional vector is the three-dimensional coordinates of the vector length from the top center of the centering rod to the bottom tip of the centering rod under the connection system; the second is through a specific operation action Complete the initialization of the reference attitude as the initial attitude value of the GNSS/INS integrated navigation algorithm, and then enter the GNSS/INS integrated navigation filter calculation.
  • the specific operation actions of the initialization can be divided into two categories: 1) static in place for a period of time, before and after /Left/Right/Front/Right/Clockwise circle/Counterclockwise circle Repeatedly shake the centering rod until the GNSS/IMU receiver or display terminal prompts that the initialization process is complete; 2) Hand-held or shoulder-borne centering rod and walk for a certain distance, front/back/left/right/forward Shake the centering rod left and right/clockwise circle/counterclockwise circle repeatedly until the GNSS/IMU receiver or display terminal prompts that the initialization process is complete; the operation of shaking the centering rod can be any combination of forward and backward, left and right, and circular motions, and the static time can be set It is set to 1-5 seconds, the walking distance can be set to 1-10 meters, the number of repetitive shaking can be set to 1-10 times, the length of static time, the length of walking distance, and the combination sequence and number of repetitions of shaking actions do not affect the initialization
  • the relative position point measurement process includes at least two steps: one is to place the bottom tip of the centering rod on the point to be measured to realize the connection between the relative position point and the point to be measured.
  • this step the user holds the centering rod, Or put the centering rod on/on your shoulders, as long as the vertical inclination of the GNSS/IMU receiver is within the range of 0-90°, which is different from the traditional surveying method that uses the centering rod to achieve the relative position point measurement function.
  • the biggest difference is that there is no need to keep the level bubble on the centering rod in the center to ensure that the vertical inclination angle of the receiver is 0° or close to 0°, which greatly reduces the measurement limit; the second is to trigger the acquisition command to complete the three-dimensional coordinate acquisition of the relative position point.
  • the methods of relative position point coordinates can be divided into two categories: 1) Single position collection. After the user sends a collection command through a button or voice, the display terminal or receiver saves the command. After receiving the command, the position transfer device outputs the first relative position measurement.
  • the three-dimensional coordinates of a point are used as the measurement result, or after the user sends a collection command through a button or voice, the display terminal or receiver saves the continuous multiple relative position point measurement coordinates output by the position transfer device after receiving the command, and takes their average value as Measurement results; 2) Multi-position collection. After the user sends a collection command through a button or voice, the display terminal or receiver saves the command. After receiving the command, the position transfer device outputs the three-dimensional coordinates of the first relative position measurement point or multiple consecutive relative positions The average value of the three-dimensional coordinates of the measuring point is used as the first position measurement value. Keep the bottom tip of the centering rod placed on the point to be measured, and move the centering rod to the second position.
  • the display terminal Or the receiver saves the three-dimensional coordinates of the first relative position measuring point or the average value of the three-dimensional coordinates of consecutive relative position measuring points after receiving the command, and repeats the above operation to collect multiple positions Take their average value as the measurement result.
  • the centering rod can be held by hand, or leaned/carried on the shoulder, only the vertical inclination angle of the GNSS/IMU receiver is 0-90° That is, the average number of measurement points and the number of positions does not affect the implementation of the data acquisition process.
  • the bottom tip of the centering rod can leave the measurement point during the process of switching positions, just trigger the acquisition command and data acquisition In the process, the bottom tip of the centering rod can be placed on the same point to be measured.
  • a surveying and mapping method for realizing the lofting function by means of the relative position point measurement function includes the following five processes: 1) The display terminal receives the relative position point of the bottom tip of the centering rod outputted by the position transfer device in real time. The 3D coordinate information of the GNSS/IMU receiver and the tilt angle information of the GNSS/IMU receiver; 2) Calculate the distance to be staked, and calculate the 3D coordinate vector between the two points according to the 3D coordinates of the bottom tip of the centering rod and the 3D coordinates of the point to be staked. The vector is projected in the local horizontal coordinate system.
  • the sum of the vector in the horizontal direction of the projection is the distance to be staked out, and the component of the projection in the elevation direction is the distance to be staked out.
  • the distance to be staked out and the distance to be staked out together form the distance to be staked out.
  • the stakeout operation can be divided into two categories, one is to find a point, the other is to stake out.
  • the distance to be staked is greater than the threshold, it is to find a point. The user holds the centering rod.
  • the vertical inclination of the GNSS/IMU receiver can be within the range of 0-90°, the user walks in the direction to be staked as prompted by the display terminal, and the display terminal prompts to be staked The horizontal distance is reduced until the horizontal distance to be staked out as prompted by the display terminal is less than the stakeout distance threshold, and the stakeout operation process is entered; the stakeout process can be divided into two steps: rough stakeout and fine stakeout according to the stakeout accuracy requirements.
  • Rough stakeout the user holds the center Or put the centering rod on your shoulder, and move the bottom tip of the centering rod in the direction to be staked as prompted by the display terminal until the horizontal and height to be staked distances prompted by the display terminal meet the stakeout accuracy requirements; fine stakeout: On the basis of completing the rough lofting, the user keeps the position of the bottom tip of the centering rod unchanged, holding the centering rod, or leaning the centering rod on the shoulder, and moving the centering rod to make the vertical inclination of the GNSS/IMU receiver Less than 10 degrees (that is, the centering rod is approximately vertical), if the horizontal distance to be staked out and the height to be staked distance prompted by the display terminal still meet the stakeout accuracy requirements, then the stakeout is completed.
  • Step 1 Acquire GNSS positioning data and IMU observation data simultaneously:
  • the GNSS antenna observation information and other related solution information are transferred to the GNSS positioning board, and the GNSS board performs satellite navigation and positioning solutions based on the received observation information and solution information Calculate and output the solution time, antenna phase center velocity and antenna phase center position information.
  • the position transmission device periodically obtains the triaxial acceleration and triaxial angular velocity observed by the IMU inertial sensor under the control of the CPU.
  • the usual sampling frequency is 100Hz .
  • IMU observation information and GNSS board positioning information are transmitted to the solution module of the position transmission device;
  • Step 2 Set the relative position transfer medium:
  • the user uses a steel ruler to measure the three-dimensional projection coordinates of the vector of the relative position point relative to the external joint point of the GNSS/IMU receiver under the joint system, and transfer the measured value to the position transfer device through the display terminal or the GNSS/IMU receiver, that is, set the first Two-dimensional vector, the position transfer device reads the first three-dimensional vector from the memory after receiving the second three-dimensional vector, and adds the first three-dimensional vector and the second three-dimensional vector to obtain the relative position transfer medium.
  • the vector length of the first three-dimensional vector can be read directly from the centering rod.
  • its projection on the X and Y axis of the cohesive system is 0, and the projection on the Z axis of the cohesive system is the vector length;
  • Step 3 Initialize the relative position point measurement function:
  • the inertial navigation positioning algorithm belongs to the dead reckoning algorithm.
  • the initial value of the algorithm needs to be determined.
  • the initial value includes the initial attitude, initial speed, initial position.
  • the initial speed and initial position can be determined by the speed and position output by the GNSS board.
  • the initial pitch angle The initial roll angle and the initial roll angle can be determined by the acceleration measured by the IMU inertial sensor. Only the initial heading needs to be determined by a special method.
  • the GNSS/IMU relative position point measurement function determines the initial heading through a limited operation and a large misalignment angle initialization algorithm.
  • the position transfer device After turning on the relative position point measurement function through the display terminal or GNSS/IMU receiver, keep the GNSS/IMU receiver stationary for a period of time or after walking a certain distance with the GNSS/IMU receiver in hand, shake the GNSS/IMU receiver according to a limited action, such as Repeatedly shake the GNSS/IMU receiver back and forth, repeatedly shake the GNSS/IMU receiver left and right, repeatedly make the GNSS/IMU receiver make a circular motion, and the position transfer device processes the GNSS board navigation and positioning information received during the limited operation and the IMU inertial sensor observations The information can complete the calculation of the initial heading, thereby completing the initialization of the inertial navigation positioning algorithm, and entering the inertial navigation positioning solution and the GNSS/INS loose combination solution process;
  • the relative position transfer device can perform the inertial navigation positioning calculation at a frequency not higher than the sampling frequency of the IMU inertial sensor according to the inertial navigation mechanical arrangement algorithm, and output the inertial navigation
  • the calculated three-dimensional attitude, three-dimensional velocity, and three-dimensional position are recorded as the first attitude, the first velocity, and the first position; meanwhile, the relative position transfer device constructs the Kalman filter of the GNSS/INS loose combination solution according to the differential equation of the inertial navigation mechanical arrangement algorithm
  • the relative position transfer device receives the three-dimensional velocity and three-dimensional position output by the GNSS board, it is recorded as the second velocity and the second position.
  • the relative position transfer device performs the above process cyclically to realize the GNSS/IMU receiver Dynamic high-precision tracking of 3D attitude, speed and position;
  • Step 5 Calculate the three-dimensional coordinates of the relative position point:
  • the GNSS antenna phase center position output by the GNSS board is the Cartesian position or the curved position in the Earth-centered-Earth-Fixed Coordinate System (ECEF).
