WO2021125423A1 - 반도체 발광소자를 이용한 디스플레이 장치 - Google Patents

반도체 발광소자를 이용한 디스플레이 장치 Download PDF

Info

Publication number
WO2021125423A1
WO2021125423A1 PCT/KR2020/000308 KR2020000308W WO2021125423A1 WO 2021125423 A1 WO2021125423 A1 WO 2021125423A1 KR 2020000308 W KR2020000308 W KR 2020000308W WO 2021125423 A1 WO2021125423 A1 WO 2021125423A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
electrode
emitting device
assembly
Prior art date
Application number
PCT/KR2020/000308
Other languages
English (en)
French (fr)
Inventor
박성민
최원석
김수현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP20902712.7A priority Critical patent/EP4080573A4/en
Priority to US17/786,666 priority patent/US20230023582A1/en
Publication of WO2021125423A1 publication Critical patent/WO2021125423A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95053Bonding environment
    • H01L2224/95085Bonding environment being a liquid, e.g. for fluidic self-assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/951Supplying the plurality of semiconductor or solid-state bodies
    • H01L2224/95101Supplying the plurality of semiconductor or solid-state bodies in a liquid medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/9512Aligning the plurality of semiconductor or solid-state bodies
    • H01L2224/95121Active alignment, i.e. by apparatus steering
    • H01L2224/95133Active alignment, i.e. by apparatus steering by applying an electromagnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a display device using a semiconductor light emitting device, and more particularly, to a display device using a semiconductor light emitting device having a size of several to several tens of ⁇ m.
  • LCDs liquid crystal displays
  • OLED organic light emitting device
  • micro LED displays are competing to implement large-area displays in the display technology field.
  • micro LED semiconductor light emitting device having a diameter or cross-sectional area of 100 ⁇ m or less
  • very high efficiency can be provided because the display does not absorb light using a polarizing plate or the like.
  • a large display requires millions of semiconductor light emitting devices, it is difficult to transfer the devices compared to other technologies.
  • the self-assembly method is a method in which the semiconductor light emitting device finds its own position in a fluid, and is the most advantageous method for realizing a large-screen display device.
  • the self-assembly method includes a method of directly assembling the semiconductor light emitting device on the final substrate to be used in the product, and a method of assembling the semiconductor light emitting device on the assembly substrate and transferring the semiconductor light emitting device to the final substrate through an additional transfer process.
  • the direct assembly method on the final substrate is efficient in terms of process, and in the case of using the assembly substrate, there is an advantage in that a structure for self-assembly can be added without limitation, so the two methods are selectively used.
  • One object of the present invention is to provide an active matrix type display device in which a structure for self-assembly is added.
  • an object of the present invention is to provide a display device including an assembled electrode having a structure capable of securing an assembly rate of a predetermined level or higher without damaging the thin film transistor.
  • the display device of the present invention includes a base unit; a semiconductor light emitting device disposed on the first region of the base part; a thin film transistor disposed on the second region of the base part; and assembly electrodes extending along one direction on the base part and to which a voltage is applied to seat the semiconductor light emitting device at a preset position on the first region, wherein the assembled electrodes do not overlap the thin film transistor It is characterized in that it is formed so as not to.
  • the assembly electrodes further include a first protrusion protruding from the first region toward the semiconductor light emitting device, wherein the first protrusion overlaps the semiconductor light emitting device.
  • the assembly electrodes may include: a second protrusion protruding toward the second region; and at least one of a third protrusion protruding toward the first region and the second region.
  • a pair electrode is formed between the adjacent assembled electrodes, and each of the assembled electrodes forming the pair electrode has a different shape.
  • a pair electrode is formed between the adjacent assembled electrodes, and the areas (A, B) of the protrusions of each of the assembled electrodes forming the pair electrode satisfy Equation 1 below. do.
  • the thin film transistor is an oxide thin film transistor.
  • the base part includes a plurality of gate wires and data wires that are formed to cross each other and connected to the thin film transistor, and the data wires extend in the same direction as the assembled electrodes. characterized.
  • the thin film transistor includes: a gate electrode; an active layer insulated from the gate electrode by an insulating layer and overlapping a portion of the gate electrode; and a source electrode and a drain electrode formed on both sides of the active layer.
  • a first protective layer formed on the insulating layer is further included while forming a hole exposing a portion of the source electrode and the drain electrode.
  • connection electrode extending from the first region to the second region to cover the hole and the electrode of the semiconductor light emitting device and electrically connecting the thin film transistor and the semiconductor light emitting device is included. characterized in that
  • a second passivation layer formed on at least an area overlapping with the data line and the assembly electrode among the entire area of the first passivation layer is further included.
  • the second passivation layer is formed of an organic material, and has a thickness greater than that of the first passivation layer.
  • semiconductor light emitting devices can be directly assembled on a display substrate including a thin film transistor through a self-assembly method.
  • the assembled electrode not to overlap the thin film transistor, it is possible to prepare for deterioration and performance degradation of the thin film transistor due to self-assembly.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using a semiconductor light emitting device of the present invention.
  • FIG. 2 is a partially enlarged view of a portion A of the display device of FIG. 1 .
  • FIG. 3 is an enlarged view of the semiconductor light emitting device of FIG. 2 .
  • FIG. 4 is an enlarged view illustrating another embodiment of the semiconductor light emitting device of FIG. 2 .
  • 5A to 5E are conceptual views for explaining a new process for manufacturing the above-described semiconductor light emitting device.
  • FIG. 6 is a conceptual diagram illustrating an example of an apparatus for self-assembly of a semiconductor light emitting device according to the present invention.
  • FIG. 7 is a block diagram of the self-assembly apparatus of FIG. 6 .
  • 8A to 8E are conceptual views illustrating a process of self-assembling a semiconductor light emitting device using the self-assembly apparatus of FIG. 6 .
  • FIG. 9 is a conceptual diagram illustrating the semiconductor light emitting device of FIGS. 8A to 8E .
  • FIGS. 10 and 11 are conceptual diagrams illustrating the structure and circuit of a pixel portion in a conventional AM display device.
  • FIG. 12 is a diagram illustrating a structure of a pixel portion in an AM display device according to an embodiment of the present invention.
  • FIG. 13 (a) to (c) are views showing the shapes of various assembled electrodes for performance comparison of thin film transistors.
  • FIG. 14 is a diagram illustrating a structure of a pixel portion in an AM display device according to another embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a side cross-section of a pixel portion in an AM display device according to an embodiment of the present invention.
  • 16A and 16B are side cross-sectional views of an area (AA′ in FIG. 12 ) in which data wires and assembly electrodes are formed in an AM display device according to an embodiment of the present invention.
  • the display device described in this specification includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation system, and a slate PC.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • slate PC slate PC
  • tablet PC tablet PC
  • ultra book ultra book
  • digital TV digital TV
  • desktop computer desktop computer
  • the configuration according to the embodiment described in this specification can be applied as long as it can include a display even in a new product form to be developed later.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using a semiconductor light emitting device of the present invention
  • FIG. 2 is a partially enlarged view of a portion A of the display device of FIG. 1
  • FIG. 3 is an enlarged view of the semiconductor light emitting device of FIG. 2
  • FIG. 4 is an enlarged view showing another embodiment of the semiconductor light emitting device of FIG. 2 .
  • information processed by the control unit of the display apparatus 100 may be output from the display module 140 .
  • a closed-loop case 101 surrounding an edge of the display module may form a bezel of the display device.
  • the display module 140 includes a panel 141 on which an image is displayed, and the panel 141 includes a micro-sized semiconductor light emitting device 150 and a wiring board 110 on which the semiconductor light emitting device 150 is mounted. can be provided.
  • a wiring may be formed on the wiring board 110 to be connected to the n-type electrode 152 and the p-type electrode 156 of the semiconductor light emitting device 150 .
  • the semiconductor light emitting device 150 may be provided on the wiring board 110 as an individual pixel that emits light.
  • the image displayed on the panel 141 is visual information and is realized by independently controlling light emission of sub-pixels arranged in a matrix form through the wiring.
  • a micro LED Light Emitting Diode
  • the micro LED may be a light emitting diode formed in a small size of 100 micro or less.
  • blue, red, and green colors are provided in the light emitting region, respectively, and a unit pixel may be realized by a combination thereof. That is, the unit pixel means a minimum unit for realizing one color, and at least three micro LEDs may be provided in the unit pixel.
  • the semiconductor light emitting device 150 may have a vertical structure.
  • the semiconductor light emitting device 150 is mainly made of gallium nitride (GaN), and indium (In) and/or aluminum (Al) are added together to be implemented as a high power light emitting device that emits various lights including blue.
  • GaN gallium nitride
  • Al aluminum
  • the vertical semiconductor light emitting device includes a p-type electrode 156 , a p-type semiconductor layer 155 formed on the p-type electrode 156 , an active layer 154 formed on the p-type semiconductor layer 155 , and an active layer 154 . It includes an n-type semiconductor layer 153 formed on the n-type semiconductor layer 153 , and an n-type electrode 152 formed on the n-type semiconductor layer 153 .
  • the lower p-type electrode 156 may be electrically connected to the p-electrode of the wiring board
  • the upper n-type electrode 152 may be electrically connected to the n-electrode at the upper side of the semiconductor light emitting device.
  • the vertical semiconductor light emitting device 150 has a great advantage in that it is possible to reduce the chip size because electrodes can be arranged up and down.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device 250 includes a p-type electrode 256 , a p-type semiconductor layer 255 on which the p-type electrode 256 is formed, and an active layer 254 formed on the p-type semiconductor layer 255 . , an n-type semiconductor layer 253 formed on the active layer 254 , and an n-type electrode 252 spaced apart from the p-type electrode 256 in the horizontal direction on the n-type semiconductor layer 253 .
  • both the p-type electrode 256 and the n-type electrode 152 may be electrically connected to the p-electrode and the n-electrode of the wiring board under the semiconductor light emitting device.
  • the vertical semiconductor light emitting device and the horizontal semiconductor light emitting device may be a green semiconductor light emitting device, a blue semiconductor light emitting device, or a red semiconductor light emitting device, respectively.
  • gallium nitride (GaN) is mainly used, and indium (In) and/or aluminum (Al) are added together to implement a high power light emitting device that emits green or blue light.
  • the semiconductor light emitting device may be a gallium nitride thin film formed in various layers such as n-Gan, p-Gan, AlGaN, InGan, etc.
  • the p-type semiconductor layer is P-type GaN, and the n The type semiconductor layer may be N-type GaN.
  • the p-type semiconductor layer may be P-type GaAs, and the n-type semiconductor layer may be N-type GaAs.
  • the p-type semiconductor layer may be P-type GaN doped with Mg on the p-electrode side
  • the n-type semiconductor layer may be N-type GaN doped with Si on the n-electrode side.
  • the above-described semiconductor light emitting devices may be semiconductor light emitting devices without an active layer.
  • the light emitting diodes are very small, unit pixels that emit self-luminescence can be arranged in a high definition in the display panel, thereby realizing a high-definition display device.
  • the semiconductor light emitting device grown on a wafer and formed through mesa and isolation is used as an individual pixel.
  • the micro-sized semiconductor light emitting device 150 must be transferred to a predetermined position on the substrate of the display panel on the wafer.
  • There is a pick and place method as such a transfer technology but the success rate is low and a lot of time is required.
  • there is a technique of transferring several devices at a time using a stamp or a roll but it is not suitable for a large screen display due to a limitation in yield.
  • the present invention provides a new manufacturing method and manufacturing apparatus of a display device capable of solving these problems.
  • 5A to 5E are conceptual views for explaining a new process of manufacturing the above-described semiconductor light emitting device.
  • a display device using a passive matrix (PM) type semiconductor light emitting device is exemplified.
  • PM passive matrix
  • AM active matrix
  • a method of self-assembling a horizontal semiconductor light emitting device is exemplified, it is also applicable to a method of self-assembling a vertical semiconductor light emitting device.
  • the first conductivity type semiconductor layer 153 , the active layer 154 , and the second conductivity type semiconductor layer 155 are grown on the growth substrate 159 , respectively ( FIG. 5A ).
  • first conductivity type semiconductor layer 153 After the first conductivity type semiconductor layer 153 is grown, an active layer 154 is grown on the first conductivity type semiconductor layer 153 , and then a second conductivity type semiconductor is grown on the active layer 154 . Layer 155 is grown. In this way, when the first conductivity type semiconductor layer 153, the active layer 154, and the second conductivity type semiconductor layer 155 are sequentially grown, as shown in FIG. 5A, the first conductivity type semiconductor layer 153 , the active layer 154 and the second conductive semiconductor layer 155 form a stacked structure.
  • the first conductivity type semiconductor layer 153 may be a p-type semiconductor layer
  • the second conductivity type semiconductor layer 155 may be an n-type semiconductor layer.
  • the present invention is not necessarily limited thereto, and examples in which the first conductivity type is n-type and the second conductivity type is p-type are also possible.
  • the present embodiment exemplifies the case in which the active layer is present, a structure in which the active layer is not present is also possible in some cases as described above.
