WO2021125476A1 - 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩 - Google Patents

복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩 Download PDF

Info

Publication number
WO2021125476A1
WO2021125476A1 PCT/KR2020/008813 KR2020008813W WO2021125476A1 WO 2021125476 A1 WO2021125476 A1 WO 2021125476A1 KR 2020008813 W KR2020008813 W KR 2020008813W WO 2021125476 A1 WO2021125476 A1 WO 2021125476A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
module
bms
pack
battery
Prior art date
Application number
PCT/KR2020/008813
Other languages
English (en)
French (fr)
Inventor
이정훈
윤두한
양재훈
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/633,858 priority Critical patent/US20220399578A1/en
Priority to JP2022502151A priority patent/JP7325601B2/ja
Priority to EP20901113.9A priority patent/EP4037059A4/en
Publication of WO2021125476A1 publication Critical patent/WO2021125476A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sub-pack including a plurality of unit modules and a BMS assembly, and a battery pack including the same, and more particularly, to a plurality of unit modules electrically in a mixed form in series and parallel through a connecting wire.
  • the present invention relates to a sub-pack having a connected structure and a battery pack having a structure in which a pair of such sub-packs are connected in series through a serial bus bar.
  • Secondary batteries that are easy to apply according to product groups and have electrical characteristics such as high energy density are not only portable devices, but also electric vehicles (EVs) or hybrid vehicles (HEVs) driven by an electric drive source. It is universally applied. These secondary batteries are attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that not only the primary advantage of being able to dramatically reduce the use of fossil fuels but also the fact that no by-products are generated from the use of energy.
  • EVs electric vehicles
  • HEVs hybrid vehicles
  • the types of secondary batteries currently widely used include lithium ion batteries, lithium polymer batteries, nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, and the like.
  • the operating voltage of the unit secondary battery cell is about 2.5V to 4.5V. Accordingly, when a higher output voltage is required, a plurality of battery cells are connected in series to form a battery pack. In addition, a plurality of battery cells may be connected in parallel to form a battery pack according to the charge/discharge capacity required for the battery pack. Accordingly, the number of battery cells included in the battery pack may be variously set according to a required output voltage or charge/discharge capacity.
  • a battery module including at least one battery cell is first configured, and other components are added using the at least one battery module.
  • a method of configuring the battery pack is common.
  • the present invention was devised in consideration of the above-described problems, and a subpack having a structure in which electrical/mechanical coupling between a plurality of unit modules and electrical/mechanical coupling between a unit module and a BMS can be performed as simply as possible, and a subpack including the same
  • An object of the present invention is to provide a battery pack, thereby reducing component cost and minimizing loss in management.
  • a sub-pack comprising: a battery module assembly including a plurality of unit modules; and a BMS assembly coupled to one side in a longitudinal direction of the battery module assembly, wherein the battery module assembly includes: a first sub-module including a plurality of unit modules connected in a longitudinal direction; and a second sub-module including a plurality of unit modules, the second sub-module being connected to the first sub-module along a width direction of the unit module; wherein the BMS assembly comprises: a first BMS for controlling charging/discharging of the first sub-module; a second BMS for controlling charging/discharging of the second sub-module; and a BMS frame wrapped around the first BMS and the second BMS and fastened to one side in the longitudinal direction of the battery module assembly.
  • the unit module may include: a plurality of battery cells forming a plurality of cell groups; a lower housing supporting the plurality of battery cells; an upper housing coupled to an upper portion of the lower housing and providing an accommodating space for the plurality of battery cells; and a plurality of parallel bus bars seated on the upper surface of the upper housing and spaced apart from each other and arranged side by side; may include.
  • the cell group may include a plurality of battery cells disposed along a length direction of the unit module.
  • Battery cells included in the same cell group may be connected in parallel through the parallel bus bar.
  • a plurality of unit modules included in the first sub-module are connected in parallel by an electrical connection between parallel bus bars positioned on the same extension line, and a plurality of unit modules included in the second sub-module are located between the same extension line. may be connected in parallel by an electrical connection between parallel busbars.
  • the first sub-module and the second sub-module may be connected in series to each other by an electrical connection between adjacent parallel bus bars.
  • a parallel connection between a plurality of battery cells included in the same cell group, a parallel connection between a plurality of unit modules included in the same sub-module, and a series connection between a plurality of adjacent sub-modules may all be achieved by wire bonding.
  • the lower housing may include: at least one fastening protrusion having a bolting hole and provided at one side in a longitudinal direction of the lower housing; at least one fixing protrusion having a fixing protrusion and provided on one side of the lower housing in the longitudinal direction; a first fastening receiving part provided on the other side in the longitudinal direction of the lower housing and having a shape corresponding to a position corresponding to the fastening protrusion; and a first fixing receiving part provided on the other side of the lower housing in the longitudinal direction and having a shape corresponding to a position corresponding to the fixing protrusion; may include.
  • the upper housing may include a bolting hole formed at a position corresponding to the first fastening receiving part; and a projection receiving groove formed at a position corresponding to the first fixing receiving portion and having a shape corresponding to the fixing projection; may include.
  • the BMS frame may include a plurality of front fastening parts provided at positions corresponding to the fastening protrusions and having bolting holes; a plurality of second fastening accommodating parts provided at positions corresponding to the front fastening part and the fastening protrusion; and a plurality of second fixing accommodating parts provided in shapes corresponding to positions corresponding to the fixing protrusions. may include.
  • Each of the first BMS and the second BMS includes a plurality of sensing terminals, the sensing terminal of the first BMS is electrically connected to the parallel bus bar of the first sub-module by wire bonding, and the sensing of the second BMS The terminal may be electrically connected to the parallel bus bar of the second sub-module by wire bonding.
  • the sub-pack according to the embodiment of the present invention is coupled to each other in a mirror-symmetrical form with respect to a central axis parallel to the longitudinal direction of the sub-pack.
  • the battery pack may include a serial bus bar configured to connect a pair of sub-packs in series and seated on the BMS frame; may further include.
  • a vehicle according to an embodiment of the present invention includes a battery pack according to an embodiment of the present invention.
  • electrical/mechanical coupling between a plurality of unit modules constituting the battery pack and electrical/mechanical coupling between the unit module and the BMS can be made as simple as possible, thereby reducing component costs and managing costs. loss can be minimized.
  • FIG. 1 is a perspective view illustrating a battery pack according to an embodiment of the present invention.
  • FIG. 2 is a partial perspective view showing the front of the battery pack shown in FIG. 1 well.
  • FIG. 3 is a perspective view illustrating a sub-pack according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing the lower surface of the sub pack shown in FIG. 3 well.
  • FIG. 5 is a perspective view illustrating a battery module assembly applied to a sub-pack according to an embodiment of the present invention.
  • FIG. 6 is a perspective view illustrating a unit module applied to the battery module assembly shown in FIG. 5 .
  • FIG. 7 is a view showing the lower surface of the unit module shown in FIG. 6 well.
  • FIG. 8 is a partially enlarged view illustrating a coupling relationship between a pair of unit modules for constituting a sub-module applied to the battery module assembly shown in FIG. 5 .
  • FIG. 9 is a partial perspective view showing the structure of the upper surface of the unit module shown in FIG. 6 well.
  • FIG. 10 is a diagram illustrating an electrical connection relationship between unit modules constituting the battery module assembly shown in FIG. 5 .