  • the three-dimensional attitude output by the relative position transfer device describes the relative navigation system of the machine system (local horizontal coordinate system). ), the conversion relationship between the ECEF coordinate system and the navigation system is a function of the GNSS antenna phase center position, which is a known quantity.
  • the relative position transfer medium is a three-dimensional coordinate vector defined in the machine system, which describes the relative position point. Relative to the spatial relationship of the GNSS antenna phase center in the machine system, the three-dimensional attitude is the link that transfers the three-dimensional coordinate vector under the machine system to the ECEF coordinate system.
  • the projected coordinates of the relative position transfer medium in the ECEF system can be obtained by the translation of the three-dimensional vector.
  • the relationship obtains the three-dimensional position of the relative position point in the ECEF coordinate system, so as to realize the measurement of the relative position point.
  • R measurement is the three-dimensional position coordinate of the relative position point under ECEF
  • R antenna is the three-dimensional position coordinate of the GNSS antenna phase center under ECEF;
  • Lever b the transfer medium for the relative position under the machine system.
  • Step 6 Calculate the tilt angle of the GNSS/IMU receiver:
  • the relative position transfer device calculates the vertical and directional inclination of the GNSS/IMU receiver in the local horizontal coordinate system according to the calculated three-dimensional attitude, so as to intuitively prompt the current GNSS/IMU receiver space through the GNSS/IMU receiver or display terminal Status, guide users to perform measurement tasks.
  • the present invention integrates the IMU inertial sensor inside the traditional GNSS receiver, and uses the Kalman filter to fuse inertial navigation positioning results and satellite navigation positioning results to achieve the complementary advantages of inertial navigation positioning and satellite navigation positioning, and give full play to satellite navigation
  • the high-precision positioning and the highly dynamic and fully autonomous advantages of inertial navigation can achieve high-precision and high-reliability dynamic tracking of the three-dimensional attitude of the GNSS/IMU receiver.
  • the relative position point measurement function of the GNSS/IMU receiver can be realized.
  • the GNSS/INS loose combination algorithm is used to track and solve the three-dimensional attitude (a new type of GNSS receiver tilt measurement system and method ⁇ , CN 109269471 A), through the Kalman filter to fuse the calculation results of the inertial navigation mechanical arrangement and the GNSS solution, estimate the attitude error, speed error and position error of the mechanical arrangement and the residual zero offset error of the inertial sensor, and perform feedback correction , So as to realize the high-frequency, high-precision dynamic tracking and calculation of the three-dimensional posture.
  • the present invention can achieve high-precision and high-dynamic three-dimensional attitude tracking, and realize real-time relative position point measurement based on the three-dimensional attitude. Performed under quasi-static conditions; make full use of the speed and position information of GNSS to realize the state initialization of the GNSS/INS loose combination solution, including 3D position, 3D speed and 3D attitude information.
  • the initial values of 3D position and 3D speed can be passed through the GNSS receiver Obtained, the initial values of the pitch and roll angles can be obtained from the measurement information of the accelerometer.
  • the focus is on the acquisition of the initial value of the heading angle.
  • the initial value of the heading angle calculated by the loose combination of GNSS/INS is essentially the coordinate axis of the inertial sensor.
  • the GNSS/IMU receiver Since the GNSS/IMU receiver is a non-fixed installation device, the angle between the coordinate axis system of the inertial sensor and the true north direction is arbitrary and non-fixed at the initial moment, resulting in traditional GNSS/INS
  • the loose combination algorithm model does not meet the linearization condition, and the present invention linearizes the nonlinear model by reconstructing the state quantity of the Kalman filter ("Carrier initial heading estimation method based on the transformation estimator modeling scheme", CN 109764870 A), As long as the user holds the GNSS/IMU receiver and operates it for a period of time according to a specific action, the initial value of the heading angle that meets the small angle error required by the GNSS/INS loose combination algorithm model can be estimated under the premise that the initial value of the heading angle is any value.
