WO2024025329A1 - 동적 무선 전력 전송을 위한 무선랜 기반의 충전 통신 장치 및 방법 - Google Patents

동적 무선 전력 전송을 위한 무선랜 기반의 충전 통신 장치 및 방법 Download PDF

Info

Publication number
WO2024025329A1
WO2024025329A1 PCT/KR2023/010803 KR2023010803W WO2024025329A1 WO 2024025329 A1 WO2024025329 A1 WO 2024025329A1 KR 2023010803 W KR2023010803 W KR 2023010803W WO 2024025329 A1 WO2024025329 A1 WO 2024025329A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
evcc
wpt
secc
electric vehicle
Prior art date
Application number
PCT/KR2023/010803
Other languages
English (en)
French (fr)
Inventor
성재용
Original Assignee
현대자동차주식회사
기아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아 주식회사 filed Critical 현대자동차주식회사
Publication of WO2024025329A1 publication Critical patent/WO2024025329A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to charging communication technology for electric vehicles (EVs), and more specifically, to dynamic wireless power transmission (D-WPT, Dynamic) using wireless local area network (WLAN) technology. This is about charging communication technology for Wireless Power Transfer.
  • D-WPT dynamic wireless power transmission
  • WLAN wireless local area network
  • Electric vehicles are classified into Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), and Electric Vehicle (EV) depending on the driving source.
  • HEV has an engine as main power and a motor as auxiliary power.
  • PHEV has a motor that provides main power and an engine that is used when the battery is discharged.
  • EVs have a motor, but no engine.
  • the electric vehicle charging system can basically be defined as a system that charges the battery mounted on an electric vehicle using power from the commercial power distribution grid or energy storage device.
  • These electric vehicle charging systems can take various forms depending on the type of electric vehicle.
  • an electric vehicle charging system may include a conductive charging system using a cable or a non-contact wireless power transmission system.
  • the vehicle assembly (VA) mounted on the electric vehicle engages inductive resonance coupling with the transmission pad of the ground assembly (GA) located at the charging station or charging spots. It is possible to charge the battery of an electric vehicle using the power transmitted from the ground assembly through inductive resonance coupling.
  • a robot arm or manipulator When charging an electric vehicle, a robot arm or manipulator can be used to supply power from the electric vehicle power supply (EVSE) to the electric vehicle charging door/port.
  • EVSE electric vehicle power supply
  • the message sequence between the power grid or grid and an electric vehicle (EV) is generated between a power supply equipment communication controller (SECC) located on the grid side and an electric vehicle communication controller (EVCC) mounted on the electric vehicle. It is predefined between electric vehicle communication controllers and takes the form of exchanging request message and response message pairs.
  • SECC power supply equipment communication controller
  • EVCC electric vehicle communication controller
  • Electric vehicles usually charge their vehicle batteries using a charging method using an automatic connection device or wireless power transmission, or using an alternating current (AC) or direct current (DC) charging method.
  • the electric vehicle exchanges messages related to session setup, vehicle positioning setup, vehicle positioning, pairing, authentication/authorization setup, authentication/authorization, service discovery, service details, service selection, etc. with the SECC.
  • the electric vehicle After the electric vehicle receives the vehicle positioning setup response message, if it does not find a compatible method for positioning or pairing for an automatic connection device or wireless power transfer, the electric vehicle performs service discovery through service renegotiation in the session stop state. You can move to this state.
  • S-WPT static wireless power transfer
  • D-WPT dynamic wireless power transfer
  • the purpose of the present invention to solve the above problems is to provide a charging communication method and device for dynamic wireless power transfer (D-WPT) using wireless local area network (WLAN) technology.
  • D-WPT dynamic wireless power transfer
  • WLAN wireless local area network
  • VSE Vendor Specific Element
  • One of the other purposes of the present invention is to propose a charging procedure and use case using WLAN when charging an electric vehicle by D-WPT.
  • One of the other purposes of the present invention is to propose what information is transmitted and received between a D-WPT device and an electric vehicle when they communicate for charging through WLAN.
  • a charging communication method performed between an electric vehicle power supply controller (SECC, Supply Equipment Communication Controller) and an electric vehicle communication controller (EVCC, Electric Vehicle Communication Controller) provides power to the electric vehicle.
  • SECC Supply Equipment Communication Controller
  • EVCC Electric Vehicle Communication Controller
  • This is a charging communication method performed between the SECC associated with the primary assembly that transmits and the EVCC associated with the secondary assembly that is mounted on the electric vehicle and receives power from the primary assembly.
  • a charging communication method for charging an electric vehicle includes performing communication setup and session setup for wireless power transmission between SECC and EVCC; performing a charging communication session for dynamic wireless power transfer (D-WPT) between the SECC and EVCC; and performing a charging session by dynamic wireless power transfer between SECC and EVCC.
  • D-WPT dynamic wireless power transfer
  • the step of performing communication setup and session setup may include performing communication setup and session setup for wireless power transfer between the EVCC and the SECC capable of communication by wireless LAN (WLAN).
  • WLAN wireless LAN
  • the step of performing a charging communication session for dynamic wireless power transfer is between the EVCC and the SECC capable of communicating by EVCC and wireless LAN (WLAN), and the SECC capable of communicating by EVCC and wireless LAN through dynamic wireless power transmission (D- It may include the step of identifying whether the SECC is installed on a D-WPT road that can provide WPT) service.
  • the charging communication method for charging an electric vehicle includes stopping the charging session when the charging rate (SOC, State of Charge) of the electric vehicle reaches a predetermined standard value by dynamic wireless power transmission between the SECC and EVCC. Additional steps may be included.
  • SOC Charging Rate
  • EVCC State of Charge
  • the charging communication method for charging an electric vehicle involves the electric vehicle changing lanes from a lane on a D-WPT road to a lane other than a D-WPT road by at least one of SECC and EVCC. If it is detected that an event has occurred, the step of stopping the charging session and going into standby may be further included.
  • the charging communication method for charging an electric vehicle is a charging communication session when an event in which the electric vehicle leaves the wireless LAN range is detected by at least one of the SECC and EVCC in the standby state. It may further include stopping and terminating communication.
  • the charging communication method for charging an electric vehicle is, when it is detected that the electric vehicle has returned to the lane on the D-WPT road by at least one of the SECC and EVCC in the standby state, the electric vehicle returns to the lane.
  • the steps to perform session setup between SECC and EVCC on the D-WPT road can be performed again.
  • the step of performing a charging communication session includes, based on the results of positioning and pairing, the electric vehicle connecting to another lane on the D-WPT road that provides the same service in a lane on the D-WPT road by at least one of the SECC and the EVCC. If it is detected that an event that changes the lane to lane has occurred, the compatibility check and parameter exchange process can be performed again.
  • the step of performing a charging communication session includes, based on the results of positioning and pairing, the electric vehicle being connected to another lane on the D-WPT road that provides a different service in a lane on the D-WPT road by at least one of the SECC and the EVCC. If it is detected that an event that changes lanes has occurred, the service discovery and service selection processes can be performed again.
  • the charging communication method for charging an electric vehicle allows an electric vehicle to move from a lane on a D-WPT road to another lane on a D-WPT road with different compatibility by using at least one of SECC and EVCC. If it is detected that a lane change event has occurred, the charging session may be stopped and the steps of performing communication setup and session setup for wireless power transfer between the SECC and EVCC on the other lane may be performed again.
  • the electric vehicle provides a static wireless power transmission (S-WPT) service in a lane on a D-WPT road by at least one of SECC and EVCC.
  • S-WPT static wireless power transmission
  • the electric vehicle When it is detected that an event of entering a parking space has occurred, stopping the charging session and performing a wireless LAN pairing process between the EVCC and the SECC on the parking space; And it may further include performing session setup between the EVCC and the SECC on the parking space after the wireless LAN pairing process.
  • the step of performing a charging communication session for dynamic wireless power transfer (D-WPT) between the SECC and EVCC includes information indicating D-WPT as additional information that is part of the VSE (Vendor Specific Element) in the frame body. Based on the message, it can be indicated that SECC supports D-WPT service.
  • D-WPT dynamic wireless power transfer
  • An Electric Vehicle Communication Controller is an EVCC mounted on an electric vehicle and associated with a secondary assembly that receives power from the primary assembly and receives at least one command from memory.
  • the processor executes at least one instruction to: perform communication setup and session setup for wireless power transfer with the EVCC, perform a charging communication session for dynamic wireless power transfer (D-WPT) between the SECC and the EVCC, and A charging session is performed by dynamic wireless power transfer between EVCCs.
  • D-WPT dynamic wireless power transfer
  • the processor can perform communication setup and session setup for wireless power transfer between the EVCC and the SECC capable of communication by wireless LAN (WLAN) by executing at least one instruction.
  • WLAN wireless LAN
  • the processor can provide dynamic wireless power transfer (D-WPT) service between EVCC and SECC capable of communication by EVCC and wireless LAN (WLAN), and between EVCC and SECC capable of communication by wireless LAN. It is possible to identify whether it is a SECC installed on a D-WPT road.
  • D-WPT dynamic wireless power transfer
  • the processor can stop the charging session and go into standby when it detects that an event has occurred that causes the electric vehicle to change lanes from a lane on a D-WPT road to a lane other than a D-WPT road by executing at least one instruction. there is.
  • the processor When the processor is in a standby state by executing at least one instruction and detects that the electric vehicle has returned to the lane on the D-WPT road by at least one of the SECC and EVCC, the SECC and EVCC on the D-WPT road to which the electric vehicle returned Session setup can be performed again in the meantime.
  • the processor Based on the results of positioning and pairing by executing at least one command, the processor detects that the electric vehicle has changed lanes from a lane on the D-WPT road to another lane on the D-WPT road, and changes the lane to the changed lane. It is possible to identify whether it provides the same service as the lane before the change and whether it has the same compatibility level.
  • the processor By executing at least one instruction, the processor performs session setup, service discovery and selection, and parameter exchange on the changed lane based on whether the changed lane provides the same service and has the same compatibility level as the lane before the change. You can do at least one or more.
  • the processor indicates that the SECC supports the D-WPT service based on a message containing information indicating D-WPT as additional information that is part of the VSE (Vendor Specific Element) in the frame body by executing at least one instruction. You can.
  • a charging communication method and device for dynamic wireless power transfer (D-WPT) using wireless local area network (WLAN) technology can be provided.
  • VSE Vendor Specific Element
  • a charging procedure and use case using WLAN can be provided when charging an electric vehicle by D-WPT.
  • a D-WPT device and an electric vehicle communicate for charging through WLAN, it is possible to provide information on what information is transmitted and received between them.
  • FIG. 1 is a conceptual diagram illustrating a charging infrastructure for an electric vehicle using dynamic wireless power transfer (D-WPT) using a parallel line according to an embodiment of the present invention.
  • D-WPT dynamic wireless power transfer
  • FIG. 2 is a conceptual diagram illustrating a charging infrastructure for an electric vehicle using dynamic wireless power transfer (D-WPT) using a segmented parallel line according to an embodiment of the present invention.
  • D-WPT dynamic wireless power transfer
  • FIG. 3 is a conceptual diagram illustrating a charging infrastructure for an electric vehicle using dynamic wireless power transfer (D-WPT) using segmented coils according to an embodiment of the present invention.
  • D-WPT dynamic wireless power transfer
  • FIG. 4 is an operational flowchart illustrating communication setup, charging communication session, and charging session process for dynamic wireless power transfer according to an embodiment of the present invention.
  • FIG. 5 is an operational flow diagram illustrating in detail one embodiment of the charging communication session of FIG. 4.
  • FIG. 6 is an operational flow diagram detailing one embodiment of the charging session of FIG. 4.
  • Figure 7 is a use case according to an embodiment of the present invention, and is a conceptual diagram illustrating a case of reaching a parking lot without changing lanes from a parking lot through a D-WPT road.
  • FIG. 8 is a conceptual diagram illustrating a protocol when charging is completed in the use case of FIG. 7.
  • Figure 9 is a use case according to embodiments of the present invention, which is a conceptual diagram showing a case of changing lanes and/or leaving the WLAN range on a D-WPT road.
  • FIG. 10 is a conceptual diagram illustrating a protocol performed when changing lanes and/or leaving the WLAN range in the use cases of FIG. 9.
  • Figure 11 is a use case according to an embodiment of the present invention, which is a conceptual diagram showing a case where an electric vehicle drives on a D-WPT road and then reaches a parking lot that supports S-WPT service compatible with D-WPT.
  • FIG. 12 is a conceptual diagram illustrating a protocol performed when a parking lot is reached in the use case of FIG. 11 .
  • Figure 13 is a conceptual diagram showing a MAC header and frame body in a message that can be employed in a charging communication process for D-WPT service according to an embodiment of the present invention.
  • Figures 14 to 18 are conceptual diagrams showing a frame body and VSE in a message that can be employed in a charging communication process for D-WPT service according to embodiments of the present invention.
  • 19 to 20 are conceptual diagrams illustrating the VSE in a message and additional information in the VSE that can be employed in the charging communication process for the D-WPT service according to embodiments of the present invention.
  • FIGS 21 and 22 are conceptual diagrams showing additional information in the VSE in a message that can be employed in the charging communication process for the D-WPT service according to an embodiment of the present invention.
  • FIG 23 is a conceptual diagram illustrating a proposed change to the Service Discovery Protocol (SDP) that can be adopted in the charging communication process for D-WPT service according to an embodiment of the present invention.
  • SDP Service Discovery Protocol
  • Figure 24 is a conceptual diagram showing the structure of a message including a VSE that can be employed in the charging communication process for the D-WPT service according to an embodiment of the present invention.
  • Figure 25 is a conceptual block diagram of the internal structure of a computing system that can implement generalized SECC and EVCC as a charging communication device for D-WPT according to an embodiment of the present invention.
  • first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • the term 'and/or' includes any of a plurality of related stated items or a combination of a plurality of related stated items.
  • “at least one of A and B” may mean “at least one of A or B” or “at least one of combinations of one or more of A and B.” Additionally, in embodiments of the present application, “one or more of A and B” may mean “one or more of A or B” or “one or more of combinations of one or more of A and B.”
  • technologies known before the application of the present invention may be used for technologies such as performing docking/undocking control or transmitting and receiving information necessary to perform each process, and at least some of these known technologies are included in the present invention. It can be applied as an element technology necessary to implement.
  • Electric Vehicle may refer to an automobile defined in 49 CFR (code of federal regulations) 523.3, etc. Electric vehicles can be used on highways and can be driven by electricity supplied from a vehicle-mounted energy storage device, such as a rechargeable battery from a power source external to the vehicle. Power sources may include residential or public electric services or vehicle-mounted fuel-fired generators.
  • An electric vehicle may be referred to as an electric car, electric automobile, electric road vehicle (ERV), plug-in vehicle (PV), plug-in vehicle (xEV), etc.
  • xEV is BEV (plug-in all-electric vehicle or battery electric vehicle), PEV (plug-in electric vehicle), HEV (hybrid electric vehicle), HPEV (hybrid plug-in electric vehicle), and PHEV (plug-in electric vehicle). hybrid electric vehicle), etc.
  • a plug-in electric vehicle can be referred to as an electric vehicle that connects to the power grid to recharge the vehicle's on-board primary battery.
  • a plug-in vehicle may be referred to herein as a vehicle that can be recharged through a wireless charging method from an electric vehicle supply equipment (EVSE) without using a physical plug or socket.
  • EVSE electric vehicle supply equipment
  • Heavy duty vehicles may refer to any vehicle with four or more wheels as defined in 49 CFR 523.6 or CFR 37.3 (bus).
  • Light duty plug-in electric vehicle is a vehicle with three or four wheels powered by an electric motor supplied with current from a rechargeable battery or other energy device, primarily for use on public streets, roads and highways. It can refer to a vehicle you have. Lightweight plug-in electric vehicles can be defined as having a total weight of less than 4.545 kg.
  • the wireless power charging system is a system for control between the Supply Device (or Ground Assembly, GA) and EV device (or Vehicle Assembly, VA), including wireless power transmission, alignment (position alignment), and communication. It can be referred to.
  • Wireless power transfer can refer to the transfer of electrical power from an alternating current (AC) power supply network, such as a utility or grid, to an electric vehicle through non-contact means.
  • AC alternating current
  • a utility provides electrical energy and is usually a set of systems that include a Customer Information System (CIS), Advanced Metering Infrastructure (AMI), and Rates and Revenue system. It may be referred to as .
  • CIS Customer Information System
  • AMI Advanced Metering Infrastructure
  • Rates and Revenue system It may be referred to as .
  • Utilities make energy available to plug-in electric vehicles through price tags or discrete events. Additionally, utilities can provide information on tariff rates, intervals for metered power consumption, and validation of electric vehicle programs for plug-in electric vehicles.