  • the p-type semiconductor layer may be P-type GaN doped with Mg
  • the n-type semiconductor layer may be N-type GaN doped with Si on the n-electrode side.
  • the growth substrate 159 may be formed of a material having a light-transmitting property, for example, any one of sapphire (Al2O3), GaN, ZnO, and AlO, but is not limited thereto.
  • the growth substrate 1059 may be formed of a material suitable for semiconductor material growth, a carrier wafer. It can be formed of a material having excellent thermal conductivity, and includes a conductive substrate or an insulating substrate, for example, a SiC substrate or Si, GaAs, GaP, InP, Ga2O3, which has higher thermal conductivity than a sapphire (Al2O3) substrate, or at least one of Si, GaAs, GaP, InP, Ga2O3 Can be used.
  • the first conductivity type semiconductor layer 153 , the active layer 154 , and the second conductivity type semiconductor layer 155 are removed to form a plurality of semiconductor light emitting devices ( FIG. 5B ).
  • isolation is performed so that a plurality of light emitting devices form a light emitting device array. That is, the first conductivity type semiconductor layer 153 , the active layer 154 , and the second conductivity type semiconductor layer 155 are vertically etched to form a plurality of semiconductor light emitting devices.
  • the active layer 154 and the second conductivity type semiconductor layer 155 are partially removed in the vertical direction so that the first conductivity type semiconductor layer 153 is exposed to the outside.
  • the exposed mesa process, and thereafter, the first conductive type semiconductor layer is etched to form a plurality of semiconductor light emitting device arrays by isolation (isolation) may be performed.
  • second conductivity type electrodes 156 are respectively formed on one surface of the second conductivity type semiconductor layer 155 ( FIG. 5C ).
  • the second conductive electrode 156 may be formed by a deposition method such as sputtering, but the present invention is not limited thereto.
  • the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are an n-type semiconductor layer and a p-type semiconductor layer, respectively, the second conductivity type electrode 156 may be an n-type electrode.
  • the growth substrate 159 is removed to provide a plurality of semiconductor light emitting devices.
  • the growth substrate 1059 may be removed using a laser lift-off (LLO) method or a chemical lift-off (CLO) method ( FIG. 5D ).
  • FIG. 5E a step of seating the semiconductor light emitting devices 150 on a substrate in a chamber filled with a fluid is performed.
  • the semiconductor light emitting devices 150 and the substrate are put in a chamber filled with a fluid, and the semiconductor light emitting devices are self-assembled on the substrate 1061 using flow, gravity, surface tension, and the like.
  • the substrate may be the assembly substrate 161 .
  • the substrate may be a wiring substrate.
  • the substrate is provided as the assembly substrate 161 to exemplify that the semiconductor light emitting devices 1050 are mounted.
  • Cells in which the semiconductor light emitting devices 150 are inserted may be provided on the assembly substrate 161 to facilitate mounting of the semiconductor light emitting devices 150 on the assembly substrate 161 .
  • cells in which the semiconductor light emitting devices 150 are seated are formed on the assembly substrate 161 at positions where the semiconductor light emitting devices 150 are aligned with the wiring electrodes.
  • the semiconductor light emitting devices 150 are assembled to the cells while moving in the fluid.
  • the assembly substrate 161 may be referred to as a temporary substrate.
  • the present invention proposes a method and apparatus for minimizing the influence of gravity or frictional force and preventing non-specific binding in order to increase the transfer yield.
  • a magnetic material is disposed on the semiconductor light emitting device to move the semiconductor light emitting device using magnetic force, and the semiconductor light emitting device is seated at a preset position using an electric field during the movement process.
  • FIG. 6 is a conceptual diagram illustrating an example of a self-assembly apparatus for a semiconductor light emitting device according to the present invention
  • FIG. 7 is a block diagram of the self-assembly apparatus of FIG. 6
  • 8A to 8E are conceptual views illustrating a process of self-assembling a semiconductor light emitting device using the self-assembly apparatus of FIG. 6
  • FIG. 9 is a conceptual diagram for explaining the semiconductor light emitting device of FIGS. 8A to 8E .
  • the self-assembly apparatus 160 of the present invention may include a fluid chamber 162 , a magnet 163 and a position control unit 164 .
  • the fluid chamber 162 has a space for accommodating a plurality of semiconductor light emitting devices.
  • the space may be filled with a fluid, and the fluid may include water as an assembly solution.
  • the fluid chamber 162 may be a water tank and may be configured as an open type.
  • the present invention is not limited thereto, and the fluid chamber 162 may be of a closed type in which the space is a closed space.
  • a substrate 161 may be disposed in the fluid chamber 162 so that an assembly surface on which the semiconductor light emitting devices 150 are assembled faces downward.
  • the substrate 161 may be transferred to an assembly position by a transfer unit, and the transfer unit may include a stage 165 on which the substrate is mounted.
  • the stage 165 is positioned by the control unit, and through this, the substrate 161 can be transferred to the assembly position.
  • the assembly surface of the substrate 161 faces the bottom of the fluid chamber 150 .
  • the assembly surface of the substrate 161 is arranged to be immersed in the fluid in the fluid chamber 162 . Accordingly, the semiconductor light emitting device 150 moves to the assembly surface in the fluid.
  • the substrate 161 is an assembled substrate capable of forming an electric field, and may include a base portion 161a, a dielectric layer 161b, and a plurality of electrodes 161c.
  • the base portion 161a may be made of an insulating material, and the plurality of electrodes 161c may be a thin film or a thick film bi-planar electrode patterned on one surface of the base portion 161a.
  • the electrode 161c may be formed of, for example, a stack of Ti/Cu/Ti, Ag paste, ITO, or the like.
  • the dielectric layer 161b is made of an inorganic material such as SiO2, SiNx, SiON, Al2O3, TiO2, HfO2, or the like.
  • the dielectric layer 161b may be formed of a single layer or a multi-layer as an organic insulator.
  • the thickness of the dielectric layer 161b may be in the range of several tens of nm to several ⁇ m.
  • the substrate 161 according to the present invention includes a plurality of cells 161d partitioned by barrier ribs.
  • the cells 161d are sequentially arranged in one direction and may be made of a polymer material.
  • the partition walls 161e forming the cells 161d are shared with the neighboring cells 161d.
  • the partition wall 161e protrudes from the base portion 161a, and the cells 161d may be sequentially disposed along one direction by the partition wall 161e. More specifically, the cells 161d are sequentially arranged in the column and row directions, respectively, and may have a matrix structure.
  • a groove for accommodating the semiconductor light emitting device 150 is provided, and the groove may be a space defined by the partition wall 161e.
  • the shape of the groove may be the same as or similar to that of the semiconductor light emitting device.
  • the groove may have a rectangular shape.
  • the grooves formed in the cells may have a circular shape.
  • each of the cells is configured to accommodate a single semiconductor light emitting device. That is, one semiconductor light emitting device is accommodated in one cell.
  • the plurality of electrodes 161c may include a plurality of electrode lines disposed at the bottom of each of the cells 161d, and the plurality of electrode lines may extend to adjacent cells.
  • the plurality of electrodes 161c are disposed below the cells 161d, and different polarities are applied to each other to generate an electric field in the cells 161d.
  • the dielectric layer may form the bottom of the cells 161d while covering the plurality of electrodes 161c with the dielectric layer.
  • the electrodes of the substrate 161 are electrically connected to the power supply unit 171 .
  • the power supply unit 171 applies power to the plurality of electrodes to generate the electric field.
  • the self-assembly apparatus may include a magnet 163 for applying a magnetic force to the semiconductor light emitting devices.
  • the magnet 163 is spaced apart from the fluid chamber 162 to apply a magnetic force to the semiconductor light emitting devices 150 .
  • the magnet 163 may be disposed to face the opposite surface of the assembly surface of the substrate 161 , and the position of the magnet is controlled by the position controller 164 connected to the magnet 163 .
  • the semiconductor light emitting device 1050 may include a magnetic material to move in the fluid by the magnetic field of the magnet 163 .
  • a semiconductor light emitting device including a magnetic material has a first conductivity type electrode 1052 , a second conductivity type electrode 1056 , and a first conductivity type semiconductor layer in which the first conductivity type electrode 1052 is disposed. (1053), a second conductivity type semiconductor layer 1055 overlapping the first conductivity type semiconductor layer 1052 and disposed with the second conductivity type electrode 1056, and the first and second conductivity type semiconductors an active layer 1054 disposed between the layers 1053 and 1055 .
  • the first conductivity type may be p-type
  • the second conductivity type may be n-type
  • a semiconductor light emitting device without the active layer may be used.
  • the first conductive electrode 1052 may be generated after the semiconductor light emitting device is assembled on the wiring board by self-assembly of the semiconductor light emitting device.
  • the second conductive electrode 1056 may include the magnetic material.
  • the magnetic material may mean a magnetic metal.
  • the magnetic material may be Ni, SmCo, or the like, and as another example, may include a material corresponding to at least one of Gd-based, La-based, and Mn-based materials.
  • the magnetic material may be provided on the second conductive electrode 1056 in the form of particles.
  • a conductive electrode including a magnetic material one layer of the conductive electrode may be formed of a magnetic material.
  • the second conductive electrode 1056 of the semiconductor light emitting device 1050 may include a first layer 1056a and a second layer 1056b.
  • the first layer 1056a may include a magnetic material
  • the second layer 1056b may include a metal material rather than a magnetic material.
  • the first layer 1056a including a magnetic material may be disposed to contact the second conductivity-type semiconductor layer 1055 .
  • the first layer 1056a is disposed between the second layer 1056b and the second conductivity type semiconductor layer 1055 .
  • the second layer 1056b may be a contact metal connected to the second electrode of the wiring board.
  • the present invention is not necessarily limited thereto, and the magnetic material may be disposed on one surface of the first conductivity type semiconductor layer.
  • the self-assembly device includes a magnet handler that can be moved automatically or manually in the x, y, and z axes on the upper portion of the fluid chamber, or the magnet 163 . It may be provided with a motor capable of rotating the. The magnet handler and the motor may constitute the position control unit 164 . Through this, the magnet 163 rotates in a horizontal direction, clockwise or counterclockwise with the substrate 161 .
  • a light-transmitting bottom plate 166 may be formed in the fluid chamber 162 , and the semiconductor light emitting devices may be disposed between the bottom plate 166 and the substrate 161 .
  • An image sensor 167 may be disposed to face the bottom plate 166 to monitor the inside of the fluid chamber 162 through the bottom plate 166 .
  • the image sensor 167 is controlled by the controller 172 and may include an inverted type lens and a CCD to observe the assembly surface of the substrate 161 .
  • the self-assembly apparatus described above is made to use a combination of a magnetic field and an electric field, and when using this, the semiconductor light emitting devices are seated at a predetermined position on the substrate by an electric field in the process of moving by a change in the position of the magnet.
  • the assembly process using the self-assembly apparatus described above will be described in more detail.
  • a plurality of semiconductor light emitting devices 1050 including a magnetic material are formed through the process described with reference to FIGS. 5A to 5C .
  • a magnetic material may be deposited on the semiconductor light emitting device.
  • the substrate 161 is transferred to an assembly position, and the semiconductor light emitting devices 1050 are put into the fluid chamber 162 ( FIG. 8A ).
  • the assembly position of the substrate 161 will be a position in which the fluid chamber 162 is disposed such that the assembly surface of the substrate 161 on which the semiconductor light emitting devices 1050 are assembled faces downward.
  • some of the semiconductor light emitting devices 1050 may sink to the bottom of the fluid chamber 162 and some may float in the fluid.
  • some of the semiconductor light emitting devices 1050 may sink to the bottom plate 166 .
  • a magnetic force is applied to the semiconductor light emitting devices 1050 so that the semiconductor light emitting devices 1050 vertically float in the fluid chamber 162 ( FIG. 8B ).
  • the semiconductor light emitting devices 1050 float toward the substrate 161 in the fluid.
  • the original position may be a position deviated from the fluid chamber 162 .
  • the magnet 163 may be configured as an electromagnet. In this case, electricity is supplied to the electromagnet to generate an initial magnetic force.
  • the separation distance between the assembly surface of the substrate 161 and the semiconductor light emitting devices 1050 may be controlled.
  • the separation distance is controlled using the weight, buoyancy, and magnetic force of the semiconductor light emitting devices 1050 .
  • the separation distance may be several millimeters to several tens of micrometers from the outermost surface of the substrate.
  • a magnetic force is applied to the semiconductor light emitting devices 1050 so that the semiconductor light emitting devices 1050 move in one direction in the fluid chamber 162 .
  • the magnet 163 moves in a direction parallel to the substrate, clockwise or counterclockwise ( FIG. 8C ).
  • the semiconductor light emitting devices 1050 move in a direction parallel to the substrate 161 at a position spaced apart from the substrate 161 by the magnetic force.
  • an electric field is generated by supplying power to the bi-planar electrode of the substrate 161, and using this, assembly is induced only at a preset position. That is, the semiconductor light emitting devices 1050 are self-assembled at the assembly position of the substrate 161 by using the selectively generated electric field. To this end, cells in which the semiconductor light emitting devices 1050 are inserted may be provided on the substrate 161 .
  • the unloading process of the substrate 161 is performed, and the assembly process is completed.
  • the substrate 161 is an assembly substrate
  • a post-process for implementing a display device by transferring the semiconductor light emitting devices arranged as described above to a wiring board may be performed.
  • the magnets after guiding the semiconductor light emitting devices 1050 to the preset position, the magnets so that the semiconductor light emitting devices 1050 remaining in the fluid chamber 162 fall to the bottom of the fluid chamber 162 .
  • the 163 may be moved in a direction away from the substrate 161 ( FIG. 8D ).