  • the NSS/IMU receiver stays still for a period of time, or walks a distance, and then shakes the receiver to complete the initialization.
  • the operation is simple and easy, and the user can complete it within 10 seconds, which hardly affects the normal measurement process;
  • a specific operation is set to realize the stakeout function.
  • the traditional stakeout method is based on the magnetometer on the display terminal to determine the direction to be staked, which has poor accuracy and reliability. Especially after reaching the point to be staked, the display terminal and the GNSS receiver are inconsistent in space.
  • the direction to be staked on the display terminal has no reference meaning, and the experience is poor, and the centering rod level bubble must be kept in the middle when reaching the point to be staked to achieve accurate stakeout, low efficiency and high labor intensity.
  • the present invention calculates the GNSS/IMU receiver itself. Inclination angle, high accuracy, high reliability, and after reaching the point to be staked, you only need to move the bottom tip of the centering rod to complete the stakeout. The operation is simple and convenient, which can greatly improve the efficiency of stakeout and reduce the user's work intensity .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种基于GNSS/IMU的倾斜测量系统,包含:GNSS/IMU接收机,其中GNSS/IMU接收机包含GNSS天线、GNSS定位板卡、IMU惯性传感器、位置传递装置,GNSS天线用于接收卫星导航定位信号,GNSS定位板卡用于根据GNSS天线接收的信号计算GNSS天线相位中心坐标,作为测量相对位置点的基准坐标,IMU用于测量接收机的加速度和角速度,相对位置传递媒介用于衔接基准坐标和待测量相对位置坐标,位置传递装置用于实现相对位置点测量功能。可实现可靠的、高精度的相对位置点测量,以取代传统的GNSS测量方法和基于AHRS技术、空间交会技术的倾斜测量方法,提高GNSS接收机外业测量的工作效率,降低使用者的劳动强度,并拓宽GNSS接收机在数字施工、精准农业和智能驾驶等领域的应用。

Description

一种GNSS/IMU测绘系统和方法 技术领域
本发明涉及一种高精度GNSS/IMU接收机系统的产品形态及其测量方法,适用于利用GNSS接收机进行点测量和放样的各测绘、工程测量、监测等测量领域,以及利用GNSS接收机或GNSS/INS组合导航设备进行导航定位的车辆、飞行器、船舶等导航定位领域。
背景技术
GNSS接收机一般包含GNSS天线和GNSS定位板卡,GNSS定位板卡根据GNSS天线接收到的GNSS卫星定位信号计算GNSS天线的相位中心位置,但是GNSS天线相位中心位于GNSS接收机内部,而待测量点位于GNSS接收机外部,需要将GNSS接收机内部的GNSS天线相位中心位置传递至GNSS外部待测量点,才能实现待测量点的测量。
传统的测绘方法通过对中杆或三脚架实现GNSS接收机内部天线相位中心至外部测量点的位置传递,GNSS接收机在结构设计时就使得GNSS天线的几何中心和GNSS接收机外壳安装中心同轴,实现GNSS天线相位中心与外部的联系,并在出厂时对GNSS天线相位中心相对外部安装中心的偏差进行标定,实际测量时,将GNSS接收机安装在对中杆上,对中杆底部尖端放置在待测量点上,保持对中杆上的水准气泡居中,使得GNSS天线几何中心,安装中心与待测量点同轴,并平行于铅垂线,从而完成天线相位中心至测量点的传递,实现测量点的测量,如图1a、图1b,x,y,h为出厂标定值。
GNSS接收机传统作业方式需要进行对中整平,保持GNSS接收机平行于当地水平面,才能将天线相位中心位置传递至测量点,本质上是相对位置点测量,其作业效率低,劳动强度大,且墙角、斜坡等环境并不具备对中整平的客观条 件,难以直接测量,为提高作业效率和降低劳动强度,业内一些公司开发了倾斜测量方案,倾斜测量属于相对位置点测量的一个实例,其实现方案主要有两种:一是基于AHRS技术的有磁倾斜测量方案;二是基于空间交汇理论的多位置测量方法;
基于AHRS技术的有磁倾斜测量方案,其方法是通过AHRS算法计算GNSS接收机的三维姿态,即利用加速度计或加速度计加陀螺仪跟踪GNSS接收机的俯仰角和横滚角,利用磁力计跟踪GNSS接收机的航向角,利用俯仰角、横滚角和航向角生成方向余弦矩阵,实现空间矢量的坐标转换,将天线相位中心位置补偿至地面测量点,但该方案缺点较多:
1、GNSS接收机俯仰角、横滚角跟踪的绝对精度依赖于加速度计测量精度,需要对加速度计的零偏进行定期标定,标定的精度直接影响GNSS接收机俯仰角和横滚角跟踪的精度,且一般客户不具备加速度计标定的专业知识和设备条件;
2、基于加速度计跟踪GNSS接收机的俯仰角、横滚角的前提是加速度计只敏感到重力,所以该方案只能在准静态条件下使用,动态条件下的角度跟踪精度不可靠,即使使用陀螺仪也只能提高角度跟踪的动态性,起到角度平滑跟踪的效果,长时间动态情况下角度跟踪的绝对精度依然取决于加速度的精度;
3、电磁环境的变化直接影响磁力计的测量输出,所以需要对磁力计进行定期校正,最好每次设备开机均对磁力计进行校正,磁力计系统偏差的校正效果直接影响航向角测量的精度,进而直接影响倾斜测量的精度,且GNSS接收机使用过程中内外部电磁环境的变化很难监测,所以该方案的可靠性非常差;
由于有磁方案的精度无法保证,可靠性和重复性差,且校正过程繁琐,所以实用性非常差。
基于空间交会理论的多位置测量方法通过固定对中杆底部尖端放置在已知 点上不动,移动对中杆采集GNSS接收机在多个位置上的坐标,以对中杆的长度作为约束条件进行空间交会,计算出对中杆底部尖端的位置,但该方法的测量精度受制于GNSS接收机多位置采集点空间点分布的几何结构,但在墙角等遮挡环境下对中杆移动的空间有限,所以多位置测量点的几何结构很差,测量精度只能达到分米级,且需要多次移动对中杆采集多个位置的坐标才能完成测量,效率低下。
发明内容
针对上述问题,本发明旨在设计一种新型的GNSS/IMU接收机测量系统和方法,实现可靠的、高精度的相对位置点测量,以取代传统的GNSS测量方法和基于AHRS技术、空间交会技术的倾斜测量方法,提高GNSS接收机外业测量的工作效率,降低使用者的劳动强度,并拓宽GNSS接收机在数字施工、精准农业和智能驾驶等领域的应用。
为实现上述目的,本发明提供如下技术方案:一种基于GNSS/IMU的倾斜测量系统,该测绘系统包含:(1)GNSS/IMU接收机,(2)相对位置传递媒介,(3)显示终端;GNSS/IMU接收机包含GNSS天线、GNSS定位板卡、IMU惯性传感器、位置传递装置,GNSS天线用于接收卫星导航定位信号,GNSS定位板卡用于根据GNSS天线接收的信号计算GNSS天线相位中心坐标,作为测量相对位置点的基准坐标,IMU惯性传感器用于测量接收机的加速度和角速度,位置传递装置用于计算接收机相对位置点的三维坐标、倾斜角和测量状态,并通过声或光对测量状态进行反馈;
相对位置传递媒介为传递相对位置测量点与GNSS/IMU接收机天线相位中心限定空间关系的物理媒介;
显示终端用于GNSS/INS接收机相对位置点测量结果和状态的显示,用于与使用者的交互;
所述测绘系统特征在于:
GNSS/IMU接收机包含IMU惯性传感器,该IMU惯性传感器以特定的空间关系安装于GNSS/IMU接收机内部,IMU惯性传感器包含加速度计和陀螺仪;
GNSS/IMU测绘系统包含相对位置传递媒介,该相对位置传递媒介为传递限定空间关系的物理媒介,可以抽象为一个三维坐标向量,描述相对位置测量点在以GNSS天线相位中心为原点建立的笛卡尔坐标系下的坐标矢量;
GNSS/IMU接收机包含位置传递装置,该位置传递装置处理GNSS板卡计算的基准位置,IMU传感器的观测数据和相对位置传递媒介数据,计算相对位置点的坐标,接收机的倾斜角和测量状态;
GNSS/IMU测绘系统包含显示终端,显示终端用于与使用者进行交互,显示位置传递装置输出的相对位置点测量结果与测量状态,其为GNSS/IMU测绘系统的选配设备,不影响GNSS/IMU测绘系统相对位置点测量功能的实现;
优选的,IMU惯性传感器以微机电系统(MEMS)的形式设计,该IMU传感器至少包含三轴的MEMS加速度计和三轴的MEMS陀螺仪,且加速度计和陀螺仪的三个轴系对应平行设计;所述的IMU惯性传感器采用工业级或较低精度的加速度计和陀螺仪设计;
优选的,IMU以特定的空间关系安装在GNSS/IMU接收机内部,其安装方式包括:IMU传感器固定于接收机内部结构支架上,供电和数据传输通过排针或排线实现,或者IMU传感器以贴片方式固定于PCB板上,供电和数据传输通过PCB电路设计实现;