  • FIG. 11 is a view showing a rear block applied to the battery module assembly shown in FIG. 5 .
  • FIG. 12 and 13 are perspective views illustrating a BMS assembly constituting the sub pack shown in FIG. 3 .
  • FIG. 14 is a diagram illustrating an electrical coupling relationship between the BMS assembly shown in FIGS. 12 and 13 and the battery module assembly shown in FIG. 5 .
  • 15 is a diagram illustrating an electrical connection relationship between a pair of sub-packs according to an embodiment of the present invention.
  • 16 is a diagram illustrating a coupling structure between a BMS assembly and a battery module assembly constituting a sub-pack according to an embodiment of the present invention.
  • FIGS. 1 to 5 a schematic structure of a battery pack according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5 .
  • a battery pack according to an embodiment of the present invention includes a pair of sub-packs 1 , a heat sink 2 , a serial bus bar 3 , and a plurality of fastenings. Includes bolts (4).
  • the pair of sub-packs 1 are coupled with each other in a mirror-symmetrical shape with respect to a central axis parallel to the width direction (Y-axis direction) of the battery pack with a heat sink 2 interposed therebetween. That is, the pair of sub packs 1 are coupled with their bottom surfaces facing each other.
  • the sub-pack 1 positioned above will be referred to as a first sub-pack
  • the sub-pack 1 positioned below will be referred to as a second sub-pack.
  • a detailed structure of the sub pack 1 will be described later in detail with reference to FIG. 3 or less.
  • the heat sink 2 is a component applied for cooling the battery pack, and is interposed between the pair of sub-packs 1 , and thus both sides thereof are the bottom surfaces of each of the pair of sub-packs 1 . contact with
  • the serial bus bar 3 connects a pair of sub-packs 1 coupled to each other in a mirror-symmetric form in series. That is, the parallel bus bar 114 positioned at the outermost side of one side in the width direction (parallel to the Y-axis) of the first sub-pack 1 and the width direction of the second sub-pack 1 (parallel to the Y-axis) ) The parallel bus bars 114 positioned at the outermost side of one side have different polarities, and the serial bus bar 3 connects between the pair of parallel bus bars 114 to form a pair of sub-packs (1). to be connected in series with each other.
  • the fastening bolt 4 may be used for fastening between the pair of sub packs 1 .
  • the fastening bolt 4 is, unlike this, used for fastening between the unit modules 110 and between the battery module assembly 10 and the BMS assembly 20, and thus the completed sub-pack 1
  • the pair of bonding may be achieved by an adhesive layer interposed between the first sub-pack 1 and the heat sink 2 and between the second sub-pack 1 and the heat sink 2 .
  • the sub pack 1 according to an embodiment of the present invention includes a battery module assembly 10 and a BMS assembly 20 .
  • the battery module assembly 10 includes a plurality of sub-modules 100 , a rear block 200 , and a side beam 300 .
  • each sub-module 100 includes a plurality of unit modules 110 connected to each other in parallel.
  • one sub-module 100 has a form in which two unit modules 110 are combined
  • one battery module assembly 10 has a form in which two sub-modules 100 are combined.
  • one sub-module 100 may have a form in which three or more unit modules 110 are combined
  • one battery module assembly 10 may have a form in which three or more sub-modules 100 are combined. It is also possible to have Meanwhile, for convenience of description, each of the pair of sub-modules 100 shown in FIG. 5 will be referred to as a first sub-module 100 and a second sub-module 100 .
  • the unit module 110 includes a plurality of battery cells 111 , a lower housing 112 , an upper housing 113 , and a plurality of parallel bus bars 114 .
  • a cylindrical battery cell may be applied.
  • a plurality of the battery cells 111 may be provided along the longitudinal direction (parallel to the X-axis in FIG. 6 ) of the unit module 110 , and also in the width direction (the Y-axis and the Y-axis in FIG. 6 ) of the unit module 110 .
  • a plurality may be provided along the side-by-side direction).
  • the plurality of battery cells 111 are vertically disposed on the lower housing 112 .
  • Each of the plurality of battery cells 111 includes a positive terminal 111a and a negative terminal 111b exposed to the outside through the upper surface of the upper housing 113 .
  • a can accommodating the electrode assembly may function as the negative terminal 111b.
  • a plurality of battery cells 111 arranged along the longitudinal direction of the unit module 110 are connected in parallel to each other to form one cell group C.
  • the plurality of cell groups C arranged along the width direction of the unit module 110 are connected to each other in series.
  • two cell groups C adjacent to each other among the plurality of cell groups C will be referred to as a first cell group and a second cell group.
  • Parallel bus bars 114 are disposed on both sides of each cell group C.
  • the positive terminals 111a of the battery cells 111 constituting the first cell group C are connected to the parallel bus bar 114 located on one side of the first cell group C by wire bonding.
  • the negative terminals 111b of the battery cells 111 constituting the first cell group C are connected to the parallel bus bar 114 located on the other side of the first cell group C by wire bonding. Accordingly, the plurality of battery cells 111 constituting the first cell group C are connected to each other in parallel.
  • the positive terminals 111a of the plurality of battery cells 111 constituting the second cell group C adjacent to the first cell group C are parallel bus bars 114 positioned at one side of the second cell group. ), that is, connected to the parallel bus bar 114 located on the other side of the first cell group C by wire bonding.
  • the negative terminals 111b of the plurality of battery cells 111 constituting the second cell group C are connected to the parallel bus bar 114 located on the other side of the second cell group C by wire bonding. . Accordingly, the plurality of battery cells 111 constituting the second cell group C are connected in parallel with each other, and the first cell group C and the second cell group C are connected in series with each other.
  • the lower housing 112 supports a plurality of battery cells 111 , and includes a fastening protrusion 112a , a fixed protrusion 112b , a first fastening receiving part 112c and a first fastening accommodating part 112c 1 may include a fixed accommodating part 112d.
  • the fixing protrusion 112b and the first fixing accommodating part 112d are not essential components, but may be provided for the convenience of fastening between the unit modules 110 .
  • At least one fastening protrusion 112a is provided on one side of the longitudinal direction (parallel to the X-axis of FIG. 6 ) of the lower housing 112 , and is formed to protrude out of the lower housing 112 .
  • the fastening protrusion 112a has a bolting hole H1 into which the fastening bolt 4 (refer to FIG. 1 ) can be inserted along the height direction (parallel to the Z axis of FIG. 6 ) of the unit module 110 .
  • At least one fixing protrusion 112b is provided on one side in the longitudinal direction of the lower housing 112 and is formed to protrude to the outside of the lower housing 112 .
  • the fixing protrusion 112b includes a fixing protrusion f protruding upward (in a direction parallel to the Z-axis in FIG. 6 ).
  • the first fastening accommodating part 112c is provided on the other side in the longitudinal direction of the lower housing 112 and has a shape corresponding to a position corresponding to the fastening protrusion 112a. Accordingly, in the case of fastening the plurality of unit modules 110 along the longitudinal direction to form the sub-module 100 , the fastening protrusion 112a of one unit module 110 is adjacent to another unit module 110 . It is inserted into the first fastening accommodation portion 112c of the.
  • the upper housing 113 includes a bolting hole H2 formed at a position corresponding to the first fastening receiving portion 112c.
  • the bolting hole H1 provided in the lower housing 112 and the bolting hole H2 provided in the upper housing 113 are one fastening bolt 4 . (see Fig. 1) are placed at the same position as each other so that they can pass through.
  • the first fixing receiving part 112d is provided on the other side in the longitudinal direction of the lower housing 112 and has a shape corresponding to a position corresponding to the fixing protrusion 112b. Therefore, in the case of fastening the plurality of unit modules 110 in the longitudinal direction to form the sub-module 100 , the fixing protrusion 112b of one unit module 110 is adjacent to the other unit module 110 . It is inserted into the first fixed receiving portion (112d) of the.
  • the upper housing 113 is provided with a protrusion receiving groove (G) formed at a position corresponding to the first fixing receiving portion (112d).
  • the fixing protrusion f provided in the lower housing 112 is inserted into the protrusion receiving groove G provided in the upper housing 113, whereby the pair The unit module 110 may be fixed so as not to move in the horizontal direction (a direction parallel to the XY plane in FIG. 6 ).