  • Smart charging can be described as a system where EVSE and/or electric vehicles (including plug-in hybrid electric vehicles) communicate with the power grid to optimize the vehicle charge or discharge rate to grid capacity or time-of-use cost ratio.
  • Automatic charging can be defined as the operation of placing a vehicle in an appropriate location and conducting conductive or inductive charging with respect to a primary charger assembly capable of transmitting power. Automatic recharge can be performed after obtaining the necessary authentication and authorization.
  • Interoperability can refer to a state in which components of a system relative to each other can work together to perform the desired operation of the overall system.
  • Information interoperability can refer to the ability of two or more networks, systems, devices, applications or components to share and easily use information securely and effectively with little or no inconvenience to users. .
  • An inductive charging system can refer to a system that electromagnetically transfers energy in the forward direction from the electricity supply network to an electric vehicle through a transformer in which the two parts are loosely coupled.
  • the inductive charging system may correspond to an electric vehicle charging system.
  • An inductive coupler may refer to a transformer that is formed of a primary device and a secondary device and transmits power through electrical insulation.
  • Inductive coupling can refer to magnetic coupling between two coils.
  • the two coils may refer to the primary coil/ground assembly coil and the secondary coil/vehicle assembly coil.
  • a supply power circuit (SPC)/ground assembly (GA) is an assembly that is placed on the primary/ground assembly or infrastructure side, including the primary coil/GA coil and other appropriate components. It can be referred to.
  • Other suitable components may include at least one component to control the impedance and resonant frequency, a ferrite to strengthen the magnetic path, and an electromagnetic shielding material.
  • the SPC or GA may include wiring from the power/frequency conversion device, SPC controller/GA controller, and grid necessary to function as a power source for the wireless charging system, and wiring between each unit and filtering circuits, housing, etc. You can.
  • EV power circuit (EVPC)/Vehicle assembly (VA) may refer to an assembly placed in a vehicle, including the secondary coil/VA coil and other appropriate components.
  • Other suitable components may include at least one component to control the impedance and resonant frequency, a ferrite to strengthen the magnetic path, and an electromagnetic shielding material.
  • EVPC or VA is the wiring between each unit and filtering circuits, housing, etc., as well as the wiring of the rectifier/power converter, EVPC controller/VA controller, and vehicle battery required to function as a vehicle component of the wireless charging system. may include.
  • the above-described SPC may be referred to or classified as a ground assembly (GA), etc., and similarly, the EVPC may be referred to or classified as a vehicle assembly (VA), etc.
  • G ground assembly
  • VA vehicle assembly
  • the GA described above may be referred to as a primary device (PD), a primary device, etc., and similarly, VA may be referred to as a secondary device (SD), a secondary device, etc.
  • the GA described above may be referred to as a supply device, a power supply side device, etc., and similarly, VA may be referred to as an electric vehicle device (EV device), an electric vehicle side device, etc.
  • EV device electric vehicle device
  • the primary device may be a device that provides contactless coupling to the secondary device, that is, a device external to the electric vehicle.
  • a primary device may be referred to as a primary device.
  • the primary device can act as a power source to transmit power.
  • the primary device may include a housing and all covers.
  • the secondary device may be a device mounted on an electric vehicle that provides contactless coupling to the primary device. Secondary devices may be referred to as secondary devices. When the electric vehicle receives power, the secondary device can transfer power from the primary device to the electric vehicle.
  • the secondary device may include a housing and all covers.
  • the supply power electronics may be part of the SPC or GA that adjusts the output power level to the primary/GA coil based on information from the vehicle.
  • the EV power electronics may be part of the EVPC or VA, which monitors specific vehicle parameters during charging and initiates communication with the SPC or GA to control the output power level.
  • the above-mentioned supply power electronics may be referred to as ground assembly electronics (GA electronics), ground assembly controller (GA controller), or primary device communication controller (PDCC), and may be referred to as a ground assembly electronics (GA electronics), a ground assembly controller (GA controller), or a primary device communication controller (PDCC), Power electronics (EV power electronics) may be referred to as vehicle assembly electronics (VA electronics), vehicle assembly controller (VA controller), or electric vehicle communication controller (VA controller).
  • G electronics ground assembly electronics
  • GA controller ground assembly controller
  • PDCC primary device communication controller
  • EV power electronics may be referred to as vehicle assembly electronics (VA electronics), vehicle assembly controller (VA controller), or electric vehicle communication controller (VA controller).
  • Magnetic gap is the highest plane of the upper part of the litz wire or the magnetic material of the primary coil/GA coil and the lowest plane of the magnetic material of the lower part of the litz wire or secondary coil/VA coil. When aligned with each other, it can refer to the vertical distance between them.
  • Ambient temperature may refer to the ground level temperature measured in the atmosphere of the target subsystem outside of direct sunlight.
  • Vehicle ground clearance may refer to the vertical distance between the road or pavement and the bottom of the vehicle floor pan.
  • Vehicle magnetic ground clearance may refer to the vertical distance between the lowest plane of the floor of the Litz wire or the insulating material of the secondary coil/VA coil mounted on the vehicle and the pavement.
  • the vehicle assembly coil surface distance is the plane of the bottom of the Litz wire or the magnetic material of the secondary coil/VA coil and the secondary coil/VA. It may refer to the vertical distance between the lowermost outer surfaces of the coil. This distance may include additional items packaged with protective covering material and coil packaging.
  • the above-described secondary coil may be referred to as a VA coil, vehicle coil, receiver coil, etc., and similarly, the primary coil may be referred to as a ground assembly. It may be referred to as a coil (ground assembly coil, GA coil), transmission coil, etc.
  • An exposed conductive component may refer to a conductive part of an electrical device (eg, an electric vehicle) that can be touched by a person and does not normally conduct electricity, but may conduct electricity in the event of a breakdown.
  • an electrical device eg, an electric vehicle
  • Hazardous live component may refer to a live component that can deliver a harmful electric shock under certain conditions.
  • Live component can refer to any conductor or conductive component that is electrically active in its primary use.
  • Direct contact may refer to contact between a living organism and a person.
  • Indirect contact may refer to contact of a person with a conductive, live component that is exposed due to insulation failure (see IEC 61140).
  • Alignment may refer to a procedure for finding the relative position of a secondary device with respect to a primary device and/or a procedure for finding the relative position of a primary device with respect to a secondary device for prescribed efficient power transfer.
  • alignment may refer to positional alignment of a wireless power transmission system, but is not limited thereto.
  • Pairing may refer to the process of associating a vehicle (electric vehicle) with a single dedicated ground assembly (primary device) positioned to transmit power. Pairing herein may include the association procedure of a charging spot or a specific SPC/ground assembly with an EVPC/vehicle assembly controller.
  • Correlation/Association may include a procedure for establishing a relationship between two peer communication entities.
  • Command and control communication may refer to communication between an electric vehicle power supply and an electric vehicle that exchanges information necessary for starting, controlling, and ending the wireless power transfer process.
  • High level communication can handle all information that exceeds that covered by command and control communication.
  • the data link for high-level communication may use PLC (Power line communication), but is not limited to this.
  • Low power excitation may refer to, but is not limited to, activating the electric vehicle to detect the primary device to perform precise positioning and pairing, and vice versa.
  • SSID Service set identifier
  • BSS basic service set
  • SSID basically distinguishes multiple wireless LANs from each other. Therefore, all APs (access points) and all terminal/station devices that want to use a specific wireless LAN can all use the same SSID. Devices that do not use a unique SSID cannot join the BSS. Because the SSID appears as plain text, it may not provide any security properties to the network.
  • ESSID Extended service set identifier
  • BSSID Basic service set identifier
  • the BSSID can be the MAC (medium access control) of the AP device.
  • the BSSID can be generated with a random value.
  • a charging station may include at least one ground assembly and at least one ground assembly controller that manages the at least one ground assembly.
  • the ground assembly may be equipped with at least one wireless communicator.
  • a charging station may refer to a place equipped with at least one ground assembly installed in homes, offices, public places, roads, parking lots, etc.
  • association is a term that refers to the process of establishing wireless communication between an electric vehicle communication controller (EVCC) and a power supply equipment communication controller (SECC) that controls the charging infrastructure.
  • EVCC electric vehicle communication controller
  • SECC power supply equipment communication controller
  • Smart Grid' refers to a system implemented so that power plants, power generation units, energy storage systems, etc. are all connected in an intelligent manner through network facilities and can exchange messages based on information and communication technology. You can.
  • Charge station may refer to a facility that includes one or more EV Supply Equipment (EVSE), smart meters, and other technical equipment required to charge an Electric Vehicle (EV). there is.
  • EVSE EV Supply Equipment
  • EV Electric Vehicle
  • EVSE 'EV Supply Equipment
  • CPO Charge Point Operator
  • EVSE electric vehicle power supply
  • Mobility Operator may refer to a legal entity that forms a contractual relationship for charging with an end user or company as the legal basis for authorization and payment for charging at a charging station. there is.
  • EMP E-Mobility Provider
  • E-Mobility Service Provider E-Mobility Service Provider
  • MSP Mobility Service Provider
  • PnC Plug-and-Charge
  • PnC allows users to simply plug their electric vehicle into an electric vehicle power supply and perform authentication, authorization, and load control without the need for additional user interaction.
  • PnC may refer to a process in which payment is automatically performed.
  • PnC may refer to an identification and authorization mode for such automated processes.
  • PnC can be performed by applying an X.509 certificate, verifying the signature, and transmitting it.
  • PKI Public Key Infrastructure
  • PKI Public Key Infrastructure
  • PKI may refer to a system for creating, storing, redistributing, and revoking digital signatures used to verify a special public key belonging to a specific person or object.
  • EIM External Identification Means
  • ‘Sales Tariff’ may refer to a function that provides price-related information over time. Specifically, it is provided from the mobility operator and may refer to the input given to the EV Communication Controller (EVCC) to calculate the charging schedule.
  • the sales rate may be a concept intended to provide incentives to electric vehicles that charge the preferred amount of power within a specific time slot.
  • a use case related to sales rates could be price information for electricity provided by a mobility operator that certifies charging sessions through a valid contract, which is a contract installed on the electric vehicle by the driver himself or the ride-sharing operator to which the vehicle belongs. It can be authenticated by a certificate.
  • 'sales rate' may refer to a concept intended to promote the use of new and renewable energy such as solar panels or wind turbines by providing incentives to electric vehicles that charge at predictable times, such as charging using renewable energy. In some cases, it may be referred to as a sales rate, including not only the price information of electricity but also the time slot with which the price information is associated.
  • 'Secondary Actor' may refer to any party involved in the charging process that is not EVCC or SECC. Secondary participants may be involved in the charging process by providing information related to the charging process, and examples of secondary participants include charging point operators (CPOs) and mobility operators (MOs).
  • CPOs charging point operators
  • MOs mobility operators
  • EMAID 'E-Mobility Account ID
  • EMAID may refer to a single contract certificate issued for each legal contract concluded between a mobility operator and a customer for the charging of electric vehicles.
  • EMAID may allow for pseudonymization of personal data and may only be valid for a limited time, such as the life time of a legal contract.
  • EMAID unlike Vehicle Identification Number (VIN), may not allow long-term evaluation of customer or vehicle data.
  • EMAID can be introduced as a temporary identifier that can be assigned using different authentication media for a single temporary and short-term contract, such as a family vehicle or car sharing contract, and one person can hold EMAID for each of multiple contracts, It may be used for purposes different from personal identification information.
  • V2G communication is defined in the ISO 15118 standard and can be designed to correspond to OSI layer 7.
  • OSI Open Systems Interconnection
  • OSI can be "a conceptual model for standardizing the communication functions of a communication or computing system without regard to the underlying internal structure and technology.”
  • the characteristic of the ISO 15118 standard is that it is intended to establish and implement a charging and payment process for electric vehicles, and another feature includes the ability to adopt and utilize various information and communication technologies for this purpose. In other words, it includes information and communication technology elements mapped to the 7th layer of OSI, but since the purpose is to establish a charging and payment process for electric vehicles, application characteristics can be treated as the main focus.
  • the V2G communication interface specified in the ISO 15118 standard may include digital and IP-based protocols. At this time, communication between the electric vehicle (EV) and the electric vehicle power supply (EVSE), and between the electric vehicle power supply (EVCC) and the power supply equipment communication controller (SECC) are connected to the V2G communication interface specified in the ISO 15118 standard. may be included.
  • EV electric vehicle
  • EVSE electric vehicle power supply
  • EVCC electric vehicle power supply
  • SECC power supply equipment communication controller
  • VSE Vehicle Specific Element
  • VSE may refer to a data format that includes information about the type of EVSE available at the current location in ISO 15118-based communication.
  • FIG. 1 is a conceptual diagram illustrating a charging infrastructure for an electric vehicle using dynamic wireless power transfer (D-WPT) using a parallel line according to an embodiment of the present invention.
  • D-WPT dynamic wireless power transfer
  • a D-WPT road 100 capable of providing D-WPT service to an electric vehicle 200 includes a plurality of parallel lines 100B.
  • Each parallel line 100B shown in FIG. 1 is part of the D-WPT road 100 and may mean infrastructure that can wirelessly transmit power to the electric vehicle 200 within one section.
  • WLAN range (100A) can typically be within 100m.
  • the length of the parallel line (100B) can be set to within 50m.
  • the parallel lines (100B) included within the WLAN range (100A) are each connected to one SPE (Supply Power Electronics) (120) and supplied, and the power supply controller (SECC) (110) is connected to the SPE (120) and the electric vehicle.
  • SECC power supply controller
  • one access point (AP) 130 is placed in the WLAN range (100A), and one SPE (120) and SECC (110) are placed in each parallel line (100B).
  • multiple APs are deployed to implement the entire D-WPT road or device 100, and multiple SDPs (SECC Discovery Protocol) may be assigned to each AP 130. At this time, SDP may be granted for each SECC (110).
  • SECC Discovery Protocol SECC Discovery Protocol
  • the parallel line 100B may be implemented to have a length longer than 50 m.
  • multiple APs may be deployed to implement the entire D-WPT road or device 100, and a single SDP (SECC Discovery Protocol) may be assigned to each AP 130.
  • SDP SECC Discovery Protocol
  • the electric vehicle 200 can communicate with the SECC 110 via WLAN/Wi-Fi.
  • the D-WPT service may be initiated through communication and pairing between the electric vehicle 200 and the SECC 110.
  • the D-WPT infrastructure is connected to multiple APs (130) and is secured by a local cyber security management system (Local CSMS: Local Cyber Security Management System) (160) and Cloud CSMS (170) that manage multiple APs (130). It can be managed. Communication between Local CSMS (160) and CSMS (170) can be implemented using C-V2X techniques.
  • Local CSMS Local Cyber Security Management System
  • Cloud CSMS Cloud CSMS
  • FIG. 2 is a conceptual diagram illustrating a charging infrastructure for an electric vehicle using dynamic wireless power transfer (D-WPT) using a segmented parallel line according to an embodiment of the present invention.
  • D-WPT dynamic wireless power transfer
  • Each segmented parallel line 100C shown in FIG. 2 is part of the D-WPT road 100 and may mean infrastructure that can wirelessly transmit power to the electric vehicle 200 within one section. .
  • the length of the segmented parallel line (100C) can be set to within 50m.
  • the segmented parallel lines (100C) included within the WLAN range (100A) are each connected to one SPE (Supply Power Electronics) (120) to supply power, and are mutually connected to the electric vehicle (200) by communication of the SECC (110). It can work.
  • one access point (AP) 130 is placed in the WLAN range (100A), and one SPE (120) and SECC (110) are placed in each segmented parallel line (100C).
  • multiple APs are deployed to implement the entire D-WPT road or device 100, and multiple SDPs (SECC Discovery Protocol) may be assigned to each AP 130. At this time, SDP may be granted for each SECC (110).
  • SECC Discovery Protocol SECC Discovery Protocol
  • the segmented parallel line 100C may be implemented to have a length longer than 50 m.
  • multiple APs may be deployed to implement the entire D-WPT road or device 100, and a single SDP (SECC Discovery Protocol) may be assigned to each AP 130.
  • SDP SECC Discovery Protocol
  • FIG. 3 is a conceptual diagram illustrating a charging infrastructure for an electric vehicle using dynamic wireless power transfer (D-WPT) using segmented coils according to an embodiment of the present invention.
  • D-WPT dynamic wireless power transfer
  • the segmented coil 100D is a sub-component of the D-WPT infrastructure that supplies power to the electric vehicle 200 entering a certain area.
  • the length of each section of the segmented coil (100D) is shorter than the WLAN range (100A), so multiple APs are deployed to implement the entire D-WPT road or device (100), and each AP (130) has a single SDP (SECC Discovery Protocol) may be assigned.