优选的,相对位置传递媒介,其为一个以GNSS天线相位中心为原点,坐 标轴系指向定义与IMU的陀螺仪和加速度计坐标轴系指向定义相同的笛卡尔坐标下的三维向量,定义该笛卡尔坐标系为机体坐标系,描述待测量的相对位置点相对GNSS天线相位中心的空间矢量在机体坐标系下的投影坐标;
优选的,相对位置传递媒介,其中,所述物理媒介是对中杆,三脚架,AVG车辆,无人机,无人船,摆渡车,拖拉机,插秧机,播种机,收割机,推土机,平地机,挖掘机,摊铺机,压路机,装载机,起重机,钻孔机,铲车,除雪车,洒水车,环卫车,消防车中的一种。
优选的,相对位置传递媒介,由于GNSS天线相位中心在接收机内部,使用者不能直接接触,需接收机外部点衔接,特征在于其所述三维向量至少由两部分组成:1)GNSS/IMU接收机外部衔接点相对GNSS天线相位中心在机体坐标系下的第一三维向量,该向量为定值存储在接收机内存中;2)将机体坐标系的原点平移至外部衔接点,记新坐标系为衔接系,待测量相对位置点相对GNSS/INS接收机外部衔接点在衔接系下的第二三维向量,该向量由使用者设定;相对位置传递媒介定义的三维向量由第一、第二三维向量的几何关系确定,如平移加减或三角函数关系计算,作为位置传递向量,GNSS/IMU接收机安装面中心为接收机外部衔接点的一个实例,衔接点可为接收机外部任意可接触的、相对接收机固定的点;
优选的,位置传递装置,该位置传递装置被构造成用于获取GNSS板卡导航定位数据和IMU观测数据,通过GNSS/INS组合导航算法计算GNSS/IMU接收机的俯仰角(±90°),横滚角(±180°)和航向角(±180°/0-360°)作为基准三维姿态,通过基准坐标、基准三维姿态和位置传递向量导出待测量相对位置点的三维坐标,通过基准三维姿态计算GNSS/IMU接收机相对当地水平坐标系的倾斜角,对外输出基准坐标、基准三维姿态、位置传递向量、相对位 置点坐标、倾斜角以及相对位置点测量功能的相关状态,通过声/光形式反馈相对位置点测量的结果和相关状态,相对位置点坐标、倾斜角和相对位置点测量功能相关状态为必选输出,其余为可选输出;
GNSS/IMU接收机的基准三维姿态根据IMU定义的坐标轴系定义,表征GNSS/IMU接收机相对导航坐标系围绕IMU坐标轴系转动的角度;
GNSS/IMU接收机相对当地水平坐标系的倾斜角由竖直倾角和方向倾角构成,根据IMU定义的坐标轴系定义,竖直倾角表征IMU的Z轴与铅垂线的夹角(0-180°)(Z轴一般指右手坐标系的中指所指方向),方向倾角表征IMU的Z轴与铅垂线所构成的平面与真北方向的夹角(±180°);
本发明还提供一种借助对中杆实施相对位置点测量功能的测绘方法,该测绘方法至少包含1)相对位置点测量功能初始化和2)相对位置点测量两个过程;
相对位置点测量功能初始化过程至少包括以下两个步骤:1.设定相对测量点相对外部衔接点的空间矢量在衔接系下的三维投影向量,在该测绘方法中外部衔接点可选为接收机安装面中心,则该三维向量为对中杆顶部中心至对中杆底部尖端的矢量长度在衔接系下的三维投影坐标,2.通过特定的操作动作完成基准姿态的初始化,作为GNSS/INS组合导航算法的姿态初始值,从而进入GNSS/INS组合导航滤波解算;步骤1,2的次序可颠倒;
相对位置点测量过程至少包括以下两个步骤:1.将对中杆的底部尖端放置在待测量的测量点上,实现相对位置点与实际待测量点的连接,2.采集位置传递装置输出的相对测量点的三维坐标;
优选的,完成基准姿态初始化的特定操作动作包括如下几种:
1)打开相对位置点测量功能后,原地静止一段时间,前后重复晃动对中杆直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
2)打开相对位置点测量功能后,原地静止一段时间,左右重复晃动对中杆直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
3)打开相对位置点测量功能后,原地静止一段时间,前后左右重复晃动对中杆直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
4)打开相对位置点测量功能后,原地静止一段时间,顺时针使对中杆重复做圆周运动直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
5)打开相对位置点测量功能后,原地静止一段时间,逆时针使对中杆重复做圆周运动直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
6)打开相对位置点测量功能后,手持或肩扛对中杆步行一段距离,前后重复晃动对中杆直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
7)打开相对位置点测量功能后,手持或肩扛对中杆步行一段距离,左右重复晃动对中杆直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
8)打开相对位置点测量功能后,手持或肩扛对中杆步行一段距离,前后左右重复晃动对中杆直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
9)打开相对位置点测量功能后,手持或肩扛对中杆步行一段距离,顺时针使对中杆重复做圆周运动直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
10)打开相对位置点测量功能后,手持或肩扛对中杆步行一段距离,逆时针使对中杆重复做圆周运动直至GNSS/IMU接收机或显示终端通过声或光的形式提示初始化过程完成;
晃动对中杆的操作可以是前后、左右、圆周运动的任意组合,静止时间可设定为1至5秒,步行距离可设定为1-10米,重复晃动次数和圆周运动次数可设定为1-10次,静止时间长短,步行距离长短,以及晃动的组合顺序和重复次数不影响初始化过程的实行;
优选的测量过程,使用者手持对中杆或者将对中杆靠/扛在肩膀上,将对中杆的底部尖端放置在待测点上,GNSS/IMU接收机的竖直倾角在0-90°范围内均可,其区别于传统的借助对中杆实现测量功能的测绘方法,无需通过保持对中杆上的水准气泡居中来保证接收机的竖直倾角为0°或者近似0°;
优选的,其采集相对测量点三维坐标的方法有如下几种:
单位置单次采集:使用者通过按钮或者声音发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出的第一个相对测量点三维坐标,作为测量结果;
单位置多次采集:使用者通过按钮或者声音发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出的连续多个相对测量点三维坐标,取它们的平均值作为测量结果;
多位置单次采集:使用者通过按钮或者声音发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出的第一个相对测量点三维坐标,作为第一位置测量值,保持对中杆尖端放置在待测量点上,移动对中杆至第二位置,使用者通过按钮或者声音再次发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出的第一个相对测量点三维坐标,作为第二位置测 量值,重复上述步骤,采集多个位置的测量值,取它们的平均值作为测量结果;
多位置多次采集:使用者通过按钮或者声音发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出的连续多个相对测量点三维坐标,取它们的平均值作为第一位置测量值,保持对中杆尖端放置在待测量点上,移动对中杆至第二位置,使用者通过按钮或者声音再次发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出的连续多个相对测量点三维坐标,取它们的平均值作为第二位置测量值,重复上述步骤,采集多个位置的测量值,取它们的平均值作为测量结果;
单位置和多位置测量时,对中杆的状态满足权利要求9的条件即可,多次采集时采集点的个数和多位置测量时移动位置的次数不影响数据采集过程的实行;
多位置测量时,切换位置过程中对中杆的底部尖端可以离开待测量点,只需触发采集命令和数据采集过程中对中杆底部尖端放置在同一个待测量点上即可;
本发明还提供一种借助相对位置点测量功能实现放样功能的测绘方法,该方法包含以下过程:
获取相对位置点的测量信息:显示终端实时接收位置传递装置输出的对中杆底部尖端相对位置点的三维坐标信息和GNSS/IMU接收机倾斜角信息;
计算待放样距离:显示终端根据实时接收的对中杆底部尖端位置信息与待放样点的位置信息计算两点之间的三维坐标向量,将该三维坐标向量在当地水平坐标系进行投影,其在水平面投影坐标的矢量和即为水平待放样距离,其在高程方向的投影坐标即为高程待放样距离,水平待放样距离和高程待放样距离共同构成了待放样距离;
计算待放样方向:显示终端根据实时接收的对中杆底部尖端位置信息与待放样点的位置信息计算两点之间的三维坐标向量,通过该三维坐标向量计算其与真北方向的夹角,记为方向角一,显示终端实时接收的位置传递装置输出的GNSS/IMU接收机方向倾角,记为方向角二,方向角二相对方向角一的差值即为待放样方向;
放样引导,显示终端通过显示器或者声音提示待放样距离和待放样方向,使用者根据提示进行放样操作,放样操作可分为两类,一是找点,一是放样;
完成放样:当显示终端提示的水平待放样距离和高程待放样距离均满足放样精度指标要求后,对中杆底部尖端所在位置即为放样点位置,从而完成放样;
其中,放样操作包括:
根据显示终端提示的水平待放样距离的大小将放样操作划分为找点和放样两类,当显示终端提示的水平放样距离大于放样距离阈值时为找点操作,当显示终端提示的水平放样距离小于放样距离阈值时为放样操作,放样距离阈值为一经验参考值,只为提示使用者区分两类操作,推荐为0.3m;
找点操作过程如下:使用者手持对中杆,或者将对中杆靠/扛在肩膀上,GNSS/IMU接收机的竖直倾角在0-90°范围内均可,使用者按照显示终端提示的待放样方向步行,使显示终端提示的待放样水平距离缩小,直至显示终端提示的水平待放样距离小于放样距离阈值,进入到放样操作过程;
放样过程根据放样精度需求可以分为粗放样和精放样两个步骤,粗放样:使用者手持对中杆,或者将队中干靠在肩膀上,按照显示终端提示的待放样方向移动对中杆的底部尖端直至显示终端提示的水平待放样距离和高程待放样距离均满足放样精度要求;精放样:在完成粗放样的基础上,使用者保持对中杆底部尖端位置不变,手持对中杆,或者将对中杆靠在肩膀上,移动对中杆,使 得GNSS/IMU接收机的竖直倾角小于10度(即对中杆近似竖直),若显示终端提示的水平待放样距离和高程待放样距离仍然满足放样精度要求,则完成放样,若水平待放样距离或高程待放样距离不满足放样精度要求,则按照显示终端提示的待放样方向小幅度移动对中杆,使水平待放样距离和高程待放样距离满足放样精度要求,完成放样;