  • the upper housing 113 provides a space for accommodating the plurality of battery cells 111 , and includes at least one bolting hole H2 and a plurality of cell exposed portions 113a formed on the upper surface.
  • the bolting hole H2 is formed at a position corresponding to the first fastening receiving portion 112c of the lower housing 112 to insert the fastening bolt 4 (see FIG. 1). provide space.
  • the cell exposed portion 113a has a shape extending in the longitudinal direction (parallel to the X-axis of FIG. 6 ) of the upper housing 113 , and is located at a position corresponding to the cell group C. provided in the same number as the number.
  • the cell exposed portion 113a includes a plurality of slits S so that the positive terminal 111a and the negative terminal 111b of the battery cell 111 can be exposed to the outside through the upper surface of the upper housing 113 . .
  • the positive terminal 111a and the negative terminal 111b exposed through the slit S are connected to the parallel bus bar 114 for wire bonding. By being connected by a series/parallel combination, an electrical connection is made.
  • the parallel bus bar 114 has a shape extending in a direction parallel to the cell exposed portion 113a and is seated on the upper surface of the upper housing 113 .
  • the parallel bus bars 114 are disposed on both sides of each of the plurality of cell exposed portions 113a.
  • the parallel bus bar 114 disposed at one end of the unit module 110 in the width direction (the direction parallel to the Y axis in FIG. 6 ) and the parallel bus bar disposed at the other end of the unit module 110 . (114) has a different polarity. This is to enable serial connection to each other when connecting the plurality of sub-modules 100 along the width direction of the unit module 110 . Referring to FIG.
  • a pair of parallel bus bars 114 provided on the outermost sides of each of the sub-modules 100 adjacent to each other are in contact with each other or are connected by wire bonding, so that the serial connection between the adjacent sub-modules 100 is achieved.
  • the rear block 200 is a component applied for mechanically fastening a plurality of sub-modules 100 , and includes a plurality of rear fastening parts 210 and a plurality of rear fixing parts 220 . do.
  • the rear fastening part 210 is provided in a shape corresponding to a position corresponding to the first fastening receiving part 112c of the lower housing 112 .
  • the rear fastening part 210 includes a bolting hole H3 having a size corresponding to a position corresponding to the bolting hole H2 of the upper housing 113 .
  • the rear fixing part 220 is provided in a shape corresponding to a position corresponding to the first fixing receiving part 112d of the lower housing 112 .
  • the rear fixing part 220 may include a fixing protrusion having a size corresponding to a position corresponding to the protrusion receiving groove G (see FIG. 7 ) of the upper housing 113 . .
  • the BMS assembly 20 includes a plurality of battery management system (BMS) 21 and a BMS frame 22 that wraps and fixes the plurality of BMSs 21 at once.
  • the BMS assembly 20 is coupled to one side of the battery module assembly 10 (see FIG. 5 ) in the longitudinal direction (in a direction parallel to the X axis of FIG. 5 ). That is, the BMS assembly 20 is provided in the same number as the number of sub-packs 1 .
  • a plurality of BMSs 21 are provided, and each BMS 21 is connected to each sub-module 100 in a one-to-one manner through a plurality of sensing terminals T provided thereon. That is, the BMS 21 is provided with the same number of sub-modules 100 .
  • the sensing terminals T of the BMS 21 are connected one-to-one with the parallel bus bars 114 by wire bonding using a connecting wire W.
  • one BMS 21 may sense voltages and/or currents of a plurality of cell groups C (refer to FIG. 7 ) and control charging/discharging of the sub-modules 100 accordingly.
  • FIG. 7 a case in which two BMSs 21 are provided for each BMS assembly 20 is exemplarily shown. In this case, each BMS 21 is described as the first BMS 21 for convenience of description. ) and the second BMS 21 .
  • the first BMS 21 controls charging and discharging of the first sub-module 100 (refer to FIG. 5 ), and the second BMS 21 is a second sub-module 100 adjacent to the first sub-module 100 . (See Fig. 5) to control the charge and discharge.
  • the BMS frame 22 encloses and fixes the plurality of BMSs 21 at once, and is coupled to one side in the longitudinal direction of the battery module assembly 10 (refer to FIG. 5 ).
  • the BMS frame 22 has a shape extending along the width direction (a direction parallel to the Y axis of FIG. 5 ) of the battery module assembly 10 (see FIG. 5 ), and corresponds to the width of the battery module assembly 10 . has a length
  • the BMS frame 22 may include a plurality of front fastening parts 22a, a plurality of second fastening accommodating parts 22b, a plurality of second fixing accommodating parts 22c, and a bus bar seating part 22d. .
  • the front fastening part 22a is provided at a position corresponding to the fastening protrusion 112a, and has a bolting hole H4.
  • the bolting hole H4 formed in the front fastening part 22a is provided in a shape corresponding to a position corresponding to the bolting hole H1 formed in the lower housing 112 . Accordingly, one fastening bolt 4 (see FIGS. 1 and 2 ) can pass through the bolting hole H4 formed in the front fastening part 22a and the bolting hole H1 formed in the lower housing 112 at the same time. , whereby the battery module assembly 10 and the BMS assembly 20 may be fastened.
  • the second fastening receiving part 22b is provided in the form of a groove at a position corresponding to the front fastening part 22a and the fastening protrusion 112a.
  • the second fastening accommodating portion 22b has a shape corresponding to the fastening protrusion 112a, and accordingly, the fastening protrusion 112a is inserted into the second fastening accommodating portion 22b, and the BMS assembly 20 and the battery module assembly (10) may be in close contact with each other.
  • the second fixing accommodating part 22c is provided in the form of a groove at a position corresponding to the fixing protrusion 112b.
  • the second fixing accommodating part 22c has a shape corresponding to the fixing protrusion 112b, and accordingly, the fixing protrusion 112b is inserted into the second fixing accommodating part 22c, and the BMS assembly 20 and the battery module assembly (10) may be in close contact with each other.
  • the bus bar seating portion 22d is provided in the form of a groove on one side in the longitudinal direction of the BMS frame 22 .
  • the bus bar seating portion 22d includes a pair of sub-packs 1 coupled to each other in a mirror-symmetrical form, and a serial bus bar 3 connecting the pair of sub-packs 1 in series to each other. provide space.
  • the pair of BMS assemblies 20 are coupled with each other in a mirror-symmetrical shape with respect to a central axis parallel to the width direction (parallel to the Y axis in FIG. 15 ) of the battery pack.
  • the bus bar seating portions 22d provided in each of the pair of BMS assemblies 20 coupled as described above are connected to each other to provide a space in which the serial bus bar 3 can be mounted.
  • serial bus bar 3 seated on the bus bar seating part 22d connects between the parallel bus bars 114 provided at the outermost sides of each of the pair of sub packs 1 , and accordingly, the pair of The sub packs 1 are connected in series with each other.
  • the electrical connection between the serial bus bar 3 and the parallel bus bar 114 is made by wire bonding using a connecting wire (W).
  • the battery pack according to an embodiment of the present invention has a structure in which a plurality of unit modules 110 can be simply fastened by bolting, as well as a plurality of unit modules 110 are coupled to each other.
  • the formed battery module assembly 10 and the BMS assembly 20 also have a structure that can be simply fastened by bolting.
  • a pair of sub-packs 1 are bolted to each other in a mirror-symmetrical state, and the fastening bolts 4 are bolted. It has a structure in which the pair of sub packs 1 can be fastened by being inserted into the holes H1 to H4.
  • the fastening between the unit modules 110 constituting each sub-pack 1 and the battery module assembly 10 through the fastening between the pair of sub-packs 1 . ) and the fastening between the BMS assembly 20 has a structure that can also be made at the same time.
  • a plurality of unit modules 110 by using the parallel bus bar 114 and the serial bus bar 3 and applying wire bonding to the electrical connection between the components. They can simply create a mixture of series and parallel, so it is very easy to expand the capacity and output voltage as needed.
  • a vehicle according to an embodiment of the present invention includes the battery pack according to the embodiment of the present invention as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 일 실시예에 따른 서브 팩은, 복수의 단위 모듈을 포함하는 배터리 모듈 어셈블리; 및 상기 배터리 모듈 어셈블리의 길이 방향 일 측에 결합되는 BMS 어셈블리;를 포함하는 서브 팩에 있어서, 상기 배터리 모듈 어셈블리는, 길이 방향을 따라 연결되는 복수의 단위 모듈을 포함하는 제1 서브 모듈; 및 복수의 단위 모듈을 포함하며, 상기 단위 모듈의 폭 방향을 따라 제1 서브 모듈과 연결되는 제2 서브 모듈; 을 포함하고, 상기 BMS 어셈블리는, 상기 제1 서브 모듈의 충/방전을 제어하는 제1 BMS; 상기 제2 서브 모듈의 충/방전을 제어하는 제2 BMS; 및 상기 제1 BMS와 제2 BMS의 둘레를 감싸며 상기 배터리 모듈 어셈블리의 길이 방향 일 측에 체결되는 BMS 프레임; 을 포함한다.