  • SDP SECC Discovery Protocol
  • FIG. 4 is an operational flowchart illustrating communication setup, charging communication session, and charging session process for dynamic wireless power transfer according to an embodiment of the present invention.
  • all steps performed between EVCC and SECC may be performed by at least one logical operation of EVCC and SECC, and EVCC and SECC may be performed in cooperation with each other.
  • Measurement/recognition/judgment results such as location estimation between the electric vehicle 200 and the D-WPT infrastructure, positioning of the electric vehicle 200, and whether the electric vehicle 200 is outside the range of the D-WPT infrastructure, are reported to the EVCC and/or SECC. It can be performed by and shared between EVCC and/or SECC.
  • the charging communication method for charging an electric vehicle includes performing communication setup and session setup for wireless power transmission between the SECC and EVCC (S320); Performing a charging communication session for dynamic wireless power transfer (D-WPT) between the SECC and EVCC (S400, S410); and performing a charging session by dynamic wireless power transfer between the SECC and EVCC (S500).
  • S320 communication setup and session setup for wireless power transmission between the SECC and EVCC
  • D-WPT dynamic wireless power transfer
  • S500 dynamic wireless power transfer
  • communication setup and session setup for wireless power transfer can be performed between the EVCC and the SECC capable of communication by wireless LAN (WLAN).
  • WLAN wireless LAN
  • Steps (S400, S410) of performing a charging communication session for dynamic wireless power transfer include: It may include the step of identifying whether the SECC is installed on a D-WPT road that can provide power transmission (D-WPT) services.
  • D-WPT power transmission
  • the charging communication session (S400) performed between the SECC and EVCC includes a positioning ⁇ check step (S410).
  • Step (S410) can optionally activate the safety monitoring & diagnosis step (S470).
  • Step S470 is activated when the charging session S500 is performed.
  • the device may transition to the standby stage (S480). If a predetermined condition is met in the standby step (S480), the device can return to the charging session (S500).
  • FIG. 5 is an operational flow diagram illustrating in detail one embodiment of the charging communication session of FIG. 4.
  • step S410 may include a precise positioning ⁇ pairing step (S420) performed after step S320.
  • step S470 may be optionally activated.
  • the permission ⁇ certificate step (S430) may be performed.
  • step S440 the service discovery ⁇ service selection step (S440) may be performed.
  • step S450 a final compatibility check ⁇ parameter exchange step (S450) may be performed.
  • step S450 an alignment check step S460 may be performed.
  • a charging session (S500) may be performed.
  • FIG. 6 is an operational flow diagram detailing one embodiment of the charging session of FIG. 4.
  • the charging session (S500) includes a power transmission start step (S510), a power transmission performance step (S520), and a power transmission stop step (S530).
  • Step S510 may be performed after step S460 and activates step S570.
  • Step S530 may end step S470.
  • step S350 in which the communication connection is terminated may be performed.
  • step S530 if a predetermined condition is met (for example, when the target charge amount/charge rate (SOC) is achieved), go through the standby step (S480) and when a predetermined condition is met (for example, when the target charge amount/charge rate (SOC) is achieved) If it falls below the standard value) step (S510) may be performed again.
  • Figure 7 is a use case according to an embodiment of the present invention, and is a conceptual diagram illustrating a case of reaching a parking lot without changing lanes from a parking lot through a D-WPT road.
  • the electric vehicle 200 is charged while leaving the parking lot 140 and driving on the D-WPT road 100, and reaches the parking lot 140 without changing lanes within the D-WPT road 100. A case is shown.
  • FIG. 8 is a conceptual diagram illustrating a protocol when charging is completed in the use case of FIG. 7.
  • the charging communication method for charging an electric vehicle is a method in which the charging rate (SOC, State of Charge) of the electric vehicle reaches a predetermined standard value by dynamic wireless power transmission between the SECC and EVCC.
  • Case (S610) may further include stopping the charging session (S480).
  • Figure 9 is a use case according to embodiments of the present invention, which is a conceptual diagram showing a case of changing lanes and/or leaving the WLAN range on a D-WPT road.
  • a use case S620
  • the protocols performed may be different depending on whether the lane before the change and the lane after the change in the D-WPT road 100 have the same service and/or compatibility.
  • An Out of Range embodiment in which an electric vehicle that changes lanes to a non-D-WPT road 150 leaves the WLAN range is shown as a use case (S650).
  • FIG. 10 is a conceptual diagram illustrating a protocol performed when changing lanes and/or leaving the WLAN range in the use cases of FIG. 9.
  • the electric vehicle is connected to a lane on a D-WPT road rather than a D-WPT road by at least one of SECC and EVCC.
  • a protocol for transitioning from the charging session to the standby stage (S480) while stopping the charging session (S530) may be further included.
  • an Out of Range event occurs in which the electric vehicle leaves the wireless LAN range due to at least one of the SECC and EVCC in the standby state (S480). If it is detected that this has been done, a protocol may be further included to stop the charging communication session and proceed to a step of terminating communication (S350).
  • the charging communication method for charging an electric vehicle includes detecting that the electric vehicle has returned to the lane on the D-WPT road (S640) by at least one of the SECC and EVCC in the standby state (S480). In this case, the step (S320) of performing session setup between the SECC and EVCC on the D-WPT road where the electric vehicle has returned can be performed again.
  • the step of performing a charging communication session includes, based on the results of positioning and pairing, the electric vehicle connecting to another lane on the D-WPT road that provides the same service in a lane on the D-WPT road by at least one of the SECC and the EVCC. If it is detected that a lane change event (S620) has occurred, the compatibility check and parameter exchange step (S450) can be performed again.
  • the step of performing a charging communication session includes, based on the results of positioning and pairing, the electric vehicle being connected to another lane on the D-WPT road that provides a different service in a lane on the D-WPT road by at least one of the SECC and the EVCC.
  • the service discovery and service selection steps (S440) can be performed again.
  • the charging communication method for charging an electric vehicle allows an electric vehicle to move from a lane on a D-WPT road to another lane on a D-WPT road with different compatibility by using at least one of SECC and EVCC.
  • a lane change event S620
  • performing communication setup and session setup for wireless power transfer between the SECC and EVCC on the other lane while the charging session is stopped S530
  • S320 can be performed again.
  • Figure 11 is a use case according to an embodiment of the present invention, which is a conceptual diagram showing a case where an electric vehicle drives on a D-WPT road and then reaches a parking lot that supports S-WPT service compatible with D-WPT.
  • an embodiment in which an electric vehicle 200 drives on a D-WPT road 100 and then reaches a parking lot 145 supporting the S-WPT service is shown as a use case S670.
  • FIG. 12 is a conceptual diagram illustrating a protocol performed when a parking lot is reached in the use case of FIG. 11 .
  • the charging communication method for charging an electric vehicle allows the electric vehicle 200 to communicate in a lane on the D-WPT road 100 by at least one of the SECC and EVCC. If it is detected that an event (S670) of entering a parking space (145) providing static wireless power transfer (S-WPT) service has occurred, parking (S674) can be performed while stopping the charging session (S530). You can.
  • a charging communication method for charging an electric vehicle includes, after step S674, performing a wireless LAN pairing process between the EVCC and the SECC on the parking space 145 (S676); And it may further include a protocol that transitions to a step (S320) of performing session setup between the EVCC and the SECC on the parking space 145 after the wireless LAN pairing process (S676).
  • the charging session (S500) is terminated (S530), and communication between SECC-EVCC is terminated (S350), and temporarily enters sleep mode (S680) to enter parking space (145). ) may proceed to the communication setup and session setup step (S320) for the S-WPT service.
  • steps (S400, S410) of performing a charging communication session for dynamic wireless power transfer (D-WPT) between SECC and EVCC include VSE ( It can indicate that the SECC supports the D-WPT service based on a message containing information indicating D-WPT as additional information that is part of the Vendor Specific Element.
  • Figure 13 is a conceptual diagram showing a MAC header and frame body in a message that can be employed in a charging communication process for D-WPT service according to an embodiment of the present invention.
  • a MAC header is shown as the message format.
  • the frame body may be provided in 0-2320 bytes.
  • Embodiments of the present invention may include specific details that can specify the D-WPT service within the VSE within the frame body.
  • Figures 14 to 18 are conceptual diagrams showing a frame body and VSE in a message that can be employed in a charging communication process for D-WPT service according to embodiments of the present invention.
  • Figure 14 shows an example of a VSE for SECC, which is included in a frame body included in a beacon frame.
  • Figure 15 shows an example of a VSE for SECC, which is included in a frame body included in a probe response frame.
  • Figure 16 shows an embodiment of a VSE for EVCC, which is included in a frame body included in an association request frame.
  • Figure 17 shows an example of a VSE for EVCC, which is included in a frame body included in a reassociation request frame.
  • Figure 18 shows an embodiment of a VSE included in a frame body as an embodiment of the VSE.
  • 19 to 20 are conceptual diagrams illustrating the VSE in a message and additional information in the VSE that can be employed in the charging communication process for the D-WPT service according to embodiments of the present invention.
  • WPT may be included as the lower bit of ETT (Energy Transfer Type) as the VSE for SECC. Additionally, VSE may further include 0-238 bits of Additional Information.
  • WPT may be included as the lower bit of ETT (Energy Transfer Type) as a VSE for EVCC. Additionally, VSE may further include 0-238 bits of Additional Information.
  • FIGS 21 and 22 are conceptual diagrams showing additional information in the VSE in a message that can be employed in the charging communication process for the D-WPT service according to an embodiment of the present invention.
  • FIG. 22 an updated embodiment of the D-WPT related information of the WPT parameters of FIG. 21 is shown.
  • FIG 23 is a conceptual diagram illustrating a proposed change to the Service Discovery Protocol (SDP) that can be adopted in the charging communication process for D-WPT service according to an embodiment of the present invention.
  • SDP Service Discovery Protocol
  • Figure 24 is a conceptual diagram showing the structure of a message including a VSE that can be employed in the charging communication process for the D-WPT service according to an embodiment of the present invention.
  • the message structure for the precise positioning setup request sequence in the D-WPT system is shown.
  • additional information that can specify the D-WPT system can be added in the VendorSpecificDataContainer and LF_SystemSetupData fields including the VSE. .
  • a charging communication method and device for dynamic wireless power transfer (D-WPT) using wireless local area network (WLAN) technology can be provided.
  • VSE Vendor Specific Element
  • a charging procedure and use case using WLAN can be provided when charging an electric vehicle by D-WPT.
  • a D-WPT device and an electric vehicle communicate for charging through WLAN, it is possible to provide information on what information is transmitted and received between them.
  • Figure 25 is a conceptual block diagram of the internal structure of a computing system that can implement generalized SECC and EVCC as a charging communication device for D-WPT according to an embodiment of the present invention.
  • a processor and a memory are electronically connected to each component, and the operation of each component can be controlled or managed by the processor.
  • At least some processes of the charging communication method for charging an electric vehicle according to an embodiment of the present invention may be executed by the computing system 1000 of FIG. 25.
  • the computing system 1000 includes a processor 1100, a memory 1200, a communication interface 1300, a storage device 1400, an input interface 1500, and an output. It may be configured to include an interface 1600 and a bus 1700.
  • the computing system 1000 includes at least one processor 1100 and instructions instructing the at least one processor 1100 to perform at least one step. It may include a memory 1200 for storing. At least some steps of the method according to an embodiment of the present invention may be performed by the at least one processor 1100 loading instructions from the memory 1200 and executing them.
  • the processor 1100 may refer to a central processing unit (CPU), a graphics processing unit (GPU), or a dedicated processor on which methods according to embodiments of the present invention are performed.
  • CPU central processing unit
  • GPU graphics processing unit
  • dedicated processor on which methods according to embodiments of the present invention are performed.
  • Each of the memory 1200 and the storage device 1400 may be comprised of at least one of a volatile storage medium and a non-volatile storage medium.
  • the memory 1200 may be comprised of at least one of read only memory (ROM) and random access memory (RAM).
  • the computing system 1000 may include a communication interface 1300 that performs communication through a wireless network.
  • the computing system 1000 may further include a storage device 1400, an input interface 1500, an output interface 1600, etc.
  • each component included in the computing system 1000 may be connected by a bus 1700 and communicate with each other.
  • a device including the processor 1100 may be, for example, a desktop computer, a laptop computer, a laptop, a smart phone, or a tablet PC capable of communication.
  • table PC mobile phone, smart watch, smart glass, e-book reader, PMP (portable multimedia player), portable game console, navigation device, digital camera ( digital camera), DMB (digital multimedia broadcasting) player, digital audio recorder, digital audio player, digital video recorder, digital video player, PDA ( Personal Digital Assistant), etc.
  • An electric vehicle communication controller (EVCC, Electric Vehicle Communication Controller) according to an embodiment of the present invention is an EVCC mounted on an electric vehicle and associated with a secondary assembly that receives power from the primary assembly, and receives at least one command from memory. Includes a processor 1100 that receives and executes.
  • the processor 1100 executes at least one instruction to: perform communication setup and session setup for wireless power transfer with the EVCC, perform a charging communication session for dynamic wireless power transfer (D-WPT) between the SECC and EVCC, and , perform a charging session by dynamic wireless power transfer between SECC and EVCC.
  • D-WPT dynamic wireless power transfer
  • the processor 1100 may perform communication setup and session setup for wireless power transfer between the EVCC and the SECC capable of communication by wireless LAN (WLAN) by executing at least one command.
  • WLAN wireless LAN
  • the processor 1100 By executing at least one instruction, the processor 1100 provides a dynamic wireless power transfer (D-WPT) service between the EVCC and the SECC capable of communicating by EVCC and wireless LAN (WLAN), and the SECC capable of communicating by EVCC and wireless LAN. It is possible to identify whether it is a SECC installed on a D-WPT road that can provide.
  • D-WPT dynamic wireless power transfer
  • the processor 1100 When the processor 1100 detects that an event in which an electric vehicle changes lanes from a lane on a D-WPT road to a lane other than a D-WPT road has occurred by executing at least one command, the processor 1100 stops the charging session and You can standby.
  • the processor 1100 When the processor 1100 detects that the electric vehicle has returned to the lane on the D-WPT road by at least one of the SECC and EVCC in the standby state by executing at least one instruction, the processor 1100 returns to the lane on the D-WPT road to which the electric vehicle returned. Session setup can be performed again between SECC and EVCC.
  • the processor 1100 detects that the electric vehicle has changed lanes from a lane on the D-WPT road to another lane on the D-WPT road based on the results of positioning and pairing by executing at least one command, It is possible to identify whether the changed lane provides the same service and has the same compatibility level as the lane before the change.
  • the processor 1100 By executing at least one instruction, the processor 1100 performs SECC and session setup, service discovery and selection, and parameters on the changed lane based on whether the changed lane provides the same service and has the same compatibility level as the lane before the change. At least one of the exchange processes can be performed.
  • the processor 1100 executes at least one instruction so that the SECC provides the D-WPT service based on a message containing information indicating D-WPT as additional information that is part of the VSE (Vendor Specific Element) in the frame body. It can show support.
  • VSE Vehicle Specific Element
  • Computer-readable recording media include all types of recording devices that store information that can be read by a computer system. Additionally, computer-readable recording media can be distributed across networked computer systems so that computer-readable programs or codes can be stored and executed in a distributed manner.
  • computer-readable recording media may include hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, etc.
  • Program instructions may include not only machine language code such as that created by a compiler, but also high-level language code that can be executed by a computer using an interpreter, etc.
  • a block or device corresponds to a method step or feature of a method step.
  • aspects described in the context of a method may also be represented by corresponding blocks or items or features of a corresponding device.
  • Some or all of the method steps may be performed by (or using) a hardware device, such as a microprocessor, programmable computer, or electronic circuit, for example. In some embodiments, at least one or more of the most important method steps may be performed by such an apparatus.
  • a programmable logic device e.g., a field programmable gate array
  • a field-programmable gate array may operate in conjunction with a microprocessor to perform one of the methods described herein. In general, the methods are preferably performed by some hardware device.
  • a charging communication method and device for dynamic wireless power transfer (D-WPT) using wireless local area network (WLAN) technology can be provided.
  • VSE Vendor Specific Element
  • a charging procedure and use case using WLAN can be provided when charging an electric vehicle by D-WPT.
  • a D-WPT device and an electric vehicle communicate for charging through WLAN, it is possible to provide information on what information is transmitted and received between them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하는 단계; SECC 및 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하는 단계; 및 SECC 및 EVCC 간에 동적 무선 전력 전송에 의한 충전 세션을 수행하는 단계를 포함한다.

