WO2021125615A1 - 전기차용 충전기의 전력공급방법 - Google Patents

전기차용 충전기의 전력공급방법 Download PDF

Info

Publication number
WO2021125615A1
WO2021125615A1 PCT/KR2020/017216 KR2020017216W WO2021125615A1 WO 2021125615 A1 WO2021125615 A1 WO 2021125615A1 KR 2020017216 W KR2020017216 W KR 2020017216W WO 2021125615 A1 WO2021125615 A1 WO 2021125615A1
Authority
WO
WIPO (PCT)
Prior art keywords
charger
charging
electric vehicle
power
signal
Prior art date
Application number
PCT/KR2020/017216
Other languages
English (en)
French (fr)
Inventor
이훈
신동혁
김기재
Original Assignee
(주)에바
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에바 filed Critical (주)에바
Priority to EP20901724.3A priority Critical patent/EP4079568A4/en
Priority to JP2022537411A priority patent/JP7426755B2/ja
Publication of WO2021125615A1 publication Critical patent/WO2021125615A1/ko
Priority to US17/842,383 priority patent/US12043136B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a power supply method of a charger for an electric vehicle, and more particularly, to a power supply method for an electric vehicle charger that can efficiently control power distribution through communication between chargers connected to the same power grid without an external communication function it's about
  • Electric vehicle is a future-oriented convergence technology that is receiving attention and investment from governments and companies around the world along with the global green growth policy. Accordingly, in the automobile industry, the demand center axis of the market is rapidly changing from conventional oil-based vehicles to electric vehicles.
  • the conventional technology includes a main charger 30 and a plurality of sub-chargers 40 directly controlled by the main charger 30 in the power supply 10 .
  • the main charger 30 directly controls the amount of power supplied to the sub-charger 40 , and is responsible for all communication with the external server 20 .
  • the main charger 30 is a measurement unit 31 for monitoring the amount of power and unit charge used in the sub-charger 40, the power supply unit 32, the server 20 and the sub-charger 40 for communication with It includes a communication unit 33, and a control unit 34 for controlling the number of operations or controlling a communication function of the sub-charger 40, and the sub-charger 40 includes an outlet 41 and an electric vehicle built into the device together with fixed wiring. and a connector 42 that is docked to the charging unit.
  • the present invention was created to solve the above problems, and it is an object of the present invention to provide a power supply method for an electric vehicle charger that can efficiently distribute the amount of power to each charger only with a charger that does not have a communication function with the outside without a main charger. There is this.
  • the present invention provides a power supply method for an electric vehicle charger that enables mutual communication between chargers connected to the same electric power grid to efficiently distribute the amount of electric power supplied by each charger to an electric vehicle within the maximum amount of electric power.
  • the generating of the charging state signal includes: confirming whether the electric vehicle is connected to a second charger; generating a charging progress signal or a charging standby signal from the second charger; and transmitting a signal to the first charger, wherein the charging progress signal is generated when the electric vehicle is being charged, and the charging standby signal is a signal generated when the second charger is in a standby state.
  • a method for supplying power to a car charger is provided, and there is an effect that chargers can share whether each charger is in a charging state.
  • the generating of the charging state signal includes confirming whether an electric vehicle is connected to a second charger and generating a charging progress signal from the second charger
  • the step of receiving the charge state signal by the charger includes checking whether the charge state signal is received within a set time, and when the charge state signal is not transmitted within a set time, the first charger is connected to the second charger It provides a power supply method for an electric vehicle charger, characterized in that it is determined to be in a charging standby state, and there is an effect that chargers can share whether each charger is in a standby state.
  • the step of determining the amount of power supplied to the first charger includes: storing the number of times the charging progress signal is received; calculating the amount of power that can be supplied to the first charger; It provides a power supply method for an electric vehicle charger, comprising the step of supplying power to one charger, wherein the amount of power supplied to the first charger reflects the number of times the charging progress signal is received, without a main charger There is an effect of efficiently distributing the amount of power to each charger only with a charger without a communication function with the outside.
  • an embodiment of the present invention provides a power supply method for an electric vehicle charger, characterized in that the amount of power supplied to the first charger is less than or equal to a value obtained by dividing the maximum amount of power by one greater than the number of times received.
  • the amount of power supplied to the first charger is less than or equal to a value obtained by dividing the maximum amount of power by one greater than the number of times received.
  • the step of determining the amount of power supplied to the first charger further includes the step of checking whether a fast charging mode is set, and when the fast charging mode is set, the first charger is set It provides a power supply method for a charger for an electric vehicle, characterized in that more than the amount of power is supplied from the power source, and the fast charging mode can be set according to the user's needs, thereby increasing the charging efficiency and increasing the profitability of the charger provider there is
  • the step of supplying power to the first charger includes generating a charging start time signal, generating a fast charging mode progress signal, and one or more remaining chargers with the charging start time signal and receiving the fast charging mode progress signal, wherein the one or more remaining chargers that have received the fast charging mode progress signal limit the maximum amount of power supplied from the power source. It provides a supply method and has the effect of limiting the number of chargers that can select the fast charging mode.
  • the step of supplying power to the first charger comprises generating a charging start time signal and receiving the charging start time signal by one or more remaining chargers. It provides a method of supplying power to a charger for electric vehicles, and by sharing the charging start time between chargers, it has the effect of setting a standard that can be used for power distribution.
  • the method for supplying power to the electric vehicle charger includes the steps of terminating the charging of any one charger, generating a charging end signal from any one of the chargers, and charging the one or more remaining chargers. It provides a power supply method for an electric vehicle charger, characterized in that it further comprises the step of receiving a termination signal and determining the amount of power supplied to the one or more remaining chargers, and each charger can share whether or not charging has been completed. It works.
  • the step of determining the amount of power supplied to the one or more remaining chargers includes: checking the charging start time signal received in the third charger and determining the amount of power distributed to the third charger It provides a power supply method of a charger for an electric vehicle, characterized in that it comprises a, and there is an effect that can further supply idle power to the charger in progress based on the shared state of each charger.
  • the determining of the amount of power distributed to the third charger includes comparing the charging start time of the third charger with the received charging start time signal and calculating the priority It provides a power supply method for an electric vehicle charger, characterized in that the size of the amount of electricity distributed is determined according to the calculated priority, and gives priority to electric vehicles that have started charging first to quickly and efficiently supply power with a limited amount of electricity It is effective to supply.
  • an embodiment of the present invention includes a plurality of chargers connected to the same power source and capable of mutual communication, and when an electric vehicle is connected to any one charger, a charging start signal is transmitted from the charger to which the electric vehicle is connected to one or more remaining chargers.
  • a power supply system for an electric vehicle charger characterized in that the charge state signal is transmitted from one or more remaining chargers to the charger connected to the electric vehicle, and the amount of electric power supplied to the charger connected to the electric vehicle is determined according to the charge state signal It has the effect of efficiently distributing the amount of power to each charger only with a charger that does not have a communication function with the outside.
  • each charger includes a connector connected to an electric vehicle and supplying power, a communication unit in charge of communication with other chargers, and a control unit controlling the amount of power supplied to the connector and connected to the power grid It provides a power supply system for an electric vehicle charger, characterized in that it includes a connection unit for performing a fast charging mode or a slow charging mode according to the signal of the control unit.
  • an embodiment of the present invention provides a power supply system for a charger for an electric vehicle, characterized in that at least one charger among the plurality of chargers can communicate with an external server, and communication with an external server for payment is possible. By setting up one charger, it has the effect of helping all chargers make payments smoothly.
  • an embodiment of the present invention provides a power supply system for a charger for an electric vehicle, wherein at least one of the plurality of chargers is a mobile charger including a means for moving the electric vehicle to a parked position.
  • the present invention has the effect of efficiently distributing the amount of power to each charger only with a charger without a communication function with the outside.
  • FIG. 1 is a diagram schematically illustrating a conventional power distribution system consisting of a main charger and a plurality of sub-chargers.
  • FIG. 2 is a diagram illustrating a plurality of chargers and an electric vehicle connected thereto according to an exemplary embodiment.
  • FIG. 3 is a diagram illustrating a relationship between components constituting each charger according to an embodiment.
  • 6 and 7 are diagrams illustrating a process in which communication between chargers occurs when a new electric vehicle attempts to charge while at least one electric vehicle is being charged.
  • FIG. 8 is a flowchart illustrating a power supply method for charging an electric vehicle when charging of an electric vehicle starts, according to an exemplary embodiment.
  • 9 is a flowchart illustrating a method of calculating the amount of power supplied to each charger.
  • FIG. 10 is a flowchart illustrating a method of calculating the amount of power supplied to each charger according to another embodiment.
  • 11 is a flowchart illustrating a method of calculating the amount of power supplied to each charger when the fast charging mode is applied.
  • FIG. 13 is a diagram illustrating a method in which power is supplied when charging of any one electric vehicle is finished according to an exemplary embodiment.
  • FIG. 14 is a flowchart illustrating a method of supplying an amount of power using a charging start time.
  • unit refers to a hardware component such as software, FPGA, or ASIC, and “unit” or “module” performs certain roles.
  • “part” or “module” is not meant to be limited to software or hardware.
  • a “unit” or “module” may be configured to reside on an addressable storage medium or to reproduce one or more processors.
  • “part” or “module” refers to components such as software components, object-oriented software components, class components and task components, processes, functions, properties, Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays and variables.
  • Components and functionality provided within “parts” or “modules” may be combined into a smaller number of components and “parts” or “modules” or as additional components and “parts” or “modules”. can be further separated.
  • a computer means all types of hardware devices including at least one processor, and may be understood as encompassing software configurations operating in the corresponding hardware device according to embodiments.
  • a computer may be understood to include, but is not limited to, smart phones, tablet PCs, desktops, notebooks, and user clients and applications running on each device.
  • each step described in this specification is described as being performed by a computer, but the subject of each step is not limited thereto, and at least a portion of each step may be performed in different devices according to embodiments.
  • an electric vehicle charging system may be defined as a system that basically charges a battery mounted in an electric vehicle using a grid of commercial power or power of an energy storage device.
  • Such an electric vehicle charging system may have various forms depending on the type of electric vehicle.
  • the electric vehicle charging system may include a conductive charging system using a cable or a non-contact wireless power transmission system.
  • an electric vehicle is an electric car, an electric automobile, an electric road vehicle (ERV), a plug-in vehicle (PV), and a plug-in vehicle (xEV).
  • -in vehicle and the like, and the power supply may include a residential or public electric service or a generator using on-vehicle fuel.
  • connection between the electric vehicle and the charger may refer to a procedure in which a connector (or wireless charging device) disposed to transmit power is associated with the electric vehicle. Specifically, it includes the process of exchanging information necessary for command and control communication, control and termination between the electric vehicle and the charger.
  • the charger includes not only wired charging but also wireless charging.
  • a wireless power charging system may refer to a system for control between a GA and a VA including wireless power transmission and alignment and communication.
  • Wireless power transfer may refer to transferring electrical power from an alternating current (AC) power supply network to an electric vehicle through contactless means.
  • AC alternating current
  • the chargers can communicate with each other. Communication between the chargers may be applied in various ways. For example, Bluetooth that communicates within a short distance within 10 m, a Beacon that communicates within a short distance of 70 m, or a contention-type multiple access protocol that randomly accesses a common transmission channel without central control. ALOHA (Addictive Links Online Hawaii Area), Wi-Fi, PLC communication and P2P communication can be applied.
  • the charger according to an embodiment of the present invention may be a charger to which either one of a fast charger or a slow charger, or both modes are applied.
  • FIG. 2 is a conceptual diagram for explaining a power distribution method of a charger for an electric vehicle according to an embodiment of the present invention.
  • a plurality of chargers 100 are respectively connected to the same power source 200 .
  • One power source 200 has a limit power that can be supplied, and this limit power may be defined as a maximum amount of power. Based on the building, the maximum power that can be supplied to one building may be defined as the maximum amount of power.
  • Electricity from the power source 200 is supplied to the charger 100 through the distribution box 210 , the meter 220 , and the power supply unit 230 .
  • the distribution box 210 is configured to receive electricity from the outside and supply electricity to the power supply unit 230 and have a function to cut off electricity in case of failure.
  • the meter 220 is a meter that measures and records the total amount of power used for a certain period of time.
  • the power supply unit 230 has the same configuration as an outlet, and is a configuration in which the charger 100 is directly connected to receive power. On the other hand, electricity from the power source 200 may be directly connected to the charger through a wire without the power source 230 . Depending on the installation environment or the nature of the charger, the power supply unit 230 may be selectively applied.
  • a plurality of chargers 100 may be installed in one power source 200 , and the number of installed devices may be limited according to the maximum amount of power that can be supplied by each power source 200 .
  • a plurality of chargers 100 connected to one power source 200 may be installed in a mixture of various types.
  • some of the plurality of chargers may be configured as a stationary charger 100 , and others may be configured as a mobile charger 100 ′.
  • the stationary charger 100 is directly coupled to the power supply unit 230 , and the electric vehicle 300 must be driven in front of the charger 100 for charging.
  • the mobile charger 100 ′ includes a power connector 101 ′ coupled to the power supply 230 , and includes a moving means that can move to a place where the electric vehicle 300 is parked. In the charging standby state, the mobile charger 100 ′ is connected to the power connector 101 ′ to receive electricity from the power source 200 . When a charging request is received by an application or various communication means, the mobile charger 100 ′ moves to the location where the electric vehicle 300 is located according to the charging request signal and then proceeds to charge the electric vehicle 300 .
  • the plurality of chargers 100 may be applied to at least one of a wired charging method and a wireless charging method, and both the fixed charger 100 and the mobile charger 100 ′ are wired and/or wireless.
  • a charging method may be applied.
  • Each charger 100 includes a connector 110 that is directly connected to the electric vehicle 300 to supply power, a controller 120 that controls the amount of power supplied to the connector 110, and a power supply unit ( and a connector 130 connected to 230 . If the charger 100 adopts a wireless method or additionally includes a wireless method, the charger 100 may include a wireless charging panel. However, there are also embodiments in which the connection unit 130 is not provided together with the power supply unit 230 . The connection unit 130 may be selectively applied according to the environment in which the charger is installed and the specifications of the charger.
  • the electric vehicle 300 may include a communication controller 310 for communicating with other external devices, and the communication controller 310 is configured to communicate with the connector 110 and the user terminal.
  • communication between the electric vehicle 300 and the charger is made only when the charger is a DC fast charger. On the other hand, in the case of a slow charger, it is common that communication between the charger and the electric vehicle 300 is not made.
  • the central control unit or main charger for general control of the plurality of chargers 100 is not provided. It is characterized by being able to control the amount of power supplied to each charger with only general chargers without a separate central control unit or main charger. Specifically, it is characterized in that a plurality of chargers 100 are provided to communicate with each other, and the detailed configuration of the charger 100 will be described with reference to FIG. 3 .
  • FIG. 3 is a schematic diagram of detailed configurations constituting each charger 100 .
  • the connector 110 includes a first connector 111 and a second connector 112 that are directly connected to the electric vehicle 300 to supply power.
  • the first connector 111 is a charging terminal for supporting charging of the combo 1 method, and is formed of a combination of a single-phase AC slow charging type socket and a DC fast charging type socket. It is mainly used in the United States.
  • the second connector 112 is a charging terminal for supporting charging of the combo 2 method, and is formed in a combination of a three-phase AC slow charging socket and a DC fast charging socket. It is mainly used in Europe.
  • the second connector 112 since there are various charging methods supported such as direct current single charging, direct current and three-phase alternating current power, direct current and single-phase alternating current power, three-phase alternating current single charge, etc., it is more diverse than when the first connector 111 is used. There are advantages that can be applied to situations and vehicles.
  • the scope of the present invention for the connector 110 is not limited thereto.
  • the connector 110 at least one of the first connector 111 and the second connector 112 may be applied, and for example, another type of connector such as a J1772 slow connector may be applied.
  • the charger may not be provided with a connector and a cable.
  • the socket is installed in the charger, and the connector or cable can be separately purchased and used by the user who wants to use the charger.
  • the control unit 120 may be composed of one or more processors and memories, or may be composed of a computer.
  • the control unit 120 is in charge of communication with the charger 100 connected to the same power source 200 and controlling the amount of power supplied to the connected electric vehicle 300 .
  • control unit 120 may include an input unit 121 , a display unit 122 , a relay unit 123 , a payment unit 124 , and a communication unit 125 .
  • input unit 121 the control unit 120 may include an input unit 121 , a display unit 122 , a relay unit 123 , a payment unit 124 , and a communication unit 125 .
  • display unit 122 the control unit 120 may include a display unit 122 , a relay unit 123 , a payment unit 124 , and a communication unit 125 .
  • the input unit 121 includes a plurality of keys for inputting charging request information, and data for the input key is transmitted to the control unit 120 .
  • data for the input key is transmitted to the control unit 120 .
  • the input unit 121 may be replaced with a touch unit displayed on a display instead of a physical key.
  • the charger according to another embodiment does not include the input unit 121 .
  • Various methods for controlling the charger without a separate input unit 121 may be applied.
  • Display unit 122 by the control unit 120, the charger 100 is charging or standby state, such as operating state information, the price per watt (W) or kilowatt (kW) of charging power, the remaining amount of the battery, the amount of full battery power, It is a configuration that can display information such as the time required for full charge. However, the display unit 122 may not be provided depending on the charger 100 .
  • the relay unit 123 includes a relay and is configured to connect the output power of the converter 132 to the first connector 111 or the second connector 112 under the control of the controller 120 .
  • the relay may be implemented using a device such as an IGBT. If there is only one combo constituting the connector 110 , the configuration of the relay unit 150 may be omitted.
  • the payment unit 124 is a device such as a card reader, a cash counter, and a SIM reader, and is configured to provide payment information about the charging power used by the user to the control unit 120 .
  • the plurality of chargers 100 may not include the payment unit 124 except for any one charger.
  • the remaining chargers that do not include the payment unit 124 may transmit information on the charging power used by the user to the charger 100 including the payment unit 124 .
  • the charger 100 including the payment unit 124 may further include a separate communication device capable of communicating with an external server, which will be described later.
  • the plurality of chargers 100 do not include the payment unit 124 .
  • the charging power information used by the user measured in each charger 100 may be connected to the user's payment means through any one charger 100 connected to an external server.
  • the user's payment method may be card information registered in the application or account information previously registered by the user.
  • the communication unit 125 is a configuration that enables communication between a plurality of chargers 100, and can share information about each charger 100 using a PLC (Power Line Communication) communication method or a P2P communication method.
  • PLC Power Line Communication
  • P2P communication method include PWM (Pulse Width Modulation) communication, CAN (Controller Area Network) communication, MOST (Media Oriented Systems Transport) communication, LIN (Local Interconnect Network) communication, Bluetooth communication, ALOHA communication, and beacon communication. etc.
  • PWM Pulse Width Modulation
  • CAN Controller Area Network