在放样精度要求较高的情况下可以进行精放样步骤,以确保放样精度满足要求,精放样步骤不影响GNSS/IMU接收机放样功能的实现。
与现有技术相比,本发明的有益效果如下:(1)本发明在传统的GNSS接收机内部集成了IMU惯性传感器,通过kalman滤波器融合惯性导航定位结果和卫星导航定位结果实现惯性导航定位和卫星导航定位的优势互补,充分发挥卫星导航定位的高精度和惯性导航的高动态、全自主的优点,实现高精度、高可靠的GNSS/IMU接收机三维姿态动态跟踪,以此为基础实现GNSS/IMU接收机相对位置点测量功能,使使用者摆脱水准气泡居中的限制,降低使用者劳动强度的同时极大的提高了测量效率;
(2)通过Kalman滤波器融合惯性导航机械编排的推算结果和GNSS解算结果,估计机械编排的姿态误差、速度误差和位置误差和惯性传感器的残余零偏误差,并进行反馈校正,从而实现三维姿态的高频、高精度动态跟踪解算,由于没有使用磁力计,所以从根本上避免了对磁力计的校正和因电磁环境干扰导致的可靠性差的问题;由于对运动状态进行了完整的建模,所以三维姿态的跟踪不会受到GNSS接收机运动状态变化的影响,所以本发明可以实现高精度高动态三维姿态跟踪,并基于三维姿态实现实时的相对位置点测量,无需在准静态条件下进行;
(3)本发明充分利用GNSS的速度和位置信息实现GNSS/INS松组合解算的 状态初始化,包括三维位置、三维速度和三维姿态信息,三维位置和三维速度的初始值可以通过GNSS接收机获取,俯仰角和横滚角的初始值可以通过加速度计的量测信息获取,重点是航向角初始值的获取,GNSS/INS松组合解算的航向角初始值本质上是惯性传感器的坐标轴系与真北方向的夹角,由于GNSS/IMU接收机是非固定安装设备,惯性传感器的坐标轴系与真北方向的夹角在初始时刻是任意的、非固定的,导致传统的GNSS/INS松组合算法模型不满足线性化条件,而本发明通过重构kalman滤波的状态量(《基于变换估计量建模方案的载体初始航向估算方法》,CN 109764870 A),使非线性模型线性化,只需使用者手持GNSS/IMU接收机按照特定动作操作一段时间,即可在航向角初始值为任意值的前提下估计出满足GNSS/INS松组合算法模型要求的小角度误差的航向角初值,进入GNSS/INS松组合解算过程,进而实现高精度、高动态的三维姿态跟踪;
(4)本发明设定了特定的操作来完成相对位置点测量功能的初始化,用户只需手持GNSS/IMU接收机保持静止一段时间,或者步行一段距离,然后再晃动接收机即可完成初始化,操作动作简单易行,使用者一般10秒内即可完成,几乎不影响正常的测量作业流程;
(5)本发明设定了特定的操作来实现放样功能,传统的放样方法基于显示终端上的磁力计确定待放样方向,精度差,可靠性,尤其到达待放样点附近后由于显示终端与GNSS接收机空间不一致,显示终端上的待放样方向没有参考意义,体验差,且到达待放样点附近必须保持对中杆水准气泡居中才能实现精确放样,效率低,劳动强度大,本发明计算GNSS/IMU接收机本身的倾斜角,精度高,可靠性高,且到达待放样点附近后,只需移动对中杆底部尖端即可完成放样,操作简单方便,可以极大的提升放样的效率,降低使用者的作业强度。
附图说明
图1a、图1b为传统的测绘方法涉及到的GNSS接收机安装示意图和出厂标定示意图;图1c为本发明涉及的GNSS/IMU接收机系统构成图;
图2相对位置点测量功能数据处理流程图;
图3相对位置点测量功能初始化过程说明图;
图4相对位置点测量功能测量过程说明图;
图5放样功能找点过程说明图;
图6a和图6b为放样功能放样过程说明图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前端”、“后端”、“两端”、“一端”、“另一端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“设置有”、“连接”等,应做广义理解,例如“连接”,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的 连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
请参阅图1c-图6所示,本发明提供的一种GNSS/IMU测绘系统,包括:GNSS/IMU接收机,相对位置传递媒介,显示终端:其中GNSS/IMU接收机至少包含GNSS天线、GNSS定位板卡、IMU惯性传感器、位置传递装置:GNSS天线的作用为跟踪和接收导航定位卫星发射的电磁波信号。GNSS定位板卡的作用为解析GNSS天线接收的电磁波信号,运行卫星导航定位程序计算GNSS天线相位中心的坐标位置,作为相对位置点测量的基准坐标。
在图1c中所示,A表示:GNSS天线,用于跟踪和接收导航定位卫星发射的电磁波信号;B表示:GNSS定位板卡,用于处理GNSS天线接收的电磁波信号,执行卫星导航定位解算程序,输出卫星导航定位结果;C表示:IMU惯性传感器,用于测量GNSS/IMU接收机的三维惯性角速度和三维惯性加速度;D表示:位置传递装置,用于接收GNSS板卡输出的卫星导航定位信息和IMU惯性传感器的观测信息,执行惯性捷联解算,GNSS/INS松组合算法,相对位置点传递算法等;E表示:GNSS/IMU接收机,包含GNSS天线,GNSS板卡,IMU惯性传感器,位置传递装置;F表示:相对位置传递媒介,为一三维坐标向量,描述相对位置点在机体系下的三维投影坐标向量;显示终端:用于显示相对位置点测量的结果和状态,实现和使用者的交互,提升工作效率。
在本发明中,IMU惯性传感器的作用为测量GNSS/IMU接收机在惯性空间的三轴线加速度和三轴角速度,该IMU惯性传感器以特定的空间关系安装于GNSS/IMU接收机内部,包含三轴加速度计和三轴陀螺仪,且加速度计和陀螺仪的三个轴系对应平行设计,轴系定义满足右手定则,加速度计和陀螺仪以微机电系统的形式设计,采用工业级或消费级的加速度计和陀螺仪,IMU惯性传感器 可以固定于GNSS/IMU接收机内部结构支架上或PCB板上,通过排线或排针实现供电和数据传输,或者IMU惯性传感器以贴片方式固定于GNSS/INS接收机内部的PCB板上,供电和数据传输通过PCB电路设计实现。
其中,位置传递装置的作用为计算GNSS/IMU接收机相对位置点的三维坐标位置、GNS/IMU接收机的倾斜角度和相对位置点测量的状态,并控制GNSS/IMU接收机通过声或光对相对位置点测量结果和状态进行反馈,其为一计算机可执行程序,位置传递装置被构造成获取GNSS板卡定位数据和IMU观测数据,通过GNSS/INS组合导航算法计算GNSS/IMU接收机的俯仰角、横滚角和航向角,作为基准三维姿态,通过基准坐标、基准姿态和位置传递媒介定义的位置传递向量计算待测量相对位置点的三维坐标,通过基准姿态计算GNSS/IMU接收机相对当地水平坐标系的竖直倾角和方向倾角,记竖直倾角和方向倾角为倾斜角,对外输出基准坐标、基准三维姿态、位置传递向量、待测量相对位置点三维坐标、倾斜角以及相对位置点测量功能的相关状态,控制GNSS/IMU接收机通过声或光的形式反馈相对位置点测量功能的结果和相关状态,待测量相对位置点三维坐标、倾斜角以及相对位置点测量功能的相关状态为必选输出,其余为可选输出;倾斜角由竖直倾角和方向倾角构成,根据IMU定义的坐标轴系定义,竖直倾角表征IMU的Z轴与铅垂线的夹角(0-180°)(Z轴一般指右手坐标系的中指所指方向),方向倾角表征IMU的Z轴与铅垂线所构成的平面与真北方向的夹角(±180°)。
在本发明中,相对位置传递媒介为GNSS/IMU接收机天线相位中心至相对位置测量点空间关系传递的物理媒介,包括测量用的对中杆,三脚架,包括安装GNSS/IMU接收机的AVG车辆,摆渡车,拖拉机,插秧机,播种机,收割机,推土机,平地机,挖掘机,摊铺机,压路机,装载机,起重机,钻孔机,铲车, 除雪车,洒水车,环卫车,消防车,无人机,无人船等运载体,可以将物理媒介抽象为一个三维坐标向量,其作用为描述待测量相对位置点与GNSS/IMU接收机天线相位中心的限定空间关系,定义如下坐标系:以GNSS天线相位中心为坐标原点,坐标轴系指向定义与IMU惯性传感器的坐标轴系指向定义相同的笛卡尔坐标系,记该笛卡尔坐标系为机体坐标系,相对位置传递媒介描述了待测量相对位置点相对GNSS天线相位中心的空间矢量在机体坐标系下的三维坐标矢量;由于GNSS天线相位中心位于GNSS/IMU接收机内部,使用者不能直接接触,需要通过GNSS/IMU接收机外部点进行衔接,因此限定空间关系至少由两部分组成,若选取GNSS/IMU接收机的安装面中心为外部衔接点,则记该安装面中心相对GNSS天线相位中心的空间向量在机体坐标系下的三维坐标向量为第一三维向量,该向量为定值存储在GNSS/IMU接收机的内存中;将机体坐标系的原点平移至该安装面中心,记为衔接系,待测量相对位置点相对安装面中心的空间向量在衔接系下的三维坐标向量为第二三维向量,该向量由使用者设定,抽象的相对位置传递物理媒介定义的三维坐标向量由第一三维向量和第二三维向量构成,作为位置传递向量,GNSS/IMU接收机的安装面中心为外部衔接点的一个实例,衔接点可为GNSS/IMU接收机外部任意相对GNSS/IMU接收机固定的、可接触的点。
在本发明中,显示终端的作用为显示GNSS/IMU接收机相对位置点测量的结果和状态,与使用者进行交互,其为GNSS/IMU测绘系统的选配设备,不影响GNSS/IMU接收机相对位置点测量功能的基本实现。
在本发明中,还提供了一种借助对中杆实施相对位置点测量功能的测绘方法,该测绘方法至少包含相对位置点测量功能初始化和相对位置点测量两个过程:
其中,相对位置点测量功能初始化过程至少包含两个步骤:一是设定待测量相对位置点相对外部衔接点的第二三维向量,在该测绘方法中,外部衔接点为GNSS/IMU接收机安装面中心,待测量相对位置点为对中杆的底部尖端,第二三维向量为对中杆顶部中心至对中杆底部尖端的矢量长度在衔接系下的三维坐标;二是通过特定的操作动作完成基准姿态的初始化,作为GNSS/INS组合导航算法的姿态初始值,从而进入GNSS/INS组合导航滤波解算,初始化的特定操作动作可以分为两大类:1)原地静止一段时间,前后/左右/前后左右/顺时针圆周/逆时针圆周重复晃动对中杆直至GNSS/IMU接收机或者显示终端提示初始化过程完成;2)手持或肩扛对中杆步行一段距离,前后/左右/前后左右/顺时针圆周/逆时针圆周重复晃动对中杆直至GNSS/IMU接收机或者显示终端提示初始化过程完成;晃动对中杆的操作可以是前后、左右、圆周运动的任意组合,静止时间可设定为1-5秒,步行距离可设定为1-10米,重复晃动次数可设定为1-10次,静止时间长短、步行距离长短,以及晃动动作的组合顺序与重复次数不影响初始化过程的实行;步骤一和二的顺序可颠倒;