Description

동적 무선 전력 전송을 위한 무선랜 기반의 충전 통신 장치 및 방법
본 발명은 전기차(EV, Electric Vehicle)의 충전 통신(Charging Communication) 기술에 관한 것으로, 더욱 상세하게는, 무선랜(wireless local area network, WLAN) 기술을 이용하는 동적 무선 전력 전송 (D-WPT, Dynamic Wireless Power Transfer)을 위한 충전 통신 기술에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래 기술을 구성하는 것은 아니다.
최근 개발되고 있는 전기 자동차(Electric Vehicle, EV)는 배터리의 동력으로 모터를 구동하여, 종래의 가솔린 엔진 자동차에 비해 배기 가스 및 소음 등과 같은 공기 오염원이 적으며, 고장이 적고, 수명이 길고, 운전 조작이 간단하다는 장점이 있다.
전기 자동차는 구동원에 따라 하이브리드 전기 자동차(Hybrid Electric Vehicle, HEV), 플러그인 하이브리드 전기 자동차(Plug-in Hybrid Electric Vehicle, PHEV) 및 전기 자동차(EV)로 분류된다. HEV는 주전력인 엔진과 보조 전력인 모터를 가지고 있다. PHEV는 주전력인 모터와 배터리가 방전될 때 사용되는 엔진을 가지고 있다. EV는 모터를 가지고 있으나, 엔진은 가지고 있지 않다.
전기차 충전 시스템은 기본적으로 상용 전원의 배전망(grid)이나 에너지 저장 장치의 전력을 이용하여 전기차에 탑재된 배터리를 충전하는 시스템으로 정의할 수 있다. 이러한 전기차 충전 시스템은 전기차의 종류에 따라 다양한 형태를 가질 수 있다. 예를 들어, 전기차 충전 시스템은 케이블을 이용한 전도성 충전 시스템이나 비접촉 방식의 무선 전력 전송 시스템을 포함할 수 있다.
전기차의 충전 시, 전기차에 탑재되는 차량 어셈블리(vehicle assembly, VA)는 충전 스테이션(charge station)이나 충전 스팟(charging spots)에 위치하는 그라운드 어셈블리(ground assembly, GA)의 송신 패드와 유도 공진 결합을 형성하고, 유도 공진 결합을 통해 그라운드 어셈블리로부터 전달되는 전력을 이용하여 전기차의 배터리를 충전할 수 있다.
전기차의 충전 시 로봇 암 또는 매니퓰레이터가 전기차 전원 공급 장치(EVSE)로부터 전기차 충전구(charging door/port)로 전력을 공급하기 위하여 이용될 수 있다.
이때 전기차 충전구의 다양한 타입, 전기차 전원 공급 장치의 다양한 타입, 및 다양한 충전 방식 등을 고려할 때 전기차와 매니퓰레이터 간의 포지셔닝, 전력 공급을 위한 사전 준비 단계에 대한 프로시져의 정의가 필요하다.
전력망 또는 그리드(grid)와 전기차(EV: electric vehicle) 간의 메시지 시퀀스(sequence)는 그리드 측에 위치하는 전력공급장치 통신제어기(SECC: supply equipment communication controller)와 전기차에 탑재되는 전기차 통신제어기 (EVCC: electric vehicle communication controller) 간에 사전 정의되고 요청 메시지와 응답 메시지 쌍을 교환하는 형태로 이루어진다.
전기차는 통상 자동 연결 장치 또는 무선 전력 전송을 이용하는 충전 방식이나 교류 충전 또는 직류 충전 방식을 이용하여 차량 배터리를 충전한다. 배터리 충전을 위해, 전기차는 세션 셋업, 비히클 포지셔닝 셋업, 비히클 포지셔닝, 페어링, 인증/권한 부여 셋업, 인증/권한 부여, 서비스 디스커버리, 서비스 디테일, 서비스 선택 등과 관련된 메시지를 SECC와 상호 교환한다.
예를 들어, 전기차가 비히클포지셔닝셋업 응답 메시지를 수신한 후, 자동 연결 장치나 무선 전력 전송을 위한 포지셔닝이나 페어링에 대한 호환 가능한 방법을 찾지 못한 경우, 전기차는 세션스톱 상태에서 서비스 재협상을 통해 서비스 디스커버리 상태로 이동할 수 있다.
최근 정적 무선 전력 전송 (S-WPT, Static Wireless Power Transfer) 뿐만 아니라 동적 무선 전력 전송 (D-WPT, Dynamic Wireless Power Transfer) 기술의 도입이 고려되고 있으나, 관련 표준(예컨대, ISO 15118)이나 종래 기술에서는 D-WPT를 위한 전기차와 그리드 간의 메시지 시퀀싱(sequencing)을 위한 프로토콜, 및 이를 위한 메시지 매개변수의 규칙이 제안되지 않은 상태이다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 무선랜(wireless local area network, WLAN) 기술을 이용하는 동적 무선 전력 전송 (D-WPT, Dynamic Wireless Power Transfer)을 위한 충전 통신 방법 및 장치를 제공하는 것이다.
본 발명의 목적 중 하나는 D-WPT 및 D-WPT에 속하는 개체들을 나타내는 VSE(Vendor Specific Element) 추가정보 매개변수를 새롭게 제안하는 것이다.
본 발명의 다른 목적 중 하나는 D-WPT에 의한 전기차 충전 시 WLAN을 이용한 충전 절차 및 use case를 제안하는 것이다.
본 발명의 다른 목적 중 하나는 D-WPT 디바이스와 전기차가 WLAN으로 충전을 위한 통신을 수행하는 경우 상호 간에 어떤 정보를 송수신하는 지를 제안하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 전기차 전원 공급장치 컨트롤러 (SECC, Supply Equipment Communication Controller) 및 전기차 통신 컨트롤러 (EVCC, Electric Vehicle Communication Controller) 간에 수행되는 충전 통신 방법은, 전기차에 전력을 전송하는 프라이머리 어셈블리와 연관되는 SECC, 및 전기차에 탑재되며 프라이머리 어셈블리로부터 전력을 수신하는 세컨더리 어셈블리와 연관되는 EVCC 간에 수행되는 충전 통신 방법이다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하는 단계; SECC 및 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하는 단계; 및 SECC 및 EVCC 간에 동적 무선 전력 전송에 의한 충전 세션을 수행하는 단계를 포함한다.
통신 셋업 및 세션 셋업을 수행하는 단계는, EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행할 수 있다.
동적 무선 전력 전송을 위한 충전 통신 세션을 수행하는 단계는, EVCC 및 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에, EVCC와 무선랜에 의한 통신이 가능한 SECC가 동적 무선 전력 전송 (D-WPT) 서비스를 제공할 수 있는 D-WPT 도로 상에 설치된 SECC인 지를 식별하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 간에 동적 무선 전력 전송에 의하여 전기차의 충전율 (SOC, State of Charge)이 미리 결정된 기준치에 도달하는 경우 충전 세션을 중지하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선 (Lane)에서 D-WPT 도로가 아닌 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 충전 세션을 중지하고 스탠바이하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, 스탠바이된 상태에서 SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 무선랜 범위 밖으로 이탈하는 이벤트가 발생하였음이 감지되는 경우, 충전 통신 세션을 중지하고 통신을 종결하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, 스탠바이된 상태에서 SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선으로 복귀하였음이 감지되는 경우, 전기차가 복귀한 D-WPT 도로 상의 SECC와 EVCC 간에 세션 셋업을 수행하는 단계를 다시 수행할 수 있다.
충전 통신 세션을 수행하는 단계는, 포지셔닝 및 페어링의 결과에 기반하여, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선 (Lane)에서 동일한 서비스를 제공하는 D-WPT 도로 상의 다른 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 호환성 체크 및 파라미터 교환 과정을 다시 수행할 수 있다.
충전 통신 세션을 수행하는 단계는, 포지셔닝 및 페어링의 결과에 기반하여, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선 (Lane)에서 다른 서비스를 제공하는 D-WPT 도로 상의 다른 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 서비스 디스커버리 및 서비스 선택 과정을 다시 수행할 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선 (Lane)에서 다른 호환성을 가지는 D-WPT 도로 상의 다른 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 충전 세션을 중지하고 다른 차선 상의 SECC 및 EVCC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하는 단계를 다시 수행할 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선 (Lane)에서 정적 무선 전력 전송 (S-WPT) 서비스를 제공하는 주차 공간에 진입하는 이벤트가 발생하였음이 감지되는 경우, 충전 세션을 중지하고 EVCC 및 주차 공간 상의 SECC 간에 무선랜 페어링 과정을 수행하는 단계; 및 무선랜 페어링 과정 이후 EVCC 및 주차 공간 상의 SECC 간에 세션 셋업을 수행하는 단계를 더 포함할 수 있다.
SECC 및 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하는 단계는, 프레임 바디(Frame Body) 내의 VSE (Vendor Specific Element) 중 일부인 부가 정보로서 D-WPT를 나타내는 정보를 포함하는 메시지에 기반하여 SECC가 D-WPT 서비스를 지원함을 나타낼 수 있다.
본 발명의 일 실시예에 따른 전기차 통신 컨트롤러 (EVCC, Electric Vehicle Communication Controller)는, 전기차에 탑재되며 프라이머리 어셈블리로부터 전력을 수신하는 세컨더리 어셈블리와 연관되는 EVCC로서 적어도 하나 이상의 명령을 메모리(memory)로부터 수신하여 실행하는 프로세서(processor)를 포함한다. 프로세서는 적어도 하나 이상의 명령을 실행함으로써: EVCC와 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하고, SECC 및 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하고, SECC 및 EVCC 간에 동적 무선 전력 전송에 의한 충전 세션을 수행한다.
프로세서는 적어도 하나 이상의 명령을 실행함으로써 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행할 수 있다.
프로세서는 적어도 하나 이상의 명령을 실행함으로써 EVCC 및 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에, EVCC와 무선랜에 의한 통신이 가능한 SECC가 동적 무선 전력 전송 (D-WPT) 서비스를 제공할 수 있는 D-WPT 도로 상에 설치된 SECC인 지를 식별할 수 있다.
프로세서는 적어도 하나 이상의 명령을 실행함으로써 전기차가 D-WPT 도로 상의 차선 (Lane)에서 D-WPT 도로가 아닌 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 충전 세션을 중지하고 스탠바이할 수 있다.
프로세서는 적어도 하나 이상의 명령을 실행함으로써 스탠바이된 상태에서 SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선으로 복귀하였음이 감지되는 경우, 전기차가 복귀한 D-WPT 도로 상의 SECC와 EVCC 간에 세션 셋업을 다시 수행할 수 있다.
프로세서는 적어도 하나 이상의 명령을 실행함으로써 포지셔닝 및 페어링의 결과에 기반하여, 전기차가 D-WPT 도로 상의 차선 (Lane)에서 D-WPT 도로 상의 다른 차선으로 차선을 변경하였음이 감지되는 경우, 변경된 차선이 변경 전의 차선과 동일한 서비스를 제공하는 지, 및 동일한 호환성 레벨을 가지는 지를 식별할 수 있다.
프로세서는 적어도 하나 이상의 명령을 실행함으로써 변경된 차선이 변경 전의 차선과 동일한 서비스를 제공하는 지, 및 동일한 호환성 레벨을 가지는 지에 기반하여 변경된 차선 상의 SECC와 세션 셋업, 서비스 디스커버리 및 선택, 및 파라미터 교환 과정 중 적어도 하나 이상을 수행할 수 있다.
프로세서는 적어도 하나 이상의 명령을 실행함으로써 프레임 바디(Frame Body) 내의 VSE (Vendor Specific Element) 중 일부인 부가 정보로서 D-WPT를 나타내는 정보를 포함하는 메시지에 기반하여 SECC가 D-WPT 서비스를 지원함을 나타낼 수 있다.
본 발명의 일 실시예에 따르면 무선랜(wireless local area network, WLAN) 기술을 이용하는 동적 무선 전력 전송 (D-WPT, Dynamic Wireless Power Transfer)을 위한 충전 통신 방법 및 장치를 제공할 수 있다.
본 발명의 일 실시예에 따르면 D-WPT 및 D-WPT에 속하는 개체들을 나타내는 새로운 VSE(Vendor Specific Element) 추가정보 매개변수를 제공할 수 있다. 제안하는 것이다.
본 발명의 일 실시예에 따르면 D-WPT에 의한 전기차 충전 시 WLAN을 이용한 충전 절차 및 use case를 제공할 수 있다.
본 발명의 일 실시예에 따르면 D-WPT 디바이스와 전기차가 WLAN으로 충전을 위한 통신을 수행하는 경우 상호 간에 어떤 정보를 송수신하는 지를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 페러렐 라인(parallel line)에 의한 동적 무선 전력 전송 (D-WPT)에 의한 전기차의 충전 인프라를 도시하는 개념도이다.
도 2는 본 발명의 일 실시예에 따른 세그멘티드 페러렐 라인(segmented parallel line)에 의한 동적 무선 전력 전송 (D-WPT)에 의한 전기차의 충전 인프라를 도시하는 개념도이다.
도 3은 본 발명의 일 실시예에 따른 세그멘티드 코일 (segmented coils)에 의한 동적 무선 전력 전송 (D-WPT)에 의한 전기차의 충전 인프라를 도시하는 개념도이다.
도 4는 본 발명의 일 실시예에 따른 동적 무선 전력 전송을 위한 통신 셋업, 충전 통신 세션, 및 충전 세션 과정을 도시하는 동작 흐름도이다.
도 5는 도 4의 충전 통신 세션의 일 실시예를 상세하게 도시하는 동작 흐름도이다.
도 6은 도 4의 충전 세션의 일 실시예를 상세하게 도시하는 동작 흐름도이다.
도 7은 본 발명의 일 실시예에 따른 유즈 케이스로서, 주차장에서 D-WPT 도로를 거쳐 차선 변경 없이 주차장에 도달한 경우를 도시하는 개념도이다.
도 8은 도 7의 유즈 케이스에서 충전이 완료되는 경우의 프로토콜을 도시하는 개념도이다.
도 9는 본 발명의 실시예들에 따른 유즈 케이스로서, D-WPT 도로에서 차선의 변경 및/또는 WLAN 범위를 벗어나는 경우를 도시하는 개념도이다.
도 10은 도 9의 유즈 케이스들에서 차선의 변경 및/또는 WLAN 범위를 벗어나는 경우에 수행되는 프로토콜을 도시하는 개념도이다.
도 11은 본 발명의 일 실시예에 따른 유즈 케이스로서, 전기차가 D-WPT 도로를 주행한 후 D-WPT와 호환 가능한 S-WPT 서비스를 지원하는 주차장에 도달하는 경우를 도시하는 개념도이다.
도 12는 도 11의 유즈 케이스에서 주차장에 도달한 경우에 수행되는 프로토콜을 도시하는 개념도이다.
도 13은 본 발명의 일 실시예에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 메시지 내의 MAC 헤더 및 프레임 바디를 도시하는 개념도이다.
도 14 내지 도 18은 본 발명의 실시예들에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 메시지 내의 프레임 바디 및 VSE를 도시하는 개념도이다.
도 19 내지 도 20은 본 발명의 실시예들에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 메시지 내의 VSE 및 VSE 내의 부가 정보를 도시하는 개념도이다.
도 21 및 도 22는 본 발명의 일 실시예에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 메시지 내의 VSE 내의 부가 정보를 도시하는 개념도이다.
도 23은 본 발명의 일 실시예에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 서비스 발견 프로토콜 (SDP, Service Discovery Protocol)의 변경 사항 제안을 도시하는 개념도이다.
도 24는 본 발명의 일 실시예에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 VSE를 포함하는 메시지의 구조를 도시하는 개념도이다.
도 25는 본 발명의 일 실시예에 따른 D-WPT를 위한 충전 통신 장치로서, 일반화된 SECC, EVCC를 구현할 수 있는 컴퓨팅 시스템의 내부 구조에 대한 개념적인 블록도이다.
상기 목적 외에 본 발명의 다른 목적 및 특징들은 첨부 도면을 참조한 실시예에 대한 설명을 통하여 명백히 드러나게 될 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. '및/또는' 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 출원의 실시예들에서, "A 및 B 중에서 적어도 하나"는 "A 또는 B 중에서 적어도 하나" 또는 "A 및 B 중 하나 이상의 조합들 중에서 적어도 하나"를 의미할 수 있다. 또한, 본 출원의 실시예들에서, "A 및 B 중에서 하나 이상"은 "A 또는 B 중에서 하나 이상" 또는 "A 및 B 중 하나 이상의 조합들 중에서 하나 이상"을 의미할 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
한편 본 출원일 전에 공지된 기술이라 하더라도 필요 시 본 출원 발명의 구성의 일부로서 포함될 수 있으며, 이에 대해서는 본 발명의 취지를 흐리지 않는 범위 내에서 본 명세서에서 설명한다. 다만 본 출원 발명의 구성을 설명함에 있어, 본 출원일 전에 공지된 기술로서 당업자가 자명하게 이해할 수 있는 사항에 대한 자세한 설명은 본 발명의 취지를 흐릴 수 있으므로, 공지 기술에 대한 지나치게 자세한 사항의 설명은 생략한다.
예를 들어, Wi-Fi/WLAN 또는 5G 등의 이동 통신 기술을 이용하여 전기차의 충전을 수행하기 전의 셋업, 통신연결(Association), 페어링(Pairing), 위치 추정(Localization), 포지셔닝(Positioning), 도킹/언도킹 제어(Docking/Undocking Control)을 수행하거나 각 과정을 수행하기 위해 필요한 정보를 송수신하는 기술 등은 본 발명의 출원 전 공지 기술을 이용할 수 있으며, 이들 공지 기술들 중 적어도 일부는 본 발명을 실시하는 데에 필요한 요소 기술로서 적용될 수 있다.
그러나 본 발명의 취지는 이들 공지 기술에 대한 권리를 주장하고자 하는 것이 아니며 공지 기술의 내용은 본 발명의 취지에 벗어나지 않는 범위 내에서 본 발명의 일부로서 포함될 수 있다.
본 명세서에 사용되는 일부 용어를 정의하면 다음과 같다.
전기차(Electric Vehicle, EV)는 49 CFR(code of federal regulations) 523.3 등에서 정의된 자동차(automobile)를 지칭할 수 있다. 전기차는 고속도로 이용이 가능하고, 차량 외부의 전원공급원으로부터 재충전 가능한 배터리 등의 차량 탑재 에너지 저장 장치에서 공급되는 전기에 의해 구동될 수 있다. 전원공급원은 주거지나 공용 전기서비스 또는 차량 탑재 연료를 이용하는 발전기 등을 포함할 수 있다.
전기차(electric vehicle, EV)는 일렉트릭 카(electric car), 일렉트릭 오토모바일(electric automobile), ERV(electric road vehicle), PV(plug-in vehicle), xEV(plug-in vehicle) 등으로 지칭될 수 있고, xEV는 BEV(plug-in all-electric vehicle 또는 battery electric vehicle), PEV(plug-in electric vehicle), HEV(hybrid electric vehicle), HPEV(hybrid plug-in electric vehicle), PHEV(plug-in hybrid electric vehicle) 등으로 지칭되거나 구분될 수 있다.
플러그인 전기차(Plug-in Electric Vehicle, PEV)는 전력 그리드에 연결하여 차량 탑재 일차 배터리를 재충전하는 전기차로 지칭될 수 있다.
플러그인 차량(Plug-in vehicle, PV)은 본 명세서에서 전기차 전원공급장치(Electric Vehicle Supply Equipment; EVSE)로부터 물리적인 플러그와 소켓을 사용하지 않고 무선 충전 방식을 통해 재충전 가능한 차량으로 지칭될 수 있다.
중량 자동차(Heavy duty vehicles; H.D. Vehicles)는 49 CFR 523.6 또는 CFR 37.3(bus)에서 정의된 네 개 이상의 바퀴를 가진 모든 차량을 지칭할 수 있다.
경량 플러그인 전기차(Light duty plug-in electric vehicle)는 주로 공공 거리, 도로 및 고속도로에서 사용하기 위한 재충전 가능한 배터리나 다른 에너지 장치의 전류가 공급되는 전기 모터에 의해 추진력을 얻는 3개 또는 4개 바퀴를 가진 차량을 지칭할 수 있다. 경량 플러그인 전기차는 총 중량이 4.545㎏보다 작게 규정될 수 있다.
무선 충전 시스템(Wireless power charging system, WCS)은 무선 전력 전송과 얼라인먼트(위치 정렬) 및 통신을 포함한 Supply Device(또는 Ground Assembly, GA)와 EV device (또는 Vehicle Assembly, VA) 간의 제어를 위한 시스템을 지칭할 수 있다.
무선 전력 전송(Wireless power transfer, WPT)은 유틸리티(Utility)나 그리드(Grid) 등의 교류(AC) 전원공급 네트워크에서 전기차로 무접촉 수단을 통해 전기적인 전력을 전송하는 것을 지칭할 수 있다.
유틸리티(Utility)는 전기적인 에너지를 제공하며 통상 고객 정보 시스템(Customer Information System, CIS), 양방향 검침 인프라(Advanced Metering Infrastructure, AMI), 요금과 수익(Rates and Revenue) 시스템 등을 포함하는 시스템들의 집합으로 지칭될 수 있다. 유틸리티는 가격표 또는 이산 이벤트(discrete events)를 통해 플러그인 전기차가 에너지를 이용할 수 있도록 한다. 또한, 유틸리티는 관세율, 계측 전력 소비에 대한 인터벌 및 플러그인 전기차에 대한 전기차 프로그램의 검증 등에 대한 정보를 제공할 수 있다.
스마트 충전(Smart charging)은 EVSE 및/또는 전기차(플러그인 하이브리드 전기차 포함)가 차량 충전율이나 방전율을 그리드 용량이나 사용 비용 비율의 시간을 최적화하기 위해 전력 그리드와 통신하는 시스템으로 설명할 수 있다.
자동 충전(Automatic charging)은 전력을 전송할 수 있는 1차측 충전기 어셈블리(primary charger assembly)에 대하여 적절한 위치에 차량을 위치시키고 컨덕티브 또는 인덕티브 충전하는 동작으로 정의될 수 있다. 자동 충전은 필요한 인증 및 권한을 얻은 후에 수행될 수 있다.
상호운용성(Interoperabilty)은 서로 상대적인 시스템의 성분들이 전체 시스템의 목적하는 동작을 수행하기 위해 함께 작동할 수 있는 상태를 지칭할 수 있다. 정보 상호운용성(Information interoperability)은 두 개 이상의 네트워크들, 시스템들, 디바이스들, 애플리케이션들 또는 성분들이 사용자가 거의 또는 전혀 불편함 없이 안전하고 효과적으로 정보를 공유하고 쉽게 사용할 수 있는 능력을 지칭할 수 있다.
유도 충전 시스템(Inductive charging system)은 두 파트가 느슨하게 결합된 트랜스포머를 통해 전기 공급 네트워크에서 전기차로 정방향에서 전자기적으로 에너지를 전송하는 시스템을 지칭할 수 있다. 본 실시예에서 유도 충전 시스템은 전기차 충전 시스템에 대응할 수 있다.
유도 커플러(Inductive coupler)는 1차측 장치(primary device)와 2차측 장치(secondary device)로 형성되어 전력이 전기적인 절연을 통해 전력을 전송하는 트랜스포머를 지칭할 수 있다.
유도 결합(Inductive coupling)은 두 코일들 간의 자기 결합을 지칭할 수 있다. 두 코일은 1차측 코일(primary coil)/그라운드 어셈블리 코일(Ground assembly coil)과 2차측 코일(secondary coil)/차량 어셈블리 코일(Vehicle assembly coil)을 지칭할 수 있다.
공급전력회로(supply power circuit, SPC)/그라운드 어셈블리(Ground assembly, GA)는 1차측 코일/GA 코일과 다른 적절한 부품을 포함하여 1차측/그라운드 어셈블리 또는 인프라스트럭처(infrastructure) 측에 배치되는 어셈블리를 지칭할 수 있다. 다른 적절한 부품은 임피던스와 공진주파수를 제어하기 위한 적어도 하나의 부품, 자기 경로(magnetic path)를 강화하기 위한 페라이트 및 전자기 차폐 재료를 포함할 수 있다. 예컨대, SPC 또는 GA는 무선 충전 시스템의 전력 소스로서 기능하는 데 필요한 전력/주파수 변환 장치, SPC 컨트롤러/GA 컨트롤러 및 그리드로부터의 배선과 각 유닛과 필터링 회로들, 하우징 등의 사이의 배선을 포함할 수 있다.
전기차전력회로(EV power circuit, EVPC)/차량 어셈블리(Vehicle assembly, VA)는 2차측 코일/VA 코일과 다른 적절한 부품을 포함하여 차량에 배치되는 어셈블리를 지칭할 수 있다. 다른 적절한 부품은 임피던스와 공진주파수를 제어하기 위한 적어도 하나의 부품, 자기 경로를 강화하기 위한 페라이트 및 전자기 차폐 재료를 포함할 수 있다. 예를 들면, EVPC 또는 VA는 무선 충전 시스템의 차량 부품으로서 기능하는 데 필요한 정류기/전력변환장치와 EVPC 컨트롤러/VA 컨트롤러 및 차량 배터리의 배선뿐 아니라 각 유닛과 필터링 회로들, 하우징 등의 사이의 배선을 포함할 수 있다.
전술한 SPC는 그라운드 어셈블리(ground assembly, GA) 등으로 지칭되거나 구분될 수 있고, 이와 유사하게 EVPC는 차량 어셈블리(vehicle assembly, VA) 등으로 지칭되거나 구분될 수 있다.
전술한 GA는 프라이머리 디바이스(primary device, PD), 1차측 장치 등으로 지칭될 수 있고, 이와 유사하게 VA는 세컨더리 디바이스(secondary device, SD), 2차측 장치 등으로 지칭될 수 있다.
전술한 GA는 서플라이 디바이스(supply device), 전원공급측 장치 등으로 지칭될 수 있고, 이와 유사하게 VA는 전기차 디바이스(EV device), 전기차량 측 장치 등으로 지칭될 수 있다.
프라이머리 디바이스(Primary device)는 세컨더리 디바이스에 무접촉 결합을 제공하는 장치 즉, 전기차 외부의 장치일 수 있다. 프라이머리 디바이스는 1차측 장치로 지칭될 수 있다. 전기차가 전력을 받을 때, 프라이머리 디바이스는 전력을 전송하는 전원 소스로서 동작할 수 있다. 프라이머리 디바이스는 하우징과 모든 커버들을 포함할 수 있다.
세컨더리 디바이스(Secondary device)는 프라이머리 디바이스에 무접촉 결합을 제공하는 전기차 탑재 장치일 수 있다. 세컨더리 디바이스는 2차측 장치로 지칭될 수 있다. 전기차가 전력을 받을 때, 세컨더리 디바이스는 프라이머리 디바이스로부터의 전력을 전기차로 전달할 수 있다. 세컨더리 디바이스는 하우징과 모든 커버들을 포함할 수 있다.
공급 전력 전자장치(supply power electronics)는 차량으로부터의 정보를 토대로 1차측 코일/GA 코일에 대한 출력 전력 레벨을 조절하는 SPC 또는 GA의 일부분일 수 있다. 전기차 전력 전자장치(EV power electronics)는 충전 동안 특정 차량용 파라미터를 모니터링하고 SPC 또는 GA와의 통신을 개시하여 출력 전력 레벨을 제어하는 EVPC 또는 VA의 일부분일 수 있다.
전술한 공급 전력 전자장치(supply power electronics)는 그라운드 어셈블리 전자장치(GA electronics), 그라운드 어셈블리 컨트롤러(GA controller), 또는 프라이머리 디바이스 통신제어기(Primary device communication controller, PDCC)로 지칭될 수 있고, 전기차 전력 전자장치(EV power electronics)는 차량 어셈블리 전자장치(VA electronics), 차량 어셈블리 컨트롤러(VA controller), 또는 전기차 통신제어기(electric vehicle communication controller, VA 제어기)로 지칭될 수 있다.
마그네틱 갭(Magnetic gap)은 리츠선(litz wire)의 상부 또는 1차측 코일/GA 코일의 마그네틱 재료의 상부의 가장 높은 평면과 상기 리츠선의 하부 또는 2차측 코일/VA 코일의 마그네틱 재료의 가장 낮은 평면이 서로 정렬되었을 때 이들 사이의 수직 거리를 지칭할 수 있다.
주위 온도(Ambient temperature)는 직접적으로 햇빛이 비치지 않는 대상 서브시스템의 대기에서 측정된 그라운드 레벨 온도를 지칭할 수 있다.
차량 지상고(Vehicle ground clearance)는 도로 또는 도로포장과 차량 플로어 팬의 최하부 사이의 수직 거리를 지칭할 수 있다.
차량 마그네틱 지상고(Vehicle magnetic ground clearance)는 리츠선의 바닥 최하위 평면 또는 차량에 탑재된 2차측 코일/VA 코일의 절연 재료와 도로포장 사이의 수직 거리를 지칭할 수 있다.
2차측 코일 표면 간격(secondary coil surface distance)/차량 어셈블리(VA) 코일 표면 간격(Vehicle assembly coil surface distance)은 리츠선의 바닥 최하부의 평면 또는 2차측 코일/VA 코일의 마그네틱 재료와 2차측 코일/VA 코일의 최하위 외부 표면 사이의 수직 거리를 지칭할 수 있다. 이러한 거리는 보호 커버재 및 코일 포장재로 포장된 추가 아이템을 포함할 수 있다.
전술한 2차측 코일(secondary coil)은 VA 코일(VA coil), 차량 코일(vehicle coil), 수신 코일(receiver coil) 등으로 지칭될 수 있고, 이와 유사하게 1차측 코일(primary coil)은 그라운드 어셈블리 코일(ground assembly coil, GA coil), 송신 코일(transmit coil) 등으로 지칭될 수 있다.
노출 도전 부품(Exposed conductive component)은 사람에 의해 접촉될 수 있고 평상시 전기가 흐르지 않지만 고장 시에 전기가 흐를 수 있는 전기적인 장치(예컨대, 전기차)의 도전성 부품을 지칭할 수 있다.
유해 라이브 요소(Hazardous live component)는 어떤 조건하에서 유해한 전기 쇼크를 줄 수 있는 라이브 구성요소를 지칭할 수 있다.
라이브 요소(Live component)는 기본적인 용도에서 전기적으로 활성화되는 모든 도체 또는 도전성 부품을 지칭할 수 있다.
직접 접촉(Direct contact)은 생물체인 사람의 접촉을 지칭할 수 있다.
간접 접촉(Indirect contact)은 절연 실패로 사람이 노출된, 도전된, 전기가 흐르는 활성 성분에 접촉하는 것을 지칭할 수 있다(IEC 61140 참조).
얼라인먼트(Alignment)는 규정된 효율적인 전력 전송을 위해 프라이머리 디바이스에 대한 세컨더리 디바이스의 상대적인 위치를 찾는 절차 및/또는 세컨더리 디바이스에 대한 프라이머리 디바이스의 상대적인 위치를 찾는 절차를 가리킬 수 있다. 본 명세서에서 얼라인먼트는 무선 전력 전송 시스템의 위치 정렬을 지칭할 수 있으나, 이에 한정되지는 않는다.
페어링(Pairing)은 전력을 전송할 수 있도록 배치된 단일 전용 그라운드 어셈블리(프라이머리 디바이스)와 차량(전기차)가 연관되는 절차를 지칭할 수 있다. 본 명세서에서 페어링은 충전 스팟 또는 특정 SPC/그라운드 어셈블리와 EVPC/차량 어셈블리 제어기의 연관 절차를 포함할 수 있다.
연관(Correlation/Association)은 두 피어(peer) 통신 실체들 사이의 관계 성립 절차를 포함할 수 있다.
명령 및 제어 통신(Command and control communication)은 무선 전력 전송 프로세스의 시작, 제어 및 종료에 필요한 정보를 교환하는 전기차 전력공급장치와 전기차 사이의 통신을 지칭할 수 있다.
하이 레벨 통신(High level communication)은 명령 및 제어 통신에서 담당하는 정보를 초과하는 모든 정보를 처리할 수 있다. 하이 레벨 통신의 데이터 링크는 PLC(Power line communication)을 사용할 수 있으나, 이에 한정되지는 않는다.
저전력 기동(Low power excitation)은 정밀 포지셔닝과 페어링을 수행하기 위해 전기차가 프라이머리 디바이스를 감지하도록 그것을 활성화하는 것을 지칭할 수 있으나, 이에 한정되지 않으며 그 역도 가능하다.
SSID(Service set identifier)는 무선랜 상에서 전송되는 패킷의 헤더에 붙는 32-character로 이루어진 유니크한 식별자이다. SSID는 무선 장비에서 접속하려고 하는 BSS(basic service set)를 구분해 준다. SSID는 기본적으로 여러 개의 무선랜을 서로 구별해준다. 따라서 특정한 무선랜을 사용하려는 모든 AP(access point)와 모든 단말(terminal)/스테이션(station) 장비들은 모두 같은 SSID를 사용할 수 있다. 유일한 SSID를 사용하지 않는 장비는 BSS에 조인하는 것이 불가능하다. SSID는 평문으로 그대로 보이기 때문에 네트워크에 어떠한 보안 특성도 제공하지 않을 수 있다.
ESSID(Extended service set identifier)는 접속하고자 하는 네트워크의 이름이다. SSID와 비슷하지만 보다 확장된 개념일 수 있다.
BSSID(Basic service set identifier)는 통상 48bits로 특정 BSS(basic service set)를 구분하기 위해 사용한다. 인프라스트럭쳐 BSS 네트워크의 경우, BSSID는 AP 장비의 MAC(medium access control)가 될 수 있다. 독립적인(independent) BSS나 애드훅(ad hoc) 네트워크의 경우, BSSID는 임의의 값으로 생성될 수 있다.
충전 스테이션(charging station)은 적어도 하나 이상의 그라운드 어셈블리와 적어도 하나 이상의 그라운드 어셈블리를 관리하는 적어도 하나 이상의 그라운드 어셈블리 제어기를 포함할 수 있다. 그라운드 어셈블리는 적어도 하나 이상의 무선통신기를 구비할 수 있다. 충전 스테이션은 가정, 사무실, 공공장소, 도로, 주차장 등에 설치되는 적어도 하나 이상의 그라운드 어셈블리를 구비한 장소를 지칭할 수 있다.
본 명세서에서 연결(association)은 전기차 통신제어기(EVCC, Electric Vehicle Communication Controller) 및 충전 인프라를 제어하는 전원 공급 장치 통신제어기(SECC, Supply Equipment Communication Controller) 간에 무선 통신을 설정하는 절차를 의미하는 용어로 사용될 수 있다.
'스마트 그리드(Smart Grid)'는 발전소, 전력 생산 유닛, 에너지 저장 시스템 등이 네트워크 설비를 통하여 모두 지능적인 방식에 의하여 연결되고, 정보 통신 기술에 기반한 메시지를 교환할 수 있도록 구현된 시스템을 지칭할 수 있다.
'충전소(charging station)'는 전기차(EV, Electric Vehicle)를 충전하는 데 필요한 하나 이상의 전기차 전원 공급장치(EVSE, EV Supply Equipment), 스마트 미터, 및 기타 기술적인 장비들을 포함하는 설비를 지칭할 수 있다.
'전기차 전원 공급장치(EVSE, EV Supply Equipment)는 아웃렛(outlet)을 경유하여 전기차에 에너지를 공급하는 충전소의 일 부분을 형성하는 장치로서 에너지를 측정할 수 있도록 스마트 미터와 연결되는 장치를 지칭할 수 있다.
'충전소 운영자(CPO: Charge Point Operator)'는 충전소(charging station)에 물리적 접근을 허용하도록 충전소가 위치하는 지점에 대한 권한을 가지는 기업 또는 기관을 지칭할 수 있으며, 한편으로는 충전소를 관리하고 개별적인 전기차 전원 공급장치(EVSE)에서 이루어지는 충전 프로세스에 정보 통신 기술을 이용하여 권한을 부여하고 제어하는 통신 노드 또는 엔티티(개체)를 지칭할 수 있다.
'모빌리티 운영자(MO: Mobility Operator)'는 충전소에서 이루어지는 충전에 대한 권한 부여(authorization), 및 결제에 대한 법적 근거로서 엔드 유저 또는 기업과 충전에 대한 계약 관계를 형성하고 있는 법적 개체를 지칭할 수 있다.
모빌리티 운영자와 유사한 의미로 전자 모빌리티 제공자(EMP: E-Mobility Provider), 전자 모빌리티 서비스 제공자(EMSP: E-Mobility Service Provider), 모빌리티 서비스 제공자(MSP: Mobility Service Provider)가 사용될 수 있다.
'플러그 및 충전(PnC: Plug-and-Charge)'은 사용자가 전기차를 전기차 전원 공급 장치에 플러깅하기만 하면 추가적인 사용자 인터랙션이 필요 없이 인증(authentication), 권한 부여(authorization), 부하 제어(load control), 및 결제가 자동으로 수행되는 프로세스를 지칭할 수 있다. 또는 PnC는 그러한 자동 프로세스를 위한 식별 및 권한 부여 모드를 지칭할 수도 있다. PnC는 X.509 인증서를 적용하고 서명을 검증하고 전송함으로써 수행될 수 있다.
'공개 키 기반(PKI: Public Key Infrastructure)'은 특정한 사람 또는 물체에 속하는 특별한 공개 키를 검증하기 위하여 이용되는 디지털 서명의 생성, 저장, 재배포, 및 폐지를 위한 시스템을 지칭할 수 있다.
'외부 식별 수단(EIM: External Identification Means)'은 운전자가 충전소에서 이루어지는 충전 세션을 위하여 자기 자신을 인증하고 권한 부여할 수 있는 임의의 외부 수단을 지칭할 수 있다. 예를 들어, 현금 지불, 선불 카드, 신용 카드, 직불 카드, NFC, RFID, 및 SMS를 들 수 있다. EIM은 PnC와 함께 두 가지 인증 모드를 구성할 수 있다.
'판매 요율(Sales Tariff)'은 시간의 경과에 따른 가격 관련 정보를 제공하는 기능을 지칭할 수 있다. 구체적으로는 모빌리티 운영자로부터 제공되며 전기차 통신 제어기(EVCC: EV Communication Controller) 측에서 충전 스케줄을 계산할 수 있도록 주어지는 입력을 지칭할 수 있다. 판매 요율은 선호되는 전력량만큼 특정한 타임 슬롯 내에서 충전하는 전기차에게 인센티브를 제공하기 위하여 의도되는 개념일 수 있다. 판매 요율과 관련된 유즈 케이스로는 충전 세션을 유효한 계약에 의하여 인증하는 모빌리티 운영자에 의하여 제공되는 전력의 가격 정보일 수 있으며, 이때의 계약은 운전자 자신 또는 차량이 속하는 차량 공유 운영자에 의하여 전기차에 설치된 계약 증명서에 의하여 인증될 수 있다.
또한, '판매 요율'은 신재생 에너지를 이용한 충전 등 예상 가능한 시간대에 충전하는 전기차에게 인센티브를 제공하여 태양광 패널 또는 풍력 터빈 등 신재생 에너지의 활용을 촉진하고자 의도된 개념을 지칭할 수 있다. 경우에 따라서는 전력의 가격 정보뿐만 아니라 그 가격 정보가 연관된 타임 슬롯을 포함하여 판매 요율로서 지칭될 수 있다.
'2차 참여자(Secondary Actor)'는 EVCC 또는 SECC가 아니면서 충전 프로세스에 연관되는 임의의 파티를 지칭할 수 있다. 2차 참여자는 충전 프로세스에 연관되는 정보를 제공하면서 충전 프로세스에 연관될 수 있고, 2차 참여자의 예시로는 충전 포인트 운영자(CPO), 모빌리티 운영자(MO) 등을 들 수 있다.
'전자 모빌리티 계정 식별자(EMAID: E-Mobility Account ID)'는 모빌리티 운영자 및 커스터머 사이에서 전기차 충전을 위해 체결되는 법적 계약마다 발행된 단일 계약 증명서를 지칭할 수 있다. EMAID는 개인 데이터의 가명화를 허용할 수 있으며, 법적 계약의 라이프타임과 같은 한정된 시간 동안만 유효할 수 있다. EMAID는 차량 식별 번호(VIN: Vehicle Identification Number)와는 달리 커스터머 또는 차량 데이터의 장기적 평가를 허용하지 않을 수 있다. EMAID는 가족 차량 또는 차량 공유 계약 등 일시적이고 단기적인 단일 계약에 대하여 서로 다른 인증 매체를 이용하여 부여될 수 있는 일시적 식별자로서 도입될 수 있고, 한 사람이 복수개의 계약 각각마다 EMAID을 보유할 수 있어, 개인의 식별 정보와는 다른 용도로 활용될 수 있다.
본 개시에서 차량-그리드 간(V2G: Vehicle-to-Grid) 통신은 ISO 15118 표준에서 규정되며 OSI 7계층에 대응하도록 설계될 수 있다. 즉, OSI(Open Systems Interconnection)은 "내포되는 내부 구조 및 기술과 관련 없이 통신 또는 컴퓨팅 시스템의 통신 기능을 표준화하기 위한 개념적인 모델"일 수 있다.
ISO 15118 표준의 특징은 전기차의 충전과 결제 프로세스를 설립하고 실행하기 위한 것이라는 점이며, 이를 위하여 다양한 정보 통신 기술을 채택하고 활용할 수 있다는 점을 또 다른 특징으로 포함하고 있다. 즉, OSI 7계층에 매핑되는 정보 통신 기술요소를 포함하지만 목적은 전기차의 충전 및 결제 프로세스를 설립하기 위한 것이므로 어플리케이션 상의 특징이 주요하게 취급될 수 있다.
ISO 15118 표준에서 규정하는 V2G 통신 인터페이스는 디지털, IP기반 프로토콜을 포함할 수 있다. 이때 전기차(EV)와 전기차 전원 공급 장치(EVSE) 간의 통신, 전기차 전원 공급장치(EVCC)와 전원 공급장치 통신 제어기(SECC: Supply Equipment Communication Controller) 간의 통신이 ISO 15118 표준에서 규정하는 V2G 통신 인터페이스에 포함될 수 있다.
VSE(Vendor Specific Element)는 ISO 15118 기반 통신에서 현재 위치에서 가용한(available) EVSE의 타입에 대한 정보를 포함하는 데이터 포맷을 의미할 수 있다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
이하에서 본 발명의 상세한 사항을 도 1 내지 도 25의 실시예들을 통하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 페러렐 라인(parallel line)에 의한 동적 무선 전력 전송 (D-WPT)에 의한 전기차의 충전 인프라를 도시하는 개념도이다.
도 1을 참조하면, 전기차(200)에 D-WPT 서비스를 제공할 수 있는 D-WPT 도로(100)는 복수개의 페러렐 라인 (100B)을 포함한다. 도 1에 도시된 각 페러렐 라인(100B)은 D-WPT 도로(100)의 일부로서 각각 하나의 구간 내에서 전기차(200)에 무선으로 전력을 전송할 수 있는 인프라스트럭쳐를 의미할 수 있다.
WLAN 범위(100A)는 일반적으로 100m 이내일 수 있다. 도 1을 참조하면 페러렐 라인 (100B)의 길이는 50m 이내로 설정될 수 있다. 이때 WLAN 범위(100A) 내에 포함되는 페러렐 라인 (100B)은 각각 하나씩의 SPE (Supply Power Electronics)(120)에 연결되어 급전되고, 전원공급장치 제어기 (SECC)(110)는 SPE(120)와 전기차(200) 간의 전력 전송을 위하여 전기차(200) 내의 전기차 통신제어기 (EVCC)와 통신할 수 있다. 도 1의 실시예에서는 WLAN 범위 (100A)에 하나의 액세스 포인트 (AP)(130)가 배치되고, 페러렐 라인(100B)마다 하나의 SPE(120) 및 SECC(110)가 배치된다.
도 1과 같이 전체 D-WPT 도로 또는 디바이스(100)를 구현하기 위하여 다중 AP가 배치되고 각 AP(130)에는 다중 SDP (SECC Discovery Protocol)가 할당될 수 있다. 이때 SDP는 하나의 SECC(110)마다 부여될 수 있다.
본 발명의 다른 실시예에서는, 페러렐 라인(100B)이 50m보다 긴 길이를 가지도록 구현될 수도 있다. 이런 경우에는 전체 D-WPT 도로 또는 디바이스(100)를 구현하기 위하여 다중 AP가 배치되고 각 AP(130)에는 단일 SDP (SECC Discovery Protocol)가 할당될 수도 있다.
전기차(200)는 SECC(110)와 WLAN/Wi-Fi로 통신할 수 있다. 전기차(200)가 일반 도로(150)에서 D-WPT 도로(100)로 진입하는 경우 전기차(200)와 SECC(110) 간의 통신 및 페어링에 의하여 D-WPT 서비스가 개시될 수 있다.
D-WPT 인프라는 다수개의 AP(130)와 연결되어 다수개의 AP(130)를 관리하는 로컬 사이버보안 관리시스템 (Local CSMS: Local Cyber Security Management System) (160) 및 Cloud CSMS (170)에 의하여 보안 관리될 수 있다. Local CSMS (160) 및 CSMS (170) 간의 통신은 C-V2X 기법을 이용하여 구현될 수 있다.
도 2는 본 발명의 일 실시예에 따른 세그멘티드 페러렐 라인(segmented parallel line)에 의한 동적 무선 전력 전송 (D-WPT)에 의한 전기차의 충전 인프라를 도시하는 개념도이다.
도 2를 참조하면, 세그멘티드 페러렐 라인 (100C)에 의한 D-WPT 인프라가 도시된다. 도 2에 도시된 각 세그멘티드 페러렐 라인(100C)은 D-WPT 도로(100)의 일부로서 각각 하나의 구간 내에서 전기차(200)에 무선으로 전력을 전송할 수 있는 인프라스트럭쳐를 의미할 수 있다.
도 2를 참조하면 세그멘티드 페러렐 라인 (100C)의 길이는 50m 이내로 설정될 수 있다. 이때 WLAN 범위(100A) 내에 포함되는 세그멘티드 페러렐 라인 (100C)은 각각 하나씩의 SPE (Supply Power Electronics)(120)에 연결되어 급전되고, SECC(110)의 통신에 의하여 전기차(200)와 상호 작용할 수 있다. 도 1의 실시예에서는 WLAN 범위 (100A)에 하나의 액세스 포인트 (AP)(130)가 배치되고, 세그멘티드 페러렐 라인(100C)마다 하나의 SPE(120) 및 SECC(110)가 배치된다.
도 2와 같이 전체 D-WPT 도로 또는 디바이스(100)를 구현하기 위하여 다중 AP가 배치되고 각 AP(130)에는 다중 SDP (SECC Discovery Protocol)가 할당될 수 있다. 이때 SDP는 하나의 SECC(110)마다 부여될 수 있다.
본 발명의 다른 실시예에서는, 세그멘티드 페러렐 라인(100C)이 50m보다 긴 길이를 가지도록 구현될 수도 있다. 이런 경우에는 전체 D-WPT 도로 또는 디바이스(100)를 구현하기 위하여 다중 AP가 배치되고 각 AP(130)에는 단일 SDP (SECC Discovery Protocol)가 할당될 수도 있다.
도 3은 본 발명의 일 실시예에 따른 세그멘티드 코일 (segmented coils)에 의한 동적 무선 전력 전송 (D-WPT)에 의한 전기차의 충전 인프라를 도시하는 개념도이다.
도 3을 참조하면, 세그멘티드 코일(100D)은 일정 영역에 진입하는 전기차(200)에 전력을 공급하는 D-WPT 인프라의 하위 구성요소이다. 일반적으로 세그멘티드 코일(100D)의 각 구간의 길이는 WLAN 범위 (100A)보다 짧으므로 전체 D-WPT 도로 또는 디바이스(100)를 구현하기 위하여 다중 AP가 배치되고 각 AP(130)에는 단일 SDP (SECC Discovery Protocol)가 할당될 수도 있다.
도 4는 본 발명의 일 실시예에 따른 동적 무선 전력 전송을 위한 통신 셋업, 충전 통신 세션, 및 충전 세션 과정을 도시하는 동작 흐름도이다.
이하의 명세서에서 EVCC 및 SECC 간에 수행되는 모든 단계는, EVCC 및 SECC 중 적어도 하나 이상의 논리적 동작에 의하여 수행될 수 있고, EVCC 및 SECC가 상호 협력하여 수행될 수도 있다. 전기차(200) 및 D-WPT 인프라 간의 위치 추정, 전기차(200)의 포지셔닝, 전기차(200)가 D-WPT 인프라의 범위를 벗어나는 지 여부 등의 측정/인식/판정 결과는 EVCC 및/또는 SECC에 의하여 수행될 수 있고, EVCC 및/또는 SECC 간에 공유될 수 있다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하는 단계(S320); SECC 및 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하는 단계(S400, S410); 및 SECC 및 EVCC 간에 동적 무선 전력 전송에 의한 충전 세션을 수행하는 단계(S500)를 포함한다.
통신 셋업 및 세션 셋업을 수행하는 단계(S320)는, EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행할 수 있다.
동적 무선 전력 전송을 위한 충전 통신 세션을 수행하는 단계(S400, S410)는, EVCC 및 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에, EVCC와 무선랜에 의한 통신이 가능한 SECC가 동적 무선 전력 전송 (D-WPT) 서비스를 제공할 수 있는 D-WPT 도로 상에 설치된 SECC인 지를 식별하는 단계를 포함할 수 있다.
SECC 및 EVCC 시스템이 온되면(S310), SECC 및 EVCC 간 통신 셋업 및 세션 셋업이 수행된다(S320).
SECC 및 EVCC 간에 수행되는 충전 통신 세션(S400)은 포지셔닝~체크 단계(S410)를 포함한다. 단계(S410)는 옵셔녈하게 안전 모니터링 & 진단 단계(S470)를 활성화할 수 있다. 단계(S470)는 충전 세션(S500)의 수행 시 활성화된다.
충전 세션(S500) 동안 소정의 조건이 충족되면 스탠바이 단계(S480)로 천이할 수 있다. 스탠바이 단계(S480)에서 소정의 조건이 충조되면 충전 세션(S500)으로 복귀할 수 있다.
충전 세션(S500)이 종료되면 SECC 및 EVCC 간 통신이 종료될 수 있다(S350). 이후 SECC 및 EVCC 시스템이 오프될 수 있다(S360).
도 5는 도 4의 충전 통신 세션의 일 실시예를 상세하게 도시하는 동작 흐름도이다.
도 5를 참조하면, 단계(S410)는 단계(S320) 이후 수행되는 정밀 포지셔닝~페어링 단계(S420)를 포함할 수 있다. 단계(S420) 결과에 따라서는 옵셔널하게 단계(S470)가 활성화될 수 있다.
단계(S420) 이후 허가~인증서 단계(S430)가 수행될 수 있다.
단계(S430) 이후 서비스 디스커버리~서비스 선택 단계(S440)가 수행될 수 있다.
단계(S440) 이후 최종 호환성 체크~파라미터 교환 단계(S450)가 수행될 수 있다.
단계(S450) 이후 얼라인먼트 체크 단계(S460)가 수행될 수 있다.
단계(S460) 이후에는 충전 세션(S500)이 수행될 수 있다.
도 6은 도 4의 충전 세션의 일 실시예를 상세하게 도시하는 동작 흐름도이다.
도 6을 참조하면, 충전 세션(S500)은 전력 전송 시작 단계(S510), 전력 전송 수행 단계(S520), 및 전력 전송 중단 단계(S530)를 포함한다. 단계(S510)는 단계(S460) 이후 수행될 수 있으며, 단계(S570)를 활성화한다. 단계(S530)는 단계(S470)를 종료할 수 있다.
단계(S530) 이후 소정의 조건이 충족되면 통신 연결이 종료되는 단계(S350)가 수행될 수 있다. 단계(S530)이후 소정의 조건이 충족되면(예를 들어, 목표 충전량/충전율(SOC)이 달성되는 경우) 스탠바이 단계(S480)를 거쳐 소정의 조건이 충족되면(예를 들어, 충전량/충전율이 기준치 이하로 낮아진 경우) 다시 단계(S510)가 수행될 수도 있다.
도 7은 본 발명의 일 실시예에 따른 유즈 케이스로서, 주차장에서 D-WPT 도로를 거쳐 차선 변경 없이 주차장에 도달한 경우를 도시하는 개념도이다.
도 7을 참조하면, 전기차(200)가 주차장(140)을 떠나 D-WPT 도로(100)를 주행하면서 충전되고, D-WPT 도로(100) 내에서 차선 변경 없이 주차장(140)에 도달하는 유즈 케이스가 도시된다.
도 8은 도 7의 유즈 케이스에서 충전이 완료되는 경우의 프로토콜을 도시하는 개념도이다.
도 8을 참조하면, 본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 간에 동적 무선 전력 전송에 의하여 전기차의 충전율 (SOC, State of Charge)이 미리 결정된 기준치에 도달하는 경우(S610) 충전 세션을 중지하는 단계(S480)를 더 포함할 수 있다.
목표 충전율이 80% 또는 100%로 설정되는 것은 본 발명의 일 실시예에 불과하며, 이러한 실시예에 의하여 본 발명의 사상이 제한되지는 않는다.
도 9는 본 발명의 실시예들에 따른 유즈 케이스로서, D-WPT 도로에서 차선의 변경 및/또는 WLAN 범위를 벗어나는 경우를 도시하는 개념도이다.
도 9를 참조하면, 전기차가 D-WPT 도로(100)를 주행하다가 D-WPT 도로(100) 내의 다른 차선으로 차선 변경하는 실시예가 유즈 케이스(S620)로 도시된다. 유즈 케이스(S620)는 후술하는 바와 같이 D-WPT 도로(100) 내의 변경 전의 차선과 변경 후의 차선이 동일한 서비스, 및/또는 호환성을 가지는 지 여부에 따라 수행되는 프토토콜이 상이할 수 있다.
전기차가 D-WPT 도로(100)를 주행하다가 Non D-WPT 도로(150)로 차선 변경하는 실시예가 유즈 케이스(S630)로 도시된다.
Non D-WPT 도로(150)로 차선 변경한 전기차가 다시 D-WPT 도로(100) 내의 차선으로 차선 변경하는 실시예가 유즈 케이스(S640)로 도시된다.
Non D-WPT 도로(150)로 차선 변경한 전기차가 WLAN 범위를 이탈하는 Out of Range 실시예가 유즈 케이스(S650)로 도시된다.
도 10은 도 9의 유즈 케이스들에서 차선의 변경 및/또는 WLAN 범위를 벗어나는 경우에 수행되는 프로토콜을 도시하는 개념도이다.
