WO2021127933A1 - 介质波导滤波器 - Google Patents

介质波导滤波器 Download PDF

Info

Publication number
WO2021127933A1
WO2021127933A1 PCT/CN2019/127648 CN2019127648W WO2021127933A1 WO 2021127933 A1 WO2021127933 A1 WO 2021127933A1 CN 2019127648 W CN2019127648 W CN 2019127648W WO 2021127933 A1 WO2021127933 A1 WO 2021127933A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide filter
blind hole
blind
resonance
dielectric waveguide
Prior art date
Application number
PCT/CN2019/127648
Other languages
English (en)
French (fr)
Inventor
李陆龙
岳月华
姜华
韩莉
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/127648 priority Critical patent/WO2021127933A1/zh
Publication of WO2021127933A1 publication Critical patent/WO2021127933A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies

Definitions

  • the present invention relates to the field of filters, in particular to a dielectric waveguide filter.
  • the filter is a frequency selection device that can pass specific frequency components in the signal, thereby greatly attenuating other frequency components.
  • the existing dielectric waveguide filter due to the high dielectric constant of the dielectric material, the higher-order modes will be brought closer, causing the problem that the out-of-band suppression width is too narrow, and the out-of-band suppression width cannot meet the requirements.
  • the object of the present invention is to provide a dielectric waveguide filter which can improve the problem of the out-of-band suppression width being too narrow.
  • the present invention provides a dielectric waveguide filter.
  • the dielectric waveguide filter includes an integrally press-molded dielectric body and a conductive layer disposed on the surface of the dielectric body; the dielectric body includes a first surface and a second surface opposite to each other.
  • the dielectric body is provided with multiple sets of blind holes to form a plurality of resonance parts; each resonance part is provided with two blind holes, one blind hole of each resonance part is opened on the first surface, and the other of each resonance part Blind holes are opened on the second surface.
  • the two blind holes in the resonance part are arranged opposite to each other.
  • the blind hole is located in the center of the surface of the resonance part.
  • the number of the resonant parts is at least four, and the resonant parts respectively include an input resonant part, an output resonant part, and at least two ordinary resonant parts.
  • the input resonant part and the output resonant part respectively
  • the blind hole on the second surface of the input resonator is an input blind hole
  • the blind hole on the second surface of the output resonator is an output blind hole
  • other blind holes in the common resonance part are resonance blind holes.
  • the diameter of the input blind hole and the output blind hole are equal, and the diameter of the resonant blind hole is larger than the diameter of the input blind hole.
  • the resonant part includes two rows, and the input resonant part and the output resonant part are located at the end of the dielectric body.
  • the dielectric waveguide filter includes a first end and a second end opposite to each other, and the resonant part provided with the input blind hole or the output blind hole is located at the first end of the dielectric waveguide filter .
  • each of the first surface and the second surface of the dielectric body is provided with a blind coupling hole, and the two blind coupling holes are arranged oppositely and located between the two resonance parts.
  • the blind coupling hole is located at the second end.
  • the dielectric body is further provided with an isolation groove penetrating the first surface and the second surface of the dielectric body, and the isolation groove is located between two adjacent resonant parts.
  • the dielectric waveguide filter of the embodiment of the present invention includes an integrally press-formed dielectric body and a conductive layer disposed on the surface of the dielectric body; the dielectric body includes a first surface and a second surface opposite to each other.
  • the dielectric body is provided with multiple sets of blind holes to form multiple resonance parts; each resonance part is provided with two blind holes, one blind hole of each resonance part is opened on the first surface, and the other of each resonance part Blind holes are provided on the second surface, and the dielectric waveguide filter improves the problem of the filter's out-of-band suppression width being too narrow, and effectively improves the harmonic suppression.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a dielectric waveguide filter according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an exploded structure of a dielectric waveguide filter provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a medium body provided by an embodiment of the present invention from a first perspective;
  • FIG. 4 is a schematic structural diagram of a medium body provided by an embodiment of the present invention from a second perspective;
  • FIG. 5 is a schematic structural diagram from a third perspective of a medium body provided by an embodiment of the present invention.
  • FIG. 6 is an S parameter curve diagram of a dielectric waveguide filter provided by an embodiment of the present invention.
  • FIG. 7 is an effect diagram of remote suppression of a dielectric waveguide filter according to an embodiment of the present invention.
  • the present invention provides a dielectric waveguide filter 1.
  • the dielectric waveguide filter 1 is used to pass a specific frequency in an antenna signal and greatly attenuate other frequencies.
  • the dielectric waveguide filter 1 includes an integrally press-molded dielectric body 20 and a conductive layer 10 provided on the surface of the dielectric body 20.