Description

복수의 단위 모듈과 BMS 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩
본 발명은, 복수의 단위 모듈과 BMS 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩에 관한 것으로서, 좀 더 구체적으로는 복수의 단위 모듈이 커넥팅 와이어를 통해 직렬과 병렬이 혼합된 형태로 전기적으로 연결된 구조를 갖는 서브 팩 및 이러한 서브 팩 한 쌍이 직렬 버스바를 통해 직렬로 연결된 구조를 갖는 배터리 팩에 관한 것이다.
본 출원은 2019년 12월 18일 자로 출원된 한국 특허출원번호 제 10-2019-0169899호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
제품 군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차 전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기차량(EV, Electric Vehicle) 또는 하이브리드 차량(HEV, Hybrid Electric Vehicle) 등에 보편적으로 응용되고 있다. 이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
현재 널리 사용되는 이차 전지의 종류에는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등이 있다. 이러한 단위 이차 전지 셀, 즉, 단위 배터리 셀의 작동 전압은 약 2.5V ~ 4.5V이다. 따라서, 이보다 더 높은 출력 전압이 요구될 경우, 복수 개의 배터리 셀을 직렬로 연결하여 배터리 팩을 구성하기도 한다. 또한, 배터리 팩에 요구되는 충방전 용량에 따라 다수의 배터리 셀을 병렬 연결하여 배터리 팩을 구성하기도 한다. 따라서, 상기 배터리 팩에 포함되는 배터리 셀의 개수는 요구되는 출력 전압 또는 충방전 용량에 따라 다양하게 설정될 수 있다.
한편, 복수 개의 배터리 셀을 직렬/병렬로 연결하여 배터리 팩을 구성할 경우, 적어도 하나의 배터리 셀을 포함하는 배터리 모듈을 먼저 구성하고, 이러한 적어도 하나의 배터리 모듈을 이용하여 기타 구성요소를 추가하여 배터리 팩을 구성하는 방법이 일반적이다.
따라서, 복수의 단위 모듈 간의 전기적/기계적 체결, 그리고 단위 모듈과 BMS(Battery management system) 간의 전기적/기계적 체결이 최대한 간소하게 이루어질 수 있는 구조를 갖는 배터리 팩의 개발을 통해 부품 비용 절감 및 관리적 측면에서의 손실을 최소화할 필요가 있다.
본 발명은, 상술한 문제점을 고려하여 창안된 것으로서, 복수의 단위 모듈 간의 전기적/기계적 체결, 그리고 단위 모듈과 BMS 간의 전기적/기계적 체결이 최대한 간소하게 이루어질 수 있는 구조를 갖는 서브 팩 및 이를 포함하는 배터리 팩을 제공함으로써, 부품 비용 절감 및 관리적 측면에서의 손실을 최소화 하는 것을 일 목적으로 한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 서브 팩은, 복수의 단위 모듈을 포함하는 배터리 모듈 어셈블리; 및 상기 배터리 모듈 어셈블리의 길이 방향 일 측에 결합되는 BMS 어셈블리;를 포함하는 서브 팩에 있어서, 상기 배터리 모듈 어셈블리는, 길이 방향을 따라 연결되는 복수의 단위 모듈을 포함하는 제1 서브 모듈; 및 복수의 단위 모듈을 포함하며, 상기 단위 모듈의 폭 방향을 따라 제1 서브 모듈과 연결되는 제2 서브 모듈; 을 포함하고, 상기 BMS 어셈블리는, 상기 제1 서브 모듈의 충/방전을 제어하는 제1 BMS; 상기 제2 서브 모듈의 충/방전을 제어하는 제2 BMS; 및 상기 제1 BMS와 제2 BMS의 둘레를 감싸며 상기 배터리 모듈 어셈블리의 길이 방향 일 측에 체결되는 BMS 프레임; 을 포함한다.
상기 단위 모듈은, 복수의 셀 그룹을 형성하는 복수의 배터리 셀; 상기 복수의 배터리 셀을 지지하는 로워 하우징; 상기 로워 하우징의 상부에 결합되며 상기 복수의 배터리 셀의 수용 공간을 제공하는 어퍼 하우징; 및 상기 어퍼 하우징의 상면에 안착되며 상호 이격되어 나란히 배치되는 복수의 병렬 버스바; 를 포함할 수 있다.
상기 셀 그룹은, 상기 단위 모듈의 길이 방향을 따라 배치되는 복수의 배터리 셀을 포함할 수 있다.
동일한 셀 그룹 내에 포함되는 배터리 셀들은, 상기 병렬 버스바를 통해 병렬 연결될 수 있다.
상기 제1 서브 모듈에 포함되는 복수의 단위 모듈은 동일 연장선 상에 위치하는 병렬 버스바 간의 전기적인 연결에 의해 병렬 연결되고, 상기 제2 서브 모듈에 포함되는 복수의 단위 모듈은 동일 연장선 사에 위치하는 병렬 버스바 간의 전기적인 연결에 의해 병렬 연결될 수 있다.
상기 제1 서브 모듈과 제2 서브 모듈 상호 간은 서로 인접한 병렬 버스바 간의 전기적인 연결에 의해 서로 직렬로 연결될 수 있다.
상기 동일한 셀 그룹 내에 포함되는 복수의 배터리 셀들 간의 병렬 연결, 동일한 서브 모듈에 포함되는 복수의 단위 모듈 간의 병렬 연결 및 서로 인접한 복수의 서브 모듈 간의 직렬 연결은 모두 와이어 본딩에 의해 이루어질 수 있다.
상기 로워 하우징은, 볼팅 홀을 구비하며 상기 로워 하우징의 길이 방향 일 측에 구비되는 적어도 하나의 체결 돌출부; 고정 돌기를 구비하며 상기 로워 하우징의 길이 방향 일 측에 구비되는 적어도 하나의 고정 돌출부; 상기 로워 하우징의 길이 방향 타 측에 구비되되 상기 체결 돌출부와 대응되는 위치에 대응되는 형상으로 구비되는 제1 체결 수용부; 및 상기 로워 하우징의 길이 방향 타 측에 구비되되 상기 고정 돌출부와 대응되는 위치에 대응되는 형상으로 구비되는 제1 고정 수용부; 를 포함할 수 있다.
상기 어퍼 하우징은, 상기 제1 체결 수용부와 대응되는 위치에 형성되는 볼팅 홀; 및 상기 제1 고정 수용부와 대응되는 위치에 형성되며 상기 고정 돌기와 대응되는 형상을 갖는 돌기 수용 홈; 을 포함할 수 있다.
상기 BMS 프레임은, 상기 체결 돌출부와 대응되는 위치에 구비되며 볼팅 홀을 구비하는 복수의 프론트 체결부; 상기 프론트 체결부 및 상기 체결 돌출부와 대응되는 위치에 구비되는 복수의 제2 체결 수용부; 및 상기 고정 돌출부와 대응되는 위치에 대응되는 형상으로 구비되는 복수의 제2 고정 수용부; 를 포함할 수 있다.
상기 제1 BMS 및 제2 BMS 각각은 복수의 센싱 단자를 포함하고, 상기 제1 BMS의 센싱 단자는 상기 제1 서브 모듈의 병렬 버스바와 와이어 본딩에 의해 전기적으로 연결되고, 상기 제2 BMS의 센싱 단자는 상기 제2 서브 모듈의 병렬 버스바와 와이어 본딩에 의해 전기적으로 연결될 수 있다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 배터리 팩은, 본 발명의 일 실시예에 따른 서브 팩이 상기 서브 팩의 길이 방향과 나란한 중심축을 기준으로 서로 거울 대칭 형태로 결합된다.
상기 배터리 팩은, 한 쌍의 상기 서브 팩 사이를 직렬로 연결하며, 상기 BMS 프레임 상에 안착되는 직렬 버스바; 를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 자동차는, 본 발명의 일 실시예에 따른 배터리 팩을 포함한다.
본 발명의 일 측면에 따르면, 배터리 팩을 구성하는 복수의 단위 모듈 간의 전기적/기계적 체결, 그리고 단위 모듈과 BMS 간의 전기적/기계적 체결이 최대한 간소하게 이루어질 수 있으며, 이에 따라 부품 비용 절감 및 관리적 측면에서의 손실을 최소화할 수 있게 된다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리 팩을 나타내는 사시도이다.
도 2는 도 1에 도시된 배터리 팩의 전면이 잘 나타나도록 도시된 부분 사시도이다.
도 3은 본 발명의 일 실시예에 따른 서브 팩을 나타내는 사시도이다.
도 4는 도 3에 도시된 서브 팩의 하면이 잘 나타나도록 도시된 사시도이다.
도 5는 본 발명의 일 실시예에 따른 서브 팩에 적용되는 배터리 모듈 어셈블리를 나타내는 사시도이다.
도 6은 도 5에 도시된 배터리 모듈 어셈블리에 적용되는 단위 모듈을 나타내는 사시도이다.
도 7은 도 6에 도시된 단위 모듈의 하면이 잘 나타나도록 도시된 도면이다.
도 8은 도 5에 도시된 배터리 모듈 어셈블리에 적용되는 서브 모듈을 구성하기 위한 한 쌍의 단위 모듈 간의 결합 관계를 나타내는 부분 확대도이다.
도 9는 도 6에 도시된 단위 모듈의 상면의 구조가 잘 나타나도록 도시된 부분 사시도이다.
도 10은 도 5에 도시된 배터리 모듈 어셈블리를 구성하는 단위 모듈들 간의 전기적 연결 관계를 나타내기 위한 도면이다.
도 11은 도 5에 도시된 배터리 모듈 어셈블리에 적용되는 리어 블록이 나타나도록 도시된 도면이다.
도 12 및 도 13은 도 3에 도시된 서브 팩을 구성하는 BMS 조립체를 나타내는 사시도이다.
도 14는 도 12 및 도 13에 도시된 BMS 조립체와 도 5에 도시된 배터리 모듈 어셈블리 간의 전기적인 결합 관계를 나타내는 도면이다.
도 15는 본 발명의 일 실시예에 따른 한 쌍의 서브 팩 간의 전기적 연결 관계를 나타내기 위한 도면이다.