도 10을 참조하면, 본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선 (Lane)에서 D-WPT 도로가 아닌 차선으로 차선을 변경하는 이벤트(S630)가 발생하였음이 감지되는 경우, 충전 세션을 중지한(S530) 상태에서 스탠바이 단계(S480)로 이행하는 프로토콜을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, 스탠바이된 상태에서(S480) SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 무선랜 범위 밖으로 이탈하는 Out of Range 이벤트(S650)가 발생하였음이 감지되는 경우, 충전 통신 세션을 중지하고 통신을 종결하는 단계(S350)로 이행하는 프로토콜을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, 스탠바이된 상태에서(S480) SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선으로 복귀하였음(S640)이 감지되는 경우, 전기차가 복귀한 D-WPT 도로 상의 SECC와 EVCC 간에 세션 셋업을 수행하는 단계(S320)를 다시 수행할 수 있다.
충전 통신 세션을 수행하는 단계는, 포지셔닝 및 페어링의 결과에 기반하여, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선 (Lane)에서 동일한 서비스를 제공하는 D-WPT 도로 상의 다른 차선으로 차선을 변경하는 이벤트(S620)가 발생하였음이 감지되는 경우, 호환성 체크 및 파라미터 교환 단계(S450)를 다시 수행할 수 있다.
충전 통신 세션을 수행하는 단계는, 포지셔닝 및 페어링의 결과에 기반하여, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선 (Lane)에서 다른 서비스를 제공하는 D-WPT 도로 상의 다른 차선으로 차선을 변경하는 이벤트(S620)가 발생하였음이 감지되는 경우, 서비스 디스커버리 및 서비스 선택 단계(S440)를 다시 수행할 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선 (Lane)에서 다른 호환성을 가지는 D-WPT 도로 상의 다른 차선으로 차선을 변경하는 이벤트(S620)가 발생하였음이 감지되는 경우, 충전 세션을 중지한(S530) 상태에서 다른 차선 상의 SECC 및 EVCC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하는 단계(S320)를 다시 수행할 수 있다.
도 11은 본 발명의 일 실시예에 따른 유즈 케이스로서, 전기차가 D-WPT 도로를 주행한 후 D-WPT와 호환 가능한 S-WPT 서비스를 지원하는 주차장에 도달하는 경우를 도시하는 개념도이다.
도 11을 참조하면, 전기차(200)가 D-WPT 도로(100)를 주행한 후, S-WPT 서비스를 지원하는 주차장(145)에 도달하는 실시예가 유즈 케이스(S670)로서 도시된다.
도 12는 도 11의 유즈 케이스에서 주차장에 도달한 경우에 수행되는 프로토콜을 도시하는 개념도이다.
도 12를 참조하면, 본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차(200)가 D-WPT 도로(100) 상의 차선 (Lane)에서 정적 무선 전력 전송 (S-WPT) 서비스를 제공하는 주차 공간(145)에 진입하는 이벤트(S670)가 발생하였음이 감지되는 경우, 충전 세션을 중지한(S530) 상태에서 주차(S674)를 수행할 수 있다. 본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법은, 단계(S674) 이후 EVCC 및 주차 공간(145) 상의 SECC 간에 무선랜 페어링 과정을 수행하는 단계(S676); 및 무선랜 페어링 과정(S676) 이후 EVCC 및 주차 공간(145) 상의 SECC 간에 세션 셋업을 수행하는 단계(S320)로 이행하는 프로토콜을 더 포함할 수 있다.
이때 단계(S676) 이후 단계(S320)로 이행하는 경우에 통신 셋업을 스킵할 수도 있다(S678).
한편 D-WPT 도로(100)를 벗어나는 시점에서 충전 세션(S500)이 종료되고(S530), SECC-EVCC 간 통신이 종료된(S350) 상태에서 일시적으로 슬립 모드(S680)를 거쳐 주차 공간(145)의 S-WPT 서비스에 대한 통신 셋업 및 세션 셋업 단계(S320)로 이행될 수도 있다.
도 13 내지 도 24의 실시예를 참조하면, SECC 및 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하는 단계(S400, S410)는, 프레임 바디(Frame Body) 내의 VSE (Vendor Specific Element) 중 일부인 부가 정보로서 D-WPT를 나타내는 정보를 포함하는 메시지에 기반하여 SECC가 D-WPT 서비스를 지원함을 나타낼 수 있다.
도 13은 본 발명의 일 실시예에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 메시지 내의 MAC 헤더 및 프레임 바디를 도시하는 개념도이다.
도 13을 참조하면, 메시지 포맷으로서 MAC 헤더가 도시된다. MAC 헤더 이후 프레임 바디가 0-2320 바이트로 제공될 수 있다. 본 발명의 실시예들은 프레임 바디 내의 VSE 내에 D-WPT 서비스를 특정할 수 있는 구체적인 사항을 포함할 수 있다.
도 14 내지 도 18은 본 발명의 실시예들에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 메시지 내의 프레임 바디 및 VSE를 도시하는 개념도이다.
도 14는 SECC를 위한 VSE의 일 실시예로서 비콘 프레임에 포함되는 프레임 바디 내에 포함되는 VSE의 실시예를 도시한다.
도 15는 SECC를 위한 VSE의 일 실시예로서 프로브 응답 프레임에 포함되는 프레임 바디 내에 포함되는 VSE의 실시예를 도시한다.
도 16은 EVCC를 위한 VSE의 일 실시예로서 어소시에이션 요청 프레임에 포함되는 프레임 바디 내에 포함되는 VSE의 실시예를 도시한다.
도 17은 EVCC를 위한 VSE의 일 실시예로서 리어소시에이션 요청 프레임에 포함되는 프레임 바디 내에 포함되는 VSE의 실시예를 도시한다.
도 18은 VSE의 일 실시예로서 프레임 바디 내에 포함되는 VSE의 실시예를 도시한다.
도 19 내지 도 20은 본 발명의 실시예들에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 메시지 내의 VSE 및 VSE 내의 부가 정보를 도시하는 개념도이다.
도 19를 참조하면, SECC를 위한 VSE로서 ETT (Energy Transfer Type)의 하위 비트로서 WPT가 포함될 수 있다. 또한 VSE는 0-238비트의 Additional Information을 더 포함할 수 있다.
도 20을 참조하면, EVCC를 위한 VSE로서 ETT (Energy Transfer Type)의 하위 비트로서 WPT가 포함될 수 있다. 또한 VSE는 0-238비트의 Additional Information을 더 포함할 수 있다.
도 21 및 도 22는 본 발명의 일 실시예에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 메시지 내의 VSE 내의 부가 정보를 도시하는 개념도이다.
도 21을 참조하면, 부가 정보의 WPT 항목의 Z의 4, 5, 6, P의 5, 6, 7, 8, 8-9가 D-WPT 관련 정보로서 제안될 수 있다.
도 22를 참조하면, 도 21의 WPT 파라미터의 D-WPT 관련 정보의 업데이트된 실시예가 도시된다.
도 23은 본 발명의 일 실시예에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 서비스 발견 프로토콜 (SDP, Service Discovery Protocol)의 변경 사항 제안을 도시하는 개념도이다.
도 24는 본 발명의 일 실시예에 따른 D-WPT 서비스를 위한 충전 통신 과정에 채용할 수 있는 VSE를 포함하는 메시지의 구조를 도시하는 개념도이다.
도 24를 참조하면, D-WPT 시스템에서 정밀 포지셔닝 셋업 요청 시퀀스를 위한 메시지 구조가 도시되며, 특히 VSE를 포함하는 VendorSpecificDataContainer, LF_SystemSetupData 필드에서 D-WPT 시스템을 특정할 수 있는 부가 정보가 추가될 수 있다.
이상의 본 발명의 일 실시예에 따르면 무선랜(wireless local area network, WLAN) 기술을 이용하는 동적 무선 전력 전송 (D-WPT, Dynamic Wireless Power Transfer)을 위한 충전 통신 방법 및 장치를 제공할 수 있다.
본 발명의 일 실시예에 따르면 D-WPT 및 D-WPT에 속하는 개체들을 나타내는 새로운 VSE(Vendor Specific Element) 추가정보 매개변수를 제공할 수 있다. 제안하는 것이다.
본 발명의 일 실시예에 따르면 D-WPT에 의한 전기차 충전 시 WLAN을 이용한 충전 절차 및 use case를 제공할 수 있다.
본 발명의 일 실시예에 따르면 D-WPT 디바이스와 전기차가 WLAN으로 충전을 위한 통신을 수행하는 경우 상호 간에 어떤 정보를 송수신하는 지를 제공할 수 있다.
도 25는 본 발명의 일 실시예에 따른 D-WPT를 위한 충전 통신 장치로서, 일반화된 SECC, EVCC를 구현할 수 있는 컴퓨팅 시스템의 내부 구조에 대한 개념적인 블록도이다.
도 1 내지 도 24의 실시예에서 도면 상으로는 생략되었으나 프로세서, 및 메모리가 전자적으로 각 구성 요소와 연결되고, 프로세서에 의하여 각 구성 요소의 동작이 제어되거나 관리될 수 있다.
본 발명의 일 실시예에 따른 전기차 충전을 위한 충전 통신 방법의 적어도 일부의 과정은 도 25의 컴퓨팅 시스템(1000)에 의하여 실행될 수 있다.
도 25를 참조하면, 본 발명의 일 실시예에 따른 컴퓨팅 시스템(1000)은, 프로세서(1100), 메모리(1200), 통신 인터페이스(1300), 저장 장치(1400), 입력 인터페이스(1500), 출력 인터페이스(1600) 및 버스(bus)(1700)를 포함하여 구성될 수 있다.
본 발명의 일 실시예에 따른 컴퓨팅 시스템(1000)은, 적어도 하나의 프로세서(processor)(1100) 및 상기 적어도 하나의 프로세서(1100)가 적어도 하나의 단계를 수행하도록 지시하는 명령어들(instructions)을 저장하는 메모리(memory)(1200)를 포함할 수 있다. 본 발명의 일 실시예에 따른 방법의 적어도 일부의 단계는 상기 적어도 하나의 프로세서(1100)가 상기 메모리(1200)로부터 명령어들을 로드하여 실행함으로써 수행될 수 있다.
프로세서(1100)는 중앙 처리 장치(central processing unit, CPU), 그래픽 처리 장치(graphics processing unit, GPU), 또는 본 발명의 실시예들에 따른 방법들이 수행되는 전용의 프로세서를 의미할 수 있다.
메모리(1200) 및 저장 장치(1400) 각각은 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다. 예를 들어, 메모리(1200)는 읽기 전용 메모리(read only memory, ROM) 및 랜덤 액세스 메모리(random access memory, RAM) 중에서 적어도 하나로 구성될 수 있다.
또한, 컴퓨팅 시스템(1000)은, 무선 네트워크를 통해 통신을 수행하는 통신 인터페이스(1300)를 포함할 수 있다.
또한, 컴퓨팅 시스템(1000)은, 저장 장치(1400), 입력 인터페이스(1500), 출력 인터페이스(1600) 등을 더 포함할 수 있다.
또한, 컴퓨팅 시스템(1000)에 포함된 각각의 구성 요소들은 버스(bus)(1700)에 의해 연결되어 서로 통신을 수행할 수 있다.
본 발명의 일 실시예에 따른 프로세서(1100)를 포함하는 장치는 예를 들어 통신 가능한 데스크탑 컴퓨터(desktop computer), 랩탑 컴퓨터(laptop computer), 노트북(notebook), 스마트폰(smart phone), 태블릿 PC(tablet PC), 모바일폰(mobile phone), 스마트 워치(smart watch), 스마트 글래스(smart glass), e-book 리더기, PMP(portable multimedia player), 휴대용 게임기, 네비게이션(navigation) 장치, 디지털 카메라(digital camera), DMB(digital multimedia broadcasting) 재생기, 디지털 음성 녹음기(digital audio recorder), 디지털 음성 재생기(digital audio player), 디지털 동영상 녹화기(digital video recorder), 디지털 동영상 재생기(digital video player), PDA(Personal Digital Assistant) 등일 수 있다.
본 발명의 일 실시예에 따른 전기차 통신 컨트롤러 (EVCC, Electric Vehicle Communication Controller)는 전기차에 탑재되며 프라이머리 어셈블리로부터 전력을 수신하는 세컨더리 어셈블리와 연관되는 EVCC로서, 적어도 하나 이상의 명령을 메모리(memory)로부터 수신하여 실행하는 프로세서(processor)(1100)를 포함한다.
프로세서(1100)는 적어도 하나 이상의 명령을 실행함으로써: EVCC와 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하고, SECC 및 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하고, SECC 및 EVCC 간에 동적 무선 전력 전송에 의한 충전 세션을 수행한다.
프로세서(1100)는 적어도 하나 이상의 명령을 실행함으로써 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행할 수 있다.
프로세서(1100)는 적어도 하나 이상의 명령을 실행함으로써 EVCC 및 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에, EVCC와 무선랜에 의한 통신이 가능한 SECC가 동적 무선 전력 전송 (D-WPT) 서비스를 제공할 수 있는 D-WPT 도로 상에 설치된 SECC인 지를 식별할 수 있다.
프로세서(1100)는 적어도 하나 이상의 명령을 실행함으로써 전기차가 D-WPT 도로 상의 차선 (Lane)에서 D-WPT 도로가 아닌 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 충전 세션을 중지하고 스탠바이할 수 있다.
프로세서(1100)는 적어도 하나 이상의 명령을 실행함으로써 스탠바이된 상태에서 SECC 및 EVCC 중 적어도 하나 이상에 의하여 전기차가 D-WPT 도로 상의 차선으로 복귀하였음이 감지되는 경우, 전기차가 복귀한 D-WPT 도로 상의 SECC와 EVCC 간에 세션 셋업을 다시 수행할 수 있다.
프로세서(1100)는 적어도 하나 이상의 명령을 실행함으로써 포지셔닝 및 페어링의 결과에 기반하여, 전기차가 D-WPT 도로 상의 차선 (Lane)에서 D-WPT 도로 상의 다른 차선으로 차선을 변경하였음이 감지되는 경우, 변경된 차선이 변경 전의 차선과 동일한 서비스를 제공하는 지, 및 동일한 호환성 레벨을 가지는 지를 식별할 수 있다.
프로세서(1100)는 적어도 하나 이상의 명령을 실행함으로써 변경된 차선이 변경 전의 차선과 동일한 서비스를 제공하는 지, 및 동일한 호환성 레벨을 가지는 지에 기반하여 변경된 차선 상의 SECC와 세션 셋업, 서비스 디스커버리 및 선택, 및 파라미터 교환 과정 중 적어도 하나 이상을 수행할 수 있다.
프로세서(1100)는 적어도 하나 이상의 명령을 실행함으로써 프레임 바디(Frame Body) 내의 VSE (Vendor Specific Element) 중 일부인 부가 정보로서 D-WPT를 나타내는 정보를 포함하는 메시지에 기반하여 SECC가 D-WPT 서비스를 지원함을 나타낼 수 있다.
본 발명의 실시예에 따른 방법의 동작은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 프로그램 또는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의해 읽힐 수 있는 정보가 저장되는 모든 종류의 기록장치를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산 방식으로 컴퓨터로 읽을 수 있는 프로그램 또는 코드가 저장되고 실행될 수 있다.
또한, 컴퓨터가 읽을 수 있는 기록매체는 롬(rom), 램(ram), 플래시 메모리(flash memory) 등과 같이 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치를 포함할 수 있다. 프로그램 명령은 컴파일러(compiler)에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터(interpreter) 등을 사용해서 컴퓨터에 의해 실행될 수 있는 고급 언어 코드를 포함할 수 있다.
본 발명의 일부 측면들은 장치의 문맥에서 설명되었으나, 그것은 상응하는 방법에 따른 설명 또한 나타낼 수 있고, 여기서 블록 또는 장치는 방법 단계 또는 방법 단계의 특징에 상응한다. 유사하게, 방법의 문맥에서 설명된 측면들은 또한 상응하는 블록 또는 아이템 또는 상응하는 장치의 특징으로 나타낼 수 있다. 방법 단계들의 몇몇 또는 전부는 예를 들어, 마이크로프로세서, 프로그램 가능한 컴퓨터 또는 전자 회로와 같은 하드웨어 장치에 의해(또는 이용하여) 수행될 수 있다. 몇몇의 실시 예에서, 가장 중요한 방법 단계들의 적어도 하나 이상은 이와 같은 장치에 의해 수행될 수 있다.
실시예들에서, 프로그램 가능한 로직 장치(예를 들어, 필드 프로그래머블 게이트 어레이)가 여기서 설명된 방법들의 기능의 일부 또는 전부를 수행하기 위해 사용될 수 있다. 실시예들에서, 필드 프로그래머블 게이트 어레이(field-programmable gate array)는 여기서 설명된 방법들 중 하나를 수행하기 위한 마이크로프로세서(microprocessor)와 함께 작동할 수 있다. 일반적으로, 방법들은 어떤 하드웨어 장치에 의해 수행되는 것이 바람직하다.
이상 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본 발명의 일 실시예에 따르면 무선랜(wireless local area network, WLAN) 기술을 이용하는 동적 무선 전력 전송 (D-WPT, Dynamic Wireless Power Transfer)을 위한 충전 통신 방법 및 장치를 제공할 수 있다.
본 발명의 일 실시예에 따르면 D-WPT 및 D-WPT에 속하는 개체들을 나타내는 새로운 VSE(Vendor Specific Element) 추가정보 매개변수를 제공할 수 있다. 제안하는 것이다.
본 발명의 일 실시예에 따르면 D-WPT에 의한 전기차 충전 시 WLAN을 이용한 충전 절차 및 use case를 제공할 수 있다.
본 발명의 일 실시예에 따르면 D-WPT 디바이스와 전기차가 WLAN으로 충전을 위한 통신을 수행하는 경우 상호 간에 어떤 정보를 송수신하는 지를 제공할 수 있다.

Claims (20)

  1. 전기차에 전력을 전송하는 프라이머리 어셈블리와 연관되는 전기차 전원 공급장치 컨트롤러 (SECC, Supply Equipment Communication Controller) 및 전기차에 탑재되며 상기 프라이머리 어셈블리로부터 전력을 수신하는 세컨더리 어셈블리와 연관되는 전기차 통신 컨트롤러 (EVCC, Electric Vehicle Communication Controller) 간에 수행되는 충전 통신 방법에 있어서,
    상기 SECC 및 상기 EVCC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하는 단계;
    상기 SECC 및 상기 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하는 단계; 및
    상기 SECC 및 상기 EVCC 간에 동적 무선 전력 전송에 의한 충전 세션을 수행하는 단계;
    를 포함하는,
    전기차 충전을 위한 충전 통신 방법.
  2. 제1항에 있어서,
    상기 통신 셋업 및 상기 세션 셋업을 수행하는 단계는,
    상기 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하는,
    전기차 충전을 위한 충전 통신 방법.
  3. 제1항에 있어서,
    상기 동적 무선 전력 전송을 위한 충전 통신 세션을 수행하는 단계는,
    상기 EVCC 및 상기 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에, 상기 EVCC와 무선랜에 의한 통신이 가능한 SECC가 동적 무선 전력 전송 (D-WPT) 서비스를 제공할 수 있는 D-WPT 도로 상에 설치된 SECC인 지를 식별하는 단계;
    를 포함하는,
    전기차 충전을 위한 충전 통신 방법.
  4. 제1항에 있어서,
    상기 SECC 및 상기 EVCC 간에 동적 무선 전력 전송에 의하여 상기 전기차의 충전율 (SOC, State of Charge)이 미리 결정된 기준치에 도달하는 경우 상기 충전 세션을 중지하는 단계;
    를 더 포함하는,
    전기차 충전을 위한 충전 통신 방법.
  5. 제1항에 있어서,
    상기 SECC 및 상기 EVCC 중 적어도 하나 이상에 의하여 상기 전기차가 D-WPT 도로 상의 차선 (Lane)에서 D-WPT 도로가 아닌 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 상기 충전 세션을 중지하고 스탠바이하는 단계;
    를 더 포함하는,
    전기차 충전을 위한 충전 통신 방법.
  6. 제5항에 있어서,
    상기 스탠바이된 상태에서 상기 SECC 및 상기 EVCC 중 적어도 하나 이상에 의하여 상기 전기차가 무선랜 범위 밖으로 이탈하는 이벤트가 발생하였음이 감지되는 경우, 상기 충전 통신 세션을 중지하고 통신을 종결하는 단계;
    를 더 포함하는,
    전기차 충전을 위한 충전 통신 방법.
  7. 제5항에 있어서,
    상기 스탠바이된 상태에서 상기 SECC 및 상기 EVCC 중 적어도 하나 이상에 의하여 상기 전기차가 상기 D-WPT 도로 상의 차선으로 복귀하였음이 감지되는 경우, 상기 전기차가 복귀한 상기 D-WPT 도로 상의 SECC와 상기 EVCC 간에 상기 세션 셋업을 수행하는 단계를 다시 수행하는,
    전기차 충전을 위한 충전 통신 방법.
  8. 제1항에 있어서,
    상기 충전 통신 세션을 수행하는 단계는,
    포지셔닝 및 페어링의 결과에 기반하여, 상기 SECC 및 상기 EVCC 중 적어도 하나 이상에 의하여 상기 전기차가 D-WPT 도로 상의 차선 (Lane)에서 동일한 서비스를 제공하는 D-WPT 도로 상의 다른 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 호환성 체크 및 파라미터 교환 과정을 다시 수행하는,
    전기차 충전을 위한 충전 통신 방법.
  9. 제1항에 있어서,
    상기 충전 통신 세션을 수행하는 단계는,
    포지셔닝 및 페어링의 결과에 기반하여, 상기 SECC 및 상기 EVCC 중 적어도 하나 이상에 의하여 상기 전기차가 D-WPT 도로 상의 차선 (Lane)에서 다른 서비스를 제공하는 D-WPT 도로 상의 다른 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 서비스 디스커버리 및 서비스 선택 과정을 다시 수행하는,
    전기차 충전을 위한 충전 통신 방법.
  10. 제1항에 있어서,
    상기 SECC 및 상기 EVCC 중 적어도 하나 이상에 의하여 상기 전기차가 D-WPT 도로 상의 차선 (Lane)에서 다른 호환성을 가지는 D-WPT 도로 상의 다른 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 상기 충전 세션을 중지하고 상기 다른 차선 상의 SECC 및 상기 EVCC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하는 단계를 다시 수행하는,
    전기차 충전을 위한 충전 통신 방법.
  11. 제1항에 있어서,
    상기 SECC 및 상기 EVCC 중 적어도 하나 이상에 의하여 상기 전기차가 D-WPT 도로 상의 차선 (Lane)에서 정적 무선 전력 전송 (S-WPT) 서비스를 제공하는 주차 공간에 진입하는 이벤트가 발생하였음이 감지되는 경우, 상기 충전 세션을 중지하고 상기 EVCC 및 상기 주차 공간 상의 SECC 간에 무선랜 페어링 과정을 수행하는 단계; 및
    상기 무선랜 페어링 과정 이후 상기 EVCC 및 상기 주차 공간 상의 SECC 간에 세션 셋업을 수행하는 단계;
    를 더 포함하는, 전기차 충전을 위한 충전 통신 방법.
  12. 제1항에 있어서,
    상기 SECC 및 상기 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하는 단계는,
    프레임 바디(Frame Body) 내의 VSE (Vendor Specific Element) 중 일부인 부가 정보로서 D-WPT를 나타내는 정보를 포함하는 메시지에 기반하여 상기 SECC가 D-WPT 서비스를 지원함을 나타내는,
    충전을 위한 충전 통신 방법.
  13. 전기차에 탑재되며 프라이머리 어셈블리로부터 전력을 수신하는 세컨더리 어셈블리와 연관되는 전기차 통신 컨트롤러 (EVCC, Electric Vehicle Communication Controller)로서,
    적어도 하나 이상의 명령을 메모리(memory)로부터 수신하여 실행하는 프로세서(processor);
    를 포함하고,
    상기 프로세서는 상기 적어도 하나 이상의 명령을 실행함으로써:
    상기 EVCC와 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하고,
    상기 SECC 및 상기 EVCC 간에 동적 무선 전력 전송 (D-WPT)을 위한 충전 통신 세션을 수행하고,
    상기 SECC 및 상기 EVCC 간에 동적 무선 전력 전송에 의한 충전 세션을 수행하는,
    전기차 통신 컨트롤러 (EVCC).
  14. 제13항에 있어서,
    상기 프로세서는 상기 적어도 하나 이상의 명령을 실행함으로써: 상기 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에 무선 전력 전송을 위한 통신 셋업 및 세션 셋업을 수행하는,
    전기차 통신 컨트롤러 (EVCC).
  15. 제13항에 있어서,
    상기 프로세서는 상기 적어도 하나 이상의 명령을 실행함으로써:
    상기 EVCC 및 상기 EVCC와 무선랜 (WLAN)에 의한 통신이 가능한 SECC 간에, 상기 EVCC와 무선랜에 의한 통신이 가능한 SECC가 동적 무선 전력 전송 (D-WPT) 서비스를 제공할 수 있는 D-WPT 도로 상에 설치된 SECC인 지를 식별하는,
    전기차 통신 컨트롤러 (EVCC).
  16. 제13항에 있어서,
    상기 프로세서는 상기 적어도 하나 이상의 명령을 실행함으로써:
    상기 전기차가 D-WPT 도로 상의 차선 (Lane)에서 D-WPT 도로가 아닌 차선으로 차선을 변경하는 이벤트가 발생하였음이 감지되는 경우, 상기 충전 세션을 중지하고 스탠바이하는,
    전기차 통신 컨트롤러 (EVCC).
  17. 제16항에 있어서,
    상기 프로세서는 상기 적어도 하나 이상의 명령을 실행함으로써:
    상기 스탠바이된 상태에서 상기 SECC 및 상기 EVCC 중 적어도 하나 이상에 의하여 상기 전기차가 상기 D-WPT 도로 상의 차선으로 복귀하였음이 감지되는 경우, 상기 전기차가 복귀한 상기 D-WPT 도로 상의 SECC와 상기 EVCC 간에 상기 세션 셋업을 다시 수행하는,
    전기차 통신 컨트롤러 (EVCC).
  18. 제13항에 있어서,
    상기 프로세서는 상기 적어도 하나 이상의 명령을 실행함으로써:
    포지셔닝 및 페어링의 결과에 기반하여, 상기 전기차가 D-WPT 도로 상의 차선 (Lane)에서 D-WPT 도로 상의 다른 차선으로 차선을 변경하였음이 감지되는 경우, 상기 변경된 차선이 상기 변경 전의 차선과 동일한 서비스를 제공하는 지, 및 동일한 호환성 레벨을 가지는 지를 식별하는,
    전기차 통신 컨트롤러 (EVCC).
  19. 제13항에 있어서,
    상기 프로세서는 상기 적어도 하나 이상의 명령을 실행함으로써:
    상기 변경된 차선이 상기 변경 전의 차선과 동일한 서비스를 제공하는 지, 및 동일한 호환성 레벨을 가지는 지에 기반하여 상기 변경된 차선 상의 SECC와 세션 셋업, 서비스 디스커버리 및 선택, 및 파라미터 교환 과정 중 적어도 하나 이상을 수행하는,
    전기차 통신 컨트롤러 (EVCC).
  20. 제13항에 있어서,
    상기 프로세서는 상기 적어도 하나 이상의 명령을 실행함으로써:
    프레임 바디(Frame Body) 내의 VSE (Vendor Specific Element) 중 일부인 부가 정보로서 D-WPT를 나타내는 정보를 포함하는 메시지에 기반하여 상기 SECC가 D-WPT 서비스를 지원함을 나타내는,
    전기차 통신 컨트롤러 (EVCC).
PCT/KR2023/010803 2022-07-26 2023-07-26 동적 무선 전력 전송을 위한 무선랜 기반의 충전 통신 장치 및 방법 WO2024025329A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220092344 2022-07-26
KR10-2022-0092344 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024025329A1 true WO2024025329A1 (ko) 2024-02-01

Family

ID=89706961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010803 WO2024025329A1 (ko) 2022-07-26 2023-07-26 동적 무선 전력 전송을 위한 무선랜 기반의 충전 통신 장치 및 방법

Country Status (2)

Country Link
KR (1) KR20240015044A (ko)
WO (1) WO2024025329A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110085162A (ko) * 2010-01-19 2011-07-27 순천대학교 산학협력단 전기 자동차용 충전 장치와 충전 시스템 및 그 충전 방법
JP2017536067A (ja) * 2014-09-10 2017-11-30 クアルコム,インコーポレイテッド 動的誘導電力伝達システムにおける無効電力制御のためのシステムおよび方法
KR20170133958A (ko) * 2016-05-27 2017-12-06 에스트래픽 (주) 주행차량 충전 및 과금 시스템
KR102114124B1 (ko) * 2018-11-16 2020-06-17 학교법인 송원대학교 동적충전 구간과 정적충전 구간에서의 충전량 충족을 위한 속도 제어 알고리즘이 적용된 무선전력전송 무가선 트램 시스템
US20210203271A1 (en) * 2018-04-24 2021-07-01 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co.,Ltd. Photovoltaic road system and wireless charging vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110085162A (ko) * 2010-01-19 2011-07-27 순천대학교 산학협력단 전기 자동차용 충전 장치와 충전 시스템 및 그 충전 방법
JP2017536067A (ja) * 2014-09-10 2017-11-30 クアルコム,インコーポレイテッド 動的誘導電力伝達システムにおける無効電力制御のためのシステムおよび方法
KR20170133958A (ko) * 2016-05-27 2017-12-06 에스트래픽 (주) 주행차량 충전 및 과금 시스템
US20210203271A1 (en) * 2018-04-24 2021-07-01 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co.,Ltd. Photovoltaic road system and wireless charging vehicle
KR102114124B1 (ko) * 2018-11-16 2020-06-17 학교법인 송원대학교 동적충전 구간과 정적충전 구간에서의 충전량 충족을 위한 속도 제어 알고리즘이 적용된 무선전력전송 무가선 트램 시스템

Also Published As

Publication number Publication date
KR20240015044A (ko) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2022015017A1 (ko) 목표 전력전송량 변경 방법 및 이를 구현하기 위한 전력전송 장치
WO2020222516A1 (ko) 전기차 충전을 위한 교차 인증 방법 및 장치
WO2020218810A1 (ko) Ev 사용자 인가 방법 및 시스템
US10675979B2 (en) In-cable control box mounted on electric vehicle charging cable and method for charging electric vehicle using the same
WO2018074804A1 (ko) 운송 장치를 위한 무선 충전 장치 및 시스템
WO2014168376A1 (ko) 위치기반 전력중개용 모듈, 전기자동차 및 중개서버 그리고 이에 사용되는 사용자인증 콘센트 또는 커넥터
WO2021125615A1 (ko) 전기차용 충전기의 전력공급방법
WO2013058616A2 (ko) 내장 자동차 통신 제어 장치 및 그 동작 방법
WO2013058614A2 (ko) 전기 자동차 및 그 동작 방법
WO2018048256A1 (ko) 전기 자동차 충전용 스마트 콘센트 및 이를 활용한 충전 방법
WO2022065989A1 (ko) 전기자동차 충전을 위한 상호인증 장치 및 방법
WO2021020833A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 이물질 검출 방법
KR20140123622A (ko) 전기 이동 수단 충전 시스템 및 전기 이동 수단 충전방법
KR20200124621A (ko) Ev 사용자 인가 방법 및 시스템
WO2021025306A1 (ko) 전력 전송에서의 페어링 제어 방법 및 장치
KR20200126339A (ko) 전기차 충전을 위한 교차 인증 방법 및 장치
KR20180003996A (ko) 전기차 충전 케이블에 탑재되는 인-케이블 컨트롤 박스 및 이를 이용한 전기차 충전 방법
KR20180016936A (ko) 전기차 병렬 충전 방법 및 장치
WO2024025329A1 (ko) 동적 무선 전력 전송을 위한 무선랜 기반의 충전 통신 장치 및 방법
WO2013058617A2 (ko) 전기 자동차 및 그 동작 방법
WO2018044058A2 (ko) 전기차용 충전 장치 및 이를 포함하는 충전 시스템
WO2024085714A1 (ko) 동적 무선 전력 전송을 위한 무선랜 기반의 충전 통신 장치 및 방법, 및 핸드오프 방법
WO2024005604A1 (ko) 전기차 충전을 위한 무선랜 기반의 충전 통신 장치 및 방법
WO2021158020A1 (ko) 전기차 충전 스테이션의 부트스트랩 방법
WO2022075778A1 (ko) 전기차와 그리드 간 메시지 시퀀싱에서의 조기 재협상 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846987

Country of ref document: EP

Kind code of ref document: A1