  • the structure of the conductive layer 10 is limited by the shape and structure of the dielectric body 20.
  • the structure of the conductive layer 10 is roughly the same as the shape of the outer surface of the dielectric body 20, which is not described in detail in this application.
  • the material of the conductive layer 10 is metal, preferably copper or silver.
  • the material of the dielectric body 20 is a solid dielectric material.
  • the material of the dielectric body 20 is preferably ceramic, that is, the dielectric body 20 is a ceramic dielectric body 20 that is integrally pressed.
  • the dielectric body 20 includes a first surface 21 and a second surface 22 opposite to each other.
  • a plurality of blind holes 241 are provided on the dielectric body to form a plurality of resonance parts 24. Wherein, two blind holes 241 are opened in each resonance part 24, one blind hole 241 of each resonance part 24 is opened on the first surface 21, and the other blind hole 241 of each resonance part 24 is opened on the first surface 21.
  • Two surface 22 Two surface 22.
  • the dielectric body 20 is also provided with an isolation groove 23 penetrating the first surface 21 and the second surface 22 of the dielectric body 20, and the isolation groove 23 is located between the resonance portions 24.
  • the medium body 20 further includes a first end 25 and a second end 26 opposite to each other, and the length direction of the medium body 20 is perpendicular to the first end 25 and the second end 26.
  • the number and shape of the isolation grooves 23 are not limited, as long as the coupling degree between the adjacent resonant parts 24 can be tuned.
  • the two blind holes 241 in the resonance part 24 are arranged oppositely, that is, the central axes of the two blind holes 241 in the same resonance part 24 are on a straight line, and the two blind holes 241 in the same resonance part 24 are not connected.
  • the diameters of the two blind holes 241 in the same resonance part 24 may be equal or unequal.
  • the blind hole 241 is located at the center of the surface of the resonance part 24.
  • the specific number of the resonance parts 24 is not limited.
  • the number of resonance parts 24 is at least four.
  • the resonance parts 24 respectively include an input resonance part 242, an output resonance part 243 and at least two ordinary resonance parts 244.
  • the input resonance part 242 and the output resonance part 243 are the same. Neighborhood settings.
  • the resonant part 24 of the dielectric body 20 includes two rows, the number of the resonant part 24 is an even number, and the specific number is 6, that is, the resonant part 24 includes an input resonant part 242, an output resonant part 243, and four A common resonance section 244.
  • the input resonance part 242 and the output resonance part 243 are located at the end of the dielectric body 20.
  • the input resonance part 242 and the output resonance part 243 are located at the first end of the dielectric body 20.
  • the blind hole on the second surface of the input resonator 242 is an input blind hole 2411
  • the blind hole on the second surface of the output resonator 243 is an output blind hole 2412.
  • the other blind holes 241 on the resonance part 244 are resonance blind holes 2413, and the double resonance blind hole 2413 structure on the common resonance part 244 can suppress the remote harmonics. That is, the resonance part 241 includes one input blind hole 2412, one output blind hole 2413, and ten resonance blind holes 2413.
  • the resonant blind hole 2413 of the input resonant part 242 and the input blind hole 2411 are arranged oppositely; the resonant blind hole 2413 and the output blind hole 2412 of the output resonant part 243 are arranged oppositely.
  • the input blind holes 2411 are used for input signals
  • the output blind holes 2412 are used for output signals
  • the resonance blind holes 2413 are used for resonance to attenuate unnecessary frequency signals.
  • the diameter of the blind input hole 2411 and the blind output hole 2412 are equal, and the diameter of the resonant blind hole 2413 is larger than the diameter of the blind input hole 2411.
  • the input resonant part 242 and the output resonant part 243 are located at the first end 25 of the dielectric waveguide filter 1.
  • the dielectric waveguide filter 1 is easier to input and output signals, and has a better filtering effect.
  • an isolation ring 28 is further arranged around the input blind hole 2411 and the output blind hole 2412, and the conductive layer 10 is not arranged inside the isolation ring 28, so that both the input blind hole 2411 and the output blind hole 2412 are isolated from the conductive layer 10.
  • Each of the first surface 21 and the second surface 22 of the dielectric body 20 is provided with a blind coupling hole 27.
  • Two blind coupling holes 27 are arranged opposite to each other.
  • the blind coupling hole 27 is located between the two resonator parts 24, that is, a blind coupling hole 27.
  • the hole 27 is formed by two resonant parts 24 opened together.
  • the blind coupling hole 27 is located at the second end 26 of the dielectric body 20.
  • the two blind coupling holes 27 generate a pair of cross-coupling zero points, which can improve the near-end suppression performance.
  • the performance of the dielectric waveguide filter 1 is shown in the figure.
  • the dielectric waveguide filter 1 improves the problem of too narrow out-of-band suppression, especially with excellent remote suppression performance at 4-6GHz. Effectively improve the harmonic suppression.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明涉及滤波器领域,尤其涉及一种介质波导滤波器。所述介质波导滤波器包括一体压制成型的介质本体和设置在所述介质本体表面导电层;所述介质本体包括相对的第一表面和第二表面,所述介质本体上设有多组盲孔以形成多个谐振部;每个谐振部内开设两个盲孔,每个谐振部的一个盲孔开设在所述第一表面,每个谐振部的另一个盲孔开设在所述第二表面。本发明的介质波导滤波器改善了滤波器的带外抑制宽度过窄的问题,有效改善了谐波抑制情况。

Description

介质波导滤波器 技术领域
本发明涉及滤波器领域,尤其涉及一种介质波导滤波器。
背景技术
在5G时代,由于大规模天线技术对大规模天线集成化的要求,滤波器需要更加小型化、集成化和轻量化。滤波器是一种选频装置,可以使信号中特定的频率成分通过,从而极大地衰减其它频率成分。现有的介质波导滤波器,由于介质材料高介电常数的原因,会带来高次模的拉近,造成了带外抑制宽度过窄的问题,导致带外抑制宽度无法满足要求。
 因此,有必要提供一种滤波器以解决上述问题。
技术问题
本发明的目的在于提供一种能够改善带外抑制宽度过窄问题的介质波导滤波器。
技术解决方案
本发明的技术方案如下:
本发明提供一种介质波导滤波器,所述介质波导滤波器包括一体压制成型的介质本体和设置在所述介质本体表面导电层;所述介质本体包括相对的第一表面和第二表面,所述介质本体上设有多组盲孔以形成多个谐振部;每个谐振部内开设两个盲孔,每个谐振部的一个盲孔开设在所述第一表面,每个谐振部的另一个盲孔开设在所述第二表面。
作为一种改进方式,所述谐振部内的两个盲孔相对设置。
作为一种改进方式,所述盲孔位于所述谐振部的表面的中心。
作为一种改进方式,所述谐振部的数量至少为四个,所述谐振部分别包括一个输入谐振部、一个输出谐振部和至少两个普通谐振部,所述输入谐振部和所述输出谐振部相邻设置,所述输入谐振部的位于第二表面的盲孔为输入盲孔,所述输出谐振部的位于第二表面的盲孔为输出盲孔,所述输入谐振部、输出谐振部和普通谐振部内的其他盲孔为谐振盲孔。
作为一种改进方式,所述输入盲孔和所述输出盲孔的直径相等,所述谐振盲孔的直径大于所述输入盲孔的直径。
作为一种改进方式,所述谐振部包括两列,所述输入谐振部和所述输出谐振部位于所述介质本体的端部。
作为一种改进方式,所述介质波导滤波器包括相对的第一端和第二端,开设有所述输入盲孔或所述输出盲孔的谐振部位于所述介质波导滤波器的第一端。
作为一种改进方式,所述介质本体的第一表面和第二表面还各开设有一耦合盲孔,两个所述耦合盲孔相对设置且位于两个谐振部之间。
作为一种改进方式,所述耦合盲孔位于所述第二端。
作为一种改进方式,所述介质本体上还开设有贯穿所述介质本体的第一表面和第二表面的隔离槽,所述隔离槽位于相邻的两个所述谐振部之间。
有益效果
本发明实施方式相对于现有技术而言,介质波导滤波器包括一体压制成型的介质本体和设置在所述介质本体表面导电层;所述介质本体包括相对的第一表面和第二表面,所述介质本体上设有多组盲孔以形成多个谐振部;每个谐振部内开设两个盲孔,每个谐振部的一个盲孔开设在所述第一表面,每个谐振部的另一个盲孔开设在所述第二表面,介质波导滤波器改善了滤波器的带外抑制宽度过窄的问题,有效改善了谐波抑制情况。
附图说明
图1为本发明实施例提供的介质波导滤波器的立体结构示意图;
图2为本发明实施例提供的介质波导滤波器的爆炸结构示意图;
图3为本发明实施例提供的介质本体的第一视角的结构示意图;
图4为本发明实施例提供的介质本体的第二视角的结构示意图;
图5为本发明实施例提供的介质本体的第三视角的结构示意图;
图6为本发明实施例提供的介质波导滤波器的S参数曲线图;
图7为本发明实施例提供的介质波导滤波器的远端抑制的效果图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产 品或设备固有的其它步骤或单元。
需要说明的是,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请一并参照图1和图2,本发明提供一种介质波导滤波器1,介质波导滤波器1用于使天线的信号中特定的频率通过,并极大地衰减其它频率。介质波导滤波器1包括一体压制成型的介质本体20和设置在所述介质本体20表面导电层10。
导电层10由于设置在介质本体20的表面,故导电层10的结构由介质本体20的形状和结构限定。导电层10的结构和介质本体20的外表面的形状大致一致,本申请不再具体说明。导电层10的材质为金属,优选为铜或银。
请一并参阅图3、图4和图5,介质本体20的材质为固态介电材料。介质本体20的材质优选为陶瓷,即介质本体20为一体压制成型的陶瓷介质本体20。介质本体20包括相对的第一表面21和第二表面22,介质本体上设有多个盲孔241以形成多个谐振部24。其中,每个谐振部24内开设两个盲孔241,每个谐振部24的一个盲孔241开设在所述第一表面21,每个谐振部24的另一个盲孔241开设在所述第二表面22。介质本体20上还开设贯穿所述介质本体20的第一表面21和第二表面22的隔离槽23,隔离槽23位于谐振部24之间。介质本体20还包括相对的第一端25和第二端26,介质本体20的长度方向垂直于第一端25和第二端26。
隔离槽23的数量和形状不做限定,能调谐相邻的谐振部24之间耦合度即可。隔离槽23包括2个,2个所述隔离槽23分别呈十字形和一字型。可以理解,十字形的隔离槽23由不同长度的一字型隔离槽连通形成。可以理解,隔离槽23的槽壁上也设置有导电层10。
谐振部24内的两个盲孔241相对设置,即同一个谐振部24内的两个盲孔241的中轴线在一条直线上,同一个谐振部24内的两个盲孔241不连通。同一个谐振部24内的两个盲孔241的直径可以相等或不等。优选地,盲孔241位于所述谐振部24的表面的中心。谐振部24的具体数量不做限定。优选地,谐振部24的数量至少为四个,谐振部24分别包括一个输入谐振部242、一个输出谐振部243和至少两个普通谐振部244,输入谐振部242和所述输出谐振部243相邻设置。在本申请中,介质本体20的谐振部24包括两列,谐振部24的数量为偶数个,具体数量为6个,即谐振部24分别包括一个输入谐振部242、一个输出谐振部243和四个普通谐振部244。输入谐振部242和输出谐振部243位于所述介质本体20的端部,具体的,输入谐振部242和输出谐振部243位于所述介质本体20的第一端。
输入谐振部242内的位于第二表面的盲孔为输入盲孔2411,输出谐振部243的位于第二表面的盲孔为输出盲孔2412,所述输入谐振部242、输出谐振部243和普通谐振部244上的其他盲孔241为谐振盲孔2413,普通谐振部244上的双谐振盲孔2413结构能抑制远端谐波。即谐振部241包括1个输入盲孔2412、1个输出盲孔2413和10个谐振盲孔2413。输入谐振部242的谐振盲孔2413和输入盲孔2411相对设置;输出谐振部243的谐振盲孔2413和输出盲孔2412相对设置。输入盲孔2411用于输入信号,输出盲孔2412用于输出信号,谐振盲孔2413用于谐振,衰减不必要的频率的信号。优选地,输入盲孔2411和所述输出盲孔2412的直径相等,所述谐振盲孔2413的直径大于所述输入盲孔2411的直径。在本申请中,输入谐振部242和输出谐振部243位于所述介质波导滤波器1的第一端25,介质波导滤波器1更易输入和输出信号,且滤波效果更好。
优选地,输入盲孔2411和输出盲孔2412周围还设置隔离圈28,所述隔离圈28的内不设置导电层10,以使输入盲孔2411和输出盲孔2412都与导电层隔离10。
介质本体20的第一表面21和第二表面22还各开设有一耦合盲孔27,两个所述耦合盲孔27相对设置,耦合盲孔27位于两个谐振部24之间,即一个耦合盲孔27由两个谐振部24共同开设形成。优选地,耦合盲孔27位于介质本体20的第二端26。两个耦合盲孔27产生一对交叉耦合零点,可以改善近端抑制性能。
请一并参阅图6和图7,介质波导滤波器1的性能如图所示,介质波导滤波器1改善带外抑制宽度过窄的问题,尤其在4-6GHz具有优秀的远端抑制性能,有效改善了谐波抑制情况。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种介质波导滤波器,其特征在于:所述介质波导滤波器包括一体压制成型的介质本体和设置在所述介质本体表面导电层;所述介质本体包括相对的第一表面和第二表面,所述介质本体上设有多组盲孔以形成多个谐振部;每个谐振部内开设两个盲孔,每个谐振部的一个盲孔开设在所述第一表面,每个谐振部的另一个盲孔开设在所述第二表面。
  2. 根据权利要求1所述的介质波导滤波器,其特征在于:所述谐振部内的两个盲孔相对设置。
  3. 根据权利要求1所述的介质波导滤波器,其特征在于:所述盲孔位于所述谐振部的表面的中心。
  4. 根据权利要求1所述的介质波导滤波器,其特征在于:所述谐振部的数量至少为四个,所述谐振部分别包括一个输入谐振部、一个输出谐振部和至少两个普通谐振部,所述输入谐振部和所述输出谐振部相邻设置,所述输入谐振部的位于第二表面的盲孔为输入盲孔,所述输出谐振部的位于第二表面的盲孔为输出盲孔,所述输入谐振部、输出谐振部和普通谐振部内的其他盲孔为谐振盲孔。
  5. 根据权利要求4所述的介质波导滤波器,其特征在于:所述输入盲孔和所述输出盲孔的直径相等,所述谐振盲孔的直径大于所述输入盲孔的直径。
  6. 根据权利要求6所述的介质波导滤波器,其特征在于:所述谐振部包括两列,所述输入谐振部和所述输出谐振部位于所述介质本体的端部。
  7. 根据权利要求4所述的介质波导滤波器,其特征在于:所述介质波导滤波器包括相对的第一端和第二端,开设有所述输入盲孔或所述输出盲孔的谐振部位于所述介质波导滤波器的第一端。
  8. 根据权利要求6所述的介质波导滤波器,其特征在于:所述介质本体的第一表面和第二表面还各开设有一耦合盲孔,两个所述耦合盲孔相对设置且位于两个谐振部之间。
  9. 根据权利要求8所述的介质波导滤波器,其特征在于:所述耦合盲孔位于所述第二端。
  10. 根据权利要求1所述的介质波导滤波器,其特征在于:所述介质本体上还开设有贯穿所述介质本体的第一表面和第二表面的隔离槽,所述隔离槽位于相邻的两个所述谐振部之间。
PCT/CN2019/127648 2019-12-23 2019-12-23 介质波导滤波器 WO2021127933A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127648 WO2021127933A1 (zh) 2019-12-23 2019-12-23 介质波导滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127648 WO2021127933A1 (zh) 2019-12-23 2019-12-23 介质波导滤波器

Publications (1)

Publication Number Publication Date
WO2021127933A1 true WO2021127933A1 (zh) 2021-07-01

Family

ID=76573420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127648 WO2021127933A1 (zh) 2019-12-23 2019-12-23 介质波导滤波器

Country Status (1)

Country Link
WO (1) WO2021127933A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169434A1 (zh) * 2013-04-16 2014-10-23 华为技术有限公司 一种介质谐振器、介质滤波器和制造方法
WO2015079227A1 (en) * 2013-11-28 2015-06-04 Radio Design Limited Ceramic waveguide filter apparatus and method of manufacture and use thereof
CN208622916U (zh) * 2018-09-25 2019-03-19 苏州艾福电子通讯有限公司 一种陶瓷介质波导滤波器
CN110380164A (zh) * 2019-07-11 2019-10-25 摩比科技(深圳)有限公司 陶瓷介质波导滤波器
CN110459840A (zh) * 2019-06-06 2019-11-15 深圳市大富科技股份有限公司 通信设备、介质滤波器、介质块
CN110504512A (zh) * 2019-07-25 2019-11-26 江苏江佳电子股份有限公司 一种电容耦合结构及应用该结构的介质滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169434A1 (zh) * 2013-04-16 2014-10-23 华为技术有限公司 一种介质谐振器、介质滤波器和制造方法
WO2015079227A1 (en) * 2013-11-28 2015-06-04 Radio Design Limited Ceramic waveguide filter apparatus and method of manufacture and use thereof
CN208622916U (zh) * 2018-09-25 2019-03-19 苏州艾福电子通讯有限公司 一种陶瓷介质波导滤波器
CN110459840A (zh) * 2019-06-06 2019-11-15 深圳市大富科技股份有限公司 通信设备、介质滤波器、介质块
CN110380164A (zh) * 2019-07-11 2019-10-25 摩比科技(深圳)有限公司 陶瓷介质波导滤波器
CN110504512A (zh) * 2019-07-25 2019-11-26 江苏江佳电子股份有限公司 一种电容耦合结构及应用该结构的介质滤波器

Similar Documents

Publication Publication Date Title
US11271277B2 (en) Dielectric waveguide filter
WO2020143070A1 (zh) 滤波器
WO2020143814A1 (zh) 一种滤波器
CN110265753B (zh) 一种介质波导滤波器
CN110808441B (zh) 一种双模滤波器
CN209691920U (zh) 腔体滤波器和用于腔体滤波器的交叉耦合结构
CN110504512A (zh) 一种电容耦合结构及应用该结构的介质滤波器
CN110534851A (zh) 一种用于实现对称传输零点的介质滤波器耦合结构
CN206532857U (zh) 一种陶瓷波导滤波器
US20130154765A1 (en) Cross-coupled bandpass filter
CN110459843A (zh) 一种介质波导滤波器
CN111129669A (zh) 混合电磁耦合全介质滤波器
WO2019104901A1 (zh) 一种介质波导滤波器负零点耦合结构
CN111342181A (zh) 介质波导滤波器
CN106532201A (zh) 基于环形谐振器的小型化宽阻带双模平衡带通滤波器
CN209843916U (zh) 一种介质波导滤波器
WO2021127933A1 (zh) 介质波导滤波器
WO2022000590A1 (zh) 容性、感性交叉耦合结构及介质波导滤波器
CN106785273A (zh) 基于八分之一模基片集成波导的高频率选择性带通滤波器
CN207705363U (zh) 腔体滤波器及通信设备
KR20160117041A (ko) 스텝 임피던스 접지 회로 스터브와 개방 스터브를 이용한 초광대역 통과 필터
CN104659447B (zh) 基于终端短路自耦合环形谐振器的窄带差分带通滤波器
CN210443647U (zh) 一种电容耦合结构及应用该结构的介质滤波器
US7489214B2 (en) Low-pass filter
CN118677400A (zh) 一种方便设计和制造的滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957207

Country of ref document: EP

Kind code of ref document: A1