  • MOST Media Oriented Systems Transport
  • LIN Local Interconnect Network
  • Bluetooth communication ALOHA communication
  • beacon communication etc.
  • the communication unit 125 provides information on whether each charger 100 is charging or on standby, information on whether an electric vehicle is connected, information on whether charging is terminated, the amount of power used when charging each electric vehicle, and available supply It is used to transmit or receive information on the amount of power.
  • connection unit 130 is composed of a connection cord 131 connected to the power supply unit 230 and a converter 132 for converting a voltage.
  • the converter 132 may include both an AC/DC converter and a DC/DC converter function, and according to the type of combo to which the electric vehicle is connected, a suitable power may be supplied depending on whether the charging mode selected by the user is fast or slow. .
  • the converter 132 may adjust the amount of power supplied to the connected electric vehicle according to the communication result between the plurality of chargers 100 by the communication unit 124 .
  • the amount of power allocated to each charger is determined by communication of a plurality of chargers 100 , and a detailed algorithm for this will be described later.
  • 4 to 7 illustrate a mutual communication process between a plurality of chargers 100 when an electric vehicle requiring charging is connected to any one of a plurality of chargers 100 connected to the same power source 200 . is simplified schematically.
  • FIG. 6 to 7 show that when at least one charger 100 among a plurality of chargers 100 connected to the same power source 200 is in a charging progress state, any one electric vehicle 300 is in an arbitrary charging standby state.
  • a charger When connected to a charger, it is a schematic diagram of the process of mutual communication between chargers.
  • FIG. 4 it can be seen that a state in which a charging start signal is generated from the charger 100 connected to the electric vehicle 300 when the electric vehicle 300 is connected to the charger 100 in any one charging standby state is shown.
  • the electric vehicle 300 is “connected” to the charger 100, it not only means that the electric vehicle 300 and the charger 100 are directly coupled for charging, but also the electric vehicle 300 and the charger 100 are charged. It is construed to include up to a predetermined state of binding for the purpose.
  • the charger 100 in the charging standby state When the charger 100 in the charging standby state is connected to the electric vehicle 300 , the charger 100 connected to the electric vehicle transmits a charging start signal to all remaining chargers 100 connected to the same power source 200 .
  • the charging start signal is a signal generated when the electric vehicle 300 is connected to the charger 100, for example, the electric vehicle 300 is connected to the connector 110 or the communication controller 310 of the electric vehicle 300 is connected to the communication unit ( 125) or when the probability that the other electric vehicle 300 will be coupled with the charger 100 is clear, a charging start signal is generated.
  • the connector 110 transmits a connection signal to the control unit 120 through the relay unit 123, and the control unit 120 receiving the connection signal transmits the connection signal to the communication unit ( 125) to transmit a charging start signal to the remaining chargers.
  • the connector 110 may directly transmit a connection signal to the controller 120 .
  • a plurality of chargers 100 may be applied to various communication methods.
  • a PLC communication method or a P2P communication method may be applied to the chargers, and both communication methods may be applied. Since the PLC communication method and the P2P communication method are general techniques to those skilled in the art, a detailed description thereof will be omitted.
  • the chargers include PWM (Pulse Width Modulation) communication, CAN (Controller Area Network) communication, MOST (Media Oriented Systems Transport) communication, LIN (Local Interconnect Network) communication. Communication, Bluetooth communication, ALOHA communication, or beacon communication may be utilized.
  • PWM Pulse Width Modulation
  • CAN Controller Area Network
  • MOST Media Oriented Systems Transport
  • LIN Local Interconnect Network
  • FIG. 5 is a view showing that the remaining chargers that have received the charging start signal from the charger 100 to which the electric vehicle 300 is connected transmit the charging state signal.
  • the remaining chargers transmit the charging status signal to the charger where the charging start signal is generated.
  • the charging state signal may include a charging progress signal and a charging standby signal.
  • the charging progress signal means that charging is in progress
  • the charging standby signal means that charging is not in progress.
  • the charging state signal is a signal containing information about whether the connector 110 is connected to the electric vehicle 300 or whether charging is in progress in the case of wireless charging.
  • the charger 100 to which the new electric vehicle 300 is connected when a new electric vehicle 300 is connected while one or more electric vehicles 300 are pre-charging, the charger 100 to which the new electric vehicle 300 is connected generates a charging start signal and transmits it to the remaining chargers. do.
  • the charger 100 that is already charging generates and transmits a charging progress signal
  • the charger 100 that does not proceed with charging generates a charging standby signal and transmits it to the charger that generated the charging start signal, or It may not transmit any signal.
  • FIGS. 4 to 7 A detailed flowchart of the power supply method of the electric vehicle charger shown in FIGS. 4 to 7 will be described with reference to FIGS. 8 to 11 .
  • FIG. 8 illustrates an overall flow of a method of supplying power to an electric vehicle charger when a new electric vehicle attempts to charge the charger according to an embodiment.
  • Each of the steps shown in FIG. 8 may be performed by the control unit 120 and the communication unit 125 provided in each charger 100, but is not limited thereto, and at least some of the steps shown in FIG. All may be performed by another entity.
  • step S100 the electric vehicle 300 is connected to the first charger among the plurality of chargers 100 .
  • the first charger corresponds to any charger, and it does not have a special status or function just because it is referred to as the first charger.
  • the meaning that the electric vehicle 300 is connected to the first charger is the same as described above.
  • step S200 the controller 120 of the first charger generates a charging start signal.
  • the controller 120 When the connection between the first charger and the electric vehicle is completed, in step S200 , the controller 120 of the first charger generates a charging start signal.
  • the controller 120 When the connection between the first charger and the electric vehicle is completed, in step S200 , the controller 120 of the first charger generates a charging start signal.
  • the controller 120 When the connection between the first charger and the electric vehicle is completed, in step S200 , the controller 120 of the first charger generates a charging start signal.
  • the controller 120 generates a charging start signal when receiving a charging start signal from the connector 110 or a wireless charging pad (not shown) or when charging is confirmed in the near future.
  • the charging start signal generated by the first charger is transmitted to the remaining chargers except for the first charger in step S300. That is, the charging start signal is received by the remaining chargers except for the first charger.
  • the chargers from which the charging start signal has been received store information indicating that charging of the first charger has started in a storage unit included in each of the chargers.
  • step S400 the chargers that have received the charging start signal generate a charging state signal.
  • the charging state signal contains information on whether each charger is charging another electric vehicle 300 at the time when the chargers that have received the charging start signal receive the charging start signal.
  • the charging state signal includes a charging progress signal and a charging standby signal.
  • the charging progress signal means that charging of the electric vehicle is in progress
  • the charging standby signal means that the electric vehicle is not being charged.
  • the charging state signal may include only the charging progress signal.
  • step S500 the first charger receives the state of charge signals generated by the remaining chargers.
  • the control unit 120 of the first charger may determine whether charging of each charger is in progress based on the received charging state signal. Information on whether charging of each charger is in progress is stored in the control unit 120 of the first charger.
  • the first charger detects the states of the remaining chargers according to the type of the received signal, and then stores the state information of each charger.
  • the charging state signal includes only the charging progress signal, whether each of the chargers is waiting for charging can be determined as follows.
  • Step S300 further includes a step (S310) of confirming whether the charging state signal is received within a set time.
  • the charging chargers transmit a charging progress signal to the first charger within a set time. That is, when the charging progress signal is not received within the set time, the chargers that do not transmit the signal may be determined to be in the charging standby state by the controller 120 of the first charger.
  • step S600 proceeds, and step S600 will be described in detail with reference to FIG.
  • Step S600 is a step of determining the amount of power supplied to the first charger.
  • the charging progress signal received in step S500 is used to determine the amount of power supplied to the first charger.
  • step S600 includes the step of storing the number of times the charging progress signal is received (S610), the step of calculating the amount of power that can be supplied to the first charger (S620), and the step of supplying power to the first charger (S630). ) is included.
  • Step S610 is a step of storing the number of charging progress signals received from the remaining chargers except for the first charger in the controller 120 of the first charger.
  • the total number of the received charging progress signals is the same as the total number of chargers currently charging for the electric vehicle among the chargers connected to the same power grid 200 .
  • Step S620 is a step of calculating the amount of available power that can be supplied to the electric vehicle 300 connected to the first charger by the controller 120 of the first charger. In particular, step S620 calculates the amount of available power based on the number of times the charging progress signal is received.
  • the amount of power supplied to the first charger may be less than or equal to a value obtained by dividing the maximum amount of power that can be supplied by the power source 200 by one greater than the total number of received charging progress signals.
  • the maximum amount of power that can be supplied by the power source 200 is 10 kWh
  • a time division method may be applied in the case of an embodiment of the present invention.
  • the controller of the first charger controls the power source ( 200) can be controlled to be supplied with power. If you look at an arbitrary 6-minute interval, the first charger receives power from the power source 200 alone for 1.2 minutes of the 6-minute interval.
  • the time interval in which each charger receives power is changed according to the number of electric vehicles currently being charged (according to the number of charging progress signals). For example, when the total number of received charging progress signals is 3, the total number of electric vehicles connected in the same power grid 200 will be four. At this time, according to the numbering order of the chargers, the four chargers may receive power from the power grid 200 alone for a corresponding period of time for 15 minutes based on one hour. As a result, the same effect as receiving a value obtained by dividing the maximum amount of power of the power grid 200 by 4 occurs.
  • the control unit of each charger in which charging is in progress can change power supply and cut-off at any time according to the number of charging progress signals.
  • the power supply time may be changed based on one hour. Taking the above example as an example, depending on the charging start time of electric vehicles, power can be supplied for 24 minutes, 18 minutes, 12 minutes, and 6 minutes based on one hour. This will be described later.
  • step S630 proceeds.
  • FIG. 10 shows another embodiment of step S600.
  • step S600 is the steps of storing the number of times the charging progress signal is received (S610'), checking whether the fast charging mode is set in the first charger (S620'), the first Calculating the amount of power that can be supplied to the first charger (S630') and supplying power to the first charger (S640').
  • Step S610' is a step of storing the number of charging progress signals received from the remaining chargers except for the first charger in the control unit 120 of the first charger, and is the same as that of step S610.
  • Step S620' is a step of confirming whether the user using the first charger has selected the fast charging mode before starting charging.
  • the fast charging mode corresponds to the fast charging mode or is a charging mode that guarantees an amount of power equal to or greater than a set value. This mode is useful for users who need fast charging, and when the fast charging mode is selected, the user can pay a higher price per kW or a higher basic usage fee than in the normal mode.
  • Step S630' is a step of calculating the amount of available power that can be supplied to the electric vehicle 300 connected to the first charger by the control unit 120 of the first charger, and is the same as that of step S620.
  • Step S640' is the same as step S630.
  • Step S630 is a step in which power supply to the first charger is started, generating a charging start time signal when power supply is started (S631) and the remaining chargers except for the first charger receiving the charging start time signal Step S632 is included.
  • step S631 the charging start time of the charger is shared with all chargers, thereby serving as a basis for setting the priority for distribution of the amount of power when distributing the amount of power later.
  • a payment system when included in each charger, it becomes the basis for calculating the amount of power supplied to each electric vehicle. That is, it is characterized in that all operations of each charger are shared with the rest of the chargers.
  • Step S632 proceeds to share the charging start time of the first charger with all chargers.
  • the remaining chargers that have received the charging start time information of the first charger from the first charger store the charging start time information of the first charger in the controller 120 .
  • FIG. 11 shows detailed steps for step S640' included in the embodiment of FIG. 10 .
  • Step S640' is a step in which power supply to the first charger is started, generating a charging start time signal when power supply is started (S641'), and generating a signal indicating that the fast charging mode is in progress (S642') ), receiving the charging start time signal and the fast charging mode progress signal generated by the remaining chargers except the first charger (S643') and limiting the amount of power supplied to the remaining chargers (S644').
  • Steps S641', S642', and S643' are steps for sharing important information related to charging of the first charger with the remaining chargers.
  • Step S644' is a step for limiting the number of chargers that can select the fast charging mode.
  • the fast charging mode high voltage and high power are applied to charge the electric vehicle in a short time, so the number of chargers that can simultaneously proceed in the fast charging mode within the same power grid needs to be limited to a certain level.
  • the remaining chargers that have received the signal that the fast charging mode of the first charger is in progress may partially limit the selection of the fast charging mode or limit the maximum value of the amount of power supplied.
  • step S643' the charger may store the corresponding signal in the control unit 120 and limit the amount of power that can be supplied based on the stored information. As a result, step S644' proceeds.
  • the maximum amount of power provided by the same power grid 200 without a main charger interworking with an external server as a plurality of chargers immediately share all information related to charging, such as charging start information, charging state information, charging start time information, and fast charging mode progress information.
  • the amount of power can be distributed to each charger with high efficiency. In addition, even if one charger fails, the remaining chargers can charge the electric vehicle without problems.
  • predetermined chargers can be additionally installed, and installation is terminated when only minimal communication between the chargers is connected, so that the installation cost is very cheap and the repair cost is lowered.
  • FIG. 12 is a schematic diagram schematically illustrating a mutual communication process between a plurality of chargers when charging of any one electric vehicle 300 is completed.
  • the connection between the charger and the electric vehicle is disconnected.
  • the coupling between the connector 110 and the electric vehicle 300 is disconnected or the connector 110 and the electric vehicle 300 are combined, it corresponds to a case in which electricity supply is stopped.
  • the wireless charging mode is applied, the operation of the wireless charging pad is stopped.
  • the control unit 120 of the disconnected charger When the connection between the charger and the electric vehicle is disconnected, the control unit 120 of the disconnected charger generates a charging end signal.
  • the generated charging end signal is transmitted to all other chargers, and in the case of a charger in progress, the amount of power supplied after receiving the charging end signal may be increased.
  • the charger receiving the charging end signal may increase the time for which power is supplied to the corresponding charger per unit time.
  • FIG. 12 A detailed flowchart of when the charging of the electric vehicle is terminated among the power supply method of the electric vehicle charger shown in FIG. 12 will be described with reference to FIGS. 13 to 14 .
  • FIG. 13 is a diagram illustrating an overall flow of an information transfer process and power distribution process with other chargers when charging of any one electric vehicle is completed according to an embodiment.
  • Each of the steps shown in FIG. 13 may be performed by the control unit 120 and the communication unit 125 provided in each charger 100, but is not limited thereto, and at least some of the steps shown in FIG. All may be performed by another entity.
  • step S700 charging of any one of the chargers being charged is terminated.
  • Any one charger may be a target of all chargers connected to the same power source 200 .
  • the end of charging can be interpreted as the opposite of the connection between the charger and the electric vehicle. In general, the end of charging means when the supply of electricity from the charger to the electric vehicle is stopped.
  • step S800 the control unit 120 of the charger where the charging is finished generates a charging end signal.
  • the generated charging end signal is transmitted to the remaining chargers except for the charging end charger in step S900. That is, the charging end signal is received by the remaining chargers except for the charger where the charging has been completed.
  • the chargers from which the charging end signal has been received store information indicating that the charging of any one of the chargers is terminated in the storage unit of the control unit 120 .
  • Step S1000 is a step of supplying excess power generated due to the completion of charging of any one charger to the remaining chargers in which charging is still in progress, and detailed steps constituting step S1000 will be described with reference to FIG. 14 .
  • Step S1000 includes checking the charging start time signal received in the third charger (S1010) and determining the amount of power distributed to the third charger (S1020).
  • the third charger corresponds to one of the remaining chargers except for the charger whose charging is terminated in step S700. That is, it is only referred to as "third" for convenience of reference and is not limited to a specific charger.
  • Step S1010 is a step of confirming all of the charging start time signals of other chargers that have been received by the third charger.
  • each charger may store charging start time signal data of a plurality of other chargers in the controller 120 . However, if there is a charging end signal paired with a specific charging start time signal, the corresponding charging start time signal is excluded from confirmation.
  • the reason for checking the charging start time signal is to check information on the chargers that are charging at the same time as step S1010 is in progress, and when charging is already finished, checking the charging start time signal data is meaningless.
  • Step S1020 is a step of comparing the charging start time of the third charger with the charging start time signal data confirmed in step S1010 (S1021), calculating the priority between the chargers in progress (S1022), and the third charger Determining the amount of power supplied to the step (S1023).
  • Steps S1021 and S1022 serve to compare the charging start time signals of the chargers that are charging at the same time, and line up from the charger with the fastest charging start time to the charger with the slowest charging start time.
  • Step S1023 is a step of distributing the amount of power according to the calculated priority, and in one embodiment, the largest amount of power may be preferentially allocated to the charger having the fastest charging start time.
  • the method of supplying power to a charger for an electric vehicle may further include transmitting a charge amount signal to one or more remaining chargers at set times.
  • the charge amount information refers to information related to the degree of charge of an electric vehicle connected to the charger. For example, 100% of a fully charged amount may be defined as the amount of charge information as to how many percent of an electric vehicle is charged compared to a full charge amount.
  • the percentage of charge can be determined only in the case of fast chargers. In the case of chargers other than the fast charger, the percentage of charge can be determined by the degree to which the amount of charged power decreases as the full charge is reached.
  • the charging amount information may be periodically shared every set time. That is, each charger periodically transmits the charge amount information to the remaining chargers except for itself, and when it receives the charge amount information of other chargers, it is stored in the controller 120 . By updating the charging amount information in real time, the basis for efficiently changing the power supply amount is established.
  • step S1000 includes the steps of checking the charge amount of the electric vehicle connected to the third charger, comparing the charge amount of the electric vehicle connected to the third charger with the previously received charge amount signal; It may be composed of a step of calculating the priority, and the step of distributing the amount of power according to the calculated priority. All of the above steps may be performed by the control unit 120 of the third charger.
  • the charger connected to the electric vehicle with a low charge amount may control the time ratio of the electric power supplied to the connected electric vehicle per unit time to be larger.
  • At least one charger among the plurality of chargers may be provided to enable communication with an external server.
  • a local area network such as Wi-Fi, 3G, or LTE may be utilized.
  • At least one of the chargers 100 of FIGS. 4 to 7 may be configured as the mobile charger 100 ′ of FIG. 2 .
  • the mobile charger 100 ′ may be fully charged at dawn when charging demand is low.
  • the fully charged mobile charger 100 ′ may serve to assist the power source 200 during the daytime or evening hours after work when charging demand is high.
  • the degree of the auxiliary role of the mobile charger 100 ′ may be set differently depending on the time period. For example, it may be set to supply the maximum amount of power that the mobile charger 100 ′ can allow to other chargers during a time period when a large amount of required power is required, and in a time period when a small amount of power required is required, the minimum amount of power is applied to the other charger. It can be set to supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은, 동일 전력원에 다수개의 충전기가 연결된 전기차용 충전기의 전력공급방법에 있어서, 제1충전기에 전기차가 연결되는 단계, 상기 제1충전기로부터 충전시작신호가 생성되는 단계, 하나 이상의 나머지 충전기가 상기 충전시작신호를 수신하는 단계, 하나 이상의 나머지 충전기로부터 충전상태신호가 생성되는 단계, 상기 제1충전기가 상기 충전상태신호를 수신하는 단계 및 상기 제1충전기의 공급 전력량이 결정되는 단계를 포함하는 전기차용 충전기의 전력공급방법에 관한 것이다.

Description

전기차용 충전기의 전력공급방법
본 발명은 전기차용 충전기의 전력공급방법에 관한 것이며, 상세하게는 외부 통신기능이 없는 동일 전력망에 연결된 충전기들 사이의 통신을 통해 효율적으로 전력 분배를 제어할 수 있는 전기차용 충전기의 전력공급방법에 관한 것이다.
전기자동차(EV, Electric vehicle)는 전세계적인 녹색성장정책의 기조와 함께 각국 정부들 및 기업들의 관심과 투자를 받고 있는 미래형 융합기술이다. 이에 자동차 산업은 종래의 오일 기반 자동차에서 전기자동차로 시장의 수요 중심축이 빠르게 변화하고 있다.
전기자동차의 수요가 증가함에 따라 전기자동차 뿐만 아니라 전기자동차를 원활하게 사용하기 위한 인프라 구축(충전장치, 전력공급망 등)에 대한 기술 개발 역시 매우 활발하게 이루어지고 있다.
다만 전기자동차의 공급에 따른 인프라 구축이 상대적으로 미진한 부분이 있어, 최근에는 다수의 전기차를 충전할 수 있는 방법 및 기술들이 많이 개발되고 있다. 특히, 오피스 빌딩 또는 공동 주택의 경우, 전력 운용에 있어 전기자동차의 충전 인프라를 추가함에 따른 수전 용량의 초과로 인해 거주자들이 사용하는 일상 전원에 영향을 주거나 대규모 전력난 문제를 야기할 수 있는 문제점이 있다.
이러한 문제점을 해결하기 위한 종래의 기술로서 도 1에 도시된 종래의 기술을 살펴보도록 한다.
다수의 전기차를 충전하기 위하여, 종래의 기술은 전원(10)에 메인충전기(30)와 메인충전기(30)에 의해 직접 제어되는 다수의 서브충전기(40)를 포함한다. 메인충전기(30)는 서브충전기(40)에 공급되는 전력량을 직접 제어하며 외부 서버(20)와의 통신까지 모두 담당한다.
구체적으로, 메인충전기(30)는 서브충전기(40)에서 사용하는 전력량과 단위 충전량을 모니터링하기 위한 측정부(31), 전원부(32), 서버(20) 및 서브충전기(40)와 통신하기 위한 통신부(33), 및 서브충전기(40)의 동작 개수를 제어하거나 통신 기능을 제어하는 제어부(34)를 포함하며, 서브충전기(40)는 고정 배선과 함께 장치에 내장되는 아웃렛(41) 및 전기차 충전부에 도킹되는 커넥터(42)를 포함한다.
이러한 종래의 중앙집권형 다중 충전방식의 경우, 메인충전기가 고장이 나면 서브충전기는 작동이 불가하고, 메인충전기의 설치비용 및 유지관리 비용이 상당히 크며, 서브충전기들 사이의 통신이 불가능하여 즉각적인 전력량 분배가 힘든 문제점이 있다.
본 발명은 상술한 문제점들을 해결하기 위해 창출된 것이며, 메인충전기 없이 외부와의 통신기능이 없는 충전기만으로 전력량을 각각의 충전기에 효율적으로 분배할 수 있는 전기차용 충전기의 전력공급방법을 제공하는데 그 목적이 있다.
구체적으로 동일 전력망에 연결된 충전기들 사이의 상호 통신이 가능하도록 하여 최대전력량 내에서 각각의 충전기들이 전기차에 공급하는 전력량을 효율적으로 배분할 수 있는 전기차용 충전기의 전력공급방법을 제공한다.
또한 별도의 메인충전기를 설치하지 않음으로서 전체 충전기 설치 비용을 낮출 수 있는 전기차용 충전기의 전력공급방법을 제공한다.
한편, 본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제들을 해결하기 위하여, 동일 전력원에 다수개의 충전기가 연결된 전기차용 충전기의 전력공급방법에 있어서, 제1충전기에 전기차가 연결되는 단계, 상기 제1충전기로부터 충전시작신호가 생성되는 단계, 하나 이상의 나머지 충전기가 상기 충전시작신호를 수신하는 단계, 하나 이상의 나머지 충전기로부터 충전상태신호가 생성되는 단계, 상기 제1충전기가 상기 충전상태신호를 수신하는 단계 및 상기 제1충전기의 공급 전력량이 결정되는 단계를 포함하는 전기차용 충전기의 전력공급방법을 제공하며, 외부와의 통신기능이 없는 충전기만으로 메인 충전기 없이 각각의 충전기에 전력량을 효율적으로 분배할 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 충전상태신호가 생성되는 단계는, 제2충전기에 전기차가 연결되었는지 확인하는 단계, 상기 제2충전기로부터 충전진행신호 또는 충전대기신호가 생성되는 단계 및 생성된 신호를 상기 제1충전기로 전송하는 단계를 포함하고, 상기 충전진행신호는 전기차가 충전 중일 때 발생되고, 상기 충전대기신호는 상기 제2충전기가 대기상태일 때 발생되는 신호인 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 각각의 충전기가 충전상태인지 여부를 충전기끼리 공유할 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 충전상태신호가 생성되는 단계는, 제2충전기에 전기차가 연결되었는지 확인하는 단계 및 상기 제2충전기로부터 충전진행신호가 생성되는 단계를 포함하고, 상기 제1충전기가 상기 충전상태신호를 수신하는 단계는, 상기 충전상태신호가 설정된 시간내에 수신되었는지 확인하는 단계를 포함하고, 상기 충전상태신호가 설정된 시간내에 전송되지 않은 경우 상기 제1충전기는 상기 제2충전기를 충전대기상태인 것으로 판단되는 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 각각의 충전기가 대기 상태인지 여부를 충전기끼리 서로 공유할 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 제1충전기의 공급 전력량이 결정되는 단계는, 상기 충전진행신호가 수신된 횟수를 저장하는 단계, 상기 제1충전기에 공급 가능한 전력량을 계산하는 단계 및 상기 제1충전기에 전력을 공급하는 단계를 포함하고, 상기 제1충전기에 공급되는 전력량은 상기 충전진행신호가 수신된 횟수가 반영되는 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 메인 충전기 없이 외부와의 통신기능이 없는 충전기만으로 각각의 충전기에 전력량을 효율적으로 분배할 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 제1충전기에 공급되는 전력량은 최대전력량을 상기 수신된 횟수보다 하나 더 큰 값으로 나눈 값보다 작거나 같은 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 공유된 각각의 충전기 상태에 기반하여 둘 이상의 차량이 동일 전력망 내의 충전기를 통해 충전하는 경우 적절히 전력량을 배분할 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 제1충전기의 공급 전력량이 결정되는 단계는, 고속충전모드 설정 여부를 확인하는 단계를 더 포함하고, 상기 고속충전모드가 설정된 경우, 상기 제1충전기는 설정된 전력량 이상을 상기 전력원으로부터 공급받는 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 사용자의 필요에 따라 고속충전모드를 설정할 수 있도록 하여 충전 효율성 상승 및 충전기 제공자의 수익성을 높일 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 제1충전기에 전력을 공급하는 단계는, 충전시작시간 신호를 생성하는 단계, 고속충전모드 진행 신호를 생성하는 단계 및 하나 이상의 나머지 충전기가 상기 충전시작시간 신호 및 상기 고속충전모드 진행 신호를 수신하는 단계를 포함하고, 상기 고속충전모드 진행 신호를 수신한 하나 이상의 나머지 충전기는 상기 전력원으로부터 공급받는 전력량의 최대치가 제한되는 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 고속충전모드를 선택할 수 있는 충전기의 댓수를 제한할 수 있는 효과가 있다.
또한 본 발명의 일 실시예는, 상기 제1충전기에 전력을 공급하는 단계는, 충전시작시간 신호를 생성하는 단계 및 하나 이상의 나머지 충전기가 상기 충전시작시간 신호를 수신하는 단계를 포함하는 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 충전시작시간을 충전기들 사이에 공유하여 전력량 배분에 사용할 수 있는 기준을 정할 수 있는 효과가 있다.
또한 본 발명의 일 실시예는, 상기 전기차용 충전기의 전력공급방법은, 어느 하나의 충전기의 충전이 종료되는 단계, 어느 하나의 충전기로부터 충전종료신호가 생성되는 단계, 하나 이상의 나머지 충전기가 상기 충전종료신호를 수신하는 단계 및 하나 이상의 나머지 충전기의 공급 전력량이 결정되는 단계 더 포함하는 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 각각의 충전기가 충전종료 되었는지 여부를 서로 공유할 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 하나 이상의 나머지 충전기의 공급 전력량이 결정되는 단계는, 제3충전기에 수신된 충전시작시간 신호를 확인하는 단계 및 상기 제3충전기에 분배되는 전력량을 결정하는 단계를 포함하는 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 공유된 각각의 충전기 상태에 기반하여 충전이 진행 중인 충전기에 유휴 전력을 더 공급할 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 제3충전기에 분배되는 전력량을 결정하는 단계는, 상기 제3충전기의 충전시작시간을 상기 수신된 충전시작시간 신호와 비교하는 단계 및 우선 순위를 산출하는 단계를 포함하고, 산출된 우선 순위에 따라 분배되는 전력량의 크기가 결정되는 것을 특징으로 하는 전기차용 충전기의 전력공급방법을 제공하며, 먼저 충전을 시작한 전기차에 우선권을 주어서 한정된 전력량으로 빠르고 효율적으로 전력을 공급할 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 동일 전력원에 연결되고 상호 통신이 가능한 다수개의 충전기를 포함하고, 어느 하나의 충전기에 전기차가 연결되면 상기 전기차가 연결된 충전기로부터 하나 이상의 나머지 충전기에 충전시작신호가 전송되고, 하나 이상의 나머지 충전기로부터 상기 전기차가 연결된 충전기에 충전상태신호가 전송되며, 상기 충전상태신호에 따라 상기 전기차가 연결된 충전기에 공급되는 전력량이 결정되는 것을 특징으로 하는 전기차용 충전기의 전력공급시스템을 제공하며, 외부와의 통신기능이 없는 충전기만으로 전력량을 각각의 충전기에 효율적으로 분배할 수 있는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 각각의 충전기는, 전기차에 연결되고 전력을 공급하는 커넥터, 타 충전기와의 통신을 담당하는 통신부를 포함하고 커넥터에 공급되는 전력량을 제어하는 제어부 및 전력망에 연결되어 상기 제어부의 신호에 따라 급속충전모드 또는 완속충전모드를 수행하는 접속부를 포함하는 것을 특징으로 하는 전기차용 충전기의 전력공급시스템을 제공한다.
또한 본 발명의 일 실시 예는, 상기 다수개의 충전기 중 적어도 하나 이상의 충전기는 외부 서버와 통신이 가능한 것을 특징으로 하는 전기차용 충전기의 전력공급시스템을 제공하며, 결제를 위한 외부 서버와의 통신이 가능한 충전기를 한대 설정함으로서 모든 충전기들의 원활한 결제를 돕는 효과가 있다.
또한 본 발명의 일 실시 예는, 상기 다수개의 충전기 중 적어도 하나는 전기차가 주차된 위치까지 이동 가능한 수단을 포함하는 이동식충전기인 것을 특징으로 하는 전기차용 충전기의 전력공급시스템을 제공한다.
개시된 실시 예에 따르면, 본 발명은 외부와의 통신기능이 없는 충전기만으로도 전력량을 각각의 충전기에 효율적으로 분배할 수 있는 효과가 있다.
또한, 각각의 충전기들의 상태를 서로 공유할 수 있는 효과가 있다.
또한, 한정된 최대전력량을 각 충전기에 효율적으로 배분하여 충전 시간을 단축할 수 있는 효과가 있다.
또한, 종래의 메인충전기와 같은 구성이 생략됨으로 인해 전체 충전기 설치 비용이 낮아지는 효과가 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 메인충전기와 다수의 서브충전기로 구성되는 종래의 전력분배시스템을 간략히 도시한 도면이다.
도 2는 일 실시 예에 따른 다수의 충전기와 이에 연결되는 전기차를 도시한 도면이다.
도 3은 일 실시 예에 따른 각각의 충전기를 구성하는 구성들 사이의 관계를 도시한 도면이다.
도 4 및 도 5는 전기차가 연결될 때 각각의 충전기들 사이의 상호 통신이 이루어지는 과정을 도시한 것이다.
도 6 및 도 7은 적어도 하나 이상의 전기차가 충전 중일 때 새로운 전기차가 충전을 시도하는 경우 충전기들 사이의 통신이 일어나는 과정을 도시한 도면이다.
도 8은 일 실시 예에 따른 전기차의 충전이 시작될 때 전기차 충전을 위한 전력공급방법을 도시한 흐름도이다.
도 9는 각 충전기에 공급되는 전력량을 산정하는 방법이 도시된 흐름도이다.
도 10은 또 다른 실시 예에 따른 각 충전기에 공급되는 전력량을 산정하는 방법이 도시된 흐름도이다.
도 11은 고속충전모드가 적용될 때 각 충전기에 공급되는 전력량을 산정하는 방법이 도시된 흐름도이다.
도 12는 어느 하나의 전기차의 충전이 종료되었을 때 충전기들 사이의 통신이 일어나는 모습을 도시한 것이다.
도 13은 일 실시 예에 따른 어느 하나의 전기차의 충전이 종료되었을 때 전력이 공급되는 방법을 도시한 것이다.
도 14은 충전시작시간을 활용하여 전력량을 공급하는 방법을 도시한 흐름도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2", "제3" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소 또는 제3 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
명세서에서 사용되는 "부" 또는 “모듈”이라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부" 또는 “모듈”은 어떤 역할들을 수행한다. 그렇지만 "부" 또는 “모듈”은 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부" 또는 “모듈”은 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부" 또는 “모듈”은 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부" 또는 “모듈”들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부" 또는 “모듈”들로 결합되거나 추가적인 구성요소들과 "부" 또는 “모듈”들로 더 분리될 수 있다.
본 명세서에서, 컴퓨터는 적어도 하나의 프로세서를 포함하는 모든 종류의 하드웨어 장치를 의미하는 것이고, 실시 예에 따라 해당 하드웨어 장치에서 동작하는 소프트웨어적 구성도 포괄하는 의미로서 이해될 수 있다. 예를 들어, 컴퓨터는 스마트폰, 태블릿 PC, 데스크톱, 노트북 및 각 장치에서 구동되는 사용자 클라이언트 및 애플리케이션을 모두 포함하는 의미로서 이해될 수 있으며, 또한 이에 제한되는 것은 아니다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
본 명세서에서 설명되는 각 단계들은 컴퓨터에 의하여 수행되는 것으로 설명되나, 각 단계의 주체는 이에 제한되는 것은 아니며, 실시 예에 따라 각 단계들의 적어도 일부가 서로 다른 장치에서 수행될 수도 있다.
본 발명의 일 실시 예에서 전기차 충전 시스템은 기본적으로 상용 전원의 배전망(grid)이나 에너지 저장 장치의 전력을 이용하여 전기차에 탑재된 배터리를 충전하는 시스템으로 정의할 수 있다. 이러한 전기차 충전 시스템은 전기차의 종류에 따라 다양한 형태를 가질 수 있다. 예를 들어, 전기차 충전 시스템은 케이블을 이용한 전도성 충전 시스템이나 비접촉 방식의 무선 전력 전송 시스템을 포함할 수 있다.
또한, 본 발명의 일 실시 예에서 전기차(electric vehicle, EV)는 일렉트릭 카(electric car), 일렉트릭 오토모바일(electric automobile), ERV(electric road vehicle), PV(plug-in vehicle), xEV(plug-in vehicle) 등으로 지칭될 수 있고, 전원 공급원은 주거지나 공용 전기서비스 또는 차량 탑재 연료를 이용하는 발전기 등을 포함할 수 있다.
또한, 본 발명의 일 실시 예에서 전기차와 충전기가 연결된다는 것은 전력을 전송할 수 있도록 배치된 커넥터(또는 무선충전장치)가 전기차와 연관되는 절차를 지칭할 수 있다. 구체적으로, 명령 및 제어 통신, 제어 및 종료에 필요한 정보를 전기차와 충전기 사이에 교환하는 과정을 포함한다.
한편, 일 실시 예에서 충전기는 유선 충전 뿐만 아니라 무선 충전 방식까지 포함된다. 무선 충전 시스템(Wireless power charging system)은 무선 전력 전송과 얼라인먼트 및 통신을 포함한 GA와 VA 간의 제어를 위한 시스템을 지칭할 수 있다. 무선 전력 전송(Wireless power transfer)은 교류(AC) 전원공급 네트워크에서 전기차로 무접촉 수단을 통해 전기적인 전력을 전송하는 것을 지칭할 수 있다.
또한, 본 발명의 일 실시 예에서 충전기들은 상호 통신이 가능하다. 충전기 사이의 통신은 다양한 방식이 적용될 수 있다. 예를들어, 10m 이내의 근거리에서 통신이 이루어지는 블루투스(Bluetooth), 70m 이내의 근거리에서 통신이 이루어지는 비콘(Beacon), 중앙 제어 없이 무작위로 공통 전송 채널에 접속하는 경쟁 방식의 다원 접속 프로토콜에 해당하는 ALOHA(Addictive Links Online Hawaii Area), 와이파이(Wi-Fi), PLC통신 및 P2P통신이 적용될 수 있다.
또한, 본 발명의 일 실시 예에 따른 충전기는 급속 충전기 또는 완속 충전기 중 어느 하나에 해당하거나 두 가지 모드가 모두 적용되는 충전기일 수 있다.
아하, 본 발명에 따른 바람직한 실시 예를 첨부된 도면을 참조하여 상세하게 설명하도록 한다.
도 2는 본 발명의 일 실시 예에 따른 전기차용 충전기의 전력분배방법을 설명하기 위한 개념도이다.
도 2를 참조하면, 본 발명의 일 실시 예에 따른 다수개의 충전기(100)는 각각 동일한 전력원(200)에 연결된다. 하나의 전력원(200)은 공급 가능한 한계 전력이 존재하며 이러한 한계전력은 최대전력량으로 정의될 수 있다. 건물을 기준으로 할 때, 한 건물에 공급 가능한 최대 전력을 최대전력량으로 정의할 수도 있다.
전력원(200)의 전기는 분전함(210), 계량기(220) 및 전원부(230)를 거쳐 충전기(100)에 공급된다. 분전함(210)은 외부에서 전기를 받아 전원부(230)로 전기를 공급해주고 고장 시 전기를 차단할 수 있는 기능을 가진 구성이다. 계량기(220)는 일정 기간 동안 사용한 전력의 총량을 측정 및 기록하는 계측기이다. 전원부(230)는 콘센트와 같은 구성이며 충전기(100)가 전력을 공급받기 위해 직접 연결되는 구성이다. 한편, 전력원(200)의 전기는 전원부(230) 없이 전선을 통해 직접 충전기와 연결될 수도 있다. 설치환경 또는 충전기의 성격에 따라 전원부(230)는 선택적으로 적용될 수 있다.
충전기(100)는 하나의 전력원(200)에 다수개가 설치될 수 있으며 각 전력원(200)의 공급 가능한 최대전력량에 따라 설치되는 기기 수가 제한될 수 있다. 하나의 전력원(200)에 연결되는 다수개의 충전기(100)는 다양한 종류가 섞여서 설치될 수 있다.
도 2에 도시된 것처럼 다수개의 충전기 중 일부는 고정형 충전기(100)로 구성되고 나머지는 이동형 충전기(100')로 구성될 수 있다. 고정형 충전기(100)는 전원부(230)에 직접 결합되며, 전기차(300)는 충전을 위해 충전기(100) 앞으로 운전을 해야된다.
이동형 충전기(100')는 전원부(230)와 결합되는 전원연결부(101')를 포함하며 전기차(300)가 주차된 곳까지 이동할 수 있는 이동수단을 포함한다. 충전 대기 상태일 때 이동형 충전기(100')는 전원연결부(101')와 연결되어 전력원(200)으로부터 전기를 공급받는다. 애플리케이션 또는 다양한 통신 수단에 의하여 충전 요청을 받을 경우, 이동형 충전기(100')는 충전 요청 신호에 따라 전기차(300)가 위치된 곳까지 이동한 후 전기차(300)에 대한 충전을 진행한다.
한편, 본 발명의 일 실시 예에 따른 다수개의 충전기(100)는 유선 충전방식 및 무선 충전방식 중 적어도 하나 이상이 적용될 수 있으며 고정형 충전기(100) 및 이동형 충전기(100') 모두 유선 및/또는 무선 충전방식이 적용될 수 있다.
본 발명의 일 실시 예에 따른 각각의 충전기(100)는, 전기차(300)와 직접 연결되어 전력를 공급하는 커넥터(110), 커넥터(110)에 공급되는 전력량을 제어하는 제어부(120) 및 전원부(230)에 연결되는 접속부(130)를 포함한다. 만약 충전기(100)가 무선 방식을 채택하거나 무선 방식을 추가로 포함하는 경우, 충전기(100)는 무선충전패널을 포함할 수 있다. 다만, 전원부(230)와 함께 접속부(130)가 구비되지 않는 실시예도 존재한다. 충전기가 설치되는 환경 및 충전기의 스펙에 따라 접속부(130)는 선택적으로 적용될 수 있다.
전기차(300)는 외부의 다른 장치와 통신하기 위한 통신컨트롤러(310)를 포함할 수 있으며, 통신컨트롤러(310)는 커넥터(110) 및 사용자 단말기와 통신 가능한 구성이다. 일반적으로, 충전기가 DC급속 충전기인 경우에만 전기차(300)와 충전기 사이의 통신이 이루어진다. 반면, 완속충전기의 경우 충전기와 전기차(300) 사이의 통신이 이루어지지 않는 것이 일반적이다.
한편, 도 2를 살펴보면 다수의 충전기(100)를 총괄 제어하는 중앙제어부 또는 메인충전기가 구비되지 않은 것을 알 수 있다. 별도의 중앙제어부나 메인충전기 없이 일반 충전기들만으로도 각 충전기에 공급되는 전력량을 제어할 수 있는 것이 특징이다. 구체적으로, 다수의 충전기(100)끼리 서로 통신 가능하게 구비되는 것이 특징이며, 충전기(100)의 상세 구성에 대하여 도 3을 통해 살펴본다.
도 3은 각각의 충전기(100)를 구성하는 세부 구성들이 도식화된 것이다.
커넥터(110)는 전기차(300)와 직접 연결되어 전력을 공급하는 제1커넥터(111) 및 제2커넥터(112)를 포함한다.
제1커넥터(111)는 콤보 1 방식의 충전을 지원하기 위한 충전단자이며 단상 교류 완속 충전 방식 소켓과 직류 급속 충전 방식 소켓의 결합형태로 이루어진다. 주로 미국을 중심으로 사용되고 있다.
제2커넥터(112)는 콤보 2 방식의 충전을 지원하기 위한 충전단자이며 삼상 교류 완속 충전 소켓과 DC 급속 충전 소켓의 결합형태로 이루어진다. 주로 유럽을 중심으로 사용되고 있다.
제2커넥터(112)의 경우, 직류 단독충전, 직류와 삼상 교류 전력, 직류와 단상 교류 전력, 삼상 교류 단독 충전 등 지원하는 충전 방식이 다양하기 때문에 제1커넥터(111)를 사용하는 경우보다 다양한 상황 및 차량에 적용할 수 있는 장점이 있다.
한편, 커넥터(110)에 대한 본 발명의 권리범위는 이에 한정되지 않는다. 커넥터(110)는 제1커넥터(111) 및 제2커넥터(112) 중 적어도 하나 이상의 방식이 적용될 수 있을 뿐만 아니라 예를 들어 J1772 완속 커넥터와 같이 또 다른 형태의 커넥터가 적용될 수도 있다.
또 다른 실시예의 경우, 충전기에 커넥터 및 케이블이 구비되지 않을 수도 있다. 이 경우, 충전기에는 소켓만 설치되며 커넥터나 케이블은 해당 충전기를 사용하고자 하는 사용자가 별도로 구매하여 사용할 수 있다.
제어부(120)는 하나 이상의 프로세서 및 메모리로 구성되거나 컴퓨터로 구성될 수 있다. 제어부(120)는 동일 전력원(200)과 연결된 충전기(100)와의 통신 및 연결된 전기차(300)에 공급되는 전력량 제어 등을 담당한다.
구체적으로, 제어부(120)는 입력부(121), 표시부(122), 릴레이부(123), 결제부(124) 및 통신부(125)를 포함할 수 있다. 다만 위 구성요소들 중 일부 구성이 생략될 수도 있으며, 필요에 따라 별개 구성이 더 추가될 수도 있다. 제어부(120)의 구성에 대한 설명은 본 발명의 일 실시 예에 따른 충전기(100)의 작동 태양을 설명하기 위한 것이다.
입력부(121)는 충전 요청 정보를 입력하기 위한 다수개의 키를 구비하며, 입력된 키에 대한 데이터는 제어부(120)로 전달된다. 예를 들어 상기 키 입력을 통해 충전 예약, 즉시 충전 개시 및 종료, 충전 예약 시간 입력, 숫자정보 입력, 사용자 정보 및 차량정보 입력이 가능하다. 한편, 입력부(121)는 물리 키가 아닌 디스플레이 상에 표현되는 터치부로 대체될 수도 있다. 다만, 또 다른 실시 예에 따른 충전기는 입력부(121)를 포함하지 않는다. 별도의 입력부(121) 없이도 충전기를 제어할 수 있는 다양한 방법들이 적용될 수 있다.
표시부(122)는 제어부(120)에 의해 충전기(100)가 충전 중인지 또는 대기 상태인지 등과 같은 동작 상태 정보, 충전 전력의 와트(W) 또는 킬로와트(kW)당 가격, 배터리 잔여량, 배터리 완충 전력량, 완충 소요 시간 등과 같은 정보를 표시할 수 있는 구성이다. 다만 표시부(122)는 충전기(100)에 따라 구비되지 않는 경우도 있다.
릴레이부(123)는 릴레이를 포함하며 제어부(120)의 제어에 따라 변환기(132)의 출력 전력을 제1커넥터(111) 또는 제2커넥터(112)에 연결하는 구성이다. 릴레이는 IGBT와 같은 소자를 이용하여 구현될 수 있다. 만약 커넥터(110)를 구성하는 콤보가 하나만 있을 경우 릴레이부(150) 구성은 생략될 수도 있다.
결제부(124)는 카드 리더기, 현금 계수 장치 및 유심 리더기 등의 장치로서 사용자가 사용한 충전전력에 대한 결제 정보를 제어부(120)에 제공하는 구성이다. 다만 본 발명의 일 실시 예에 따른 다수의 충전기(100)는 어느 하나의 충전기를 제외하고 결제부(124)가 포함되지 않을 수 있다. 결제부(124)가 포함되지 않는 나머지 충전기들은 사용자가 사용한 충전전력에 대한 정보를 결제부(124)가 포함된 충전기(100)로 전송할 수 있다. 결제부(124)를 포함하는 충전기(100)는 외부 서버와 통신할 수 있는 별도의 통신장치를 더 포함할 수 있으며 이에 대하여 후술하도록 한다.
한편, 본 발명의 또 다른 실시 예에 따르면 다수의 충전기(100)는 결제부(124)를 포함하지 않는다. 각각의 충전기(100)에서 측정된 사용자가 사용한 충전전력 정보는 외부 서버와 연결된 어느 하나의 충전기(100)를 통해 사용자의 결제수단과 연결될 수 있다. 사용자의 결제수단은 애플리케이션에 등록된 카드정보이거나 사용자가 기 등록한 계좌정보일 수 있다.
통신부(125)는 다수개의 충전기(100) 사이의 통신을 가능하게 하는 구성이며, PLC(Power Line Communication) 통신 방법 또는 P2P 통신 방법을 사용하여 각각의 충전기(100)에 대한 정보들을 상호 공유할 수 있다. 통신 방법은 PLC 통신 또는 P2P 통신 이외에도 PWM(Pulse Width Modulation) 통신, CAN(Controller Area Network) 통신, MOST(Media Oriented Systems Transport) 통신, LIN(Local Interconnect Network) 통신, Bluetooth 통신, ALOHA 통신, 비콘 통신 등이 활용될 수 있다.
통신부(125)는 각각의 충전기(100)가 충전 중인지 또는 대기 중인지 여부에 대한 정보, 전기차가 연결되었는지 여부에 대한 정보, 충전이 종료되었는지 여부에 대한 정보, 전기차 별 충전 시 사용된 전력량 및 공급 가능한 전력량에 대한 정보 등을 전송하거나 수신할 때 사용된다.
또한 기타 충전과 관련된 다른 정보들을 전송하거나 수신할 때도 사용될 수 있다. 예를 들어, 제어부(120)의 신호에 따라 제1커넥터(111)나 제2커넥터(112)의 작동에 관여할 수 있으며, 주차된 전기차(300)와의 통신도 이루어질 수 있다.
접속부(130)는 전원부(230)와 연결되는 접속코드(131)와 전압을 변환하는 변환기(132)로 구성된다.
변환기(132)는 AC/DC 컨버터 및 DC/DC 컨버터 기능을 모두 포함할 수 있으며, 전기차가 연결된 콤보의 종류에 따라, 사용자가 선택한 충전모드가 급속인지 또는 완속인지에 따라 적합한 전원을 공급할 수 있다.
본 발명의 일 실시 예의 경우, 변환기(132)는 통신부(124)에 의해 다수개의 충전기(100) 사이의 통신 결과에 따라 연결된 전기차에 공급되는 전력량을 조절할 수 있다. 다수개의 충전기(100)의 통신에 의해 각 충전기 별로 할당되는 전력량이 결정되며 이에 대한 상세한 알고리즘은 후술하도록 한다.
도 4 내지 도 7은, 충전이 필요한 전기차가 동일 전력원(200)에 연결된 다수개의 충전기(100) 중 어느 하나의 충전기(100)에 연결되었을 때 다수개의 충전기들(100) 사이의 상호 통신 과정을 간단하게 도식화한 것이다.
도 4 내지 도 5는, 동일 전력원(200)에 연결된 다수개의 충전기(100)들이 모두 충전대기상태일 때 어느 하나의 전기차(300)가 임의의 충전기와 연결될 경우, 충전기들 사이의 상호 통신이 일어나는 과정을 도식화한 것이다.
도 6 내지 도 7은, 동일 전력원(200)에 연결된 다수개의 충전기들(100) 중 적어도 하나 이상의 충전기(100)가 충전진행상태일 때 어느 하나의 전기차(300)가 임의의 충전대기상태인 충전기와 연결될 경우, 충전기들 사이의 상호 통신이 일어나는 과정을 도식화한 것이다.
도 4에 따르면, 전기차(300)가 어느 하나의 충전대기상태인 충전기(100)와 연결될 때 상기 전기차(300)와 연결된 충전기(100)로부터 충전시작신호가 발생되는 상태가 도시된 것을 알 수 있다. 전기차(300)가 충전기(100)와 “연결된다”는 것은 전기차(300)와 충전기(100)가 충전을 위해 직접 결합된 상태를 의미할 뿐만 아니라 전기차(300)와 충전기(100)가 충전을 위한 결합이 예정된 상태까지 포함하는 것으로 해석된다.
충전대기상태인 충전기(100)가 전기차(300)와 연결되면 전기차와 연결된 충전기(100)는 동일 전력원(200)과 연결된 모든 나머지 충전기(100)에 대하여 충전시작신호를 전송한다.
충전시작신호는 전기차(300)가 충전기(100)와 연결되면 발생되는 신호로서, 예를 들어, 전기차(300)가 커넥터(110)와 연결되거나 전기차(300)의 통신컨트롤러(310)가 통신부(125)와 연결되거나 기타 전기차(300)가 충전기(100)와 결합될 개연성이 분명한 경우 충전시작신호가 발생된다.
구체적으로, 전기차(300)가 커넥터(110)와 연결되면 커넥터(110)는 릴레이부(123)를 통해 제어부(120)에 연결 신호를 전송하고, 연결 신호를 전송받은 제어부(120)는 통신부(125)를 통해 나머지 충전기들에 충전시작신호를 전송시킬 수 있다. 커넥터(110)를 구성하는 커넥터 타입이 하나인 경우 커넥터(110)는 제어부(120)에 대하여 직접 연결 신호를 전송할 수 있다.
다수개의 충전기(100)는 다양한 통신 방법이 적용될 수 있다. 본 발명의 일 실시 예의 경우, 충전기들은 PLC 통신방법 또는 P2P 통신방법이 적용될 수 있으며 두 가지 통신 방법이 모두 적용될 수도 있다. PLC 통신방법 및 P2P 통신방법은 통상의 기술자에게 일반적인 기술이므로 상세한 설명은 생략하도록 한다.
한편, 충전기들은 PLC 통신방법 또는 P2P 통신방법 이외에도, 위에서 소개된 바와 같이, PWM(Pulse Width Modulation) 통신, CAN(Controller Area Network) 통신, MOST(Media Oriented Systems Transport) 통신, LIN(Local Interconnect Network) 통신, Bluetooth 통신, ALOHA 통신 또는 비콘 통신 등이 활용될 수 있다.
도 5는 전기차(300)가 연결된 충전기(100)로부터 충전시작신호를 받은 나머지 충전기들이 충전상태신호를 전송하는 모습이 도시된 것이다. 나머지 충전기들은 충전시작신호가 발생된 충전기로 충전상태신호를 전송한다.
충전상태신호는 충전진행신호와 충전대기신호를 포함할 수 있다. 충전진행신호는 충전이 진행 중인 것을 의미하며 충전대기신호는 충전이 진행되지 않고 있음을 의미한다.
구체적으로, 충전상태신호는 커넥터(110)가 전기차(300)와 연결되어 있는지, 무선 충전일 경우 충전이 진행되고 있는지 여부에 대한 정보가 담기 신호이다.
도 6과 같이, 하나 이상의 전기차(300)가 기 충전 중일 때 새로운 전기차(300)가 연결되는 경우, 새로운 전기차(300)가 연결되는 충전기(100)는 충전시작신호를 생성시켜 나머지 충전기들에게 전송한다.
도 7과 같이, 이미 충전이 진행 중인 충전기(100)는 충전진행신호를 생성시켜 전송하며, 충전이 진행되지 않는 충전기(100)는 충전대기신호를 생성시켜 충전시작신호를 생성시킨 충전기로 전송하거나 아무런 신호를 전송하지 않을 수 있다.
도 8 내지 도 11을 통해 도 4 내지 도 7에 도시된 전기차용 충전기의 전력공급방법의 상세한 흐름도를 살펴보도록 한다.
도 8은 일 실시 예에 따른 새로운 전기차가 충전기에 대한 충전을 시도할 때의 전기차용 충전기의 전력공급방법의 전반적인 흐름을 나타낸 것이다.
도 8에 도시된 각 단계들은 각각의 충전기(100)에 구비된 제어부(120) 및 통신부(125)에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니며, 도 8에 도시된 각 단계들의 적어도 일부 또는 전부가 다른 주체에 의하여 수행될 수도 있다.
단계 S100에서, 다수개의 충전기(100) 중 제1충전기에 전기차(300)가 연결된다. 제1충전기는 임의의 충전기에 해당하며, 제1충전기로 지칭하였다고 해서 특별한 지위나 기능을 가지는 것은 아니다. 전기차(300)가 제1충전기에 연결된다는 의미는 전술한 바와 같다.
제1충전기와 전기차의 연결이 완료되면 단계 S200에서, 제1충전기의 제어부(120)는 충전시작신호를 생성시킨다. 예를 들어, 제어부(120)는 커넥터(110) 또는 무선충전패드(미도시)로부터 충전시작신호를 받거나 가까운 미래에 충전이 확정될 경우 충전시작신호를 생성시킨다.
제1충전기에서 생성된 충전시작신호는 단계 S300에서, 제1충전기를 제외한 나머지 충전기들에 전송된다. 즉, 제1충전기를 제외한 나머지 충전기들에 의해 충전시작신호가 수신된다. 충전시작신호가 수신된 충전기들은 각각이 포함하는 제어부(120) 내의 저장부에 제1충전기의 충전이 시작되었다는 정보를 저장한다.
단계 S400에서, 충전시작신호를 수신한 충전기들은 충전상태신호를 생성시킨다. 충전상태신호는 충전시작신호를 수신한 충전기들이 충전시작신호를 받은 시점에 각 충전기가 또 다른 전기차(300)를 충전하고 있는 중인지 여부에 대한 정보를 담고 있다.
구체적으로, 충전상태신호는 충전진행신호 및 충전대기신호를 포함한다. 충전진행신호는 전기차에 대한 충전이 진행중임을 의미하고, 충전대기신호는 전기차에 대한 충전이 이루어지지 않는 상태를 의미한다.
한편, 또 다른 실시 예에 따르면 충전상태신호는 충전진행신호만 포함할 수 있다.
단계 S500에서, 제1충전기는 나머지 충전기들에서 생성된 충전상태신호를 수신한다. 제1충전기의 제어부(120)는 수신된 충전상태신호에 기반하여 각 충전기들의 충전진행여부를 파악할 수 있다. 각 충전기들의 충전진행여부에 대한 정보는 제1충전기의 제어부(120)에 저장된다.
충전상태신호가 충전진행신호 및 충전대기신호를 모두 포함하는 경우, 제1충전기는 수신된 신호의 종류에 따라 나머지 충전기들의 상태를 각각 파악한 후 각 충전기들의 상태 정보를 저장한다. 반면 충전상태신호가 충전진행신호만 포함할 경우, 각 충전기들이 충전대기 중인지 여부는 다음과 같이 파악할 수 있다.
단계 S300은, 충전상태신호가 설정된 시간내에 수신되었는지 확인하는 단계(S310)를 더 포함한다. 제1충전기를 제외한 나머지 충전기들이 충전 중일 경우, 충전 중인 충전기들은 충전진행신호를 설정된 시간내에 제1충전기로 전송한다. 즉, 설정된 시간내에 충전진행신호가 수신되지 않았을 경우, 신호를 전송하지 않은 충전기들은 제1충전기의 제어부(120)에 의해 충전대기상태인 것으로 판단될 수 있다.
제1충전기에 대한 충전상태신호 수신이 완료되고 나머지 충전기들의 현 상태 파악이 완료되면 단계 S600이 진행되며, 단계 S600은 도 9를 통해 상세히 살펴보도록 한다.
단계 S600은 제1충전기에 공급되는 전력량을 결정하는 단계이다. 제1충전기에 공급되는 전력량을 결정하기 위해 단계 S500에서 수신된 충전진행신호를 활용한다.
구체적으로, 단계 S600의 세부 단계들은 충전진행신호가 수신된 횟수를 저장하는 단계(S610), 제1충전기에 공급 가능한 전력량을 계산하는 단계(S620) 및 제1충전기에 전력을 공급하는 단계(S630)을 포함한다.
단계 S610은 제1충전기를 제외한 나머지 충전기로부터 수신된 충전진행신호의 횟수를 제1충전기의 제어부(120)에 저장하는 단계이다. 수신된 충전진행신호의 총 수는 현재 동일 전력망(200)에 연결된 충전기들 중 전기차에 대한 충전이 진행 중인 충전기의 총 수와 동일하다. 충전이 진행 중인 충전기의 총 수를 파악함으로서 제1충전기에 공급될 수 있는 최대 전력량 또는 공급 가능한 전력량 범위를 체크할 수 있다.
단계 S620은 제1충전기의 제어부(120)에 의해 제1충전기에 연결된 전기차(300)에 공급될 수 있는 가용 전력량을 계산하는 단계이다. 특히, 단계 S620은 충전진행신호가 수신된 횟수에 기반하여 가용 전력량을 계산한다.
예를 들어, 제1충전기에 공급되는 전력량은 전력원(200)에 의해 공급 가능한 최대전력량을 수신된 충전진행신호의 총 횟수보다 하나 더 큰 값으로 나눈 값보다 작거나 같을 수 있다. 전력원(200)에 의해 공급 가능한 최대전력량을 10kWh라고 했을 때, 수신된 총 충전진행신호 갯수가 4인 경우, 제1충전기에 공급되는 최대 전력량은 10/5 = 2kWh와 같거나 작은 수치가 될 것이다.
한편, 전력원(200)으로부터 각각의 충전기에 전력을 공급하는 방법에 있어서, 본 발명의 일 실시 예의 경우 시간분할 방식이 적용될 수 있다. 위 예와 같이, 전력원(200)에 의해 공급 가능한 최대전력량이 10kWh이고, 제1충전기에 공급 가능한 전력량이 2kWh로 정해진 경우, 제1충전기의 제어부는 60분 구간 내에서 12분 동안 전력원(200)으로부터 전력을 공급받도록 제어할 수 있다. 만약 임의의 6분 구간을 살펴본다면 제1충전기는 6분 구간 중 1.2분 동안 전력원(200)으로부터 단독으로 전력을 공급받게 된다.
시간분할 방식이 적용되는 경우, 각각의 충전기들은 현재 충전이 진행 중인 전기차의 개수에 따라(충전진행신호의 개수에 따라) 전력을 공급받는 시간 구간대가 변경된다. 예를 들어 수신된 총 충전진행신호 개수가 3인 경우, 동일 전력망(200) 내에 연결된 전기차의 총 수는 4대가 될 것이다. 이 때, 충전기들의 넘버링 순서에 따라 1시간을 기준으로 15분씩 4대의 충전기들이 전력망(200)으로부터 해당시간 동안 단독으로 전력을 공급받을 수 있다. 결과적으로 전력망(200)의 최대전력량을 4로 나눈 값을 공급받는 것과 같은 효과가 발생한다. 충전이 진행 중인 각 충전기들의 제어부는 전력의 공급과 차단을 충전진행신호의 개수에 따라 언제든지 변경할 수 있다.
한편, 충전이 먼저 시작되고 있던 충전기에게 가중치를 주거나 고속충전을 신청한 사용자에게 가중치를 줄 경우, 1시간을 기준으로 전력 공급 시간이 변경될 수도 있다. 위 사례를 예로 들면, 전기차들의 충전 시작 시간에 따라 1시간을 기준으로 24분, 18분, 12분, 6분과 같이 전력을 공급할 수 있다. 이에 대한 설명은 후술하도록 한다.
공급 가능한 전력량이 결정되면 단계 S630이 진행된다.
한편, 도 10은 단계 S600의 또 다른 실시 예가 도시된 것이다.
구체적으로, 또 다른 실시 예에 따른 단계 S600의 세부 단계들은 충전진행신호가 수신된 횟수를 저장하는 단계(S610'), 제1충전기에 고속충전모드가 설정되었는지 확인하는 단계(S620'), 제1충전기에 공급 가능한 전력량을 계산하는 단계(S630') 및 제1충전기에 전력을 공급하는 단계(S640')을 포함한다.
단계 S610'은 제1충전기를 제외한 나머지 충전기로부터 수신된 충전진행신호의 횟수를 제1충전기의 제어부(120)에 저장하는 단계이며 단계 S610과 동일하다.
단계 S620'은 제1충전기를 이용하는 사용자가 충전 시작 전에 고속충전모드를 선택하였는지 여부를 확인하는 단계이다. 고속충전모드는 급속충전모드에 해당하거나 적어도 설정된 값 이상의 전력량을 보장해주는 충전모드이다. 빠른 충전이 필요한 사용자에게 유용한 모드이며, 고속충전모드를 선택할 경우, 사용자는 일반모드일 때보다 kW당 더 비싼 가격을 지불하거나 더 높은 기본 이용료를 지불할 수 있다.
단계 S630'은 제1충전기의 제어부(120)에 의해 제1충전기에 연결된 전기차(300)에 공급될 수 있는 가용 전력량을 계산하는 단계이며, 단계 S620과 동일하다. 단계 S640'은 단계 S630과 동일하다.
단계 S630은, 제1충전기에 전력 공급이 시작되는 단계이며, 전력 공급이 시작될 때의 충전시작시간 신호를 생성하는 단계(S631)와 제1충전기를 제외한 나머지 충전기들이 상기 충전시작시간 신호를 수신하는 단계(S632)를 포함한다.
단계 S631은 충전기의 충전 시작 시간을 모든 충전기들과 공유함으로서 추후 전력량을 배분할 때 전력량 배분에 대한 우선권을 설정할 수 있도록 하기 위한 근거 자료가 된다. 또한 각 충전기들에 결제 시스템이 포함될 경우 각 전기차에 공급된 전력량을 산출하기 위한 근거 자료가 된다. 즉, 각 충전기들의 모든 작동들이 나머지 충전기들과 공유되는 것이 특징이다.
제1충전기의 충전시작시간을 모든 충전기들과 공유하기 위하여 단계 S632가 진행된다. 제1충전기로부터 제1충전기의 충전시작시간 정보를 받은 나머지 충전기들은 제1충전기의 충전시작시간 정보를 제어부(120)에 저장한다.
도 11은 도 10의 실시예에 포함되는 단계 S640'에 대한 세부 단계들이 도시된 것이다.
단계 S640'은, 제1충전기에 전력 공급이 시작되는 단계이며, 전력 공급이 시작될 때의 충전시작시간 신호를 생성하는 단계(S641'), 고속충전모드가 진행된다는 신호를 생성하는 단계(S642'), 제1충전기를 제외한 나머지 충전기들이 생성된 충전시작시간 신호와 고속충전모드 진행 신호를 수신하는 단계(S643') 및 나머지 충전기들에 공급되는 전력량을 제한하는 단계(S644')를 포함한다.
단계 S641', 단계 S642' 및 단계 S643'은 제1충전기의 충전과 관련된 중요한 정보들을 나머지 충전기들에게 공유하기 위한 단계이다.
단계 S644'는 고속충전모드를 선택할 수 있는 충전기의 수를 제한하기 위한 단계이다. 고속충전모드는 짧은 시간에 전기차를 충전하기 위해 고전압, 고전력이 인가되기 때문에 동일 전력망 내에서 동시에 고속충전모드를 진행할 수 있는 충전기의 수는 일정 수준으로 제한될 필요가 있다.
따라서 제1충전기의 고속충전모드가 진행 중이라는 신호를 받은 나머지 충전기들은 고속충전모드 선택이 일부 제한되거나 공급되는 전력량의 최대치가 제한될 수 있다.
단계 S643'를 거친 충전기는 제어부(120)에 해당 신호를 저장할 수 있으며 저장된 정보에 기반하여 공급될 수 있는 전력량을 자체적으로 제한한다. 그 결과 단계 S644'가 진행된다.
충전시작정보, 충전상태정보, 충전시작시간 정보, 고속충전모드 진행 정보 등 충전과 관련된 모든 정보들을 다수의 충전기들이 즉각 공유함으로서 외부 서버와 연동되는 메인 충전기 없이도 동일 전력망(200)이 제공하는 최대 전력량 내에서 효율 높게 전력량을 각 충전기로 분배할 수 있다. 또한 어느 하나의 충전기가 고장이 나더라도 나머지 충전기들은 전기차를 문제없이 충전할 수 있다. 또한 전력원(200)의 최대공급 전력량이 상승할 경우, 소정의 충전기들을 추가로 설치할 수 있으며 각 충전기들 사이의 최소한의 통신만 연결시키면 설치가 종료되므로 설치 비용이 굉장히 저렴해지고 수리 비용이 낮아지는 장점이 있다.
도 12는 어느 하나의 전기차(300)의 충전이 완료되었을 때 다수개의 충전기들 사이의 상호 통신 과정을 간략하게 도식화한 것이다.
어느 하나의 충전기와 연결된 전기차의 충전이 완료되는 경우, 충전기와 전기차 사이의 연결이 해제(disconnect)된다. 본 발명의 일 실시 예의 경우, 커넥터(110)와 전기차(300) 사이의 결합이 분리되거나 커넥터(110)와 전기차(300)가 결합되어 있더라도 전기 공급이 중단되는 경우에 해당된다. 한편, 무선 충전 모드가 적용된 경우, 무선 충전 패드의 작동이 중단되는 경우에 해당된다.
충전기와 전기차 사이의 연결이 해제되면 연결이 해제된 충전기의 제어부(120)는 충전종료신호를 생성한다. 생성된 충전종료신호는 나머지 충전기들에 모두 전송되며, 충전이 진행 중인 충전기의 경우 상기 충전종료신호를 받은 후에 공급되는 전력량을 상승시킬 수 있다. 시간분할 방식이 적용되는 경우, 충전종료신호를 받은 충전기는 단위시간 당 해당 충전기에 전력이 공급되는 시간을 증가시킬 수 있다.
도 13 내지 도 14를 통해 도 12에 도시된 전기차용 충전기의 전력공급방법 중 전기차의 충전이 종료되었을 때의 상세 흐름도를 살펴보도록 한다.
도 13은 일 실시 예에 따른 어느 하나의 전기차에 대한 충전이 완료되었을 때 다른 충전기들과의 정보 전달 과정 및 전력분배과정에 대한 전반적인 흐름이 도시된 것이다.
도 13에 도시된 각 단계들은 각각의 충전기(100)에 구비된 제어부(120) 및 통신부(125)에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니며, 도 8에 도시된 각 단계들의 적어도 일부 또는 전부가 다른 주체에 의하여 수행될 수도 있다.
단계 S700에서, 충전 중인 어느 하나의 충전기의 충전이 종료된다. 어느 하나의 충전기는 동일 전력원(200)에 연결된 모든 충전기가 그 대상이 될 수 있다. 충전이 종료된다는 의미는 충전기와 전기차의 연결과 반대 의미로 해석될 수 있다. 일반적으로 충전의 종료는 충전기에서 전기차로 전기 공급이 중단될 때를 의미한다.
충전기와 전기차의 충전이 종료되면 단계 S800에서, 상기 충전이 종료된 충전기의 제어부(120)는 충전종료신호를 생성시킨다.
생성된 충전종료신호는 단계 S900에서, 상기 충전이 종료된 충전기를 제외한 나머지 충전기들에 전송된다. 즉, 상기 충전이 종료된 충전기를 제외한 나머지 충전기들에 의해 충전종료신호가 수신된다. 충전종료신호가 수신된 충전기들은 제어부(120) 내의 저장부에 어느 하나의 충전기의 충전이 종료되었다는 정보를 저장한다.
단계 S1000은, 어느 하나의 충전기의 충전이 종료됨으로 인해 발생하는 여유 전력을 충전이 여전히 진행 중인 나머지 충전기에 공급하는 단계이며, 단계 S1000을 구성하는 세부 단계들은 도 14를 통해 살펴보도록 한다.
단계 S1000은, 제3충전기에 수신된 충전시작시간 신호를 확인하는 단계(S1010) 및 제3충전기에 분배되는 전력량을 결정하는 단계(S1020)를 포함한다.
제3충전기는 단계 S700에서 충전이 종료된 충전기를 제외한 나머지 충전기 중 하나에 해당한다. 즉, 지칭의 편리성을 위하여 "제3"으로 칭한 것일 뿐 특정 충전기로 한정한 것이 아니다.
단계 S1010은, 그 동안 제3충전기에 수신되었던 타 충전기의 충전시작시간 신호를 모두 확인하는 단계이다. 다수의 전기차들에 대한 충전횟수가 증가함에 따라 각각의 충전기들은 제어부(120)에 다수개의 타 충전기의 충전시작시간 신호 데이터가 저장되어 있을 것이다. 다만, 특정 충전시작시간 신호와 페어링되는 충전종료신호가 존재하는 경우, 해당 충전시작시간 신호는 확인 대상에서 제외된다. 충전시작시간 신호를 확인하는 이유는 단계 S1010이 진행되는 순간에 충전이 동시에 진행되고 있는 충전기들 정보를 확인하기 위한 것이기 때문이며, 이미 충전이 종료된 경우 충전시작시간 신호 데이터의 확인이 무의미하다.
단계 S1020은 제3충전기의 충전시작시간을 단계 S1010에서 확인된 충전시작시간 신호 데이터와 비교하는 단계(S1021), 충전이 진행되고 있는 충전기 간 우선 순위를 산출하는 단계(S1022), 및 제3충전기에 공급되는 전력량을 결정하는 단계(S1023)을 포함한다.
단계 S1021 및 단계 S1022는 동시에 충전이 진행되고 있는 충전기들의 충전시작시간 신호를 비교하여 충전시작시간이 가장 빠른 충전기부터 충전시작시간이 가장 느린 충전기까지 줄을 세우는 역할을 한다.
단계 S1023는 산출된 우선 순위에 따라 전력량을 분배하는 단계이며, 일 실시 예의 경우, 충전시작시간이 가장 빠른 충전기에 우선적으로 가장 큰 전력량을 할당할 수 있다.
한편, 본 발명의 일 실시 예에 따른 전기차용 충전기의 전력공급방법은, 충전량 신호를 설정된 시간마다 하나 이상의 나머지 충전기에 전송하는 단계를 더 포함할 수 있다. 상기 단계를 통해 하나의 전력원(200)에 연결된 충전기끼리 각각 연결된 전기차의 충전량 정보를 상시적으로 공유할 수 있는 효과가 있다.
충전량 정보란 충전기와 연결된 전기차가 충전된 정도와 관련된 정보를 의미하며, 일 예로 완전 충전된 것을 100%로 삼고 완전 충전량 대비 몇 % 충전되었는지 여부를 충전량 정보로 정의할 수 있다.
다만 시중에 판매되는 충전기의 경우, 급속 충전기일 경우에만 충전%를 파악할 수 있다. 급속 충전기 이외의 기타 충전기의 경우, 완충에 도달함에 따라 충전되는 전력량이 떨어지는 정도를 통해 충전%를 파악할 수 있다.
기타 충전기의 경우, 대략 충전된 정도가 완충 대비 70-80%이 넘어가는 경우 공급되는 전력량이 서서히 감소하는 경향을 보인다. 따라서 기타 충전기의 경우, 정확한 충전량 정보는 공급되는 전력량이 감소할 때부터 생성될 수 있다. 기타 충전기의 경우, 전력량이 감소되는 비율에 따른 충전% 정보가 제어부에 미리 저장될 수 있다.
충전량 정보는 설정된 시간마다 주기적으로 공유될 수 있다. 즉, 각각의 충전기는 주기적으로 충전량 정보를 자신을 제외한 나머지 충전기들에 전송을 하며, 타 충전기의 충전량 정보를 받는 경우 제어부(120)에 저장한다. 충전량 정보를 실시간으로 업데이트 함으로서 전력 공급량을 효율적으로 변화시킬 수 있는 근거가 구축된다.
충전량 정보가 주기적으로 모든 충전기들 사이에 공유됨을 전제로, 단계 S1000은 제3충전기와 연결된 전기차의 충전량을 확인하는 단계, 제3충전기와 연결된 전기차의 충전량을 기 수신된 충전량 신호와 비교하는 단계, 우선 순위를 산출하는 단계, 및 산출된 우선 순위에 따라 전력량을 분배하는 단계로 구성될 수 있다. 위 단계들은 모두 제3충전기의 제어부(120)에 의해 이루어질 수 있다.
한편, 전기차의 충전량이 커질수록 공급되는 전력량이 줄어드는 현상이 발생한다. 또한 전기차의 충전량이 커질수록 충전의 시급성이 낮은 상태로 이해할 수 있다. 이러한 점을 고려하여, 충전량이 높은 전기차가 연결된 충전기에 공급되는 유휴전력을 충전량이 낮은 전기차가 연결된 충전기로 공급하여 공급되는 전력량을 효율적으로 분배할 수 있는 효과가 있다. 시간분할 방식이 적용되는 경우, 충전량이 낮은 전기차가 연결된 충전기는 단위시간 당 연결된 전기차에 공급하는 전력 시간 비율을 더 커지도록 제어할 수 있다.
마지막으로 다수개의 충전기 중 적어도 하나 이상의 충전기는 외부 서버와 통신이 가능하도록 구비될 수 있다. 외부 서버와의 통신은 와이파이, 3G, LTE와 같은 근거리 통신망이 활용될 수 있다. 적어도 하나 이상의 충전기에 별도 통신 시설을 구축함으로써 애플리케이션을 통한 충전기 예약 시스템이나 결제 시스템 등이 추가로 적용될 수 있으며, 직접 현장을 방문하지 않고 충전기들의 상태를 점검할 수 있는 효과가 있다.
한편, 도 4 내지 도 7의 충전기(100)들 중 적어도 하나 이상은 도 2의 이동형 충전기(100')로 구성될 수 있다. 이동형 충전기(100')는 충전 수요가 적은 새벽 시간 때에 완충될 수 있다. 완충된 이동형 충전기(100')는 충전 수요가 많은 낮 시간 또는 퇴근 후 저녁 시간 때에 전력원(200)을 보조하는 역할을 할 수 있다.
구체적으로, 다수의 충전기(100)들로부터 요구되는 전력량이 전력원(200)의 최대공급전력량에 근접하거나 최대공급전력량을 넘어서는 경우, 일부 충전기(100)는 완충된 이동형 충전기(100')로부터 전력을 공급받을 수 있다.
이동형 충전기(100')의 보조 역할의 정도는 시간대에 따라 다르게 설정될 수 있다. 예를 들어 요구되는 전력량이 많이 요구되는 시간대에는 이동형 충전기(100')가 허용할 수 있는 최대 전력량을 타 충전기로 공급하도록 설정될 수 있으며, 요구되는 전력량이 적게 요구되는 시간대에는 최소 전력량을 타 충전기로 공급하도록 설정될 수 있다.
이동형 충전기(100')로부터 예비 전력을 확보함으로써 정전이 되거나 전력 공급 속도(충전 속도)가 줄어드는 현상을 방지할 수 있는 효과가 있다.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.

Claims (14)

  1. 동일 전력원에 다수개의 충전기가 연결된 전기차용 충전기의 전력공급방법에 있어서,
    제1충전기에 전기차가 연결되는 단계;
    상기 제1충전기로부터 충전시작신호가 생성되는 단계;
    하나 이상의 나머지 충전기가 상기 충전시작신호를 수신하는 단계;
    하나 이상의 나머지 충전기로부터 충전상태신호가 생성되는 단계;
    상기 제1충전기가 상기 충전상태신호를 수신하는 단계; 및
    상기 제1충전기의 공급 전력량이 결정되는 단계;를 포함하는 전기차용 충전기의 전력공급방법.
  2. 제1항에 있어서,
    상기 충전상태신호가 생성되는 단계는,
    제2충전기에 전기차가 연결되었는지 확인하는 단계;
    상기 제2충전기로부터 충전진행신호 또는 충전대기신호가 생성되는 단계; 및,
    생성된 신호를 상기 제1충전기로 전송하는 단계; 를 포함하고,
    상기 충전진행신호는 전기차가 충전 중일 때 발생되고, 상기 충전대기신호는 상기 제2충전기가 대기상태일 때 발생되는 신호인 것을 특징으로 하는 전기차용 충전기의 전력공급방법.
  3. 제2항에 있어서,
    상기 제1충전기의 공급 전력량이 결정되는 단계는,
    상기 충전진행신호가 수신된 횟수를 저장하는 단계;
    상기 제1충전기에 공급 가능한 전력량을 계산하는 단계; 및,
    상기 제1충전기에 전력을 공급하는 단계; 를 포함하고,
    상기 제1충전기에 공급되는 전력량은 상기 충전진행신호가 수신된 횟수가 반영되는 것을 특징으로 하는 전기차용 충전기의 전력공급방법.
  4. 제3항에 있어서,
    상기 제1충전기에 공급되는 전력량은 최대전력량을 상기 수신된 횟수보다 하나 더 큰 값으로 나눈 값보다 작거나 같은 것을 특징으로 하는 전기차용 충전기의 전력공급방법.
  5. 제3항에 있어서,
    상기 제1충전기의 공급 전력량이 결정되는 단계는,
    고속충전모드 설정 여부를 확인하는 단계; 를 더 포함하고,
    상기 고속충전모드가 설정된 경우, 상기 제1충전기는 설정된 전력량 이상을 상기 전력원으로부터 공급받는 것을 특징으로 하는 전기차용 충전기의 전력공급방법.
  6. 제5항에 있어서,
    상기 제1충전기에 전력을 공급하는 단계는,
    충전시작시간 신호를 생성하는 단계;
    고속충전모드 진행 신호를 생성하는 단계; 및,
    하나 이상의 나머지 충전기가 상기 충전시작시간 신호 및 상기 고속충전모드 진행 신호를 수신하는 단계; 를 포함하고,
    상기 고속충전모드 진행 신호를 수신한 하나 이상의 나머지 충전기는 상기 전력원으로부터 공급받는 전력량의 최대치가 제한되는 것을 특징으로 하는 전기차용 충전기의 전력공급방법.
  7. 제3항에 있어서,
    상기 제1충전기에 전력을 공급하는 단계는,
    충전시작시간 신호를 생성하는 단계; 및,
    하나 이상의 나머지 충전기가 상기 충전시작시간 신호를 수신하는 단계;를 포함하는 것을 특징으로 하는 전기차용 충전기의 전력공급방법.
  8. 제7항에 있어서,
    상기 전기차용 충전기의 전력공급방법은,
    어느 하나의 충전기의 충전이 종료되는 단계;
    어느 하나의 충전기로부터 충전종료신호가 생성되는 단계;
    하나 이상의 나머지 충전기가 상기 충전종료신호를 수신하는 단계; 및,
    하나 이상의 나머지 충전기의 공급 전력량이 결정되는 단계; 를 더 포함하는 것을 특징으로 하는 전기차용 충전기의 전력공급방법.
  9. 제8항에 있어서,
    상기 하나 이상의 나머지 충전기의 공급 전력량이 결정되는 단계는,
    제3충전기에 수신된 충전시작시간 신호를 확인하는 단계; 및,
    상기 제3충전기에 분배되는 전력량을 결정하는 단계; 를 포함하는 것을 특징으로 하는 전기차용 충전기의 전력공급방법.
  10. 제9항에 있어서,
    상기 제3충전기에 분배되는 전력량을 결정하는 단계는,
    상기 제3충전기의 충전시작시간을 상기 수신된 충전시작시간 신호와 비교하는 단계; 및,
    우선 순위를 산출하는 단계; 를 포함하고,
    산출된 우선 순위에 따라 분배되는 전력량의 크기가 결정되는 것을 특징으로 하는 전기차용 충전기의 전력공급방법.
  11. 동일 전력원에 연결되고 상호 통신이 가능한 다수개의 충전기;를 포함하고,
    어느 하나의 충전기에 전기차가 연결되면 상기 전기차가 연결된 충전기로부터 하나 이상의 나머지 충전기에 충전시작신호가 전송되고, 하나 이상의 나머지 충전기로부터 상기 전기차가 연결된 충전기에 충전상태신호가 전송되며, 상기 충전상태신호에 따라 상기 전기차가 연결된 충전기에 공급되는 전력량이 결정되는 것을 특징으로 하는 전기차용 충전기의 전력공급시스템.
  12. 제11항에 있어서,
    상기 각각의 충전기는,
    전기차에 연결되고 전력을 공급하는 커넥터;
    타 충전기와의 통신을 담당하는 통신부를 포함하고 커넥터에 공급되는 전력량을 제어하는 제어부; 및
    전력망에 연결되어 상기 제어부의 신호에 따라 충전속도를 조절하는 접속부;를 포함하는 것을 특징으로 하는 전기차용 충전기의 전력공급시스템.
  13. 제12항에 있어서,
    상기 다수개의 충전기 중 적어도 하나 이상의 충전기는 외부 서버와 통신이 가능한 것을 특징으로 하는 전기차용 충전기의 전력공급시스템.
  14. 제12항에 있어서,
    상기 다수개의 충전기 중 적어도 하나는 전기차가 주차된 위치까지 이동 가능한 수단을 포함하는 이동식충전기인 것을 특징으로 하는 전기차용 충전기의 전력공급시스템.
PCT/KR2020/017216 2019-12-19 2020-11-30 전기차용 충전기의 전력공급방법 WO2021125615A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20901724.3A EP4079568A4 (en) 2019-12-19 2020-11-30 POWER SUPPLY METHOD FOR AN ELECTRIC VEHICLE CHARGER
JP2022537411A JP7426755B2 (ja) 2019-12-19 2020-11-30 電気車用充電器の電力供給方法
US17/842,383 US12043136B2 (en) 2019-12-19 2022-06-16 Power supply method of charger for electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0170594 2019-12-19
KR1020190170594A KR102131275B1 (ko) 2019-12-19 2019-12-19 전기차용 충전기의 전력공급방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/842,383 Continuation US12043136B2 (en) 2019-12-19 2022-06-16 Power supply method of charger for electric vehicle

Publications (1)

Publication Number Publication Date
WO2021125615A1 true WO2021125615A1 (ko) 2021-06-24

Family

ID=71603171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017216 WO2021125615A1 (ko) 2019-12-19 2020-11-30 전기차용 충전기의 전력공급방법

Country Status (5)

Country Link
US (1) US12043136B2 (ko)
EP (1) EP4079568A4 (ko)
JP (1) JP7426755B2 (ko)
KR (2) KR102131275B1 (ko)
WO (1) WO2021125615A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102131275B1 (ko) * 2019-12-19 2020-07-07 (주)에바 전기차용 충전기의 전력공급방법
CN112087039A (zh) * 2020-09-17 2020-12-15 苏州艾立罗电子有限公司 快充型电动车充电系统
KR102455901B1 (ko) * 2022-03-31 2022-10-18 에스케이시그넷 주식회사 분산전력 공유형 전기차 충전시스템
FR3144472A1 (fr) * 2022-12-22 2024-06-28 Renault S.A.S Procédé d’appairage d’une borne de recharge de véhicule électrique à un réseau d’au moins une borne de recharge, réseau associé et procédé de gestion de l’énergie d’un tel réseau de bornes de recharge.
KR102689102B1 (ko) * 2023-01-30 2024-07-26 주식회사 알파오메가 이동형 충전 서비스 제공 방법 및 시스템
KR102565293B1 (ko) * 2023-01-30 2023-08-09 (주)이브이모아 비공용충전기 기반 전기차 충전 시스템 플랫폼
KR102662979B1 (ko) * 2023-06-15 2024-05-03 주식회사 젠커스 듀얼 타입 전기차 충전제어장치 및 그 제어방법
KR102626070B1 (ko) * 2023-07-17 2024-01-18 주식회사 플러그링크 뉴럴 네트워크를 이용하여 복수의 충전 모듈에 대해로드 밸런싱을 수행하는 전기 차량 충전 시스템
KR102621863B1 (ko) 2023-09-13 2024-01-04 김민선 전기차 충전기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130077670A (ko) * 2011-12-29 2013-07-09 주식회사 효성 전원선택용 스위치장치를 이용하는 전기차 충전시스템
KR20150130856A (ko) * 2014-05-14 2015-11-24 재단법인 전북자동차기술원 전기자동차용 이동식 충전시스템
KR20170068877A (ko) * 2015-12-10 2017-06-20 (주) 솔루윈스 다수의 전기차 충전을 위한 다중 충전기용 제어장치 및 제어방법
JP2018129994A (ja) * 2017-02-10 2018-08-16 パナソニック株式会社 電気自動車充電装置および電気自動車充電方法
KR102041839B1 (ko) * 2019-05-27 2019-11-06 (주)유니코아테크놀러지 완속충전 기반의 전기차 충전 시스템 및 그 충전 방법
KR102131275B1 (ko) * 2019-12-19 2020-07-07 (주)에바 전기차용 충전기의 전력공급방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155737A (ja) * 2010-01-26 2011-08-11 Toyota Motor Corp バッテリの充電システム
WO2011118187A1 (ja) * 2010-03-23 2011-09-29 パナソニック株式会社 充電制御装置、充電システムおよび充電制御方法
US8358102B2 (en) * 2011-10-21 2013-01-22 General Electric Company System, charging device, and method of charging a power storage device
US8332078B2 (en) * 2011-10-21 2012-12-11 General Electric Company System, charging device, and method of supplying current to a power storage device
US9290103B2 (en) * 2012-02-08 2016-03-22 Control Module, Inc. EVSE controller system
JP2013192290A (ja) 2012-03-12 2013-09-26 Toyota Industries Corp 充電システム
KR101353904B1 (ko) * 2012-07-26 2014-01-22 주식회사 피엠그로우 전력관리시스템 연동 전기자동차 충전 시스템 및 그 방법
JP6125358B2 (ja) * 2013-07-09 2017-05-10 株式会社東芝 充電システム及び充電システムの構築方法
EP3029802A4 (en) 2013-07-31 2017-04-26 Nec Corporation Power management system and power management method
US20150102775A1 (en) * 2013-10-15 2015-04-16 Qualcomm Incorporated Systems, methods, and device for intelligent electric vehicle supply equipment
JP2015100173A (ja) * 2013-11-18 2015-05-28 トヨタ自動車株式会社 非接触充電システム及び非接触充電システムのペアリング方法
KR101575469B1 (ko) * 2014-05-08 2015-12-08 현대자동차주식회사 전기자동차의 예약충전 제어방법 및 제어기
US9796286B2 (en) * 2015-01-15 2017-10-24 GM Global Technology Operations LLC Energy use aggregation and charge control of a plug-in electric vehicle
JP2019129684A (ja) * 2018-01-26 2019-08-01 トヨタ自動車株式会社 電動自立移動体の充電方法
WO2021007496A1 (en) * 2019-07-10 2021-01-14 Ev Safe Charge Inc. Robotic charging system and method
DE102019121848A1 (de) * 2019-08-14 2021-02-18 Wobben Properties Gmbh Verfahren zum Betreiben einer Ladestation für Elektrofahrzeuge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130077670A (ko) * 2011-12-29 2013-07-09 주식회사 효성 전원선택용 스위치장치를 이용하는 전기차 충전시스템
KR20150130856A (ko) * 2014-05-14 2015-11-24 재단법인 전북자동차기술원 전기자동차용 이동식 충전시스템
KR20170068877A (ko) * 2015-12-10 2017-06-20 (주) 솔루윈스 다수의 전기차 충전을 위한 다중 충전기용 제어장치 및 제어방법
JP2018129994A (ja) * 2017-02-10 2018-08-16 パナソニック株式会社 電気自動車充電装置および電気自動車充電方法
KR102041839B1 (ko) * 2019-05-27 2019-11-06 (주)유니코아테크놀러지 완속충전 기반의 전기차 충전 시스템 및 그 충전 방법
KR102131275B1 (ko) * 2019-12-19 2020-07-07 (주)에바 전기차용 충전기의 전력공급방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079568A4 *

Also Published As

Publication number Publication date
JP2023508135A (ja) 2023-03-01
KR102131275B1 (ko) 2020-07-07
KR20210079170A (ko) 2021-06-29
EP4079568A1 (en) 2022-10-26
US12043136B2 (en) 2024-07-23
EP4079568A4 (en) 2023-12-06
US20220314834A1 (en) 2022-10-06
JP7426755B2 (ja) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2021125615A1 (ko) 전기차용 충전기의 전력공급방법
WO2019225834A1 (ko) 에너지 저장 장치와 태양광 발전을 이용한 전력 공급 제어 시스템 및 방법
WO2021162190A1 (ko) 전기차 충전 장치 및 이의 제어방법
WO2013115428A1 (ko) 전기 자동차 충전 시스템 및 전기 자동차 충전방법
WO2013058614A2 (ko) 전기 자동차 및 그 동작 방법
WO2020218810A1 (ko) Ev 사용자 인가 방법 및 시스템
WO2020222516A1 (ko) 전기차 충전을 위한 교차 인증 방법 및 장치
WO2015147360A1 (ko) 전기자동차 충전 및 과금시스템
WO2019031686A1 (ko) 에너지 저장 시스템
WO2018101501A1 (ko) 전기차 충전 서비스 시스템 및 방법
WO2013002438A1 (ko) 수배전반 및 이를 이용한 전력 처리 방법
WO2019078475A1 (ko) 병렬연결 구조의 배터리 팩의 히터 제어 시스템 및 그 방법
WO2019059489A1 (ko) 마이크로그리드 시스템
WO2018230831A1 (ko) 에너지 저장 시스템
WO2013032147A1 (en) Data transmitting method, data transmitting apparatus, and energy storage system including the same
KR20210151044A (ko) 전기 자동차 충전기용 멀티 충전 어댑터
WO2018044058A2 (ko) 전기차용 충전 장치 및 이를 포함하는 충전 시스템
KR20220049773A (ko) 전기차 급속 충전 분배 시스템
WO2023243943A1 (ko) Pcs를 최적 효율구간에서 운용하는 방법/장치
WO2018135716A1 (ko) 에너지 저장 장치 및 이를 포함하는 에너지 저장 시스템
WO2023191267A1 (ko) 분산전력 공유형 전기차 충전시스템
WO2023101312A1 (ko) 충전 모듈을 이용한 전기차 충전 시스템 및 방법
WO2019107801A1 (ko) 에너지 저장 시스템
WO2022124771A1 (ko) 무선 전력 전송 페어링 방법 및 장치
WO2024025329A1 (ko) 동적 무선 전력 전송을 위한 무선랜 기반의 충전 통신 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020901724

Country of ref document: EP

Effective date: 20220719