其中,相对位置点测量过程至少包含两个步骤:一是将对中杆底部尖端放置在待测量点上,实现相对位置点与待测量点的连接,此步骤中,使用者手持对中杆,或者将对中杆靠/扛在肩膀上,只需GNSS/IMU接收机的竖直倾角在0-90°范围内即可,其与传统借助对中杆实现相对位置点测量功能的测绘方法的最大区别在于无需通过保持对中杆上的水准气泡居中来保证接收机竖直倾角为0°或者接近0°,对测量的限制大幅降低;二是触发采集命令完成相对位置点三维坐标采集,采集相对位置点坐标的方法可以分为两大类:1)单位置采集,使用者通过按钮或者声音发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出第一个相对位置测量点的三维坐标作为测量结果,或者使 用者通过按钮或者声音发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出的连续多个相对位置点测量坐标,取它们的平均值作为测量结果;2)多位置采集,使用者通过按钮或者声音发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出第一个相对位置测量点的三维坐标或者连续多个相对位置测量点三维坐标的平均值作为第一位置测量值,保持对中杆底部尖端放置在待测量点上,移动对中杆至第二位置,使用者通过按钮或者声音再次发出采集命令后,显示终端或者接收机保存收到命令后位置传递装置输出第一个相对位置测量点的三维坐标或者连续多个相对位置测量点三维坐标的平均值作为第二位置测量值,重复上述操作,采集多个位置的测量值,去它们的平均值作为测量结果,采集待测量点三维坐标时对中杆可手持,或者靠/扛在肩膀上,只需GNSS/IMU接收机的竖直倾角在0-90°即可,取平均的测量点个数和位置数不影响数据采集过程的实行,多位置测量时,切换位置的过程中对中杆的底部尖端可以离开测量点,只需触发采集命令和数据采集过程中对中杆的底部尖端放置在同一个待测量点上即可。
在本发明中,还提供了一种借助相对位置点测量功能实现放样功能的测绘方法,该方法包含如下5个过程:1)显示终端实时接收位置传递装置输出的对中杆底部尖端相对位置点的三维坐标信息和GNSS/IMU接收机的倾斜角信息;2)计算待放样距离,根据对中杆底部尖端的三维坐标和待放样点的三维坐标计算两点之间的三维坐标矢量,将该矢量在当地水平坐标系进行投影,该投影水平方向的矢量和即为水平待放样距离,该投影在高程方向的分量即为高程待放样距离,水平待放样距离和高程待放样距离共同构成待放样距离;3)计算待放样方向,根据对中杆底部尖端与待放样点两点之间三维坐标矢量在当地水平坐标系的投影计算该投影与真北方向的夹角,记为方向角一,显示终端实时接收 GNSS/IMU接收机的方向倾角记为方向角二,方向角一与方向角二的差值即为待放样方向;4)显示终端通过软件界面或者声音提示待放样距离和待放样方向,引导使用者进行放样操作,根据待放样距离可以将放样操作可以分为两类,一是找点,一是放样,当待放样距离大于阈值时为找点,使用者手持对中杆,或者将对中杆靠/扛在肩膀上,GNSS/IMU接收机的竖直倾角在0-90°范围内均可,使用者按照显示终端提示的待放样方向步行,使显示终端提示的待放样水平距离缩小,直至显示终端提示的水平待放样距离小于放样距离阈值,进入到放样操作过程;放样过程根据放样精度需求可以分为粗放样和精放样两个步骤,粗放样:使用者手持对中杆,或者将对中杆靠在肩膀上,按照显示终端提示的待放样方向移动对中杆的底部尖端直至显示终端提示的水平待放样距离和高程待放样距离均满足放样精度要求;精放样:在完成粗放样的基础上,使用者保持对中杆底部尖端位置不变,手持对中杆,或者将对中杆靠在肩膀上,移动对中杆,使得GNSS/IMU接收机的竖直倾角小于10度(即对中杆近似竖直),若显示终端提示的水平待放样距离和高程待放样距离仍然满足放样精度要求,则完成放样,若水平待放样距离或高程待放样距离不满足放样精度要求,则按照显示终端提示的待放样方向小幅度移动对中杆底部尖端,使水平待放样距离和高程待放样距离满足放样精度要求,完成放样;在放样精度要求较高的情况下可以进行精放样步骤,以确保放样精度满足要求,该步骤不影响GNSS/IMU接收机放样功能的实现;5)当显示终端提示的待放样距离满足放样精度指标要求后,对中杆底部尖端即为待放样点位置坐标,从而完成放样。
参照图1c-图6b所示,对本发明中的GNSS/IMU相对位置点测量的原理与方法做简要说明:
第一步:同步获取GNSS定位数据和IMU观测数据:
在GNSS天线完成卫星信号跟踪和接收后,将GNSS天线观测信息以及其它相关解算信息,比如差分信号传递给GNSS定位板卡,GNSS板卡根据接收到的观测信息和解算信息进行卫星导航定位解算,输出解算时间,天线相位中心速度和天线相位中心位置信息,同时位置传递装置在CPU的控制下周期性的获取IMU惯性传感器观测的三轴加速度和三轴角速度,通常的采样频率为100Hz,同时获取GNSS板卡的PPS信号与GNSS时间信息,基于GNSS时间信息对时间信息对CPU的时间信息进行同步,从而实现IMU的观测信息和GNSS板卡的解算信息的时间同步,将同步后IMU观测信息和GNSS板卡定位信息传递给位置传递装置的解算模块;
第二步:设定相对位置传递媒介:
使用者利用钢尺测量相对位置点相对GNSS/IMU接收机外部衔接点的矢量在衔接系下的三维投影坐标,将测量值通过显示终端或者GNSS/IMU接收机传递给位置传递装置,即设置第二三维向量,位置传递装置接收到第二三维向量后从内存中读取第一三维向量,将第一三维向量和第二三维向量相加得到相对位置传递媒介,在借助对中杆进行测绘的应用中可以直接从对中杆上读取第一三维向量的矢量长度,一般情况下其在衔接系的X,Y轴的投影为0,在衔接系Z轴的投影为其矢量长度;
第三步:相对位置点测量功能初始化:
惯性导航定位算法属于航位递推算法,需要确定算法的初始值,初始值包括初始姿态,初始速度,初始位置,初始速度和初始位置可以通过GNSS板卡输出的速度和位置确定,初始俯仰角和初始横滚角可以通过IMU惯性传感器测量的加速度进行确定,只有初始航向需要通过特殊方法确定,GNSS/IMU相对位置点测量功能通过限定的操作配合大失准角初始化算法确定初始航向,使用者通 过显示终端或GNSS/IMU接收机打开相对位置点测量功能后,保持GNSS/IMU接收机静止一段时间或者手持GNSS/IMU接收机步行一段距离后,按照限定的动作晃动GNSS/IMU接收机,比如前后重复晃动GNSS/IMU接收机、左右重复晃动GNSS/IMU接收机、重复使GNSS/IMU接收机做圆周运动,位置传递装置处理限定操作过程中接收的GNSS板卡导航定位信息和IMU惯性传感器观测信息即可完成初始航向的计算,从而完成惯性导航定位算法的初始化,进入惯性导航定位解算和GNSS/INS松组合解算过程;
第四步:GNSS/INS松组合解算:
相对位置测量功能初始化完成后即完成了惯性导航定位算法的初始化,相对位置传递装置即可根据惯性导航机械编排算法以不高于IMU惯性传感器采样频率的频率进行惯性导航定位解算,输出惯性导航推算的三维姿态、三维速度、三维位置,记为第一姿态、第一速度、第一位置;同时相对位置传递装置根据惯性导航机械编排算法的微分方程构建GNSS/INS松组合解算的kalman滤波器模型,并以惯性导航定位解算相同的频率进行kalman滤波器的时间更新,当相对位置传递装置接收到GNSS板卡输出的三维速度和三维位置时,记为第二速度和第二位置,以第一位置和第二位置的差值与第一速度和第二速度的差值作为滤波器的观测量进行kalman滤波器的量测更新,估计第一位置、第一速度、第一姿态的误差以及IMU惯性传感器零偏的误差,将滤波器估计的误差量反馈修正至惯性导航定位推算的第一位置、第一速度、第一姿态和IMU传感器的零偏值,以修正后的第一位置、第一速度、第一姿态做为GSNN/INS松组合解算的结果输出,至此完成一次GNSS/INS的松组合解算,相对位置传递装置循环执行以上过程,以实现GNSS/IMU接收机三维姿态、速度和位置的动态高精度跟踪;
第五步:计算相对位置点三维坐标:
GNSS板卡输出的GNSS天线相位中心位置是在地心地固坐标系(ECEF)下的笛卡尔位置或者曲线位置,相对位置传递装置输出的三维姿态描述的是机体系相对导航系(当地水平坐标系)的旋转关系,ECEF坐标系与导航系的转换关系是关于GNSS天线相位中心位置的函数,为已知量,相对位置传递媒介是定义在机体系下的三维坐标向量,描述的是相对位置点相对GNSS天线相位中心在机体系的空间关系,因此三维姿态是将机体系下三维坐标向量传递至ECEF坐标系的纽带,获取相对位置传递媒介在ECEF系下的投影坐标即可通过三维向量的平移关系获取相对位置点在ECEF坐标系下的三维位置,从而实现相对位置点的测量,上述过程可以通过以下公式进行描述:
Figure PCTCN2019127824-appb-000001
R measurement:为相对位置点在ECEF下的三维位置坐标;
R antenna:为GNSS天线相位中心在ECEF下的三维位置坐标;
Figure PCTCN2019127824-appb-000002
为根据位置传递装置输出的三维姿态确定的方向余弦矩阵,表征机体系至导航系的旋转关系;
lever b:为机体系下的相对位置传递媒介。
第六步:计算GNSS/IMU接收机的倾斜角:
相对位置传递装置根据计算的三维姿态计算GNSS/IMU接收机在当地水平坐标系下的竖直倾角和方向倾角,以便通过GNSS/IMU接收机或显示终端直观的提示当前GNSS/IMU接收机的空间状态,引导使用者进行测量作业。
综上所述,本发明在传统的GNSS接收机内部集成了IMU惯性传感器,通过kalman滤波器融合惯性导航定位结果和卫星导航定位结果实现惯性导航定位和卫星导航定位的优势互补,充分发挥卫星导航定位的高精度和惯性导航的高动态、全自主的优点,实现高精度、高可靠的GNSS/IMU接收机三维姿态动态跟踪, 以此为基础实现GNSS/IMU接收机相对位置点测量功能,使使用者摆脱水准气泡居中的限制,降低使用者劳动强度的同时极大的提高了测量效率;采用GNSS/INS松组合算法进行三维姿态的跟踪解算(一种新型GNSS接收机倾斜测量系统及方法》,CN 109269471 A),通过Kalman滤波器融合惯性导航机械编排的推算结果和GNSS解算结果,估计机械编排的姿态误差、速度误差和位置误差和惯性传感器的残余零偏误差,并进行反馈校正,从而实现三维姿态的高频、高精度动态跟踪解算,由于没有使用磁力计,所以从根本上避免了对磁力计的校正和因电磁环境干扰导致的可靠性差的问题;由于对运动状态进行了完整的建模,所以三维姿态的跟踪不会受到GNSS接收机运动状态变化的影响,所以本发明可以实现高精度高动态三维姿态跟踪,并基于三维姿态实现实时的相对位置点测量,无需在准静态条件下进行;充分利用GNSS的速度和位置信息实现GNSS/INS松组合解算的状态初始化,包括三维位置、三维速度和三维姿态信息,三维位置和三维速度的初始值可以通过GNSS接收机获取,俯仰角和横滚角的初始值可以通过加速度计的量测信息获取,重点是航向角初始值的获取,GNSS/INS松组合解算的航向角初始值本质上是惯性传感器的坐标轴系与真北方向的夹角,由于GNSS/IMU接收机是非固定安装设备,惯性传感器的坐标轴系与真北方向的夹角在初始时刻是任意的、非固定的,导致传统的GNSS/INS松组合算法模型不满足线性化条件,而本发明通过重构kalman滤波的状态量(《基于变换估计量建模方案的载体初始航向估算方法》,CN 109764870 A),使非线性模型线性化,只需使用者手持GNSS/IMU接收机按照特定动作操作一段时间,即可在航向角初始值为任意值的前提下估计出满足GNSS/INS松组合算法模型要求的小角度误差的航向角初值,进入GNSS/INS松组合解算过程,进而实现高精度、高动态的三维姿态跟踪;设定了特定的操作来完成相对位置点测量功能的初始化,用户只 需手持GNSS/IMU接收机保持静止一段时间,或者步行一段距离,然后再晃动接收机即可完成初始化,操作动作简单易行,使用者一般10秒内即可完成,几乎不影响正常的测量作业流程;设定了特定的操作来实现放样功能,传统的放样方法基于显示终端上的磁力计确定待放样方向,精度差,可靠性,尤其到达待放样点附近后由于显示终端与GNSS接收机空间不一致,显示终端上的待放样方向没有参考意义,体验差,且到达待放样点附近必须保持对中杆水准气泡居中才能实现精确放样,效率低,劳动强度大,本发明计算GNSS/IMU接收机本身的倾斜角,精度高,可靠性高,且到达待放样点附近后,只需移动对中杆底部尖端即可完成放样,操作简单方便,可以极大的提升放样的效率,降低使用者的作业强度。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (14)