도 16은 본 발명의 일 실시예에 따른 서브 팩을 구성하는 BMS 조립체와 배터리 모듈 어셈블리 간의 결합 구조를 나타내기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이하, 도 1 내지 도 5를 참조하여 본 발명의 일 실시예에 따른 배터리 팩에 대한 개략적인 구조를 설명하기로 한다.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 배터리 팩은, 한 쌍의 서브 팩(1), 히트 싱크(heat sink)(2), 직렬 버스바(3) 및 복수의 체결 볼트(4)를 포함한다.
상기 한 쌍의 서브 팩(1)은 그 사이에 히트 싱크(2)를 개재한 상태로 배터리 팩의 폭 방향(Y축 방향)과 나란한 중심축을 기준으로 상호 거울 대칭된 형태를 가지며 결합된다. 즉, 상기 한 쌍의 서브 팩(1)은 각각의 바닥면이 서로 대면한 상태로 결합된다. 이하, 설명의 편의를 위해 필요한 경우, 상부에 위치하는 서브 팩(1)을 제1 서브 팩, 하부에 위치하는 서브 팩(1)을 제2 서브 팩이라 지칭하기로 한다. 상기 서브 팩(1)의 구체적인 구조에 대해서는 도 3 이하를 참조하여 상세히 후술하기로 한다.
상기 히트 싱크(2)는 배터리 팩의 냉각을 위해 적용되는 구성요소로서, 한 쌍의 서브 팩(1) 사이에 개재되며, 이에 따라 그 양 면이 한 쌍의 서브 팩(1) 각각의 바닥면과 접촉한다.
상기 직렬 버스바(3)는, 서로 거울 대칭 형태로 결합된 한 쌍의 서브 팩(1)을 직렬로 연결시켜준다. 즉, 상기 제1 서브 팩(1)의 폭 방향(Y축과 나란한 방향) 일 측 최외각에 위치하는 병렬 버스바(114)와 제2 서브 팩(1)의 폭 방향(Y축과 나란한 방향) 일 측 최 외각에 위치하는 병렬 버스바(114)는 서로 다른 극성을 가지며, 직렬 버스바(3)는 이러한 한 쌍의 병렬 버스바(114) 사이를 연결함으로써 한 쌍의 서브 팩(1)이 서로 직렬로 연결되도록 하는 것이다.
상기 체결 볼트(4)는, 한 쌍의 서브 팩(1) 간의 체결에 이용될 수 있다. 또한, 상기 체결 볼트(4)는, 이와는 달리, 단위 모듈(110)들 사이의 체결 및 배터리 모듈 어셈블리(10)와 BMS 어셈블리(20) 간의 체결에 이용되고, 이에 따라 완성된 서브 팩(1) 한 쌍의 결합은 제1 서브 팩(1)과 히트 싱크(2) 사이 및 제2 서브 팩(1)과 히트 싱크(2) 사이에 개재되는 접착층에 의해 이루어질 수도 있다. 또한, 결합력의 극대화를 위해 볼팅에 의한 체결 및 접착층이 개재에 의한 결합을 모두 적용하는 것도 가능하다.
다음은, 도 3 내지 도 5를 참조하여, 본 발명의 일 실시예에 따른 서브 팩(1)의 개략적인 구조를 설명하기로 한다.
도 3 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 서브 팩(1)은, 배터리 모듈 어셈블리(10) 및 BMS 어셈블리(20)를 포함한다.
상기 배터리 모듈 어셈블리(10)는, 복수의 서브 모듈(100), 리어 블록(200) 및 사이드 빔(300)을 포함한다.
상기 복수의 서브 모듈(100)은 서로 직렬로 연결되며, 각각의 서브 모듈(100)은 서로 병렬로 연결되는 복수의 단위 모듈(110)을 포함한다. 본 발명의 도면에서는 하나의 서브 모듈(100)이 2개의 단위 모듈(110)이 결합된 형태를 갖고, 또한 하나의 배터리 모듈 어셈블리(10)가 2개의 서브 모듈(100)이 결합된 형태를 갖는 경우에 대해서만 도시하고 있으나, 본 발명이 이에 한정되는 것은 아니다. 즉, 하나의 서브 모듈(100)이 3개 이상의 단위 모듈(110)이 결합된 형태를 가질 수 있고, 또한 하나의 배터리 모듈 어셈블리(10)가 3개 이상의 서브 모듈(100)이 결합된 형태를 갖는 것도 가능하다. 한편, 설명의 편의상 도 5에 나타난 한 쌍의 서브 모듈(100) 각각을 제1 서브 모듈(100) 및 제2 서브 모듈(100)로 구분하여 칭하기로 한다.
이하, 도 6 내지 도 9를 참조하여, 상기 단위 모듈(110)의 구체적인 구조에 대해서 설명하기로 한다.
도 6 내지 도 9를 참조하면, 상기 단위 모듈(110)은, 복수의 배터리 셀(111), 로워 하우징(112), 어퍼 하우징(113) 및 복수의 병렬 버스바(114)를 포함한다.
상기 배터리 셀(111)로는, 예를 들어 원통형 배터리 셀이 적용될 수 있다. 상기 배터리 셀(111)은 단위 모듈(110)의 길이 방향(도 6의 X축과 나란한 방향)을 따라 복수개가 구비될 수 있고, 또한 단위 모듈(110)의 폭 방향(도 6의 Y축과 나란한 방향)을 따라 복수개가 구비될 수 있다. 상기 복수의 배터리 셀(111)은 로워 하우징(112) 상에 기립 배치된다. 상기 복수의 배터리 셀(111) 각각은, 어퍼 하우징(113)의 상면을 통해 외부로 노출되는 양극 단자(111a) 및 음극 단자(111b)를 구비한다. 상기 배터리 셀(111)이 원통형 배터리 셀인 경우, 전극 조립체를 수용하는 캔(can)이 음극 단자(111b)로서 기능할 수 있다.
상기 단위 모듈(110)의 길이 방향을 따라 배치되는 복수의 배터리 셀(111)들은 서로 병렬로 연결되어 하나의 셀 그룹(C)을 형성한다. 또한, 상기 단위 모듈(110)의 폭 방향을 따라 배치되는 복수의 셀 그룹(C)들은, 서로 직렬로 연결된다. 이하, 설명의 편의상 필요한 경우 복수의 셀 그룹(C)들 중 서로 인접한 두 개의 셀 그룹(C)을 제1 셀 그룹 및 제2 셀 그룹으로 구분하여 지칭하기로 한다.
도 9를 참조하면, 이러한 병렬/직렬 연결은, 복수의 병렬 버스바(114) 및 커넥팅 와이어(W)를 이용하여 구현된다. 각각의 셀 그룹(C)의 양 측에는 병렬 버스바(114)가 배치된다. 상기 제1 셀 그룹(C)을 이루는 배터리 셀(111)들의 양극 단자(111a)들은 제1 셀 그룹(C)의 일 측에 위치하는 병렬 버스바(114)와 와이어 본딩(wire bonding)에 의해 연결된다. 상기 제1 셀 그룹(C)을 이루는 배터리 셀(111)들의 음극 단자(111b)들은 제1 셀 그룹(C)의 타 측에 위치하는 병렬 버스바(114)와 와이어 본딩에 의해 연결된다. 이로써 제1 셀 그룹(C)을 이루는 복수의 배터리 셀(111)들은 서로 병렬로 연결되는 것이다.
또한, 상기 제1 셀 그룹(C)과 인접한 제2 셀 그룹(C)을 이루는 복수의 배터리 셀(111)들의 양극 단자(111a)들은 제2 셀 그룹의 일 측에 위치하는 병렬 버스바(114), 즉 제1 셀 그룹(C)의 타 측에 위치하는 병렬 버스바(114)와 와이어 본딩에 의해 연결된다. 상기 제2 셀 그룹(C)을 이루는 복수의 배터리 셀(111)들의 음극 단자(111b)들은 제2 셀 그룹(C)의 타 측에 위치하는 병렬 버스바(114)와 와이어 본딩에 의해 연결된다. 이로써 제2 셀 그룹(C)을 이루는 복수의 배터리 셀(111)들은 서로 병렬 연결을 이루고, 또한 제1 셀 그룹(C)과 제2 셀 그룹(C)은 서로 직렬 연결을 이루는 것이다.
도 6 내지 도 9를 참조하면, 상기 로워 하우징(112)은, 복수의 배터리 셀(111)들을 지지하며, 체결 돌출부(112a), 고정 돌출부(112b), 제1 체결 수용부(112c) 및 제1 고정 수용부(112d)를 구비할 수 있다. 상기 고정 돌출부(112b) 및 제1 고정 수용부(112d)는 필수적으로 요구되는 구성요소는 아니지만, 단위 모듈(110) 간의 체결의 편리성을 위해 구비될 수 있는 구성요소이다.
상기 체결 돌출부(112a)는 로워 하우징(112)의 길이 방향(도 6의 X축과 나란한 방향) 일 측에 적어도 하나 구비되며, 로워 하우징(112)의 외측으로 돌출 형성된다. 상기 체결 돌출부(112a)는 단위 모듈(110)의 높이 방향(도 6의 Z축과 나란한 방향)을 따라 체결 볼트(4)(도 1 참조)가 삽입될 수 있는 볼팅 홀(H1)을 구비한다. 상기 고정 돌출부(112b)는 로워 하우징(112)의 길이 방향 일 측에 적어도 하나 구비되며, 로워 하우징(112)의 외측으로 돌출 형성된다. 상기 고정 돌출부(112b)는 상방(도 6의 Z축과 나란한 방향)으로 돌출 형성된 고정 돌기(f)를 구비한다.
상기 제1 체결 수용부(112c)는 로워 하우징(112)의 길이 방향 타 측에 구비되며, 체결 돌출부(112a)와 대응되는 위치에 대응되는 형상으로 구비된다. 따라서, 서브 모듈(100)의 형성을 위해 복수의 단위 모듈(110)을 길이 방향을 따라 체결하는 경우에 있어서, 하나의 단위 모듈(110)의 체결 돌출부(112a)는 인접한 다른 단위 모듈(110)의 제1 체결 수용부(112c) 내에 삽입된다. 또한, 상기 어퍼 하우징(113)은, 제1 체결 수용부(112c)와 대응되는 위치에 형성되는 볼팅 홀(H2)을 구비한다. 이에 따라, 한 쌍의 단위 모듈(110)이 결합되었을 때 로워 하우징(112)에 구비되는 볼팅 홀(H1)과 어퍼 하우징(113)에 구비되는 볼팅 홀(H2)은 하나의 체결 볼트(4)(도 1 참조)가 통과할 수 있도록 서로 동일한 위치에 놓여진다.
상기 제1 고정 수용부(112d)는 로워 하우징(112)의 길이 방향 타 측에 구비되며, 고정 돌출부(112b)와 대응되는 위치에 대응되는 형상으로 구비된다. 따라서, 서브 모듈(100)의 형성을 위해 복수의 단위 모듈(110)을 길이 방향을 따라 체결하는 경우에 있어서, 하나의 단위 모듈(110)의 고정 돌출부(112b)는 인접한 다른 단위 모듈(110)의 제1 고정 수용부(112d) 내에 삽입된다. 또한, 상기 어퍼 하우징(113)은, 제1 고정 수용부(112d)와 대응되는 위치에 형성되는 돌기 수용 홈(G)을 구비한다. 이에 따라, 한 쌍의 단위 모듈(110)이 결합되었을 때 로워 하우징(112)에 구비되는 고정 돌기(f)는 어퍼 하우징(113)에 구비되는 돌기 수용 홈(G) 내에 삽입되며, 이로써 한 쌍의 단위 모듈(110)이 수평 방향(도 6의 X-Y 평면에 나란한 방향)을 따라 움직이지 않도록 고정될 수 있다.
상기 어퍼 하우징(113)은, 복수의 배터리 셀(111)을 수용할 수 있는 공간을 제공하며, 적어도 하나의 볼팅 홀(H2) 및 상면에 형성되는 복수의 셀 노출부(113a)를 구비한다.
상기 볼팅 홀(H2)은, 앞서 언급한 바와 같이, 로워 하우징(112)의 제1 체결 수용부(112c)와 대응되는 위치에 형성되어 체결 볼트(4)(도 1 참조)가 삽입될 수 있는 공간을 제공한다.
상기 셀 노출부(113a)는 어퍼 하우징(113)의 길이 방향(도 6의 X축과 나란한 방향)을 따라 연장된 형태를 가지며, 셀 그룹(C)과 대응되는 위치에 셀 그룹(C)의 개수와 동일한 개수로 구비된다. 상기 셀 노출부(113a)는 배터리 셀(111)의 양극 단자(111a) 및 음극 단자(111b)가 어퍼 하우징(113)의 상면을 통해 외부로 노출될 수 있도록 복수의 슬릿(S)을 구비한다.
하나의 단위 모듈(110) 내에 구비되는 복수의 상기 배터리 셀(111)들은, 슬릿(S)을 통해 노출된 양극 단자(111a) 및 음극 단자(111b)가 병렬 버스바(114)와 와이어 본딩에 의해 연결됨으로써 직렬/병렬이 혼합된 형태로 전기적인 연결을 이룬다.
상기 병렬 버스바(114)는 셀 노출부(113a)와 나란한 방향으로 연장된 형태를 가지며, 어퍼 하우징(113)의 상면에 안착된다. 상기 병렬 버스바(114)는 복수의 셀 노출부(113a) 각각의 양 측에 배치된다. 복수의 병렬 버스바(114)들 중 단위 모듈(110)의 폭 방향(도 6의 Y축과 나란한 방향) 일 측 단부에 배치되는 병렬 버스바(114)와 타 측 단부에 배치되는 병렬 버스바(114)는 서로 다른 극성을 갖는다. 이는, 상기 단위 모듈(110)의 폭 방향을 따라 복수의 서브 모듈(100)을 연결함에 있어서 서로 직렬 연결이 가능하도록 하기 위함이다. 도 10을 참조하면, 서로 인접한 서브 모듈(100) 각각의 최 외측에 구비된 한 쌍의 병렬 버스바(114)가 서로 맞닿거나 또는 와이어 본딩에 의해 연결됨으로써 인접한 서브 모듈(100) 간의 직렬 연결이 이루어질 수 있다.
도 11을 참조하면, 상기 리어 블록(200)은 복수의 서브 모듈(100)의 기계적인 체결을 위해 적용되는 부품으로서, 복수의 리어 체결부(210) 및 복수의 리어 고정부(220)를 구비한다.
상기 리어 체결부(210)는 로워 하우징(112)의 제1 체결 수용부(112c)와 대응되는 위치에 대응되는 형상으로 구비된다. 상기 리어 체결부(210)는 어퍼 하우징(113)의 볼팅 홀(H2)과 대응되는 위치에 대응되는 사이즈로 형성되는 볼팅 홀(H3)을 구비한다.
상기 리어 고정부(220)는 로워 하우징(112)의 제1 고정 수용부(112d)와 대응되는 위치에 대응되는 형상으로 구비된다. 도면에 도시되지는 않았으나, 상기 리어 고정부(220)는 어퍼 하우징(113)의 돌기 수용 홈(G)(도 7 참조)과 대응되는 위치에 대응되는 사이즈로 형성되는 고정 돌기를 구비할 수 있다.
다음은, 도 12 내지 도 16을 참조하여, 상기 BMS 어셈블리(20)에 대해서 상세히 설명하기로 한다.
도 12 내지 도 16을 참조하면, 상기 BMS 어셈블리(20)는 복수의 BMS(battery management system)(21) 및 복수의 BMS(21)를 한꺼번에 감싸며 고정시키는 BMS 프레임(22)을 포함한다. 상기 BMS 어셈블리(20)는, 배터리 모듈 어셈블리(10)(도 5 참조)의 길이 방향(도 5의 X축과 나란한 방향) 일 측에 결합된다. 즉, 상기 BMS 어셈블리(20)는, 서브 팩(1)의 개수와 동일한 개수로 구비된다.
상기 BMS(21)는 복수개가 구비되며, 각각의 BMS(21)는 상부에 구비된 복수의 센싱 단자(T)를 통해 각각의 서브 모듈(100)과 1대1로 연결된다. 즉, 상기 BMS(21)는 서브 모듈(100)의 개수와 동일하게 구비된다. 도 14에 나타난 바와 같이, BMS(21)의 센싱 단자(T)들은 커넥팅 와이어(W)를 이용한 와이어 본딩에 의해 병렬 버스바(114)들과 1대1로 연결된다. 이로써, 하나의 BMS(21)는 복수의 셀 그룹(C)(도 7 참조)의 전압 및/또는 전류를 센싱하고 이에 따라 서브 모듈(100)의 충방전을 제어할 수 있다. 본 발명의 도면에서는 하나의 BMS 어셈블리(20)마다 BMS(21)가 두 개씩 구비되는 경우를 예시적으로 도시하고 있는데, 이 경우 각각의 BMS(21)를 설명의 편의를 위해 제1 BMS(21) 및 제2 BMS(21)로 칭하기로 한다.
상기 제1 BMS(21)는 제1 서브 모듈(100)(도 5 참조)의 충방전을 제어하고, 제2 BMS(21)는 제1 서브 모듈(100)에 인접한 제2 서브 모듈(100)(도 5 참조)의 충방전을 제어한다.
상기 BMS 프레임(22)은, 복수의 BMS(21)를 한꺼번에 감싸서 고정시키며, 배터리 모듈 어셈블리(10)(도 5 참조)의 길이 방향 일 측에 결합된다. 상기 BMS 프레임(22)은, 배터리 모듈 어셈블리(10)(도 5 참조)의 폭 방향(도 5의 Y축과 나란한 방향)을 따라 연장된 형태를 가지며, 배터리 모듈 어셈블리(10)의 폭과 대응되는 길이를 갖는다.
상기 BMS 프레임(22)은 복수의 프론트 체결부(22a), 복수의 제2 체결 수용부(22b), 복수의 제2 고정 수용부(22c) 및 버스바 안착부(22d)를 구비할 수 있다.
상기 프론트 체결부(22a)는 체결 돌출부(112a)와 대응되는 위치에 구비되며, 볼팅 홀(H4)을 구비한다. 상기 프론트 체결부(22a)에 형성된 볼팅 홀(H4)은 로워 하우징(112)에 형성된 볼팅 홀(H1)과 대응되는 위치에 대응되는 형상으로 구비된다. 이에 따라 하나의 체결 볼트(4)(도 1 및 도 2 참조)가 프론트 체결부(22a)에 형성된 볼팅 홀(H4)과 로워 하우징(112)에 형성된 볼팅 홀(H1)을 동시에 통과할 수 있으며, 이로써 배터리 모듈 어셈블리(10)와 BMS 어셈블리(20)가 체결될 수 있다.
상기 제2 체결 수용부(22b)는 프론트 체결부(22a) 및 체결 돌출부(112a)와 대응되는 위치에 홈 형태로 구비된다. 상기 제2 체결 수용부(22b)는 체결 돌출부(112a)와 대응되는 형상을 가지며, 이에 따라 체결 돌출부(112a)가 제2 체결 수용부(22b) 내에 삽입되어 BMS 어셈블리(20)와 배터리 모듈 어셈블리(10)가 서로 밀착될 수 있다.
상기 제2 고정 수용부(22c)는 고정 돌출부(112b)와 대응되는 위치에 홈 형태로 구비된다. 상기 제2 고정 수용부(22c)는 고정 돌출부(112b)와 대응되는 형상을 가지며, 이에 따라 고정 돌출부(112b)가 제2 고정 수용부(22c) 내에 삽입되어 BMS 어셈블리(20)와 배터리 모듈 어셈블리(10)가 서로 밀착될 수 있다.
상기 버스바 안착부(22d)는, BMS 프레임(22)의 길이 방향 일 측에 홈 형태로 구비된다. 상기 버스바 안착부(22d)는, 서로 거울 대칭 형태로 결합된 한 쌍의 서브 팩(1) 한 쌍의 서브 팩(1) 사이를 직렬로 연결시키는 직렬 버스바(3)가 안착될 수 있는 공간을 제공한다. 도 15에 도시된 바와 같이, 한 쌍의 BMS 어셈블리(20)는 배터리 팩의 폭 방향(도 15의 Y축과 나란한 방향)과 나란한 중심축을 기준으로 상호 거울 대칭된 형태를 가지며 결합된다. 이처럼 결합된 한 쌍의 BMS 어셈블리(20) 각각에 구비된 버스바 안착부(22d)가 서로 연결되어 직렬 버스바(3)가 안착될 수 있는 공간을 제공한다.
이처럼 버스바 안착부(22d)에 안착된 직렬 버스바(3)는, 한 쌍의 서브 팩(1) 각각의 최 외각에 구비된 병렬 버스바(114) 사이를 연결하며, 이에 따라 한 쌍의 서브 팩(1) 상호 간은 직렬로 연결된다. 상기 직렬 버스바(3)와 병렬 버스바(114) 사이의 전기적 연결은 커넥팅 와이어(W)를 이용한 와이어 본딩에 의해 이루어진다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 배터리 팩은, 복수의 단위 모듈(110)들이 볼팅 결합에 의해 간단히 체결될 수 있는 구조를 가질 뿐만 아니라, 복수의 단위 모듈(110)들이 결합되어 형성된 배터리 모듈 어셈블리(10)와 BMS 어셈블리(20) 간의 결합 역시 볼팅 결합에 의해 간단히 체결될 수 있는 구조를 갖는다.
즉, 본 발명의 일 실시예에 따른 배터리 팩은, 도 1 및 도 2에 도시된 바와 같이, 한 쌍의 서브 팩(1)이 서로 거울 대칭 형태로 대면한 상태에서 체결 볼트(4)를 볼팅 홀(H1~H4) 내에 삽입하여 한 쌍의 서브 팩(1) 간의 체결이 이루어질 수 있는 구조를 갖는다. 또한, 본 발명의 일 실시예에 따른 배터리 팩은, 이러한 한 쌍의 서브 팩(1) 간의 체결을 통해 각각의 서브 팩(1)을 이루는 단위 모듈(110)들 간의 체결 및 배터리 모듈 어셈블리(10)와 BMS 어셈블리(20) 간의 체결 역시 동시에 이루어질 수 있는 구조를 갖는다.
또한, 본 발명의 일 실시예에 따른 배터리 팩에 따르면, 병렬 버스바(114) 및 직렬 버스바(3)를 이용하고 구성요소 간의 전기적 연결에 와이어 본딩을 적용함으로써, 복수의 단위 모듈(110)들이 직렬과 병렬이 혼합된 형태를 간단히 만들어낼 수 있으며, 이에 따라 필요에 따라 용량 및 출력 전압의 확대가 매우 용이하다.
한편, 본 발명의 일 실시예에 따른 자동차는, 상술한 바와 같은 본 발명의 실시예에 따른 배터리 팩을 포함한다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (14)

  1. 복수의 단위 모듈을 포함하는 배터리 모듈 어셈블리; 및 상기 배터리 모듈 어셈블리의 길이 방향 일 측에 결합되는 BMS 어셈블리;를 포함하는 서브 팩에 있어서,
    상기 배터리 모듈 어셈블리는,
    길이 방향을 따라 연결되는 복수의 단위 모듈을 포함하는 제1 서브 모듈; 및
    복수의 단위 모듈을 포함하며, 상기 단위 모듈의 폭 방향을 따라 제1 서브 모듈과 연결되는 제2 서브 모듈; 을 포함하고,
    상기 BMS 어셈블리는,
    상기 제1 서브 모듈의 충/방전을 제어하는 제1 BMS;
    상기 제2 서브 모듈의 충/방전을 제어하는 제2 BMS; 및
    상기 제1 BMS와 제2 BMS의 둘레를 감싸며 상기 배터리 모듈 어셈블리의 길이 방향 일 측에 체결되는 BMS 프레임; 을 포함하는 것을 특징으로 하는 서브 팩.
  2. 제1항에 있어서,
    상기 단위 모듈은,
    복수의 셀 그룹을 형성하는 복수의 배터리 셀;
    상기 복수의 배터리 셀을 지지하는 로워 하우징;
    상기 로워 하우징의 상부에 결합되며 상기 복수의 배터리 셀의 수용 공간을 제공하는 어퍼 하우징; 및
    상기 어퍼 하우징의 상면에 안착되며 상호 이격되어 나란히 배치되는 복수의 병렬 버스바;
    를 포함하는 것을 특징으로 하는 서브 팩.
  3. 제2항에 있어서,
    상기 셀 그룹은,
    상기 단위 모듈의 길이 방향을 따라 배치되는 복수의 배터리 셀을 포함하는 것을 특징으로 하는 서브 팩.
  4. 제3항에 있어서,
    동일한 셀 그룹 내에 포함되는 배터리 셀들은, 상기 병렬 버스바를 통해 병렬 연결되는 것을 특징으로 하는 서브 팩.
  5. 제4항에 있어서,
    상기 제1 서브 모듈에 포함되는 복수의 단위 모듈은 동일 연장선 상에 위치하는 병렬 버스바 간의 전기적인 연결에 의해 병렬 연결되고, 상기 제2 서브 모듈에 포함되는 복수의 단위 모듈은 동일 연장선 사에 위치하는 병렬 버스바 간의 전기적인 연결에 의해 병렬 연결되는 것을 특징으로 하는 서브 팩.
  6. 제5항에 있어서,
    상기 제1 서브 모듈과 제2 서브 모듈 상호 간은 서로 인접한 병렬 버스바 간의 전기적인 연결에 의해 서로 직렬로 연결되는 것을 특징으로 하는 서브 팩.
  7. 제6항에 있어서,
    상기 동일한 셀 그룹 내에 포함되는 복수의 배터리 셀들 간의 병렬 연결, 동일한 서브 모듈에 포함되는 복수의 단위 모듈 간의 병렬 연결 및 서로 인접한 복수의 서브 모듈 간의 직렬 연결은 모두 와이어 본딩에 의해 이루어지는 것을 특징으로 하는 서브 팩.
  8. 제2항에 있어서,
    상기 로워 하우징은,
    볼팅 홀을 구비하며 상기 로워 하우징의 길이 방향 일 측에 구비되는 적어도 하나의 체결 돌출부;
    고정 돌기를 구비하며 상기 로워 하우징의 길이 방향 일 측에 구비되는 적어도 하나의 고정 돌출부;
    상기 로워 하우징의 길이 방향 타 측에 구비되되 상기 체결 돌출부와 대응되는 위치에 대응되는 형상으로 구비되는 제1 체결 수용부; 및
    상기 로워 하우징의 길이 방향 타 측에 구비되되 상기 고정 돌출부와 대응되는 위치에 대응되는 형상으로 구비되는 제1 고정 수용부;
    를 포함하는 것을 특징으로 하는 서브 팩.
  9. 제8항에 있어서,
    상기 어퍼 하우징은,
    상기 제1 체결 수용부와 대응되는 위치에 형성되는 볼팅 홀; 및
    상기 제1 고정 수용부와 대응되는 위치에 형성되며 상기 고정 돌기와 대응되는 형상을 갖는 돌기 수용 홈;
    을 포함하는 것을 특징으로 하는 서브 팩.
  10. 제8항에 있어서,
    상기 BMS 프레임은,
    상기 체결 돌출부와 대응되는 위치에 구비되며 볼팅 홀을 구비하는 복수의 프론트 체결부;
    상기 프론트 체결부 및 상기 체결 돌출부와 대응되는 위치에 구비되는 복수의 제2 체결 수용부; 및
    상기 고정 돌출부와 대응되는 위치에 대응되는 형상으로 구비되는 복수의 제2 고정 수용부;
    를 포함하는 것을 특징으로 하는 서브 팩.
  11. 제2항에 있어서,
    상기 제1 BMS 및 제2 BMS 각각은 복수의 센싱 단자를 포함하고,
    상기 제1 BMS의 센싱 단자는 상기 제1 서브 모듈의 병렬 버스바와 와이어 본딩에 의해 전기적으로 연결되고,
    상기 제2 BMS의 센싱 단자는 상기 제2 서브 모듈의 병렬 버스바와 와이어 본딩에 의해 전기적으로 연결되는 것을 특징으로 하는 서브 팩.
  12. 제1항에 따른 서브 팩 한 쌍이 상기 서브 팩의 길이 방향과 나란한 중심축을 기준으로 서로 거울 대칭 형태로 결합된 배터리 팩.
  13. 제12항에 있어서,
    한 쌍의 상기 서브 팩 사이를 직렬로 연결하며, 상기 BMS 프레임 상에 안착되는 직렬 버스바; 를 더 포함하는 것을 특징으로 하는 배터리 팩.
  14. 제12항에 따른 배터리 팩을 포함하는 자동차.
PCT/KR2020/008813 2019-12-18 2020-07-06 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩 WO2021125476A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/633,858 US20220399578A1 (en) 2019-12-18 2020-07-06 Sub pack comprising multiple unit modules and bms assembly, and battery pack comprising same
JP2022502151A JP7325601B2 (ja) 2019-12-18 2020-07-06 複数の単位モジュールとbmsアセンブリを含むサブパック、及びそれを含むバッテリーパック
EP20901113.9A EP4037059A4 (en) 2019-12-18 2020-07-06 SUB PACKAGE WITH MULTIPLE UNIT MODULES AND BMS ARRANGEMENT AND BATTERY PACK THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190169899A KR20210078139A (ko) 2019-12-18 2019-12-18 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩
KR10-2019-0169899 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021125476A1 true WO2021125476A1 (ko) 2021-06-24

Family

ID=76383175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008813 WO2021125476A1 (ko) 2019-12-18 2020-07-06 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩

Country Status (6)

Country Link
US (1) US20220399578A1 (ko)
EP (1) EP4037059A4 (ko)
JP (1) JP7325601B2 (ko)
KR (1) KR20210078139A (ko)
CN (2) CN213752926U (ko)
WO (1) WO2021125476A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4123806A1 (en) * 2021-07-22 2023-01-25 SK On Co., Ltd. Battery module and battery pack including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210078139A (ko) * 2019-12-18 2021-06-28 주식회사 엘지에너지솔루션 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩
CN117546358A (zh) * 2021-06-24 2024-02-09 株式会社 Lg新能源 电池单体模块组件和包括该电池单体模块组件的电池组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202308118U (zh) * 2011-11-08 2012-07-04 苏州新中能源科技有限公司 新型锂离子动力电池模块结构
KR20130136744A (ko) * 2012-06-05 2013-12-13 에스케이이노베이션 주식회사 에너지 저장 장치 및 방법
KR20150022398A (ko) * 2013-08-23 2015-03-04 주식회사 엘지화학 전면에 bms의 통신단자가 돌출되어 있는 전지모듈 어셈블리
KR20150076963A (ko) * 2013-12-27 2015-07-07 주식회사 엘지화학 하니스 커버
KR20150076913A (ko) * 2013-12-27 2015-07-07 주식회사 엘지화학 서브 모듈들이 내부에 장착되어 있는 전지모듈 어셈블리

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895203B1 (ko) * 2006-05-15 2009-05-06 주식회사 엘지화학 중대형 전지모듈
KR100892046B1 (ko) * 2006-09-18 2009-04-07 주식회사 엘지화학 전지모듈 및 그것을 포함하고 있는 중대형 전지팩
JP2009231143A (ja) * 2008-03-24 2009-10-08 Toshiba Corp 電池装置
WO2012153239A1 (en) * 2011-05-06 2012-11-15 Optimal Energy (Pty) Ltd Battery module and control circuit therefor
TW201315000A (zh) * 2011-06-17 2013-04-01 Shin Kobe Electric Machinery 電化學電池模組及電化學電池模組單元以及支持器
KR101776853B1 (ko) * 2015-06-30 2017-09-12 인지컨트롤스 주식회사 배터리 팩
KR102162968B1 (ko) * 2017-04-07 2020-10-07 주식회사 엘지화학 확장형 배터리 모듈 구조를 갖는 배터리 팩
US11469467B2 (en) * 2017-09-04 2022-10-11 Panasonic Intellectual Property Management Co., Ltd. Battery module
US20190081370A1 (en) * 2017-09-12 2019-03-14 Sf Motors, Inc. Embedded current collector for electric vehicle battery monitoring
KR102249509B1 (ko) * 2017-09-20 2021-05-06 주식회사 엘지화학 가이드 결합 구조를 포함한 배터리 모듈 및 그것을 포함한 배터리 팩
US20190131672A1 (en) * 2017-11-01 2019-05-02 Lithos Energy, Inc. High power battery modules with pcb sensing assembly
US10243184B1 (en) * 2018-02-03 2019-03-26 Thor Trucks Inc. Modular battery configured for wire bonding
KR20210078139A (ko) * 2019-12-18 2021-06-28 주식회사 엘지에너지솔루션 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202308118U (zh) * 2011-11-08 2012-07-04 苏州新中能源科技有限公司 新型锂离子动力电池模块结构
KR20130136744A (ko) * 2012-06-05 2013-12-13 에스케이이노베이션 주식회사 에너지 저장 장치 및 방법
KR20150022398A (ko) * 2013-08-23 2015-03-04 주식회사 엘지화학 전면에 bms의 통신단자가 돌출되어 있는 전지모듈 어셈블리
KR20150076963A (ko) * 2013-12-27 2015-07-07 주식회사 엘지화학 하니스 커버
KR20150076913A (ko) * 2013-12-27 2015-07-07 주식회사 엘지화학 서브 모듈들이 내부에 장착되어 있는 전지모듈 어셈블리

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4037059A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4123806A1 (en) * 2021-07-22 2023-01-25 SK On Co., Ltd. Battery module and battery pack including the same

Also Published As

Publication number Publication date
CN213752926U (zh) 2021-07-20
KR20210078139A (ko) 2021-06-28
CN113013540B (zh) 2024-04-12
EP4037059A4 (en) 2023-11-01
US20220399578A1 (en) 2022-12-15
EP4037059A1 (en) 2022-08-03
CN113013540A (zh) 2021-06-22
JP2022540489A (ja) 2022-09-15
JP7325601B2 (ja) 2023-08-14

Similar Documents

Publication Publication Date Title
WO2021125897A1 (ko) 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩
WO2018066797A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2017146384A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019182251A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2021125476A1 (ko) 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩
WO2012023754A1 (ko) 전압 검출 어셈블리 및 이를 포함하는 전지모듈
WO2015152637A1 (ko) 텐션 바를 포함하는 배터리 팩
WO2019124796A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2020067665A1 (ko) 배터리 셀 조립체, 이러한 배터리 셀 조립체를 포함하는 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019172545A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2011126216A2 (ko) 배터리모듈 및 배터리모듈의 조립방법
WO2014073808A1 (ko) 버스 바 어셈블리를 포함하는 전지모듈 및 이를 포함하는 전지팩
WO2018208020A1 (ko) 배터리 셀, 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2017094983A1 (ko) 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2020022844A1 (ko) 배터리 모듈 및 이러한 배터리 모듈을 포함하는 배터리 팩
WO2018230819A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2018199521A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2020171629A1 (ko) 유동 너트를 구비한 단자 연결구조를 갖는 전지 모듈과 이를 포함한 전지 팩
WO2021101075A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 자동차
WO2020009483A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2022019624A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2021025473A1 (ko) 상부 냉각 방식 배터리 팩
WO2022149967A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2020138848A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019004576A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502151

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020901113

Country of ref document: EP

Effective date: 20220426

NENP Non-entry into the national phase

Ref country code: DE