  • the magnet 163 is an electromagnet, the semiconductor light emitting devices 1050 remaining in the fluid chamber 162 fall to the bottom of the fluid chamber 162 .
  • the recovered semiconductor light emitting devices 1050 can be reused.
  • the self-assembly apparatus and method described above uses a magnetic field to concentrate distant parts near a predetermined assembly site in order to increase the assembly yield in fluidic assembly, and applies a separate electric field to the assembly site so that the parts are selectively transferred only to the assembly site. to be assembled.
  • the assembly board is placed on the upper part of the water tank and the assembly surface is directed downward to minimize the effect of gravity due to the weight of the parts and prevent non-specific binding to eliminate defects. That is, to increase the transfer yield, the assembly substrate is placed on the upper part to minimize the influence of gravity or frictional force, and to prevent non-specific binding.
  • the present invention it is possible to pixelate a semiconductor light emitting device in a large amount on a small-sized wafer and then transfer it to a large-area substrate. Through this, it is possible to manufacture a large-area display device at a low cost.
  • the display device 1000 is a structure for self-assembling semiconductor light emitting devices and is an active matrix type (hereinafter referred to as AM type) display device to which an assembly electrode 1020 is added.
  • AM type active matrix type
  • 10 and 11 are conceptual diagrams illustrating the structure and circuit of a pixel portion in a conventional AM display device.
  • a gate line 201 and a data line 202 may be disposed on a base substrate. As shown in FIG. 10 , the gate line 201 and the data line 202 may extend in different directions to cross each other, thereby defining a pixel area.
  • thin film transistors 210s and 210d for driving the semiconductor light emitting device 230 and the storage capacitor 220 may be disposed.
  • a connection electrode 240 for electrically connecting them may be further provided.
  • wirings V ss and V dd for supplying power may be further disposed on the base substrate in addition to the gate wiring 201 and the data wiring 202 .
  • the arrangement and design of the wiring may be variously changed.
  • the thin film transistor 210 includes a gate electrode, an active layer, a source electrode, and a drain electrode, and is classified into an a-Si type and an LTPS type in which the active layer is formed of silicon, and an oxide type in which the active layer is formed of silicon, depending on the material of the active layer.
  • the oxide type is used for large displays used in PCs and TVs.
  • the active layer is formed of an IGZO (Indium, Gallium, Zinc, Oxygen) compound.
  • IGZO bonding materials are suitable for large display applications due to their high processing speed and low cost.
  • the oxide thin film transistor has very weak characteristics, there is a problem in that the performance cannot be maintained and deteriorated according to a subsequent process performed after the oxide thin film transistor is manufactured on a substrate.
  • a structure for assembling the semiconductor light emitting device 240 having a size of several to several tens of ⁇ m by a self-assembly method to the display device 200 of the AM method for example, a voltage for forming an electric field on one surface of the substrate is applied
  • structures, such as assembled electrodes had to be limited.
  • the semiconductor light emitting device 240 in order to assemble the semiconductor light emitting device 240 having a size of several to tens of ⁇ m in the display device 200 of the AM method, the semiconductor light emitting device 240 is self-assembled on a donor substrate on which the assembly electrode is formed. After assembling, the semiconductor light emitting devices 240 were transferred from the assembly substrate to the final substrate 200 on which the thin film transistors 210 and wirings 201 and 202 were formed using a PDMS stamp.
  • An object of the present invention is to provide an active matrix type display apparatus 1000 to which assembling electrodes 1020 for self-assembly are added.
  • FIG. 12 is a diagram showing the structure of a pixel portion in an AM display device according to an embodiment of the present invention
  • FIG. 15 is a side cross-sectional view of the pixel portion in an AM display device according to an embodiment of the present invention. is a diagram showing
  • a plurality of gate wires 1001 and data wires 1002 , an assembly electrode 1020 , and a thin film transistor 1030 are disposed on a base part 1010 . ), a storage capacitor 1040 , and a semiconductor light emitting device 1050 ′.
  • the base unit 1010 may include polyimide (PI) in order to realize flexible performance.
  • PI polyimide
  • it is not particularly limited.
  • the gate line 1001 and the data line 1002 are formed to cross each other and may be connected to the thin film transistor 1030 . Also, a pixel region may be defined by the gate line 1001 and the data line 1002 .
  • the pixel region may be a region on the base portion 1010 , and may be a region in which the semiconductor light emitting device 1050 ′ and the thin film transistor 1030 are disposed.
  • the semiconductor light emitting device 1050 ′ and the thin film transistor 1030 may be disposed in different regions within the pixel region.
  • the semiconductor light emitting device 1050 ′ is disposed on a first region of the base part 1010
  • the thin film transistor 1030 is disposed on a second region of the base part 1010
  • the first The region and the second region may be regions within the pixel region.
  • the region in which the semiconductor light emitting device 1040 is disposed may be the first region, and the region in which the thin film transistor 1030 is disposed may be the second region.
  • the storage capacitor 1040 may be disposed on the second region together with the thin film transistor 1030 .
  • the semiconductor light emitting device 1050' is a flip chip type in which a p-type electrode 1052' and an n-type electrode 1056' are formed on one side of the semiconductor light emitting device 1050'.
  • the present invention is not limited thereto, and a structure in which the positions of the p-type electrode and the n-type electrode are changed may be used, and a semiconductor light emitting device having a vertical structure may be used.
  • the thin film transistor 1030 may be divided into a switching thin film transistor 1030s and a driving thin film transistor 1030d according to roles, and one semiconductor light emitting device 1050' includes a switching thin film transistor 1030s and a driving thin film transistor 1030d. ) can be connected at the same time. Meanwhile, the structures and manufacturing processes of the switching thin film transistor 1030s and the driving thin film transistor 1030d are the same.
  • the thin film transistor 1030 may include a gate electrode G, a source electrode S, a drain electrode D, and a (gate) insulating layer GI.
  • the gate electrode G may be formed of a metal material such as molybdenum (Mo), and after depositing a gate conductive layer on the base portion 1010 and forming a photoresist pattern, the gate electrode G is used as a mask using the photoresist pattern as a mask. It can be formed by selectively patterning a conductive film.
  • Mo molybdenum
  • a (gate) insulating layer GI may be formed on the gate electrode G.
  • the insulating layer GI may be formed by depositing a silicon oxide or silicon nitride material on the base portion 1010 to cover the gate electrode G. Referring to FIG.
  • An active layer A may be formed on the insulating layer GI.
  • the active layer A may be deposited on the insulating layer GI to overlap a portion of the gate electrode G, and may be insulated from the gate electrode G by the insulating layer GI.
  • the active layer (A) may be formed of anisotropic IGZO. That is, the thin film transistor 1030 according to the present embodiment may be an oxide thin film transistor.
  • the source electrode S and the drain electrode D may be formed to be spaced apart from each other.
  • the source electrode S and the drain electrode D may also be formed of a metal material such as molybdenum (Mo).
  • a first passivation layer 1070 may be formed on the insulating layer GI.
  • the first passivation layer 1070 may be stacked on the insulating layer GI while forming holes H1 and H2 exposing portions of the source electrode S and the drain electrode D.
  • the first protective layer 1070 may be formed of an inorganic insulating material such as silicon oxide or silicon nitride, and may have a single-layer or multi-layer structure having a thickness of several tens to several hundred nm.
  • connection electrode 1060 is formed so as to extend from the first region to the second region, and is formed to be formed to extend from the first region to the second region, and form a semiconductor light emission with any one of the holes H1 and H2 exposing a portion of the source electrode S and the drain electrode D Either one of the electrodes 1052' and 1056' of the device may be covered at the same time.
  • the p-type electrode 1052 ′ and the n-type electrode 1056 ′ of the semiconductor light emitting device through the connection electrode 1060 are each one of the source electrode S and the drain electrode D of the thin film transistor 1030 . can be connected with
  • the display apparatus 1000 may further include an assembly electrode 1020 for self-assembly.
  • a voltage may be applied to the assembly electrode 1020 to seat the semiconductor light emitting device 1050 ′ at a preset position on the first region.
  • 16A and 16B are side cross-sectional views of an area (AA′ in FIG. 12 ) in which data wires and assembly electrodes are formed in an AM display device according to an embodiment of the present invention.
  • the assembly electrode 1020 may be formed to extend along one direction on the base portion 1010 , and may extend in the same direction as the data line 1002 . That is, the data line 1002 and the assembly electrode 1020 are disposed in parallel with a layer made of an insulating material therebetween in the structure of the substrate, and may overlap each other. In this case, the data line 1002 and the assembly electrode 1020 may be spaced apart from each other with the first protective layer 1070 interposed therebetween, as shown in FIG. 16A .
  • a parasitic capacitance may be formed between the data line 1002 and the assembly electrode 1020 arranged parallel to each other to generate a distorted signal, and further, the distorted signal may generate a leakage current from the thin film transistor 1030 . It may cause pixel defects.
  • a second protective layer 1080 may be further included between the data line 1002 and the assembly electrode 1020 as shown in FIG. 16B .
  • the second passivation layer 1080 may be formed on at least an area overlapping with the data line 1002 and the assembly electrode 1020 among the entire area of the first passivation layer 1070 . That is, the second passivation layer 1080 may reduce the parasitic capacitance by increasing the separation distance between the data line 1002 and the assembly electrode 1020 .
  • the second passivation layer 1080 may be formed to have a thickness greater than that of the first passivation layer 1070 , for example, to a thickness of several ⁇ m.
  • the second passivation layer 1080 may be formed of an insulating material, preferably, a photosensitive organic insulating material.
  • a photosensitive organic insulating material When the inorganic material is deposited to a thickness of several ⁇ m (eg, PECVD), the deposition time is long, and plasma generated at a high temperature of 300° C. or higher may adversely affect the thin film transistor 1030 .
  • the second protective layer 1080 may be formed of an organic insulating material, thereby shortening the process time, minimizing the effect on the thin film transistor 1030, and further etching
  • the advantage is that the process is easy.
  • the assembled electrodes 1020 may be formed so as not to overlap the thin film transistor 1030 as shown in FIG. 12 .
  • the assembly electrodes 1020 may further include a first protrusion 1021 protruding from the first region toward the semiconductor light emitting device 1050 ′, and the first protrusion 1021 is located at a preset position of the substrate. It may overlap with the semiconductor light emitting device 1050' in a seated state.
  • the assembly electrodes 1020 may form a pair electrode between the adjacent assembly electrodes 1020 , and the semiconductor light emitting device 1050 ′ has a first protrusion ( 1021) can be overlapped at the same time.
  • FIG. 13 (a) to (c) are views showing the shapes of various assembled electrodes for performance comparison of thin film transistors.
  • FIG. 13 (a) is a structure in which the assembled electrode 1020 and the thin film transistor 1030 completely overlap (case 1)
  • FIG. 13 (b) is a structure in which the assembled electrode 1020 and the thin film transistor 1030 partially overlap.
  • case 2 and FIG. 13(c) shows a structure (case 3) in which the assembled electrode 1020 and the thin film transistor 1030 do not overlap as in the embodiment of the present invention.
  • Table 1 is a result showing the performance of the thin film transistor 1030 and the self-assembly rate of the semiconductor light emitting device 1050' after self-assembly under the structure shown in FIGS. 13(a) to (c).
  • the problem of increasing the resistance of the assembled electrode 1020 may be partially improved by using a metal having a low resistance value as the assembled electrode 1020 .
  • the assembly electrode 1020 includes the second protrusion 1022 and the third protrusion ( 1023) may further include at least any one of.
  • the second protrusion 1022 protrudes toward the second region in which the thin film transistor 1030 is disposed
  • the third protrusion 1023 includes the first region in which the semiconductor light emitting device 1050 ′ and the thin film transistor 1030 are disposed. It may protrude toward the second region to be disposed. In this case, the third protrusion 1023 may not overlap the thin film transistor 1030 .
  • the assembly electrode 1020 includes protrusions (particularly, the second and third protrusions), it is possible to prevent an increase in resistance by supplementing the thin width direction thickness of the assembly electrode 1020 .
  • FIG. 14 is a diagram illustrating a structure of a pixel portion in an AM display device according to another embodiment of the present invention.
  • each of the assembled electrodes 1020a and 1020b forming the pair electrode may have different shapes. That is, any one of the assembly electrodes 1020 forming the pair electrode (hereinafter, the first assembly electrode) 1020a may include a first protrusion 1021 and a second protrusion 1022, and the other ( Hereinafter, the second assembly electrode 1020b may include a first protrusion 1021 and a third protrusion 1023 .
  • each of the assembled electrodes 1020a and 1020b forming the pair electrode is not limited to the structure shown in FIG. 14 and may have various structures. However, it is preferable to satisfy the condition of [Equation 1] below.
  • first assembling electrode 1020a and the second assembling electrode 1020b forming the pair electrode may have different shapes, but protrusions included in the first assembling electrode 1020a and the second assembling electrode 1020b.
  • the areas of may be the same or similar.
  • the display device 1000 includes a structure for self-assembly, and thus a semiconductor directly through self-assembly on the AM type display substrate 1000 including the thin film transistor 1030 . There is an effect that the light emitting devices 1050' can be assembled.
  • the assembled electrode 1020 so as not to overlap the thin film transistor 1030, the performance degradation of the thin film transistor 1030 due to self-assembly is prevented, and the performance of the thin film transistor 1030 can be maintained even after self-assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명의 디스플레이 장치는 베이스부; 상기 베이스부의 제1 영역 상에 배치되는 반도체 발광소자; 상기 베이스부의 제2 영역 상에 배치되는 박막 트랜지스터; 및 상기 베이스부 상에 일방향을 따라 연장되며, 상기 반도체 발광소자를 상기 제1 영역 상의 미리 설정된 위치에 안착시키도록 전압이 인가되는 조립 전극들을 포함하고, 상기 조립 전극들은, 상기 박막 트랜지스터와 오버랩 되지 않도록 형성되는 것을 특징으로 한다.