  1. 一种GNSS/IMU测绘系统和方法,其特征在于:包括GNSS/IMU接收机,相对位置传递媒介和显示终端。
  2. 根据权利要求1所述的一种GNSS/IMU测绘系统和方法,其特征在于,所述GNSS/IMU接收机包括GNSS天线、GNSS定位板卡、IMU惯性传感器、位置传递装置。
  3. 根据权利要求2所述的一种GNSS/IMU测绘系统和方法,其特征在于,所述IMU惯性传感器包括三轴加速度计和三轴陀螺仪,三轴加速度计和陀螺仪的三个轴系对应平行设计,IMU惯性传感器固定于GNSS/IMU接收机内部结构支架上或PCB板上。
  4. 根据权利要求3所述的一种GNSS/IMU测绘系统和方法,其特征在于:所述相对位置传递媒介为GNSS/IMU接收机天线相位中心至相对位置测量点空间关系传递的物理媒介,包括测量用的对中杆,三脚架,以及运载装置,用于描述待测量相对位置点与GNSS/IMU接收机天线相位中心的限定空间关系。
  5. 根据权利要求4所述的一种GNSS/IMU测绘系统和方法,其特征在于:所述GNSS天线的作用为跟踪和接收导航定位卫星发射的电磁波信号;所述GNSS定位板卡的作用为解析GNSS天线接收的电磁波信号,运行卫星导航定位程序计算GNSS天线相位中心的坐标位置,作为相对位置点测量的基准坐标。
  6. 根据权利要求5所述的一种GNSS/IMU测绘系统和方法,其特征在于:所述IMU惯性传感器的作用为测量GNSS/IMU接收机在惯性空间的三轴线加速度和三轴角速度。
  7. 根据权利要求6所述的一种GNSS/IMU测绘系统和方法,其特征在于:所述位置传递装置的作用为计算GNSS/IMU接收机相对位置点的三维坐标位置、GNS/IMU接收机的倾斜角度和相对位置点测量的状态,并控制GNSS/IMU接收机 通过声或光对相对位置点测量结果和状态进行反馈。
  8. 根据权利要求1-7任一项所述的一种GNSS/IMU测绘系统和方法,其特征在于:其中测绘方法包括相对位置点测量功能初始化和相对位置点测量。
  9. 根据权利要求8所述的一种GNSS/IMU测绘系统和方法,其特征在于:所述相对位置点测量功能初始化过程包括:设定待测量相对位置点相对外部衔接点的第二三维向量,外部衔接点为GNSS/IMU接收机安装面中心,待测量相对位置点为对中杆的底部尖端,第二三维向量为对中杆顶部中心至对中杆底部尖端的矢量长度在衔接系下的三维坐标;通过操作动作完成基准姿态的初始化,作为GNSS/INS组合导航算法的姿态初始值,设定第二三维向量共和操作动作完成基准姿态初始化的步骤可以颠倒,其中初始化的操作动作可以分为两大类:1)原地静止一段时间,前后/左右/前后左右/顺时针圆周/逆时针圆周重复晃动对中杆直至GNSS/IMU接收机或者显示终端提示初始化过程完成;2)手持或肩扛对中杆步行一段距离,前后/左右/前后左右/顺时针圆周/逆时针圆周重复晃动对中杆直至GNSS/IMU接收机或者显示终端提示初始化过程完成;晃动对中杆的操作可以是前后、左右、圆周运动的任意组合,静止时间可设定为1-5秒,步行距离可设定为1-10米,重复晃动次数可设定为1-10次,静止时间长短、步行距离长短,以及晃动动作的组合顺序与重复次数不影响初始化过程的实行。
  10. 根据权利要求9所述的一种GNSS/IMU测绘系统和方法,其特征在于:相对位置点测量过程包括:将对中杆底部尖端放置在待测量点上,实现相对位置点与待测量点的连接;触发采集命令完成相对位置点三维坐标采集。
  11. 根据权利要求9所述的一种GNSS/IMU测绘系统和方法,其特征在于:其中GNSS/IMU相对位置点测量的具体过程包括:
    步骤S1:同步获取GNSS定位数据和IMU观测数据;
    步骤S2:相对位置点测量功能初始化;
    步骤S3:位置传递装置进行GNSS/INS组合解算,计算接收机三维姿态;
    步骤S4:位置传递装置计算相对位置点三维坐标。
  12. 一种借助相对位置点测量功能实现放样功能的测绘方法,其特征在于:包括以下步骤:
    步骤(1):显示终端实时接收位置传递装置输出的对中杆底部尖端相对位置点的三维坐标信息和GNSS/IMU接收机的倾斜角信息;
    步骤(2):计算待放样距离,根据对中杆底部尖端的三维坐标和待放样点的三维坐标计算两点之间的三维坐标矢量,将该矢量在当地水平坐标系进行投影,该投影水平方向的矢量和即为水平待放样距离,该投影在高程方向的分量即为高程待放样距离,水平待放样距离和高程待放样距离共同构成待放样距离;
    步骤(3):计算待放样方向,根据对中杆底部尖端与待放样点两点之间三维坐标矢量在当地水平坐标系的投影计算该投影与真北方向的夹角,记为方向角一,显示终端实时接收GNSS/IMU接收机的方向倾角记为方向角二,方向角一与方向角二的差值即为待放样方向;
    步骤(4):显示终端通过软件界面或者声音提示待放样距离和待放样方向;
    步骤(5):当显示终端提示的待放样距离满足放样精度指标要求后,对中杆底部尖端即为待放样点位置坐标,从而完成放样。
  13. 根据权利要求12所述的一种借助相对位置点测量功能实现放样功能的测绘方法,其特征在于:所述步骤(4)中具体包括:引导使用者进行放样操作,根据待放样距离可以将放样操作可以分为两类,一是找点,一是放样,当待放样距离大于阈值时为找点,使用者手持对中杆,或者将对中杆靠/扛在肩膀上,GNSS/IMU接收机的竖直倾角在0-90°范围内,使用者按照显示终端提示的待放 样方向步行,使显示终端提示的待放样水平距离缩小,直至显示终端提示的水平待放样距离小于放样距离阈值,进入到放样操作过程。
  14. 根据权利要求13所述的一种借助相对位置点测量功能实现放样功能的测绘方法,其特征在于:所述放样过程根据放样精度需求分为粗放样和精放样两个步骤,粗放样:使用者手持对中杆,或者将对中杆靠在肩膀上,按照显示终端提示的待放样方向移动对中杆的底部尖端直至显示终端提示的水平待放样距离和高程待放样距离均满足放样精度要求;精放样:在完成粗放样的基础上,使用者保持对中杆底部尖端位置不变,手持对中杆,或者将对中杆靠在肩膀上,移动对中杆,使得GNSS/IMU接收机的竖直倾角小于10度,若显示终端提示的水平待放样距离和高程待放样距离仍然满足放样精度要求,则完成放样,若水平待放样距离或高程待放样距离不满足放样精度要求,则按照显示终端提示的待放样方向小幅度移动对中杆底部尖端,使水平待放样距离和高程待放样距离满足放样精度要求,完成放样;在放样精度要求较高的情况下可以进行精放样步骤。
PCT/CN2019/127824 2019-12-23 2019-12-24 一种gnss/imu测绘系统和方法 WO2021127968A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/257,021 US11598886B2 (en) 2019-12-23 2019-12-24 GNSS/IMU surveying and mapping system and method
EP19934347.6A EP3865914A4 (en) 2019-12-23 2019-12-24 GNSS/IMU GEOMETRY AND MAPPING SYSTEM AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911334887.7A CN113093256B (zh) 2019-12-23 2019-12-23 一种gnss/imu测绘系统和方法
CN201911334887.7 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021127968A1 true WO2021127968A1 (zh) 2021-07-01

Family

ID=76573427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127824 WO2021127968A1 (zh) 2019-12-23 2019-12-24 一种gnss/imu测绘系统和方法

Country Status (4)

Country Link
US (1) US11598886B2 (zh)
EP (1) EP3865914A4 (zh)
CN (1) CN113093256B (zh)
WO (1) WO2021127968A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847896A (zh) * 2021-08-19 2021-12-28 天津市普迅电力信息技术有限公司 一种基于北斗rtk和陀螺仪的杆塔位移监测设备及监测方法
CN114608432A (zh) * 2022-05-16 2022-06-10 深圳市城市交通规划设计研究中心股份有限公司 一种桥梁变形监测装置及方法
CN116009028A (zh) * 2023-03-17 2023-04-25 深圳市美力高集团有限公司 一种车载定位器设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322968B (zh) * 2021-11-26 2023-09-12 重庆华地资环科技有限公司 一种gnss矿山基准点装置及基准点健康状态监控方法
CN114295122A (zh) * 2021-12-02 2022-04-08 河北汉光重工有限责任公司 用于嵌入式系统的sins_gnss时间同步方法及系统