Description

반도체 발광소자를 이용한 디스플레이 장치
본 발명은 반도체 발광소자를 이용한 디스플레이 장치에 관한 것으로, 특히, 수 내지 수십 ㎛ 크기를 갖는 반도체 발광소자를 이용한 디스플레이 장치에 관한 것이다.
최근에는 디스플레이 기술분야에서 대면적 디스플레이를 구현하기 위하여, 액정 디스플레이(LCD), 유기 발광소자(OLED) 디스플레이, 그리고 마이크로 LED 디스플레이 등이 경쟁하고 있다.
그러나, LCD의 경우 빠르지 않은 반응 시간과, 백라이트에 의해 생성된 광의 낮은 효율 등의 문제점이 존재하고, OLED의 경우에 수명이 짧고, 양산 수율이 좋지 않을 뿐 아니라 효율이 낮은 취약점이 존재한다.
이에 반해, 디스플레이에 100 ㎛ 이하의 직경 또는 단면적을 가지는 반도체 발광소자(마이크로 LED)를 사용하면 디스플레이가 편광판 등을 사용하여 빛을 흡수하지 않기 때문에 매우 높은 효율을 제공할 수 있다. 그러나 대형 디스플레이에는 수백만 개의 반도체 발광소자들을 필요로 하기 때문에 다른 기술에 비해 소자들을 전사하는 것이 어려운 단점이 있다.
전사공정으로 현재 개발되고 있는 기술은 픽앤플레이스(pick & place), 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 자가조립(Self-assembly) 등이 있다. 이 중에서 자가조립 방식은 유체 내에서 반도체 발광소자가 스스로 위치를 찾아가는 방식으로서, 대화면의 디스플레이 장치의 구현에 가장 유리한 방식이다.
자가조립 방식에는 반도체 발광소자를 제품에 사용될 최종 기판에 직접 조립하는 방식 및 반도체 발광소자를 조립 기판에 조립한 후 추가 전사 공정을 통해 최종 기판으로 전사하는 방식이 있다. 최종 기판에 직접 조립하는 방식은 공정 측면에서 효율적이며, 조립 기판을 이용하는 경우에는 자가조립을 위한 구조를 제한없이 추가할 수 있는 점에서 장점이 있어 두 방식이 선택적으로 사용되고 있다.
본 발명의 일 목적은, 자가조립을 위한 구조가 추가된 액티브 매트릭스 방식의 디스플레이 장치를 제공하는 것이다.
특히, 본 발명은 박막 트랜지스터에 손상을 가하지 않으면서, 일정 수준 이상의 조립율을 확보할 수 있는 구조의 조립 전극을 포함하는 디스플레이 장치를 제공하는 것을 목적으로 한다.
본 발명의 디스플레이 장치는 베이스부; 상기 베이스부의 제1 영역 상에 배치되는 반도체 발광소자; 상기 베이스부의 제2 영역 상에 배치되는 박막 트랜지스터; 및 상기 베이스부 상에 일방향을 따라 연장되며, 상기 반도체 발광소자를 상기 제1 영역 상의 미리 설정된 위치에 안착시키도록 전압이 인가되는 조립 전극들을 포함하고, 상기 조립 전극들은, 상기 박막 트랜지스터와 오버랩 되지 않도록 형성되는 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 조립 전극들은, 상기 제1 영역에서 상기 반도체 발광소자를 향해 돌출된 제1 돌출부를 더 포함하며, 상기 제1 돌출부는 상기 반도체 발광소자와 오버랩 되는 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 조립 전극들은, 상기 제2 영역을 향해 돌출된 제2 돌출부; 및 상기 제1 영역 및 상기 제2 영역을 향해 돌출된 제3 돌출부 중 적어도 어느 하나를 더 포함하는 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 인접한 조립 전극들 간에는 페어 전극을 형성하며, 상기 페어 전극을 형성하는 각각의 조립 전극들은 서로 다른 형상을 갖는 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 인접한 조립 전극들 간에는 페어 전극을 형성하며, 상기 페어 전극을 형성하는 각각의 조립 전극들의 돌출부의 면적(A, B)은 하기 수학식 1을 만족하는 것을 특징으로 한다.
[수학식 1]
|A-B|/A ≤ 0.1 and |A-B|/B ≤ 0.1
본 발명의 실시예에 있어서, 상기 박막 트랜지스터는, 산화물 박막 트랜지스터인 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 베이스부는, 서로 교차하도록 형성되며 상기 박막 트랜지스터와 연결되는 복수의 게이트 배선 및 데이터 배선을 포함하고, 상기 데이터 배선은, 상기 조립 전극들과 동일한 방향으로 연장된 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 박막 트랜지스터는, 게이트 전극; 절연층에 의해 상기 게이트 전극과 절연되면서, 상기 게이트 전극의 일부와 오버랩 되는 활성층; 상기 활성층의 양측에 형성되는 소스 전극 및 드레인 전극을 포함하는 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 소스 전극 및 상기 드레인 전극 일부를 노출하는 홀을 형성하면서, 상기 절연층 상에 형성되는 제1 보호층을 더 포함하는 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 홀 및 상기 반도체 발광소자의 전극을 덮도록 상기 제1 영역에서 상기 제2 영역까지 연장되어 상기 박막 트랜지스터와 상기 반도체 발광소자를 전기적으로 연결하는 연결 전극을 포함하는 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 제1 보호층의 전체 영역 중 적어도 상기 데이터 배선 및 상기 조립 전극과 오버랩 되는 영역 상에 형성되는 제2 보호층을 더 포함하는 것을 특징으로 한다.
본 발명의 실시예에 있어서, 상기 제2 보호층은, 유기 물질로 형성되며, 상기 제1 보호층보다 두꺼운 두께를 갖는 것을 특징으로 한다.
본 발명의 실시예에 따르면, 박막 트랜지스터를 포함하는 디스플레이 기판에 자가조립 방식을 통해 직접 반도체 발광소자들을 조립할 수 있는 효과가 있다.
특히, 조립 전극을 박막 트랜지스터와 오버랩 되지 않도록 형성함으로써 자가조립 진행에 따른 박막 트랜지스터의 열화 및 성능 저하 등에 대비할 수 있다.
또한, 박막 트랜지스터와 오버랩 되지 않는 조건 하에서 조립 전극의 형상을 다양하게 제작함으로써 조립 전극의 저항 상승을 방지하고, 일정 수준 이상의 조립율을 확보할 수 있는 효과가 있다.
도 1은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 디스플레이 장치의 A부분의 부분 확대도이다.
도 3은 도 2의 반도체 발광소자의 확대도이다.
도 4는 도 2의 반도체 발광소자의 다른 실시예를 나타내는 확대도이다.
도 5a 내지 도 5e는 전술한 반도체 발광소자를 제작하는 새로운 공정을 설명하기 위한 개념도들이다.
도 6은 본 발명에 따른 반도체 발광소자의 자가조립 장치의 일 예를 나타내는 개념도이다.
도 7은 도 6의 자가조립 장치의 블록 다이어그램이다.
도 8a 내지 도 8e는 도 6의 자가조립 장치를 이용하여 반도체 발광소자를 자가조립 하는 공정을 나타내는 개념도이다.
도 9는 도 8a 내지 도 8e의 반도체 발광소자를 설명하기 위한 개념도이다.
도 10 및 도 11은 종래 AM 방식의 디스플레이 장치에 있어 픽셀 부분의 구조 및 회로를 나타내는 개념도이다.
도 12는 본 발명의 일 실시예에 따른 AM 방식의 디스플레이 장치에 있어 픽셀 부분의 구조를 나타낸 도면이다.
도 13(a) 내지 (c)는 박막 트랜지스터의 성능 비교를 위한 다양한 조립 전극의 형상을 나타낸 도면이다.
도 14는 본 발명의 다른 실시예에 따른 AM 방식의 디스플레이 장치에 있어 픽셀 부분의 구조를 나타낸 도면이다.
도 15는 본 발명의 일 실시예에 따른 AM 방식의 디스플레이 장치에 있어 픽셀 부분의 측단면을 나타낸 도면이다.
도 16(a) 및 (b)는 본 발명의 실시예에 따른 AM 방식의 디스플레이 장치에 있어 데이터 배선과 조립 전극이 형성된 영역(도 12의 AA')의 측단면을 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 “모듈” 및 “부”는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니된다. 또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 “상(on)”에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있는 것으로 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistant), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 테블릿 PC(tablet PC), 울트라북(ultra book), 디지털 TV(digital TV), 데스크톱 컴퓨터(desktop computer) 등이 포함될 수 있다. 그러나 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품형태라도 디스플레이를 포함할 수 있다면 적용될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이고, 도 2는 도 1의 디스플레이 장치의 A 부분의 부분 확대도이고, 도 3은 도 2의 반도체 발광소자의 확대도이며, 도 4는 도 2의 반도체 발광소자의 다른 실시예를 나타내는 확대도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 디스플레이 모듈(140)에서 출력될 수 있다. 상기 디스플레이 모듈의 테두리를 감싸는 폐루프 형태의 케이스(101)가 상기 디스플레이 장치의 베젤을 형성할 수 있다.
상기 디스플레이 모듈(140)은 영상이 표시되는 패널(141)을 구비하고, 상기 패널(141)은 마이크로 크기의 반도체 발광소자(150)와 상기 반도체 발광소자(150)가 장착되는 배선기판(110)을 구비할 수 있다.
상기 배선기판(110)에는 배선이 형성되어, 상기 반도체 발광소자(150)의 n형 전극(152) 및 p형 전극(156)과 연결될 수 있다. 이를 통하여, 상기 반도체 발광소자(150)는 자발광하는 개별화소로서 상기 배선기판(110) 상에 구비될 수 있다.
상기 패널(141)에 표시되는 영상은 시각 정보로서, 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 상기 배선을 통하여 독자적으로 제어됨에 의하여 구현된다.
본 발명에서는 전류를 빛으로 변환시키는 반도체 발광소자(150)의 일 종류로서 마이크로 LED(Light Emitting Diode)를 예시한다. 상기 마이크로 LED는 100마이크로 이하의 작은 크기로 형성되는 발광 다이오드가 될 수 있다. 상기 반도체 발광소자(150)는 청색, 적색 및 녹색이 발광영역에 각각 구비되어 이들의 조합에 의하여 단위 화소가 구현될 수 있다. 즉, 상기 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미하며, 상기 단위 화소 내에 적어도 3개의 마이크로 LED가 구비될 수 있다.
보다 구체적으로, 도 3을 참조하면, 상기 반도체 발광 소자(150)는 수직형 구조가 될 수 있다.
예를 들어, 상기 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이러한 수직형 반도체 발광 소자는 p형 전극(156), p형 전극(156) 상에 형성된 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154)상에 형성된 n형 반도체층(153), 및 n형 반도체층(153) 상에 형성된 n형 전극(152)을 포함한다. 이 경우, 하부에 위치한 p형 전극(156)은 배선기판의 p전극과 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(152)은 반도체 발광소자의 상측에서 n전극과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(150)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다른 예로서 도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입 (flip chip type)의 발광 소자가 될 수 있다.
이러한 예로서, 상기 반도체 발광 소자(250)는 p형 전극(256), p형 전극 (256)이 형성되는 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층 (254), 활성층(254) 상에 형성된 n형 반도체층(253), 및 n형 반도체층(253) 상에서 p형 전극(256)과 수평방향으로 이격 배치되는 n형 전극(252)을 포함한다. 이 경우, p형 전극(256)과 n형 전극(152)은 모두 반도체 발광소자의 하부에서 배선기판의 p전극 및 n전극과 전기적으로 연결될 수 있다.
상기 수직형 반도체 발광소자와 수평형 반도체 발광소자는 각각 녹색 반도체 발광소자, 청색 반도체 발광소자 또는 적색 반도체 발광소자가 될 수 있다. 녹색 반도체 발광소자와 청색 반도체 발광소자의 경우에 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 녹색이나 청색의 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다. 이러한 예로서, 상기 반도체 발광소자는 n-Gan, p-Gan, AlGaN, InGan 등 다양한 계층으로 형성되는 질화갈륨 박막이 될 수 있으며, 구체적으로 상기 p형 반도체층은 P-type GaN이고, 상기 n형 반도체층은 N-type GaN 이 될 수 있다. 다만, 적색 반도체 발광소자의 경우에는, 상기 p형 반도체층은 P-type GaAs이고, 상기 n형 반도체층은 N-type GaAs 가 될 수 있다.
또한, 상기 p형 반도체층은 p 전극 쪽은 Mg가 도핑된 P-type GaN이고, n형 반도체층은 n 전극 쪽은 Si가 도핑된 N-type GaN 인 경우가 될 수 있다. 이 경우에, 전술한 반도체 발광소자들은 활성층이 없는 반도체 발광소자가 될 수 있다.
한편, 도 1 내지 도 4를 참조하면, 상기 발광 다이오드가 매우 작기 때문에 상기 디스플레이 패널은 자발광하는 단위화소가 고정세로 배열될 수 있으며, 이를 통하여 고화질의 디스플레이 장치가 구현될 수 있다.
상기에서 설명된 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치에서는 웨이퍼 상에서 성장되어, 메사 및 아이솔레이션을 통하여 형성된 반도체 발광소자가 개별 화소로 이용된다. 이 경우에, 마이크로 크기의 반도체 발광소자(150)는 웨이퍼에 상기 디스플레이 패널의 기판 상의 기설정된 위치로 전사되어야 한다. 이러한 전사기술로 픽앤플레이스(pick and place)가 있으나, 성공률이 낮고 매우 많은 시간이 요구된다. 다른 예로서, 스탬프나 롤을 이용하여 한 번에 여러개의 소자를 전사하는 기술이 있으나, 수율에 한계가 있어 대화면의 디스플레이에는 적합하지 않다. 본 발명에서는 이러한 문제를 해결할 수 있는 디스플레이 장치의 새로운 제조방법 및 제조장치를 제시한다.
이를 위하여, 이하, 먼저 디스플레이 장치의 새로운 제조방법에 대하여 살펴본다. 도 5a 내지 도 5e는 전술한 반도체 발광 소자를 제작하는 새로운 공정을 설명하기 위한 개념도들이다.
본 명세서에서는, 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광소자를 이용한 디스플레이 장치를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광소자에도 적용 가능하다. 또한, 수평형 반도체 발광소자를 자가조립 하는 방식에 대하여 예시하나, 이는 수직형 반도체 발광소자를 자가조립 하는 방식에도 적용가능하다.
먼저, 제조방법에 의하면, 성장기판(159)에 제1도전형 반도체층(153), 활성층(154), 제2 도전형 반도체층(155)을 각각 성장시킨다(도 5a).
제1도전형 반도체층(153)이 성장하면, 다음은, 상기 제1도전형 반도체층 (153) 상에 활성층(154)을 성장시키고, 다음으로 상기 활성층(154) 상에 제2 도전형 반도체층(155)을 성장시킨다. 이와 같이, 제1도전형 반도체층(153), 활성층(154) 및 제2도전형 반도체층(155)을 순차적으로 성장시키면, 도 5a에 도시된 것과 같이, 제1도전형 반도체층(153), 활성층(154) 및 제2도전형 반도체층(155)이 적층 구조를 형성한다.
이 경우에, 상기 제1도전형 반도체층(153)은 p형 반도체층이 될 수 있으며, 상기 제2도전형 반도체층(155)은 n형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
또한, 본 실시예에서는 상기 활성층이 존재하는 경우를 예시하나, 전술한 바와 같이 경우에 따라 상기 활성층이 없는 구조도 가능하다. 이러한 예로서, 상기 p형 반도체층은 Mg가 도핑된 P-type GaN이고, n형 반도체층은 n 전극 쪽은 Si가 도핑된 N-type GaN 인 경우가 될 수 있다.
성장기판(159)(웨이퍼)은 광 투과적 성질을 가지는 재질, 예를 들어 사파이어(Al2O3), GaN, ZnO, AlO 중 어느 하나를 포함하여 형성될 수 있으나, 이에 한정하지는 않는다. 또한, 성장기판(1059)은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 열 전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판을 포함하여 예를 들어, 사파이어(Al2O3) 기판에 비해 열전도성이 큰 SiC 기판 또는 Si, GaAs, GaP, InP, Ga2O3 중 적어도 하나를 사용할 수 있다.
다음으로, 제1도전형 반도체층(153), 활성층(154) 및 제2 도전형 반도체층 (155)의 적어도 일부를 제거하여 복수의 반도체 발광소자를 형성한다(도 5b).
보다 구체적으로, 복수의 발광소자들이 발광 소자 어레이를 형성하도록, 아이솔레이션(isolation)을 수행한다. 즉, 제1도전형 반도체층(153), 활성층 (154) 및 제2 도전형 반도체층(155)을 수직방향으로 식각하여 복수의 반도체 발광소자를 형성한다.
만약, 수평형 반도체 발광소자를 형성하는 경우라면, 상기 활성층(154) 및 제2 도전형 반도체층(155)은 수직방향으로 일부가 제거되어, 상기 제1도전형 반도체층(153)이 외부로 노출되는 메사 공정과, 이후에 제1도전형 반도체층을 식각하여 복수의 반도체 발광소자 어레이를 형성하는 아이솔레이션(isolation)이 수행될 수 있다.
다음으로, 상기 제2도전형 반도체층(155)의 일면 상에 제2도전형 전극(156, 또는 p형 전극)를 각각 형성한다(도 5c). 상기 제2도전형 전극(156)은 스퍼터링 등의 증착 방법으로 형성될 수 있으나, 본 발명은 반드시 이에 한정되는 것은 아니다. 다만, 상기 제1도전형 반도체층과 제2도전형 반도체층이 각각 n형 반도체층과 p형 반도체층인 경우에는, 상기 제2도전형 전극(156)은 n형 전극이 되는 것도 가능하다.
그 다음에, 상기 성장기판(159)을 제거하여 복수의 반도체 발광소자를 구비한다. 예를 들어, 성장기판(1059)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다(도 5d).
이후에, 유체가 채워진 챔버에서 반도체 발광소자들(150)이 기판에 안착되는 단계가 진행된다(도 5e).
예를 들어, 유체가 채워진 챔버 속에 상기 반도체 발광소자들(150) 및 기판을 넣고 유동, 중력, 표면 장력 등을 이용하여 상기 반도체 발광소자들이 상기 기판(1061)에 스스로 조립되도록 한다. 이 경우에, 상기 기판은 조립기판(161)이 될 수 있다.
다른 예로서, 상기 조립기판(161) 대신에 배선기판을 유체 챔버 내에 넣어, 상기 반도체 발광소자들(150)이 배선기판에 바로 안착되는 것도 가능하다. 이 경우에, 상기 기판은 배선기판이 될 수 있다. 다만, 설명의 편의상, 본 발명에서는 기판이 조립기판(161)으로서 구비되어 반도체 발광소자들(1050)이 안착되는 것을 예시한다.
반도체 발광소자들(150)이 조립 기판(161)에 안착하는 것이 용이하도록, 상기 조립 기판(161)에는 상기 반도체 발광소자들(150)이 끼워지는 셀들 (미도시)이 구비될 수 있다. 구체적으로, 상기 조립기판(161)에는 상기 반도체 발광소자들(150)이 배선전극에 얼라인되는 위치에 상기 반도체 발광소자들 (150)이 안착되는 셀들이 형성된다. 상기 반도체 발광소자들(150)은 상기 유체 내에서 이동하다가, 상기 셀들에 조립된다.
상기 조립기판(161)에 복수의 반도체 발광소자들이 어레이된 후에, 상기 조립기판(161)의 반도체 발광소자들을 배선기판으로 전사하면, 대면적의 전사가 가능하게 된다. 따라서, 상기 조립기판(161)은 임시기판으로 지칭될 수 있다.
한편, 상기에서 설명된 자가조립 방법은 대화면 디스플레이의 제조에 적용하려면, 전사수율을 높여야만 한다. 본 발명에서는 전사수율을 높이기 위하여, 중력이나 마찰력의 영향을 최소화하고, 비특이적 결합을 막는 방법과 장치를 제안한다.
이 경우, 본 발명에 따른 디스플레이 장치는, 반도체 발광소자에 자성체를 배치시켜 자기력을 이용하여 반도체 발광소자를 이동시키고, 이동과정에서 전기장을 이용하여 상기 반도체 발광소자를 기 설정된 위치에 안착시킨다. 이하에서는, 이러한 전사 방법과 장치에 대하여 첨부된 도면과 함께 보다 구체적으로 살펴본다.
도 6은 본 발명에 따른 반도체 발광소자의 자가조립 장치의 일 예를 나타내는 개념도이고, 도 7은 도 6의 자가조립 장치의 블록 다이어그램이다. 또한, 도 8a 내지 도 8e는 도 6의 자가조립 장치를 이용하여 반도체 발광소자를 자가조립 하는 공정을 나타내는 개념도이며, 도 9는 도 8a 내지 도 8e의 반도체 발광소자를 설명하기 위한 개념도이다.
도 6 및 도 7의 도시에 의하면, 본 발명의 자가조립 장치(160)는 유체 챔버(162), 자석(163) 및 위치 제어부(164)를 포함할 수 있다.
상기 유체 챔버(162)는 복수의 반도체 발광소자들을 수용하는 공간을 구비한다. 상기 공간에는 유체가 채워질 수 있으며, 상기 유체는 조립용액으로서 물 등을 포함할 수 있다. 따라서, 상기 유체 챔버(162)는 수조가 될 수 있으며, 오픈형으로 구성될 수 있다. 다만, 본 발명은 이에 한정되는 것은 아니며, 상기 유체 챔버(162)는 상기 공간이 닫힌 공간으로 이루어지는 클로즈형이 될 수 있다.
상기 유체 챔버(162)에는 기판(161)이 상기 반도체 발광소자들(150)이 조립되는 조립면이 아래를 향하도록 배치될 수 있다. 예를 들어, 상기 기판(161)은 이송부에 의하여 조립위치로 이송되며, 상기 이송부는 기판이 장착되는 스테이지(165)를 구비할 수 있다. 상기 스테이지(165)가 제어부에 의하여 위치조절되며, 이를 통하여 상기 기판(161)은 상기 조립위치로 이송될 수 있다.
이 때에, 상기 조립위치에서 상기 기판(161)의 조립면이 상기 유체 챔버(150)의 바닥을 향하게 된다. 도시에 의하면, 상기 기판(161)의 조립면은 상기 유체 챔버(162)내의 유체에 잠기도록 배치된다. 따라서, 상기 반도체 발광소자(150)는 상기 유체내에서 상기 조립면으로 이동하게 된다.
상기 기판(161)은 전기장 형성이 가능한 조립기판으로서, 베이스부(161a), 유전체층(161b) 및 복수의 전극들(161c)을 포함할 수 있다.
상기 베이스부(161a)는 절연성 있는 재질로 이루어지며, 상기 복수의 전극들(161c)은 상기 베이스부(161a)의 일면에 패턴된 박막 또는 후막 bi-planar 전극이 될 수 있다. 상기 전극(161c)은 예를 들어, Ti/Cu/Ti의 적층, Ag 페이스트 및 ITO 등으로 형성될 수 있다.
상기 유전체층(161b)은, SiO2, SiNx, SiON, Al2O3, TiO2, HfO2 등의 무기 물질로 이루어질 있다. 이와 다르게, 유전체층(161b)은, 유기 절연체로서 단일층이거나 멀티층으로 구성될 수 있다. 유전체층(161b)의 두께는, 수십 nm~수μ¥μm의 두께로 이루어질 수 있다.
나아가, 본 발명에 따른 기판(161)은 격벽에 의하여 구획되는 복수의 셀들(161d)을 포함한다. 셀들(161d)은, 일방향을 따라 순차적으로 배치되며, 폴리머(polymer) 재질로 이루어질 수 있다. 또한, 셀들(161d)을 이루는 격벽(161e)은, 이웃하는 셀들(161d)과 공유되도록 이루어진다. 상기 격벽 (161e)은 상기 베이스부(161a)에서 돌출되며, 상기 격벽(161e)에 의하여 상기 셀들(161d)이 일방향을 따라 순차적으로 배치될 수 있다. 보다 구체적으로, 상기 셀들(161d)은 열과 행 방향으로 각각 순차적으로 배치되며, 매트릭스 구조를 가질 수 있다.
셀들(161d)의 내부는, 도시와 같이, 반도체 발광소자(150)를 수용하는 홈을 구비하며, 상기 홈은 상기 격벽(161e)에 의하여 한정되는 공간이 될 수 있다. 상기 홈의 형상은 반도체 발광소자의 형상과 동일 또는 유사할 수 있다. 예를 들어, 반도체 발광소자가 사각형상인 경우, 홈은 사각형상일 수 있다. 또한, 비록 도시되지는 않았지만, 반도체 발광소자가 원형인 경우, 셀들 내부에 형성된 홈은, 원형으로 이루어질 수 있다. 나아가, 셀들 각각은, 단일의 반도체 발광소자를 수용하도록 이루어진다. 즉, 하나의 셀에는, 하나의 반도체 발광소자가 수용된다.
한편, 복수의 전극들(161c)은 각각의 셀들(161d)의 바닥에 배치되는 복수의 전극라인을 구비하며, 상기 복수의 전극라인은 이웃한 셀로 연장되도록 이루어질 수 있다.
상기 복수의 전극들(161c)은 상기 셀들(161d)의 하측에 배치되며, 서로 다른 극성이 각각 인가되어 상기 셀들(161d) 내에 전기장을 생성한다. 상기 전기장 형성을 위하여, 상기 복수의 전극들(161c)을 상기 유전체층이 덮으면서, 상기 유전체층이 상기 셀들(161d)의 바닥을 형성할 수 있다. 이런 구조에서, 각 셀들(161d)의 하측에서 한 쌍의 전극(161c)에 서로 다른 극성이 인가되면 전기장이 형성되고, 상기 전기장에 의하여 상기 셀들(161d) 내부로 상기 반도체 발광소자가 삽입될 수 있다.
상기 조립위치에서 상기 기판(161)의 전극들은 전원공급부(171)와 전기적으로 연결된다. 상기 전원공급부(171)는 상기 복수의 전극에 전원을 인가하여 상기 전기장을 생성하는 기능을 수행한다.
도시에 의하면, 상기 자가조립 장치는 상기 반도체 발광소자들에 자기력을 가하기 위한 자석(163)을 구비할 수 있다. 상기 자석(163)은 상기 유체 챔버(162)와 이격 배치되어 상기 반도체 발광소자들(150)에 자기력을 가하도록 이루어진다. 상기 자석(163)은 상기 기판(161)의 조립면의 반대면을 마주보도록 배치될 수 있으며, 상기 자석(163)과 연결되는 위치 제어부(164)에 의하여 상기 자석의 위치가 제어된다.
상기 자석(163)의 자기장에 의하여 상기 유체내에서 이동하도록, 상기 반도체 발광소자(1050)는 자성체를 구비할 수 있다.
도 9를 참조하면, 자성체를 구비하는 반도체 발광 소자는 제1도전형 전극(1052) 및 제2도전형 전극(1056), 상기 제1도전형 전극(1052)이 배치되는 제1도전형 반도체층(1053), 상기 제1도전형 반도체층(1052)과 오버랩되며, 상기 제2도전형 전극(1056)이 배치되는 제2도전형 반도체층(1055), 그리고 상기 제1 및 제2도전형 반도체층(1053, 1055) 사이에 배치되는 활성층(1054)을 포함할 수 있다.
여기에서, 제1도전형은 p형이고, 제2도전형은 n형으로 구성될 수 있으며, 그 반대로도 구성될 수 있다. 또한, 전술한 바와 같이 상기 활성층이 없는 반도체 발광소자가 될 수 있다.
한편, 본 발명에서, 상기 제1도전형 전극(1052)는 반도체 발광소자의 자가조립 등에 의하여, 반도체 발광소자가 배선기판에 조립된 이후에 생성될 수 있다. 또한, 본 발명에서, 상기 제2도전형 전극(1056)은 상기 자성체를 포함할 수 있다. 자성체는 자성을 띄는 금속을 의미할 수 있다. 상기 자성체는 Ni, SmCo 등이 될 수 있으며, 다른 예로서 Gd 계, La계 및 Mn계 중 적어도 하나에 대응되는 물질을 포함할 수 있다.
자성체는 입자 형태로 상기 제2도전형 전극(1056)에 구비될 수 있다. 또한, 이와 다르게, 자성체를 포함한 도전형 전극은, 도전형 전극의 일 레이어가 자성체로 이루어질 수 있다. 이러한 예로서, 도 9에 도시된 것과 같이, 반도체 발광소자(1050)의 제2도전형 전극(1056)은, 제1층(1056a) 및 제2층(1056b)을 포함할 수 있다. 여기에서, 제1층(1056a)은 자성체를 포함하도록 이루어질 수 있고, 제2층(1056b)는 자성체가 아닌 금속소재를 포함할 수 있다.
도시와 같이, 본 예시에서는 자성체를 포함하는 제1층(1056a)이, 제2 도전형 반도체층(1055)과 맞닿도록 배치될 수 있다. 이 경우, 제1층(1056a)은, 제2층(1056b)과 제2도전형 반도체층(1055) 사이에 배치된다. 상기 제2층 (1056b)은 배선기판의 제2전극과 연결되는 컨택 메탈이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 자성체는 상기 제1도전형 반도체층의 일면에 배치될 수 있다.
다시 도 6 및 도 7을 참조하면, 보다 구체적으로, 상기 자가조립 장치는 상기 유체 챔버의 상부에 x,y,z 축으로 자동 또는 수동으로 움직일 수 있는 자석 핸들러를 구비하거나, 상기 자석(163)을 회전시킬 수 있는 모터를 구비할 수 있다. 상기 자석 핸들러 및 모터는 상기 위치 제어부(164)를 구성할 수 있다. 이를 통하여, 상기 자석(163)은 상기 기판(161)과 수평한 방향, 시계방향 또는 반시계방향으로 회전하게 된다.
한편, 상기 유체 챔버(162)에는 광투과성의 바닥판(166)이 형성되고, 상기 반도체 발광소자들은 상기 바닥판(166)과 상기 기판(161)의 사이에 배치될 수 있다. 상기 바닥판(166)을 통하여 상기 유체 챔버(162)의 내부를 모니터링하도록, 이미지 센서(167)가 상기 바닥판(166)을 바라보도록 배치될 수 있다. 상기 이미지 센서(167)는 제어부(172)에 의하여 제어되며, 기판(161)의 조립면을 관찰할 수 있도록 inverted type 렌즈 및 CCD 등을 구비할 수 있다.
상기에서 설명한 자가조립 장치는 자기장과 전기장을 조합하여 이용하도록 이루어지며, 이를 이용하면, 상기 반도체 발광소자들이 상기 자석의 위치변화에 의하여 이동하는 과정에서 전기장에 의하여 상기 기판의 기설정된 위치에 안착될 수 있다. 이하, 상기에서 설명한 자기조립 장치를 이용한 조립과정에 대하여 보다 상세히 설명한다.
먼저, 도 5a 내지 도 5c에서 설명한 과정을 통하여 자성체를 구비하는 복수의 반도체 발광소자들(1050)을 형성한다. 이 경우에, 도 5c의 제2도전형 전극을 형성하는 과정에서, 자성체를 상기 반도체 발광소자에 증착할 수 있다.
다음으로, 기판(161)을 조립위치로 이송하고, 상기 반도체 발광소자들 (1050)을 유체 챔버(162)에 투입한다(도 8a).
전술한 바와 같이, 상기 기판(161)의 조립위치는 상기 기판(161)의 상기 반도체 발광소자들(1050)이 조립되는 조립면이 아래를 향하도록 상기 유체 챔버(162)에 배치되는 위치가 될 수 있다.
이 경우에, 상기 반도체 발광소자들(1050) 중 일부는 유체 챔버(162)의 바닥에 가라앉고 일부는 유체 내에 부유할 수 있다. 상기 유체 챔버(162)에 광투과성의 바닥판(166)이 구비되는 경우에, 상기 반도체 발광소자들(1050) 중 일부는 바닥판(166)에 가라앉을 수 있다.
다음으로, 상기 유체 챔버(162) 내에서 상기 반도체 발광소자들(1050)이 수직방향으로 떠오르도록 상기 반도체 발광소자들(1050)에 자기력을 가한다(도 8b).
상기 자가조립 장치의 자석(163)이 원위치에서 상기 기판(161)의 조립면의 반대면으로 이동하면, 상기 반도체 발광소자들(1050)은 상기 기판(161)을 향하여 상기 유체 내에서 떠오르게 된다. 상기 원위치는 상기 유체 챔버(162)로부터 벗어난 위치가 될 수 있다. 다른 예로서, 상기 자석(163)이 전자석으로 구성될 수 있다. 이 경우에는 전자석에 전기를 공급하여 초기 자기력을 생성하게 된다.
한편, 본 예시에서, 상기 자기력의 크기를 조절하면 상기 기판(161)의 조립면과 상기 반도체 발광소자들(1050)의 이격거리가 제어될 수 있다. 예를 들어, 상기 반도체 발광소자들(1050)의 무게, 부력 및 자기력을 이용하여 상기 이격거리를 제어한다. 상기 이격거리는 상기 기판의 최외각으로부터 수 밀리미터 내지 수십 마이크로미터가 될 수 있다.
다음으로, 상기 유체 챔버(162) 내에서 상기 반도체 발광소자들(1050)이 일방향을 따라 이동하도록, 상기 반도체 발광소자들(1050)에 자기력을 가한다. 예를 들어, 상기 자석(163)을 상기 기판과 수평한 방향, 시계방향 또는 반시계방향으로 이동한다(도 8c). 이 경우에, 상기 반도체 발광소자들(1050)은 상기 자기력에 의하여 상기 기판(161)과 이격된 위치에서 상기 기판(161)과 수평한 방향으로 따라 이동하게 된다.
다음으로, 상기 반도체 발광소자들(1050)이 이동하는 과정에서 상기 기판(161)의 기설정된 위치에 안착되도록, 전기장을 가하여 상기 반도체 발광소자들(1050)을 상기 기설정된 위치로 유도하는 단계가 진행된다(도 8c). 예를 들어, 상기 반도체 발광소자들(1050)이 상기 기판(161)과 수평한 방향으로 따라 이동하는 도중에 상기 전기장에 의하여 상기 기판(161)과 수직한 방향으로 이동하여 상기 기판(161)의 기설정된 위치에 안착된다.
보다 구체적으로, 기판(161)의 bi-planar 전극에 전원을 공급하여 전기장을 생성하고, 이를 이용하여 기설정된 위치에서만 조립이 되도록 유도한게 된다. 즉 선택적으로 생성한 전기장을 이용하여, 반도체 발광소자들(1050)이 상기 기판(161)의 조립위치에 스스로 조립되도록 한다. 이를 위하여, 상기 기판(161)에는 상기 반도체 발광소자들(1050)이 끼워지는 셀들이 구비될 수 있다.
이후에, 상기 기판(161)의 언로딩 과정이 진행되며, 조립 공정이 완료된다. 상기 기판(161)이 조립 기판인 경우에, 전술한 바와 같이 어레인된 반도체 발광소자들을 배선기판으로 전사하여 디스플레이 장치를 구현하기 위한 후공정이 진행될 수 있다.
한편, 상기 반도체 발광소자들(1050)을 상기 기설정된 위치로 유도한 후에, 상기 유체 챔버(162) 내에 남아있는 반도체 발광소자들(1050)이 상기 유체 챔버(162)의 바닥으로 떨어지도록 상기 자석(163)을 상기 기판(161)과 멀어지는 방향으로 이동시킬 수 있다(도 8d). 다른 예로서, 상기 자석(163)이 전자석인 경우에 전원공급을 중단하면, 상기 유체 챔버(162) 내에 남아있는 반도체 발광소자들(1050)이 상기 유체 챔버(162)의 바닥으로 떨어지게 된다.
이후에, 상기 유체 챔버(162)의 바닥에 있는 반도체 발광소자들(1050)을 회수하면, 상기 회수된 반도체 발광소자들(1050)의 재사용이 가능하게 된다.
상기에서 설명된 자가조립 장치 및 방법은 fluidic assembly에서 조립 수율을 높이기 위해 자기장을 이용하여 먼거리의 부품들을 미리 정해진 조립 사이트 근처에 집중시키고, 조립 사이트에 별도 전기장을 인가하여 조립 사이트에만 선택적으로 부품이 조립되도록 한다. 이때 조립기판을 수조 상부에 위치시키고 조립면이 아래로 향하도록 하여 부품의 무게에 의한 중력 영향을 최소화하면서 비특이적 결합을 막아 불량을 제거한다. 즉, 전사수율을 높이기 위해 조립 기판을 상부에 위치시켜 중력이나 마찰력 영향을 최소화하며, 비특이적 결합을 막는다.
이상에서 살펴본 것과 같이, 상기와 같은 구성의 본 발명에 의하면, 개별화소를 반도체 발광소자로 형성하는 디스플레이 장치에서, 다량의 반도체 발광소자를 한번에 조립할 수 있다.
이와 같이, 본 발명에 따르면 작은 크기의 웨이퍼 상에서 반도체 발광소자를 다량으로 화소화시킨 후 대면적 기판으로 전사시키는 것이 가능하게 된다. 이를 통하여, 저렴한 비용으로 대면적의 디스플레이 장치를 제작하는 것이 가능하게 된다.
이하에서는, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 새로운 구조의 반도체 발광소자를 이용한 디스플레이 장치에 대해 설명한다.
본 발명의 실시예에 따른 디스플레이 장치(1000)는 반도체 발광소자들을 자가조립 하기 위한 구조로서 조립 전극(1020)이 추가된 액티브 매트릭스 방식 (이하, AM 방식)의 디스플레이 장치이다.
먼저, 종래 AM 방식의 디스플레이 장치의 구조에 대해 간략하게 설명한다. 도 10 및 도 11은 종래 AM 방식의 디스플레이 장치에 있어 픽셀 부분의 구조 및 회로를 나타내는 개념도이다.
AM 방식의 디스플레이 장치(200)는 베이스 기판 상에 게이트 배선(201) 및 데이터 배선(202)이 배치될 수 있다. 도 10과 같이, 게이트 배선(201)과 데이터 배선(202)은 서로 다른 방향으로 연장되어 교차할 수 있으며, 이들에 의해 픽셀 영역이 정의될 수 있다.
픽셀 영역에는 반도체 발광소자(230)를 포함하여, 반도체 발광소자(230)의 구동을 위한 박막 트랜지스터(210s, 210d) 및 저장 커패시터(220)가 배치될 수 있다. 또한, 이들을 전기적으로 연결하는 연결 전극(240)이 더 구비될 수 있다.
또한, 베이스 기판 상에는 게이트 배선(201) 및 데이터 배선(202) 외에 전원 공급을 위한 배선(V ss, V dd)들이 더 배치될 수 있다. 배선의 배치 및 설계는 다양하게 변경될 수 있다.
한편, 박막 트랜지스터(210)는 게이트 전극, 활성층, 소스 전극 및 드레인 전극을 포함하며, 활성층의 물질에 따라 활성층이 실리콘으로 형성된 a-Si type 및 LTPS type, 산화물로 형성된 oxide type으로 구분된다. 이들 중 oxide type은 PC, TV 등에 사용되는 대형 디스플레이에 사용된다.
구체적으로, oxide type(이하, 산화물 박막 트랜지스터 또는 oxide TFT)은 활성층이 IGZO(Indium, Gallium, Zinc, Oxygen) 결합물로 형성된다. IGZO 결합 물질은 공정 속도가 빠르고, 비용이 저렴하여 대형 디스플레이용으로 적합하다.
그러나, 산화물 박막 트랜지스터는 특성이 매우 취약하여 기판에 산화물 박막 트랜지스터를 제작한 후 진행되는 후속 공정에 따라 그 성능이 유지되지 못하고 열화(degradation)되는 문제가 있다.
따라서, AM 방식의 디스플레이 장치(200)에 자가조립 방식에 의해 수 내지 수십 ㎛ 크기의 반도체 발광소자(240)를 조립하기 위한 구조, 예를 들어, 기판의 일면에 전기장을 형성하기 위한 전압이 인가되는 조립 전극과 같은 구조들을 추가하는 것은 제한적일 수밖에 없었다.
이에 종래에는 AM 방식의 디스플레이 장치(200)에 수 내지 수십 ㎛ 크기의 반도체 발광소자(240)를 조립하기 위해서는, 조립 전극이 형성된 도너(donor) 기판에 자가조립을 통해 반도체 발광소자들(240)을 조립한 후, PDMS 스탬프를 이용하여 반도체 발광소자들(240)을 조립 기판으로부터 박막 트랜지스터(210) 및 배선(201, 202) 등이 형성된 최종 기판(200)으로 전사하는 방식에 의하였다.
본 발명은 자가조립을 위한 조립 전극(1020)이 추가된 액티브 매트릭스 방식의 디스플레이 장치(1000)를 제공하는 것이다.
도 12는 본 발명의 일 실시예에 따른 AM 방식의 디스플레이 장치에 있어 픽셀 부분의 구조를 나타낸 도면이고, 도 15는 본 발명의 일 실시예에 따른 AM 방식의 디스플레이 장치에 있어 픽셀 부분의 측단면을 나타낸 도면이다.
도 12를 참조하면, 본 발명의 실시예에 따른 디스플레이 장치(1000)는 베이스부(1010) 상에 복수의 게이트 배선(1001) 및 데이터 배선(1002), 조립 전극(1020), 박막 트랜지스터(1030), 저장 커패시터(1040) 및 반도체 발광소자 (1050')를 포함할 수 있다.
베이스부(1010)는 플랙서블 성능을 구현하기 위해 폴리이미드(PI, poly -imide)를 포함할 수 있으며, 이외에도 절연성 및 유연성 있는 소재면 특별히 한정하지 않는다.
게이트 배선(1001) 및 데이터 배선(1002)은 서로 교차하도록 형성되며, 박막 트랜지스터(1030)와 연결될 수 있다. 또한, 게이트 배선(1001) 및 데이터 배선(1002)에 의해 픽셀 영역이 정의될 수 있다.
픽셀 영역은 베이스부(1010) 상의 영역일 수 있으며, 반도체 발광소자 (1050') 및 박막 트랜지스터(1030)가 배치되는 영역일 수 있다.
또한, 반도체 발광소자(1050') 및 박막 트랜지스터(1030)는 픽셀 영역 내 서로 다른 영역에 배치될 수 있다. 본 실시예에 따르면, 반도체 발광소자 (1050')는 베이스부(1010)의 제1 영역 상에 배치되고, 박막 트랜지스터 (1030)는 베이스부(1010)의 제2 영역 상에 배치되며, 제1 영역 및 제2 영역은 픽셀 영역 내의 영역일 수 있다.
즉, 도 15에서 반도체 발광소자(1040)가 배치된 영역은 제1 영역일 수 있으며, 박막 트랜지스터(1030)가 배치된 영역은 제2 영역일 수 있다.
한편, 저장 커패시터(1040)는 박막 트랜지스터(1030)와 함께 제2 영역 상에 배치될 수 있다.
본 발명의 실시예에서, 반도체 발광소자(1050')는 p형 전극(1052') 및 n형 전극(1056')이 반도체 발광소자(1050')의 일측에 형성된 플립 칩 타입(flip chip type)일 수 있다. 그러나 반드시 이에 한정되지 않고 p형 전극 및 n형 전극의 위치가 변경된 구조도 가능하며, 수직형 구조의 반도체 발광소자가 이용될 수도 있다.
박막 트랜지스터(1030)는 역할에 따라 스위칭 박막 트랜지스터(1030s) 및 구동 박막 트랜지스터(1030d)로 구분될 수 있으며, 하나의 반도체 발광소자 (1050')는 스위칭 박막 트랜지스터(1030s) 및 구동 박막 트랜지스터(1030d)와 동시에 연결될 수 있다. 한편, 스위칭 박막 트랜지스터(1030s)와 구동 박막 트랜지스터(1030d)의 구조 및 제조 공정은 동일하다.
박막 트랜지스터(1030)는 게이트 전극(G), 소스 전극(S), 드레인 전극 (D) 및 (게이트) 절연층(GI)을 포함할 수 있다.
이하에서는, 박막 트랜지스터(1030)의 구조에 대해 간략하게 설명한다.
먼저, 게이트 전극(G)은 몰리브덴(Mo)과 같은 금속 재질로 형성될 수 있으며, 베이스부(1010) 상에 게이트 도전막을 증착하고 포토레지스트 패턴을 형성한 후, 포토레지스트 패턴을 마스크로 하여 게이트 도전막을 선택적으로 패터닝함으로써 형성될 수 있다.
게이트 전극(G) 상에는 (게이트) 절연층(GI)이 형성될 수 있다. 예컨대, 절연층(GI)은 실리콘 산화물 또는 실리콘 질화물 소재가 게이트 전극(G)을 덮도록 베이스부(1010) 상에 증착되어 형성될 수 있다.
절연층(GI) 상에는 활성층(A)이 형성될 수 있다. 활성층(A)은 절연층 (GI) 상에 게이트 전극(G)의 일부와 오버랩 되도록 증착될 수 있으며, 절연층 (GI)에 의해 게이트 전극(G)과 절연될 수 있다.
본 발명의 실시예에서, 활성층(A)은 비등방성 IGZO로 형성될 수 있다. 즉, 본 실시예에 따른 박막 트랜지스터(1030)는 산화물 박막 트랜지스터일 수 있다.
활성층(A)의 양측에는 소스 전극(S) 및 드레인 전극(D)이 서로 이격 형성될 수 있다. 소스 전극(S) 및 드레인 전극(D) 또한 몰리브덴(Mo)과 같은 금속 재질로 형성될 수 있다.
절연층(GI) 상에는 제1 보호층(1070)이 형성될 수 있다. 제1 보호층 (1070)은 소스 전극(S) 및 드레인 전극(D)의 일부를 노출하는 홀(H1, H2)을 형성하면서 절연층(GI) 상에 적층될 수 있다. 또한, 제1 보호층(1070)은 실리콘 산화물 또는 실리콘 질화물과 같은 무기 절연 물질로 형성될 수 있으며, 수십 내지 수백 nm 두께의 단층 또는 다층 구조일 수 있다.
한편, 반도체 발광소자(1050')와 박막 트랜지스터(1030)는 연결 전극 (1060)을 통해 전기적으로 연결될 수 있다. 구체적으로, 연결 전극(1060)은 제1 영역에서 제2 영역까지 연장되도록 형성되어, 소스 전극(S) 및 드레인 전극(D)의 일부를 노출하는 홀(H1, H2) 중 어느 하나와 반도체 발광소자의 전극(1052', 1056') 중 어느 하나를 동시에 덮을 수 있다.
즉, 연결 전극(1060)을 통해 반도체 발광소자의 p형 전극(1052') 및 n형 전극(1056')은 각각 박막 트랜지스터(1030)의 소스 전극(S) 및 드레인 전극(D) 중 어느 하나와 연결될 수 있다.
본 발명의 실시예에 따르면, 디스플레이 장치(1000)는 자가조립을 위한 조립 전극(1020)을 더 포함할 수 있다. 조립 전극(1020)에는 반도체 발광소자 (1050')를 제1 영역 상의 미리 설정된 위치에 안착시키도록 전압이 인가될 수 있다.
도 16(a) 및 (b)는 본 발명의 실시예에 따른 AM 방식의 디스플레이 장치에 있어 데이터 배선과 조립 전극이 형성된 영역(도 12의 AA')의 측단면을 나타낸 도면이다.
도 16을 참조하면, 조립 전극(1020)은 베이스부(1010) 상에 일방향을 따라 연장 형성될 수 있으며, 데이터 배선(1002)과 동일한 방향으로 연장될 수 있다. 즉, 데이터 배선(1002)과 조립 전극(1020)은 기판의 구조 상 절연 물질로 이루어진 층을 사이에 두고 평행하게 배치되며, 서로 오버랩 될 수 있다. 이 때, 데이터 배선(1002)과 조립 전극(1020)은 도 16(a)와 같이 제1 보호층(1070)을 사이에 두고 이격 배치될 수 있다.
한편, 서로 평행하게 배치된 데이터 배선(1002)과 조립 전극(1020) 사이에는 기생 커패시턴스가 형성되어 왜곡된 신호를 발생시킬 수 있으며, 나아가 왜곡된 신호는 박막 트랜지스터(1030)로부터 누설 전류를 발생시켜 화소 불량을 야기할 수 있다.
이를 방지하기 위해, 본 발명의 실시예에 따르면, 도 16(b)와 같이 데이터 배선(1002)과 조립 전극(1020) 사이에 제2 보호층(1080)을 더 포함할 수 있다.
제2 보호층(1080)은 제1 보호층(1070)의 전체 영역 중 적어도 데이터 배선(1002) 및 조립 전극(1020)과 오버랩 되는 영역 상에 형성될 수 있다. 즉, 제2 보호층(1080)은 데이터 배선(1002)과 조립 전극(1020) 간의 이격 거리를 증가시켜 기생 커패시턴스를 완화시킬 수 있다.
제2 보호층(1080)은 제1 보호층(1070)보다 두꺼운 두께로 형성될 수 있으며, 예를 들어, 수 ㎛ 수준의 두께로 형성될 수 있다.
또한, 제2 보호층(1080)은 절연 물질로 형성될 수 있고, 바람직하게는 감광성 유기 절연 물질로 형성될 수 있다. 무기물을 수 ㎛ 수준의 두께로 증착 (예: PECVD)하는 경우, 증착 시간이 오래 걸리고, 300℃ 이상의 고온에서 발생되는 플라즈마는 박막 트랜지스터(1030)에 악영향을 줄 수 있다.
따라서, 본 발명의 실시예에 따르면, 제2 보호층(1080)은 유기 절연 물질로 형성될 수 있으며, 이로써 공정 시간을 단축하고, 박막 트랜지스터 (1030)에 대한 영향을 최소화할 수 있으며, 나아가 에칭 공정이 용이한 장점이 있다.
본 발명의 실시예에 따르면, 조립 전극들(1020)은 도 12와 같이 박막 트랜지스터(1030)와 오버랩 되지 않도록 형성될 수 있다.
또한, 조립 전극들(1020)은 제1 영역에서 반도체 발광소자(1050')를 향해 돌출된 제1 돌출부(1021)를 더 포함할 수 있으며, 제1 돌출부(1021)는 기판의 미리 설정된 위치에 안착된 상태의 반도체 발광소자(1050')와 오버랩 될 수 있다.
자세하게는, 조립 전극들(1020)은 인접한 조립 전극들(1020) 간에 페어 전극을 형성할 수 있으며, 반도체 발광소자(1050')는 페어 전극을 형성하는 조립 전극들(1020)의 제1 돌출부(1021)와 동시에 오버랩 될 수 있다.
도 13(a) 내지 (c)는 박막 트랜지스터의 성능 비교를 위한 다양한 조립 전극의 형상을 나타낸 도면이다.
도 13(a)는 조립 전극(1020)과 박막 트랜지스터(1030)가 완전히 오버랩 되는 구조(case 1)를, 도 13(b)는 조립 전극(1020)과 박막 트랜지스터(1030)가 일부 오버랩 되는 구조(case 2)를, 도 13(c)는 본 발명의 실시예와 같이 조립 전극(1020)과 박막 트랜지스터(1030)가 오버랩 되지 않는 구조(case 3)를 나타낸 것이다.
아래의 [표 1]은 도 13(a) 내지 (c)에 나타난 구조 하에서 자가조립 후 박막 트랜지스터(1030)의 성능과 반도체 발광소자(1050')의 자가조립율을 나타낸 결과이다.
case1 case2 case3
박막 트랜지스터 성능 완전 불능 열화 또는 불능 이상 없음
자가조립율 99.99% 이상 99.9% 이상 99.9% 이상
[표 1]에 따르면 case 1의 경우, 조립 전극(1020)의 폭 방향 두께가 충분하여 저항에 의한 전압 드롭 현상이 없고 조립 수율이 우수하나, 조립 전극(1020)에 인가되는 전압에 의해 형성된 전기장은 조립 전극(1020)과 오버랩 된 박막 트랜지스터(1030s, 1030d)를 모두 손상시키는 문제가 있다.case 2에서 박막 트랜지스터(1030)는 조립 전극(1020)과 오버랩 정도에 따라 완전히 손상되거나 기능이 열화되었으며, 조립 전극(1020)의 폭 방향 두께가 좁아짐에 따라 case 1 대비 조립 수율도 낮게 나타났다.
한편, case 3과 같이 본 발명의 실시예에 따른 구조에 의하면, 조립 전극(1020)은 박막 트랜지스터(1030)와 오버랩 되지 않도록 형성되므로, 자가 조립 후에도 박막 트랜지스터(1030)의 성능은 유지되었다.
다만, 조립 전극 (1020)의 폭 방향 두께가 얇아짐에 따라 조립 전극 (1020)의 저항이 증가하여 조립 수율은 case 1 대비 낮게 나타났다. 그러나 이와 같은 조립 전극(1020)의 저항 증가 문제는 조립 전극(1020)으로 낮은 저항값을 갖는 금속을 사용함으로써 일부 개선할 수 있다.
한편, 본 발명의 실시예에 따른 디스플레이 장치(1000)의 구조 하에서 반도체 발광소자(1050')의 자가조립 수율을 향상시키기 위해, 조립 전극 (1020)은 제2 돌출부(1022) 및 제3 돌출부(1023) 중 적어도 어느 하나를 더 포함할 수 있다.
제2 돌출부(1022)는 박막 트랜지스터(1030)가 배치되는 제2 영역을 향해 돌출되고, 제3 돌출부(1023)는 반도체 발광소자(1050')가 배치되는 제1 영역 및 박막 트랜지스터(1030)가 배치되는 제2 영역을 향해 돌출된 것일 수 있다. 이 때, 제3 돌출부(1023)는 박막 트랜지스터(1030)와는 오버랩 되지 않을 수 있다.
조립 전극(1020)은 돌출부(특히, 제2 및 제3 돌출부)를 포함함으로써 조립 전극(1020)의 얇은 폭 방향 두께를 보완하여 저항 상승을 방지할 수 있다.
도 14는 본 발명의 다른 실시예에 따른 AM 방식의 디스플레이 장치에 있어 픽셀 부분의 구조를 나타낸 도면이다.
도 14를 참조하면, 페어 전극을 형성하는 각각의 조립 전극들(1020a, 1020b)은 서로 다른 형상을 가질 수 있다. 즉, 페어 전극을 형성하는 조립 전극들(1020) 중 어느 하나(이하, 제1 조립 전극)(1020a)는 제1 돌출부(1021) 및 제2 돌출부 (1022)를 포함할 수 있으며, 다른 하나(이하, 제 2 조립 전극)(1020b)는 제1 돌출부(1021) 및 제3 돌출부(1023)를 포함할 수 있다.
한편, 페어 전극을 형성하는 각각의 조립 전극들(1020a, 1020b)은 도 14에 나타난 구조에 한정되지 않고, 다양한 구조를 가질 수 있다. 다만, 아래의 [수학식 1]의 조건을 만족하는 것이 바람직하다.
Figure PCTKR2020000308-appb-img-000001
(A: 제1 조립 전극 돌출부 면적, B: 제2 조립 전극 돌출부 면적)
즉, 페어 전극을 형성하는 제1 조립 전극(1020a) 및 제2 조립 전극 (1020b)은 서로 다른 형상을 가질 수 있으나, 제1 조립 전극(1020a) 및 제2 조립 전극(1020b)에 포함된 돌출부의 면적은 동일하거나 유사할 수 있다.
제1 조립 전극(1020a) 및 제2 조립 전극(1020b)의 돌출부 면적의 차이가 [수학식 1]의 범위를 벗어날 경우, 제1 조립 전극(1020a)과 제2 조립 전극(1020b) 사이의 저항 차에 따른 조립율 편차가 발생할 수 있다.
이상에서 설명한 것과 같이, 본 발명의 실시예에 따른 디스플레이 장치 (1000)는 자가조립을 위한 구조를 포함함으로써 박막 트랜지스터(1030)를 포함하는 AM 방식의 디스플레이 기판(1000)에 자가조립을 통해 직접 반도체 발광소자(1050')들을 조립할 수 있는 효과가 있다.
특히, 조립 전극(1020)을 박막 트랜지스터(1030)와 오버랩 되지 않도록 형성함으로써 자가조립 진행에 따른 박막 트랜지스터(1030)의 성능 저하를 방지하고, 자가조립 후에도 박막 트랜지스터(1030)의 성능을 유지할 수 있다.
또한, 박막 트랜지스터(1030)와 오버랩 되지 않는 조건 하에서 조립 전극(1020)의 형상을 다양하게 제작함으로써 조립 전극(1020)의 저항 상승을 방지하고, 일정 수준 이상의 조립율을 확보할 수 있는 효과가 있다.
전술한 본 발명은 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.

Claims (12)

  1. 베이스부;
    상기 베이스부의 제1 영역 상에 배치되는 반도체 발광소자;
    상기 베이스부의 제2 영역 상에 배치되는 박막 트랜지스터; 및
    상기 베이스부 상에 일방향을 따라 연장되며, 상기 반도체 발광소자를 상기 제1 영역 상의 미리 설정된 위치에 안착시키도록 전압이 인가되는 조립 전극들을 포함하고,
    상기 조립 전극들은,
    상기 박막 트랜지스터와 오버랩 되지 않도록 형성되는 것을 특징으로 하는, 디스플레이 장치.
  2. 제1항에 있어서,
    상기 조립 전극들은, 상기 제1 영역에서 상기 반도체 발광소자를 향해 돌출된 제1 돌출부를 더 포함하며,
    상기 제1 돌출부는 상기 반도체 발광소자와 오버랩 되는 것을 특징으로 하는, 디스플레이 장치.
  3. 제2항에 있어서,
    상기 조립 전극들은, 상기 제2 영역을 향해 돌출된 제2 돌출부; 및
    상기 제1 영역 및 상기 제2 영역을 향해 돌출된 제3 돌출부 중 적어도 어느 하나를 더 포함하는 것을 특징으로 하는, 디스플레이 장치.
  4. 제3항에 있어서,
    상기 인접한 조립 전극들 간에 페어 전극을 형성하며,
    상기 페어 전극을 형성하는 각각의 조립 전극들은 서로 다른 형상을 갖는 것을 특징으로 하는, 디스플레이 장치.
  5. 제3항에 있어서,
    상기 인접한 조립 전극들 간에 페어 전극을 형성하며,
    상기 페어 전극을 형성하는 각각의 조립 전극들의 돌출부의 면적(A, B)은 하기 수학식 1을 만족하는 것을 특징으로 하는, 디스플레이 장치.
    [수학식 1]
    |A-B|/A ≤ 0.1 and |A-B|/B ≤ 0.1
  6. 제1항에 있어서,
    상기 박막 트랜지스터는 산화물 박막 트랜지스터인 것을 특징으로 하는, 디스플레이 장치.
  7. 제1항에 있어서,
    상기 박막 트랜지스터는 산화물 박막 트랜지스터인 것을 특징으로 하는, 디스플레이 장치.
  8. 제7항에 있어서,
    상기 박막 트랜지스터는, 게이트 전극;
    절연층에 의해 상기 게이트 전극과 절연되면서, 상기 게이트 전극의 일부와 오버랩 되는 활성층;
    상기 활성층의 양측에 형성되는 소스 전극 및 드레인 전극을 포함하는 것을 특징으로 하는, 디스플레이 장치.
  9. 제8항에 있어서,
    상기 소스 전극 및 상기 드레인 전극 일부를 노출하는 홀을 형성하면서, 상기 절연층 상에 형성되는 제1 보호층을 더 포함하는 것을 특징으로 하는, 디스플레이 장치.
  10. 제9항에 있어서,
    상기 홀 및 상기 반도체 발광소자의 전극을 덮도록 상기 제1 영역에서 상기 제2 영역까지 연장되어 상기 박막 트랜지스터와 상기 반도체 발광소자를 전기적으로 연결하는 연결 전극을 포함하는 것을 특징으로 하는, 디스플레이 장치.
  11. 제9항에 있어서,
    상기 제1 보호층의 전체 영역 중 적어도 상기 데이터 배선 및 상기 조립 전극과 오버랩 되는 영역 상에 형성되는 제2 보호층을 더 포함하는 것을 특징으로 하는, 디스플레이 장치.
  12. 제11항에 있어서,
    상기 제2 보호층은,
    유기 물질로 형성되며, 상기 제1 보호층보다 두꺼운 두께를 갖는 것을 특징으로 하는, 디스플레이 장치.
PCT/KR2020/000308 2019-12-20 2020-01-08 반도체 발광소자를 이용한 디스플레이 장치 WO2021125423A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20902712.7A EP4080573A4 (en) 2019-12-20 2020-01-08 DISPLAY DEVICE WITH LIGHT-EMITTING SEMICONDUCTOR COMPONENT
US17/786,666 US20230023582A1 (en) 2019-12-20 2020-01-08 Display device using semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0172200 2019-12-20
KR1020190172200A KR20200026781A (ko) 2019-12-20 2019-12-20 반도체 발광소자를 이용한 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2021125423A1 true WO2021125423A1 (ko) 2021-06-24

Family

ID=69810043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000308 WO2021125423A1 (ko) 2019-12-20 2020-01-08 반도체 발광소자를 이용한 디스플레이 장치

Country Status (4)

Country Link
US (1) US20230023582A1 (ko)
EP (1) EP4080573A4 (ko)
KR (1) KR20200026781A (ko)
WO (1) WO2021125423A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220135287A (ko) * 2021-03-29 2022-10-07 삼성디스플레이 주식회사 표시 장치
KR20230144700A (ko) * 2022-04-07 2023-10-17 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004792A (ja) * 2011-06-17 2013-01-07 Sharp Corp 発光装置および自発光ディスプレイ装置、並びに、上記発光装置を備えた照明装置およびバックライト
JP2015126048A (ja) * 2013-12-26 2015-07-06 シャープ株式会社 発光素子、発光素子の製造方法、複数の発光素子を備える発光装置、及び、発光装置の製造方法
KR20190075869A (ko) * 2019-06-11 2019-07-01 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20190106885A (ko) * 2019-08-28 2019-09-18 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
US20190326348A1 (en) * 2018-04-18 2019-10-24 Samsung Display Co., Ltd. Display device and method for fabricating the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180007025A (ko) * 2016-07-11 2018-01-22 삼성디스플레이 주식회사 초소형 발광 소자를 포함하는 픽셀 구조체, 표시장치 및 그 제조방법
CN106206611A (zh) * 2016-08-19 2016-12-07 京东方科技集团股份有限公司 阵列基板及其制备方法、显示装置
KR102502176B1 (ko) * 2017-10-13 2023-02-21 삼성전자주식회사 디스플레이 장치 및 그 제조방법
KR20190085892A (ko) * 2019-07-01 2019-07-19 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20190099149A (ko) * 2019-08-06 2019-08-26 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004792A (ja) * 2011-06-17 2013-01-07 Sharp Corp 発光装置および自発光ディスプレイ装置、並びに、上記発光装置を備えた照明装置およびバックライト
JP2015126048A (ja) * 2013-12-26 2015-07-06 シャープ株式会社 発光素子、発光素子の製造方法、複数の発光素子を備える発光装置、及び、発光装置の製造方法
US20190326348A1 (en) * 2018-04-18 2019-10-24 Samsung Display Co., Ltd. Display device and method for fabricating the same
KR20190075869A (ko) * 2019-06-11 2019-07-01 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20190106885A (ko) * 2019-08-28 2019-09-18 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080573A4 *

Also Published As

Publication number Publication date
KR20200026781A (ko) 2020-03-11
EP4080573A4 (en) 2024-01-10
US20230023582A1 (en) 2023-01-26
EP4080573A1 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
WO2021167149A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021107237A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021177673A1 (en) A substrate for manufacturing display device and a manufacturing method using the same
WO2021149856A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021149861A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021145499A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2020262752A1 (ko) 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법
WO2021162155A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2020130521A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2020122698A2 (ko) 디스플레이 장치 및 반도체 발광소자의 자가조립 방법
WO2020091252A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2021149862A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2021095938A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치의 제조방법
WO2020256203A1 (ko) 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법
WO2021162152A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2021107271A1 (ko) 마이크로 엘이디를 이용한 디스플레이 장치
WO2021261627A1 (ko) 디스플레이 장치 제조용 기판 및 이를 이용한 디스플레이 장치의 제조방법
WO2021117956A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021153833A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021117974A1 (ko) 반도체 발광소자 공급 장치 및 공급 방법
WO2021049692A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021125423A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2022045392A1 (ko) 디스플레이 장치 제조용 기판
WO2021141168A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020122696A2 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902712

Country of ref document: EP

Effective date: 20220720