CN114264302B (zh) * 2021-12-14 2024-01-30 新纳传感系统有限公司 倾斜测量设备及其的惯性导航系统的初始化方法
CN116952275A (zh) * 2022-04-19 2023-10-27 千寻位置网络有限公司 应用于倾斜测量的惯导初始对准方法、装置及设备
CN115075307A (zh) * 2022-06-15 2022-09-20 上海交大海科检测技术有限公司 沉管隧道管节沉放对接空间定位监测系统及方法
CN115096269B (zh) * 2022-07-06 2023-10-31 苏州天硕导航科技有限责任公司 摄影测量方法、系统及gnss接收机
CN115375872B (zh) * 2022-08-29 2023-12-08 淮安市水利勘测设计研究院有限公司 一种gnss测量线状地物自动勾绘方法
CN115184969B (zh) * 2022-09-13 2022-12-09 青岛秀山移动测量有限公司 一种用于工程机械的多传感器融合定位定姿测速方法
CN117249811B (zh) * 2023-11-20 2024-03-29 中国建筑一局(集团)有限公司 一种超高层建筑分布式倾角监测系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028947A (ja) * 2001-07-16 2003-01-29 Tamagawa Seiki Co Ltd 位置測定装置
US20110157359A1 (en) * 2009-12-29 2011-06-30 Trimble Navigation Limited Virtual perspective center aligned with measurement center
CN105549057A (zh) * 2015-12-07 2016-05-04 韩厚增 一种惯性辅助的gps/bds融合大比例尺快速宗地测量装置与方法
CN108051835A (zh) * 2018-01-12 2018-05-18 武汉桓参工程科技有限公司 一种基于双天线的倾斜测量装置及测量与放样方法
CN109269471A (zh) * 2018-11-09 2019-01-25 上海华测导航技术股份有限公司 一种新型gnss接收机倾斜测量系统及方法
CN109764870A (zh) 2019-01-17 2019-05-17 上海华测导航技术股份有限公司 基于变换估计量建模方案的载体初始航向估算方法
CN109814133A (zh) * 2019-03-07 2019-05-28 上海华测导航技术股份有限公司 Gnss接收机倾斜测量系统、方法、装置和存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4263549B2 (ja) 2003-07-23 2009-05-13 株式会社トプコン 測量誘導装置
US20090024325A1 (en) * 2007-07-19 2009-01-22 Scherzinger Bruno M AINS enhanced survey instrument
EP2722647A1 (en) * 2012-10-18 2014-04-23 Leica Geosystems AG Surveying System and Method
CN109945844B (zh) * 2014-05-05 2021-03-12 赫克斯冈技术中心 测量子系统和测量系统
ES2742894T3 (es) * 2015-12-30 2020-02-17 Fund Centre Tecnologic De Telecomunicacions De Catalunya Cttc Vara de prospección mejorada
US10458792B2 (en) * 2016-12-15 2019-10-29 Novatel Inc. Remote survey system
CN110017849B (zh) * 2019-04-18 2020-12-22 菲曼(北京)科技有限公司 一种基于gnss接收机和imu传感器的测绘一体机的倾斜测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028947A (ja) * 2001-07-16 2003-01-29 Tamagawa Seiki Co Ltd 位置測定装置
US20110157359A1 (en) * 2009-12-29 2011-06-30 Trimble Navigation Limited Virtual perspective center aligned with measurement center
CN105549057A (zh) * 2015-12-07 2016-05-04 韩厚增 一种惯性辅助的gps/bds融合大比例尺快速宗地测量装置与方法
CN108051835A (zh) * 2018-01-12 2018-05-18 武汉桓参工程科技有限公司 一种基于双天线的倾斜测量装置及测量与放样方法
CN109269471A (zh) * 2018-11-09 2019-01-25 上海华测导航技术股份有限公司 一种新型gnss接收机倾斜测量系统及方法
CN109764870A (zh) 2019-01-17 2019-05-17 上海华测导航技术股份有限公司 基于变换估计量建模方案的载体初始航向估算方法
CN109814133A (zh) * 2019-03-07 2019-05-28 上海华测导航技术股份有限公司 Gnss接收机倾斜测量系统、方法、装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3865914A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847896A (zh) * 2021-08-19 2021-12-28 天津市普迅电力信息技术有限公司 一种基于北斗rtk和陀螺仪的杆塔位移监测设备及监测方法
CN114608432A (zh) * 2022-05-16 2022-06-10 深圳市城市交通规划设计研究中心股份有限公司 一种桥梁变形监测装置及方法
CN114608432B (zh) * 2022-05-16 2022-08-23 深圳市城市交通规划设计研究中心股份有限公司 一种桥梁变形监测装置及方法
CN116009028A (zh) * 2023-03-17 2023-04-25 深圳市美力高集团有限公司 一种车载定位器设备

Also Published As

Publication number Publication date
CN113093256B (zh) 2024-02-13
US20210364654A1 (en) 2021-11-25
EP3865914A4 (en) 2022-03-02
EP3865914A1 (en) 2021-08-18
US11598886B2 (en) 2023-03-07
CN113093256A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2021127968A1 (zh) 一种gnss/imu测绘系统和方法
CN110487267B (zh) 一种基于vio&uwb松组合的无人机导航系统及方法
CN113091709B (zh) 一种新型gnss接收机倾斜测量方法
CN105203098B (zh) 基于九轴mems传感器的农业机械全姿态角更新方法
US9541392B2 (en) Surveying system and method
US7991576B2 (en) Indoor navigation system and method
CN111089587B (zh) 一种倾斜rtk航向初始化方法
CN109238262B (zh) 一种航向姿态解算及罗盘校准抗干扰方法
Roumeliotis et al. Smoother based 3D attitude estimation for mobile robot localization
CA2413283C (en) Walking stick navigator for position determination
US20060055584A1 (en) Sensor fusion for model-based detection in pipe and cable locator systems
US11274788B2 (en) Gimbal pose correction method and device
CN109186597B (zh) 一种基于双mems-imu的室内轮式机器人的定位方法
CN110986941B (zh) 一种手机安装角的估计方法
CN113834483B (zh) 一种基于可观测度的惯性/偏振/地磁容错导航方法
CN113295174B (zh) 一种车道级定位的方法、相关装置、设备以及存储介质
CN113465599B (zh) 定位定向方法、装置及系统
Yang et al. Enhanced 6D measurement by integrating an Inertial Measurement Unit (IMU) with a 6D sensor unit of a laser tracker
CN113532477A (zh) 一种骑行码表设备及骑行码表初始姿态自动校准方法
CN205317213U (zh) 一种面向房地一体的不动产单元实地调查测量装置
CN115356965A (zh) 一种松散耦合实装数据采集装置及数据处理方法
Bakambu et al. Heading-aided odometry and range-data integration for positioning of autonomous mining vehicles
Zhang et al. Mag-ODO: Motion speed estimation for indoor robots based on dual magnetometers
CN113325454B (zh) 一种基于ArduRover无人车的组合定位方法
Reina et al. Iterative path reconstruction for large-scale inertial navigation on smartphones

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019934347

Country of ref document: EP

Effective date: 20201230

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE