WO2021124944A1 - 蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法 - Google Patents

蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法 Download PDF

Info

Publication number
WO2021124944A1
WO2021124944A1 PCT/JP2020/045384 JP2020045384W WO2021124944A1 WO 2021124944 A1 WO2021124944 A1 WO 2021124944A1 JP 2020045384 W JP2020045384 W JP 2020045384W WO 2021124944 A1 WO2021124944 A1 WO 2021124944A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
layer
active material
storage device
solid electrolyte
Prior art date
Application number
PCT/JP2020/045384
Other languages
English (en)
French (fr)
Inventor
田中 歩
純一 池尻
啓 角田
英郎 山内
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to DE112020006182.5T priority Critical patent/DE112020006182T5/de
Priority to US17/775,407 priority patent/US20220407045A1/en
Priority to CN202080074616.7A priority patent/CN114599623A/zh
Publication of WO2021124944A1 publication Critical patent/WO2021124944A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines

Definitions

  • the present invention relates to a method for manufacturing a member for a power storage device, an all-solid-state battery, and a member for a power storage device.
  • Lithium-ion secondary batteries have established themselves as a high-capacity, lightweight power source that is indispensable for mobile devices and electric vehicles.
  • a flammable organic electrolyte is mainly used as an electrolyte in the current lithium ion secondary battery, there is a concern about a risk of ignition or the like.
  • Patent Document 1 As a method for solving this problem, the development of an all-solid-state lithium-ion battery using a solid electrolyte instead of the organic electrolyte is underway (see, for example, Patent Document 1).
  • lithium is concerned about problems such as soaring prices of raw materials worldwide, research on all-solid-state sodium-ion batteries has been conducted in recent years as an alternative.
  • Patent Document 2 Na x (Fe 1- a M a) y P 2 O z (M is Cr, Mn, of at least one transition metal element selected from the group consisting of Co and Ni, 1.2 ⁇ x
  • the positive electrode active material represented by ⁇ 2.8, 0.95 ⁇ y ⁇ 1.6, 0 ⁇ a ⁇ 0.9, 7 ⁇ z ⁇ 8) is disclosed.
  • a slurry containing an amorphous glass powder is applied to one surface of a solid electrolyte, dried, and then fired to form a positive electrode layer containing the above-mentioned positive electrode active material.
  • An object of the present invention is to provide a method for manufacturing a power storage device member, an all-solid-state battery, and a power storage device member, which can be charged and discharged even when the amount of the electrode active material supported is increased and the capacity can be increased. To provide.
  • the member for a power storage device is provided on a solid electrolyte layer and the solid electrolyte layer, and contains an electrode active material precursor powder having an average particle size of 0.01 ⁇ m or more and less than 0.7 ⁇ m. It is characterized by including an electrode layer made of a sintered body of a material layer.
  • the thickness of the electrode layer is preferably 20 ⁇ m or more.
  • the amount of the electrode active material supported on the electrode layer is preferably 3 mg / cm 2 or more.
  • the all-solid-state battery according to the present invention is characterized by including any of the above-mentioned power storage device members.
  • the method for manufacturing a member for a power storage device includes a forming step of forming an electrode material layer containing an electrode active material precursor powder on a solid electrolyte layer, and firing while pressurizing the electrode material layer. It is characterized by having a process.
  • the electrode material layer has a first main surface on the solid electrolyte layer side and a second main surface facing the first main surface, and in the firing step, the second main surface It is preferable to bake while pressurizing the entire main surface.
  • the electrode material layer it is preferable to pressurize the electrode material layer at 1 kPa or more in the firing step.
  • the average particle size of the electrode active material precursor powder is preferably 0.01 ⁇ m or more and less than 0.7 ⁇ m.
  • the electrode active material precursor powder is an amorphous oxide material.
  • the electrode material layer is preferably a positive electrode material layer.
  • the electrode active material precursor powder is Na 2 O 25% to 55%, Fe 2 O 3 + Cr 2 O 3 + MnO + CoO + NiO 10% to 30%, and P 2 O in mol% in terms of oxide. 5 It is preferable to contain 25% to 55%.
  • a method for manufacturing a power storage device member, an all-solid-state battery, and a power storage device member which can be charged and discharged even when the amount of the electrode active material supported is increased and the capacity can be increased. Can be provided.
  • FIG. 1 (a) to 1 (c) are schematic cross-sectional views for explaining a method of manufacturing a member for a power storage device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an all-solid-state battery according to an embodiment of the present invention.
  • FIG. 3 is a photograph of the positive electrode layer obtained in Example 5 in a plan view.
  • FIG. 4 is a photograph of the positive electrode layer obtained in Reference Example 2 in a plan view.
  • FIG. 1 (a) to 1 (c) are schematic cross-sectional views for explaining a method of manufacturing a member for a power storage device according to an embodiment of the present invention. Further, FIG. 2 is a schematic cross-sectional view showing an all-solid-state battery according to an embodiment of the present invention.
  • a cathode material layer 2A containing a positive electrode active material precursor powder is formed on the first main surface 1a of the solid electrolyte layer 1. ..
  • the positive electrode material layer 2A is fired while being pressurized.
  • the positive electrode layer 2 shown in FIG. 1C is formed on the first main surface 1a of the solid electrolyte layer 1 to obtain the energy storage device member 6.
  • the negative electrode layer 3 shown in FIG. 2 is formed on the second main surface 1b of the solid electrolyte layer 1. Thereby, the all-solid-state battery 10 can be obtained.
  • the positive electrode material layer 2A formed on the solid electrolyte layer 1 is fired while being pressurized, so that charging / discharging is possible even when the amount of the electrode active material carried is increased. Therefore, it is possible to manufacture a member 6 for a power storage device capable of increasing the capacity of the all-solid-state battery 10 which is a power storage device. The reason for this can be explained as follows.
  • the positive electrode layer obtained by firing may be peeled off from the solid electrolyte layer. It is considered that this is because, for example, when an amorphous material is used as the positive electrode active material precursor powder, volume shrinkage is likely to occur due to crystallization during firing. In particular, when the amount of the electrode active material supported is increased or the thickness of the positive electrode layer is increased, the problem of peeling tends to become remarkable.
  • secondary batteries as a power source for electric vehicles are required to have high output characteristics in order to drive a motor.
  • the positive electrode active material precursor powder is pulverized to increase the output, a dense positive electrode layer can be obtained.
  • the specific surface area of the positive electrode active material precursor powder becomes large, so that when the positive electrode active material precursor powder is made into a paste, It is necessary to increase the amount of the binder added.
  • the binder volatilizes during firing, the number of voids in the positive electrode material layer increases, so that volume shrinkage of the positive electrode material layer is more likely to occur. As a result, the positive electrode layer is more likely to be peeled from the solid electrolyte layer.
  • the positive electrode material layer 2A formed on the solid electrolyte layer 1 is fired while being pressurized, the shrinkage of the positive electrode material layer 2A in the plane direction can be suppressed.
  • the adhesion between the positive electrode layer 2 obtained by firing and the solid electrolyte layer 1 can be improved. Therefore, even when the amount of the electrode active material supported is increased or the thickness of the positive electrode material layer 2A is increased, the positive electrode layer 2 obtained by firing is difficult to peel off from the solid electrolyte layer 1.
  • the positive electrode layer 2 is hard to be peeled off from the solid electrolyte layer 1, the contact point of ion conduction is hard to be lost, and the power storage device member 6 and the all-solid-state battery 10 capable of charging and discharging at high output can be obtained. .. Further, since the amount of the positive electrode active material supported can be increased and the thickness of the positive electrode material layer 2A can be increased, the capacity can be increased, thereby increasing the energy density of the all-solid-state battery.
  • the positive electrode material layer 2A can be obtained by applying a slurry containing the positive electrode active material precursor powder on the first main surface 1a of the solid electrolyte layer 1 and drying it.
  • the slurry may contain a solid electrolyte powder or a conductive auxiliary agent.
  • the slurry may contain a binder, a plasticizer, a solvent, or the like, if necessary.
  • Positive electrode active material precursor powder is preferably made of an amorphous oxide material that produces positive electrode active material crystals by firing.
  • amorphous oxide material When the amorphous oxide material is fired, positive electrode active material crystals are formed, and at the same time, it softens and flows to form a more dense positive electrode layer 2. As a result, the ion conduction path is formed better, which is preferable.
  • the "amorphous oxide material” is not limited to a completely amorphous oxide material, but also includes a material containing a part of crystals (for example, a crystallinity of 10% or less). ..
  • the positive electrode active material precursor powder is Na 2 O 25% to 55%, Fe 2 O 3 + Cr 2 O 3 + MnO + CoO + NiO 10% to 30%, and P 2 O 5 25% to 55 in mol% in terms of the following oxides. It is preferable to contain%. The reason for limiting the composition in this way will be described below. In the following description of the content of each component, “%” means “mol%” unless otherwise specified.
  • Na 2 O has the general formula Na x M y P 2 O z (M is Fe, Cr, Mn, at least one transition metal element selected from Co and Ni, 1.20 ⁇ x ⁇ 2.10, It is the main component of the positive electrode active material crystal represented by 0.95 ⁇ y ⁇ 1.60).
  • the Na 2 O content is preferably 25% to 55%, more preferably 30% to 50%. If the Na 2 O content is too low or too high, the charge / discharge capacity tends to decrease.
  • Fe 2 O 3, Cr 2 O 3, MnO, CoO and NiO are also the main component of the positive electrode active material crystal represented by the general formula Na x M y P 2 O z .
  • the content of Fe 2 O 3 + Cr 2 O 3 + MnO + CoO + NiO is preferably 10% to 30%, more preferably 15% to 25%. If the content of Fe 2 O 3 + Cr 2 O 3 + MnO + CoO + NiO is too small, the charge / discharge capacity tends to decrease. On the other hand, if the content of Fe 2 O 3 + Cr 2 O 3 + MnO + CoO + NiO is too large, unwanted crystals such as Fe 2 O 3 , Cr 2 O 3 , MnO, CoO or NiO are likely to precipitate.
  • Fe 2 O 3 In order to improve the cycle characteristics, it is preferable to positively contain Fe 2 O 3.
  • the content of Fe 2 O 3 is preferably 1% to 30%, more preferably 5% to 30%, further preferably 10% to 30%, and 15% to 25%. It is particularly preferable to have.
  • the content of each component of Cr 2 O 3 , MnO, CoO and NiO is preferably 0% to 30%, more preferably 10% to 30%, and 15% to 25%, respectively. Is even more preferable. Further, when at least two kinds of components selected from Fe 2 O 3 , Cr 2 O 3 , MnO, CoO and NiO are contained, the total amount is preferably 10% to 30%, and 15% to 25%. More preferably.
  • P 2 O 5 is also the main component of the positive electrode active material crystal represented by the general formula Na x M y P 2 O z .
  • the content of P 2 O 5 is preferably 25% to 55%, more preferably 30% to 50%. If the content of P 2 O 5 is too small or too large, the charge / discharge capacity tends to decrease.
  • the positive electrode active material precursor powder may contain V 2 O 5 , Nb 2 O 5 , MgO, Al 2 O 3 , TiO 2 , ZrO 2 , or Sc 2 O 3 .
  • These components have the effect of increasing the conductivity (electron conductivity), and the high-speed charge / discharge characteristics of the positive electrode active material are likely to be improved.
  • the total content of the above components is preferably 0% to 25%, more preferably 0.2% to 10%. If the content of the above components is too large, dissimilar crystals that do not contribute to the battery characteristics are generated, and the charge / discharge capacity tends to decrease.
  • SiO 2 , B 2 O 3 , GeO 2 , Ga 2 O 3 , Sb 2 O 3 , or Bi 2 O 3 may be contained.
  • the total content of the above components is preferably 0% to 25%, more preferably 0.2% to 10%. Since the above components do not contribute to the battery characteristics, if the content is too large, the charge / discharge capacity tends to decrease.
  • the positive electrode active material precursor powder is preferably produced by melting and molding a raw material batch. According to this method, an amorphous positive electrode active material precursor powder having excellent homogeneity can be easily obtained, which is preferable.
  • the positive electrode active material precursor powder can be produced as follows.
  • the melting temperature may be appropriately adjusted so that the raw material batch is uniformly melted.
  • the melting temperature is preferably 800 ° C. or higher, more preferably 900 ° C. or higher.
  • the upper limit is not particularly limited, but if the melting temperature is too high, it leads to energy loss and evaporation of sodium components and the like, so it is preferably 1500 ° C. or lower, and more preferably 1400 ° C. or lower.
  • the obtained melt is molded.
  • the molding method is not particularly limited, and for example, the melt may be poured between a pair of cooling rolls and molded into a film shape while quenching, or the melt may be poured into a mold and molded into an ingot shape. It doesn't matter.
  • the average particle size of the positive electrode active material precursor powder is preferably 0.01 ⁇ m or more and less than 0.7 ⁇ m, more preferably 0.03 ⁇ m or more and 0.6 ⁇ m or less, and 0.05 ⁇ m or more and 0. It is more preferably 6 ⁇ m or less, and particularly preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less. If the average particle size of the positive electrode active material precursor powder is too small, the cohesive force between the particles becomes strong when used as a paste, and it becomes difficult to disperse in the paste.
  • the adhesion between the positive electrode active material precursor powder and the solid electrolyte powder is lowered, so that the mechanical strength of the positive electrode layer 2 is lowered, and as a result, the charge / discharge capacity is lowered. There is a tendency.
  • the adhesion between the positive electrode layer 2 and the solid electrolyte layer 1 is also poor, and the positive electrode layer 2 may be peeled off from the solid electrolyte layer 1.
  • the average particle size of the positive electrode active material precursor powder is reduced, a dense positive electrode layer can be obtained.
  • the specific surface area of the positive electrode active material precursor powder is large, so that the binder is used when forming a paste. It is necessary to increase the amount of the addition.
  • the binder volatilizes during firing, the number of voids in the positive electrode material layer increases, so that volume shrinkage of the positive electrode material layer is more likely to occur. As a result, the positive electrode layer is more likely to be peeled from the solid electrolyte layer.
  • the positive electrode material layer 2A formed on the solid electrolyte layer 1 is fired while being pressurized. Therefore, even when the average particle size of the positive electrode active material precursor powder is reduced, it can be obtained by firing.
  • the positive electrode layer 2 to be formed is difficult to peel off from the solid electrolyte layer 1.
  • the average particle size means D50 (volume-based average particle size) and refers to a value measured by a laser diffraction / scattering method.
  • Solid electrolyte powder is a component responsible for ionic conduction in the positive electrode layer 2 in the all-solid-state battery 10.
  • Examples of the solid electrolyte powder include beta-alumina or NASICON crystals having excellent sodium ion conductivity.
  • beta-alumina there are two types of beta-alumina, ⁇ -alumina (theoretical composition formula: Na 2 O ⁇ 11Al 2 O 3 ) and ⁇ ”-alumina (theoretical composition formula: Na 2 O ⁇ 5.3 Al 2 O 3). Since ⁇ "-alumina is a semi-stable substance, one to which Li 2 O or Mg O is added as a stabilizer is usually used.
  • ⁇ "-alumina has higher sodium ion conductivity than ⁇ -alumina, it is preferable to use ⁇ " -alumina alone or a mixture of ⁇ "-alumina and ⁇ -alumina, and Li 2 O stabilized ⁇ .
  • the average particle size of the solid electrolyte powder is preferably 0.05 ⁇ m or more and 3 ⁇ m or less, more preferably 0.05 ⁇ m or more and less than 1.8 ⁇ m, and 0.05 ⁇ m or more and 1.5 ⁇ m or less. Is more preferably 0.1 ⁇ m or more and 1.2 ⁇ m or less, and most preferably 0.1 ⁇ m or more and 0.7 ⁇ m or less. If the average particle size of the solid electrolyte powder is too small, not only is it difficult to mix it uniformly with the positive electrode active material precursor powder, but also the ionic conductivity is lowered due to moisture absorption and chlorination, and the positive electrode active material is reduced. May promote overreaction with precursor powder.
  • the internal resistance of the positive electrode material layer tends to increase, and the voltage characteristics and charge / discharge capacity tend to decrease.
  • the average particle size of the solid electrolyte powder is too large, the softening flow of the positive electrode active material precursor powder is significantly hindered, so that the smoothness of the obtained positive electrode layer 2 is inferior and the mechanical strength is lowered, or the internal resistance is reduced. Tends to increase.
  • the positive electrode material layer 2A formed on the solid electrolyte layer 1 is fired while being pressurized. Therefore, even when the average particle size of the solid electrolyte powder is reduced, the positive electrode layer obtained by firing is fired. 2 is difficult to peel off from the solid electrolyte layer 1.
  • the solid electrolyte layer 1 is preferably made of the same material as the solid electrolyte powder.
  • the solid electrolyte layer 1 can be produced by mixing raw material powders, forming the mixed raw material powders, and then firing the mixture. For example, it can be produced by slurrying the raw material powder to produce a green sheet and then firing the green sheet. Alternatively, it may be produced by the sol-gel method.
  • the conductive auxiliary agent is a component that forms a conductive path in the positive electrode material.
  • conductive carbon can be used.
  • powdery or fibrous conductive carbon such as highly conductive carbon black such as acetylene black or Ketjen black is preferable.
  • the conductive carbon acts as a pulverizing aid and not only enables homogeneous mixing with the positive electrode active material precursor powder, but also suppresses excessive fusion of the positive electrode active material precursor powder particles during firing. However, the conductivity is easily ensured, and the rapid charge / discharge characteristics are easily improved.
  • the binder is a material for integrating raw materials (raw material powders) with each other.
  • the binder include cellulose derivatives such as carboxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, ethyl cellulose, hydroxyethyl cellulose, and hydroxymethyl cellulose, or water-soluble polymers such as polyvinyl alcohol; thermosetting polyimide, phenol resin, epoxy resin, and urea resin. Examples thereof include thermosetting resins such as melamine resin, unsaturated polyester resin and polyurethane; polycarbonate resins such as polypropylene carbonate; polyvinylidene fluoride and the like.
  • the solid raw material preferably contains 30% to 100% of the positive electrode active material precursor powder, 0% to 70% of the solid electrolyte powder, and 0% to 20% of the conductive carbon in mass%, and is a positive electrode active material precursor. More preferably, it contains 44.5% to 94.5% of powder, 5% to 55% of solid electrolyte powder, and 0.5% to 15% of conductive carbon, and 50% to 92 of positive electrode active material precursor powder. %, 7% to 50% of the solid electrolyte powder, and 1% to 10% of the conductive carbon are more preferably contained.
  • the content of the positive electrode active material precursor powder is too small, the amount of components that occlude or release sodium ions in the positive electrode material with charging / discharging tends to decrease, so that the charging / discharging capacity of the power storage device tends to decrease. If the content of the conductive carbon or the solid electrolyte powder is too large, the binding property of the positive electrode active material precursor powder is lowered and the internal resistance is increased, so that the voltage characteristics and the charge / discharge capacity tend to be lowered.
  • the content of the binder is preferably 1 part by mass to 50 parts by mass, and more preferably 5 parts by mass to 40 parts by mass with respect to 100 parts by mass of the solid raw material. If the content of the binder is too small, the binding property of the solid raw material is insufficient, and cracks occur when the positive electrode material layer 2A is dried, or peeling occurs from the solid electrolyte layer 1. If the content of the binder is too large, the binder volatilizes during firing as described above, so that the number of voids in the positive electrode material layer 2A tends to increase and volume shrinkage tends to occur.
  • the positive electrode material layer 2A formed on the solid electrolyte layer 1 is fired while being pressurized, so that the positive electrode layer 2 obtained by firing is obtained even when the content of the binder is increased. It is difficult to peel off from the solid electrolyte layer 1.
  • mixers such as rotating and revolving mixers and tumbler mixers, and general mortars, mortars, ball mills, attritors, vibrating ball mills, satellite ball mills, planetary ball mills, jet mills, bead mills, etc.
  • a crusher can be used.
  • the drying temperature of the slurry is not particularly limited, but can be, for example, 30 ° C. or higher and 100 ° C. or lower.
  • the drying time of the slurry is not particularly limited, but can be, for example, 10 minutes or more and 600 minutes or less.
  • the positive electrode material layer 2A formed on the solid electrolyte layer 1 is fired while being pressurized.
  • the carbon sheet 4 is placed on the second main surface 2b of the positive electrode material layer 2A, and the weight 5 is further placed on the carbon sheet 4.
  • the positive electrode material layer 2A is fired while being pressurized.
  • the first main surface 2a of the positive electrode material layer 2A is the main surface on the solid electrolyte layer 1 side
  • the second main surface 2b is the main surface facing the first main surface 2a.
  • the entire second main surface 2b of the positive electrode material layer 2A is pressurized. As described above, in the present invention, it is desirable to pressurize the entire second main surface 2b, but at least a part of the second main surface 2b may be pressurized, and the present invention is not particularly limited.
  • the pressure applied to the positive electrode material layer 2A is preferably 1 kPa or more, more preferably 5 kPa or more, and further preferably 10 kPa or more. In this case, the positive electrode layer 2 obtained by firing is more difficult to peel off from the solid electrolyte layer 1.
  • the upper limit of the pressure applied to the positive electrode material layer 2A is not particularly limited, but may be, for example, 100 MPa.
  • the atmosphere at the time of firing is preferably a reducing atmosphere.
  • the reducing atmosphere include an atmosphere containing at least one reducing gas selected from H 2 , NH 3 , CO, H 2 S, and Si H 4.
  • it may contain at least one selected from H 2, NH 3, and CO into the atmosphere
  • H 2 gas more preferably.
  • H 2 gas it is preferable to mix an inert gas such as N 2 in order to reduce the risk of explosion during firing.
  • reducing gas by volume%, preferably contains N 2 90% ⁇ 99.9% and H 2 0.1% ⁇ 10%, N 2 90% ⁇ 99.5% , and it is more preferable to contain H 2 0.5% ⁇ 10%, and still more preferably contains N 2 92% ⁇ 99% and H 2 1 ⁇ 8%.
  • the firing temperature is preferably 400 ° C. to 600 ° C., more preferably 410 ° C. to 580 ° C., further preferably 420 ° C. to 575 ° C., and 425 ° C. to 560 ° C. This is particularly preferable, and the temperature is most preferably 450 ° C. to 530 ° C. If the firing temperature is too low, the crystallization of the positive electrode active material precursor powder becomes insufficient, and the remaining amorphous phase becomes a high resistance portion, and the voltage characteristics and charge / discharge capacity tend to decrease.
  • the positive electrode active material precursor powders are excessively fused to each other to form coarse particles, so that the specific surface area of the positive electrode active material becomes small and the charge / discharge characteristics tend to deteriorate. It is in.
  • the positive electrode active material precursor powder reacts with the solid electrolyte powder during firing, and crystals that do not contribute to charge / discharge (marisite-type NaFePO 4 crystals, etc.) may precipitate to reduce the charge / discharge capacity.
  • the firing time (holding time at the maximum temperature at the time of firing) is preferably less than 3 hours, more preferably 2 hours or less, further preferably 1 hour or less, and preferably 45 minutes or less. It is particularly preferable, and most preferably 30 minutes or less. If the firing time is too long, the positive electrode active material precursor powders are excessively fused to each other, coarse particles are likely to be formed, the specific surface area of the positive electrode active material is reduced, and the charge / discharge characteristics tend to be deteriorated. ..
  • the positive electrode active material precursor powder reacts with the solid electrolyte powder during firing, and crystals that do not contribute to charge / discharge (such as marisite-type NaFePO 4 crystals) are precipitated to reduce the charge / discharge capacity. There is a fear.
  • the elements contained in the positive electrode active material precursor powder and the solid electrolyte powder diffuse each other during firing, so that a high resistance layer is partially formed and the rate characteristics of the all-solid-state battery may deteriorate.
  • the firing time is preferably 1 minute or longer, and more preferably 5 minutes or longer.
  • an electric heating furnace for firing, an electric heating furnace, a rotary kiln, a microwave heating furnace, a high frequency heating furnace, etc. can be used.
  • the negative electrode layer 3 can be produced, for example, by using a slurry containing a solid electrolyte powder and / or a conductive auxiliary agent in the negative electrode active material precursor powder, if necessary. Binders, plasticizers, solvents and the like are added to the slurry as needed.
  • the negative electrode layer 3 can be produced by applying the slurry on the second main surface 1b of the solid electrolyte layer 1, drying it, and firing it.
  • the slurry may be coated on a substrate such as PET (polyethylene terephthalate) and then dried to prepare a green sheet, which may be calcined.
  • the negative electrode layer 3 may be made of metal, and in this case, the negative electrode layer 3 can be formed by a sputtering method, a vapor deposition method, or the like.
  • the firing is performed while pressurizing when the positive electrode layer 2 is formed, but the firing may be performed while pressurizing when the negative electrode layer 3 is formed. Further, firing may be performed while pressurizing when both the positive electrode layer 2 and the negative electrode layer 3 are formed. Both the positive electrode layer 2 and the negative electrode layer 3 may be fired at the same time.
  • a current collector layer may be formed on the positive electrode layer 2 and the negative electrode layer 3, respectively.
  • the method for forming the current collector layer is not particularly limited, and examples thereof include a physical vapor phase method such as vapor deposition or sputtering, and a chemical vapor phase method such as thermal CVD, MOCVD, and plasma CVD.
  • Other methods for forming the current collector layer include plating, a sol-gel method, and a liquid phase film forming method by spin coating.
  • the current collector layer is formed on the positive electrode layer 2 or the negative electrode layer 3 by a sputtering method because it has excellent adhesion.
  • the material of the current collector layer is not particularly limited, but a metal material such as aluminum, titanium, silver, copper, stainless steel or an alloy thereof can be used.
  • the above metal materials may be used alone or in combination of two or more. These alloys are alloys containing at least one of the above metals.
  • the all-solid-state battery 10 includes a solid electrolyte layer 1, a positive electrode layer 2, and a negative electrode layer 3.
  • the solid electrolyte layer 1 has a first main surface 1a and a second main surface 1b that face each other.
  • the positive electrode layer 2 is provided on the first main surface 1a of the solid electrolyte layer 1.
  • the power storage device member 6 is configured.
  • the negative electrode layer 3 is provided on the second main surface 1b of the solid electrolyte layer 1.
  • the positive electrode layer 2 is made of a sintered body of a positive electrode material layer containing a positive electrode active material precursor powder having an average particle size of 0.01 ⁇ m or more and less than 0.7 ⁇ m. Therefore, it becomes a dense positive electrode layer 2. Therefore, the energy density can be increased, thereby increasing the capacity of the all-solid-state battery 10. As for other points, those described in the above-mentioned production method column can be used.
  • the positive electrode active material contained in the positive electrode layer 2 is not particularly limited, but may include layered sodium transition metal oxide crystals such as NaCrO 2 , Na 0.7 MnO 2 , NaFe 0.2 Mn 0.4 Ni 0.4 O 2.
  • Na, M is at least one transition metal element selected from Cr, Fe, Mn, Co and Ni
  • P such as Na 2 FeP 2 O 7 , NaFePO 4 , Na 3 V 2 (PO 4 ) 3, etc.
  • O-containing sodium transition metal phosphate crystals and other active material crystals can be mentioned.
  • crystals containing Na, M, P and O are preferable because they have a high capacity and excellent chemical stability.
  • triclinic crystals belonging to the space group P1 or P1 particularly the general formula Na x M y P 2 O z (M Fe, Cr, Mn, at least one or more selected from Co and Ni A crystal represented by a transition metal element (1.20 ⁇ x ⁇ 2.10, 0.95 ⁇ y ⁇ 1.60) is preferable because it has excellent cycle characteristics.
  • the thickness of the positive electrode layer 2 is preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more, further preferably 80 ⁇ m or more, particularly preferably 100 ⁇ m or more, and most preferably 120 ⁇ m or more. .. In this case, the capacity of the all-solid-state battery 10 can be further increased. On the other hand, if the thickness of the positive electrode layer 2 is too thick, the resistance to electron conduction may increase and the discharge capacity and operating voltage may decrease, and the stress due to shrinkage during firing may increase, which may lead to peeling. The following is preferable.
  • the amount of the positive electrode active material contained in the positive electrode layer 2 is preferably 3 mg / cm 2 or more, more preferably 5 mg / cm 2 or more, still more preferably 7 mg / cm 2 or more, and particularly preferably 9 mg / cm 2 or more. Most preferably, it is 12 mg / cm 2 or more. In this case, the capacity of the all-solid-state battery 10 can be further increased.
  • the upper limit of the amount of the positive electrode active material supported is not particularly limited, but may be, for example, 100 mg / cm 2 .
  • the same solid electrolyte layer 1 and the negative electrode layer 3 manufactured by the above-mentioned manufacturing method can be used.
  • the thickness of the solid electrolyte layer 1 is preferably in the range of 5 ⁇ m to 1500 ⁇ m, and more preferably in the range of 20 ⁇ m to 200 ⁇ m. If the thickness of the solid electrolyte layer 1 is too thin, the mechanical strength is lowered and the solid electrolyte layer 1 is easily damaged, so that an internal short circuit is likely to occur. If the thickness of the solid electrolyte layer 1 is too thick, the sodium ion conduction distance associated with charging and discharging becomes long, so that the internal resistance becomes high, and the discharge capacity and the operating voltage tend to decrease. In addition, the energy density per unit volume of the all-solid-state battery 10 tends to decrease.
  • the negative electrode active material examples include active material crystals such as a crystal containing at least one selected from Nb and Ti and O, and at least one metal crystal selected from Sn, Bi and Sb.
  • Crystals containing at least one selected from Nb and Ti and O are preferable because they have excellent cycle characteristics. Further, when the crystal containing at least one selected from Nb and Ti and O contains Na and / or Li, the charge / discharge efficiency (ratio of the discharge capacity to the charge capacity) is increased, and a high charge / discharge capacity is maintained. It is preferable because it can be discharged.
  • the crystal containing at least one selected from Nb and Ti and O is a monoclinic crystal, a hexagonal crystal, a cubic crystal or a monoclinic crystal, particularly a monoclinic crystal belonging to the space group P21 / m.
  • a oblique crystal is preferable because the capacity is unlikely to decrease even when charged and discharged with a large current.
  • the orthoclinic crystals include NaTi 2 O 4
  • the hexaclinic crystals include Na 2 TiO 3 , NaTi 8 O 13 , NaTIO 2 , LiNbO 3 , LiNbO 2 , Li 7 NbO 6 , LiNbO 2 , and Li.
  • 2 Ti 3 O 7 and the like are Na 2 TiO 3 , NaNbO 3 , Li 4 Ti 5 O 12 , Li 3 NbO 4 and the like as cubic crystals, and Na 2 Ti 6 O as a monoclinic crystal.
  • NaTi 2 O 4 , Na 2 TiO 3 , Na 4 Ti 5 O 12 , Na 2 Ti 4 O 9 , Na 2 Ti 9 O 19 , Na 2 Ti 3 O 7 , Na 2 Ti 3 O 7 , Li 1. 7 Nb 2 O 5 , Li 1.9 Nb 2 O 5 , Li 12 Nb 13 O 33 , Li Nb 3 O 8 and the like are Na 2 Ti 3 O 7 as monoclinic crystals belonging to the space group P21 / m. And so on.
  • the crystal containing at least one selected from Nb and Ti and O further contains at least one selected from B, Si, P and Ge. These components have the effect of facilitating the formation of an amorphous phase together with the active material crystals and improving the sodium ion conductivity.
  • glass containing at least one metal crystal selected from Sn, Bi and Sb, or at least one selected from Sn, Bi and Sb can be used. These are preferable because they have a high capacity and the capacity is unlikely to decrease even when charged and discharged with a large current.
  • the thickness of the negative electrode layer 3 is preferably in the range of 0.3 ⁇ m to 300 ⁇ m, and more preferably in the range of 3 ⁇ m to 150 ⁇ m. If the thickness of the negative electrode layer 3 is too thin, the absolute capacity (mAh) of the negative electrode tends to decrease. If the thickness of the negative electrode layer 3 is too thick, the resistance tends to increase and the capacity (mAh / g) tends to decrease.
  • the all-solid-state sodium-ion secondary battery using a material having sodium ion conductivity has been described, but all other batteries such as an all-solid-state lithium-ion secondary battery using a material having lithium ion conductivity have been described. It may be used for a solid-state battery.
  • the positive electrode layer 2 made of a sintered body of the positive electrode material layer 2A containing the positive electrode active material precursor powder having an average particle diameter of 0.01 ⁇ m or more and less than 0.7 ⁇ m was used, but the average particles were used.
  • the thickness of the negative electrode layer 3 and the amount of the negative electrode active material supported may be the thickness of the positive electrode layer 2 and the amount of the positive electrode active material supported. Both the positive electrode layer 2 and the negative electrode layer 3 may have these configurations.
  • the current collector layer described in the above-mentioned manufacturing method column may be provided on the positive electrode layer 2 and the negative electrode layer 3, respectively.
  • the obtained film-like glass was pulverized with a ball mill and a planetary ball mill to obtain a glass powder (positive electrode active material precursor powder) having an average particle size shown in Table 1.
  • a glass powder positive electrode active material precursor powder having an average particle size shown in Table 1.
  • XRD powder X-ray diffraction
  • the obtained slurry was applied to one surface of the solid electrolyte layer obtained above with an area of 1 cm 2 and a thickness of 80 ⁇ m, and dried at 70 ° C. for 3 hours to form a positive electrode material layer.
  • a carbon sheet (20 mm ⁇ 20 mm ⁇ 0.5 mm) is placed on the formed positive electrode material layer, and the pressure is further applied on the carbon sheet (20 mm ⁇ 20 mm ⁇ 0.5 mm) at the pressure shown in Table 1. I put a weight on it. On the other hand, in Reference Examples 1 and 2, no weight was placed.
  • the supported amount of the positive electrode active material (supported amount of the active material) is as shown in Table 1 below. The thickness of the electrode layer was measured with a micrometer.
  • FIG. 3 is a photograph of the positive electrode layer obtained in Example 5 in a plan view.
  • FIG. 4 is a photograph of the positive electrode layer obtained in Reference Example 2 in a plan view.
  • Example 5 it can be seen that the positive electrode layer obtained by firing is not peeled off from the solid electrolyte layer, despite the large amount of the positive electrode active material supported. Although not shown, similarly, in Examples 1 to 4, 6 to 11, it was confirmed that the positive electrode layer obtained by firing was not peeled off from the solid electrolyte layer. On the other hand, as is clear from FIG. 4, in Reference Example 2, it was confirmed that the positive electrode layer obtained by firing was peeled off from the solid electrolyte layer.
  • a current collector composed of a gold electrode having a thickness of 300 nm was formed on the surface of the obtained positive electrode layer using a sputtering device (manufactured by Sanyu Electronics Co., Ltd., product number “SC-701AT”). Then, in an argon atmosphere with a dew point of -60 ° C or lower, the counter electrode metal sodium was crimped to the other surface of the solid electrolyte layer, placed on the lower lid of the coin cell, and then covered with the upper lid for the CR2032 type test. A battery was made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電極活物質の担持量を多くした場合においても充放電可能であり、高容量化を図ることができる、蓄電デバイス用部材を提供する。 固体電解質層1と、固体電解質層1上に設けられており、平均粒子径が0.01μm以上、0.7μm未満である電極活物質前駆体粉末を含む電極材料層2Aの焼結体からなる電極層2と、を備える、蓄電デバイス用部材6。

Description

蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法
 本発明は、蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法に関する。
 リチウムイオン二次電池は、モバイル機器や電気自動車等に不可欠な、高容量で軽量な電源としての地位を確立している。しかし、現行のリチウムイオン二次電池には、電解質として可燃性の有機系電解液が主に用いられているため、発火等の危険性が懸念されている。この問題を解決する方法として、有機系電解液に代えて固体電解質を使用した全固体リチウムイオン電池の開発が進められている(例えば特許文献1参照)。また、リチウムは世界的な原材料の高騰等の問題が懸念されているため、その代替として全固体ナトリウムイオン電池の研究が近年行われている。特許文献2には、Na(Fe1-az(MはCr、Mn、Co及びNiからなる群より選ばれた少なくとも一種の遷移金属元素、1.2≦x≦2.8、0.95≦y≦1.6、0≦a≦0.9、7≦z≦8)で表される正極活物質が開示されている。特許文献2では、非晶質のガラス粉末を含むスラリーを固体電解質の一方の表面に塗布し乾燥させた後、焼成させることにより、上記の正極活物質を含む正極層が形成されている。
特開平5-205741号公報 国際公開第2016/084573号
 ところで、電気自動車用の電源等としての二次電池では、車の航続距離を伸ばすため高エネルギー密度にすることが求められる。ここで、高エネルギー密度にするためには、電極活物質の担持量を多くしたり、電極層の厚みを厚くしたりして高容量化する必要がある。しかしながら、特許文献2のように、固体電解質層の上に電極材料層を形成し、焼成する方法では、電極活物質の担持量を多くしたり、電極材料層の厚みを厚くしたりすると、焼結により得られる正極層が固体電解質層から剥離することがある。この場合、イオン伝導の接点が失われるため、電池作動しないという問題がある。
 本発明の目的は、電極活物質の担持量を多くした場合においても充放電可能であり、高容量化を図ることができる、蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法を提供することにある。
 本発明に係る蓄電デバイス用部材は、固体電解質層と、前記固体電解質層上に設けられており、平均粒子径が0.01μm以上、0.7μm未満である電極活物質前駆体粉末を含む電極材料層の焼結体からなる電極層と、を備えることを特徴としている。
 本発明においては、前記電極層の厚みが20μm以上であることが好ましい。
 本発明においては、前記電極層における電極活物質の担持量が、3mg/cm以上であることが好ましい。
 本発明に係る全固体電池は、前記いずれかの蓄電デバイス用部材を備えることを特徴とする。
 本発明に係る蓄電デバイス用部材の製造方法は、固体電解質層上に、電極活物質前駆体粉末を含有する電極材料層を形成する形成工程と、前記電極材料層を加圧しながら、焼成する焼成工程と、を備えることを特徴としている。
 本発明においては、前記電極材料層が、前記固体電解質層側の第1の主面及び前記第1の主面に対向する第2の主面を有し、前記焼成工程において、前記第2の主面全体を加圧しながら、焼成することが好ましい。
 本発明においては、前記焼成工程において、前記電極材料層を1kPa以上で加圧することが好ましい。
 本発明においては、前記電極活物質前駆体粉末の平均粒子径が、0.01μm以上、0.7μm未満であることが好ましい。
 本発明においては、前記電極活物質前駆体粉末が、非晶質酸化物材料であることが好ましい。
 本発明においては、前記電極材料層が、正極材料層であることが好ましい。
 本発明においては、前記電極活物質前駆体粉末が、酸化物換算のモル%で、NaO 25%~55%、Fe+Cr+MnO+CoO+NiO 10%~30%、及びP 25%~55%を含有することが好ましい。
 本発明によれば、電極活物質の担持量を多くした場合においても充放電可能であり、高容量化を図ることができる、蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法を提供することができる。
図1(a)~(c)は、本発明の一実施形態に係る蓄電デバイス用部材の製造方法を説明するための模式的断面図である。 図2は、本発明の一実施形態に係る全固体電池を示す模式的断面図である。 図3は、実施例5で得られた正極層の平面視における写真である。 図4は、参考例2で得られた正極層の平面視における写真である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
 [蓄電デバイス用部材及び全固体電池の製造方法]
 図1(a)~(c)は、本発明の一実施形態に係る蓄電デバイス用部材の製造方法を説明するための模式的断面図である。また、図2は、本発明の一実施形態に係る全固体電池を示す模式的断面図である。
 本実施形態の製造方法では、まず、図1(a)に示すように、固体電解質層1の第1の主面1a上に、正極活物質前駆体粉末を含有する正極材料層2Aを形成する。次に、図1(b)に示すように、正極材料層2Aを加圧しながら、焼成する。それによって、固体電解質層1の第1の主面1a上に、図1(c)に示す正極層2を形成し、蓄電デバイス用部材6を得る。次に、固体電解質層1の第2の主面1b上に、図2に示す負極層3を形成する。それによって、全固体電池10を得ることができる。
 本実施形態の製造方法では、上記のように、固体電解質層1上に形成された正極材料層2Aを加圧しながら、焼成するので、電極活物質の担持量を多くした場合においても充放電可能であり、蓄電デバイスである全固体電池10の高容量化を図ることができる蓄電デバイス用部材6を製造することができる。この理由については、以下のように説明することができる。
 従来、固体電解質層の上に、正極活物質前駆体粉末を含有する正極材料層を形成し、焼成する方法では、焼成により得られる正極層が固体電解質層から剥離することがあった。この原因は、正極活物質前駆体粉末として、例えば非晶質の材料を用いた場合に、焼成時における結晶化により、体積収縮が起こり易いためであると考えられる。特に、電極活物質の担持量を多くしたり、正極層の厚みを厚くしたりした場合に、上記剥離の問題が顕著となる傾向がある。
 また、電気自動車用の電源等としての二次電池では、モーターを駆動させるために高い出力特性が求められる。高出力化のために正極活物質前駆体粉末を微粉化すると、緻密な正極層を得ることができるが、この場合、正極活物質前駆体粉末の比表面積が大きくなるため、ペースト化する際にバインダーの添加量を増やす必要がある。しかしながら、焼成時にバインダーは揮発するため、正極材料層内の空隙が多くなることから、正極材料層の体積収縮がより生じ易くなる。その結果、正極層の固体電解質層からの剥離がより生じ易くなる。
 これに対して、本実施形態の製造方法では、固体電解質層1上に形成された正極材料層2Aを加圧しながら、焼成するので、平面方向における正極材料層2Aの収縮を抑制することができ、焼成により得られる正極層2と固体電解質層1との密着性を向上させることができる。そのため、特に電極活物質の担持量を多くしたり、正極材料層2Aの厚みを厚くしたりした場合においても、焼成により得られる正極層2が固体電解質層1から剥離し難い。このように、正極層2が固体電解質層1から剥離し難いので、イオン伝導の接点が失われ難く、高出力で充放電が可能な蓄電デバイス用部材6及び全固体電池10を得ることができる。また、正極活物質の担持量を多くしたり、正極材料層2Aの厚みを厚くしたりできるので、高容量化することができ、それによって全固体電池のエネルギー密度を高めることができる。
 以下、一例として、ナトリウムイオン伝導性を有する材料を用いた全固体ナトリウムイオン二次電池について、各工程の詳細について説明する。
 (正極材料層形成工程)
 正極材料層2Aは、固体電解質層1の第1の主面1a上に、正極活物質前駆体粉末を含むスラリーを塗布し、乾燥することにより得ることができる。スラリーには、固体電解質粉末や導電助剤が含まれていてもよい。また、スラリーには、必要に応じて、バインダー、可塑剤、又は溶剤等が含まれていてもよい。
 正極活物質前駆体粉末;
 正極活物質前駆体粉末は、焼成により正極活物質結晶を生成する非晶質酸化物材料からなることが好ましい。非晶質酸化物材料は焼成時に正極活物質結晶が生成するとともに、軟化流動してより緻密な正極層2を形成することが可能となる。その結果、イオン伝導パスがより良好に形成されるため好ましい。また、本発明において、「非晶質酸化物材料」は完全に非晶質の酸化物材料に限定されず、一部結晶を含有しているもの(例えば結晶化度10%以下)も含むものとする。
 正極活物質前駆体粉末は、下記酸化物換算のモル%で、NaO 25%~55%、Fe+Cr+MnO+CoO+NiO 10%~30%、及びP 25%~55%を含有することが好ましい。組成をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。
 NaOは、一般式Na(MはFe、Cr、Mn、Co及びNiから選択される少なくとも1種以上の遷移金属元素、1.20≦x≦2.10、0.95≦y≦1.60)で表される正極活物質結晶の主成分である。NaOの含有量は、25%~55%であることが好ましく、30%~50%であることがより好ましい。NaOの含有量が少なすぎる、あるいは、多すぎると、充放電容量が低下する傾向にある。
 Fe、Cr、MnO、CoO及びNiOも、一般式Naで表される正極活物質結晶の主成分である。Fe+Cr+MnO+CoO+NiOの含有量は10%~30%であることが好ましく、15%~25%であることがより好ましい。Fe+Cr+MnO+CoO+NiOの含有量が少なすぎると、充放電容量が低下する傾向にある。一方、Fe+Cr+MnO+CoO+NiOの含有量が多すぎると、望まないFe、Cr、MnO、CoOまたはNiO等の結晶が析出しやすくなる。なお、サイクル特性を向上させるためには、Feを積極的に含有させることが好ましい。Feの含有量は、1%~30%であることが好ましく、5%~30%であることがより好ましく、10%~30%であることがさらに好ましく、15%~25%であることが特に好ましい。Cr、MnO、CoO及びNiOの各成分の含有量は、それぞれ、0%~30%であることが好ましく、10%~30%であることがより好ましく、15%~25%であることがさらに好ましい。また、Fe、Cr、MnO、CoO及びNiOから選択される少なくとも2種の成分を含有させる場合、その合量は10%~30%であることが好ましく、15%~25%であることがより好ましい。
 Pも一般式Naで表される正極活物質結晶の主成分である。Pの含有量は25%~55%であることが好ましく、30%~50%であることがより好ましい。Pの含有量が少なすぎる、あるいは、多すぎると、充放電容量が低下する傾向にある。
 正極活物質前駆体粉末には、上記成分以外にも、V、Nb、MgO、Al、TiO、ZrO、又はScを含有させてもよい。これらの成分は導電性(電子伝導性)を高める効果があり、正極活物質の高速充放電特性が向上しやすくなる。上記成分の含有量は合量で0%~25%であることが好ましく、0.2%~10%であることがより好ましい。上記成分の含有量が多すぎると、電池特性に寄与しない異種結晶が生じ、充放電容量が低下しやすくなる。
 また上記成分以外に、SiO、B、GeO、Ga、Sb、又はBiを含有していてもよい。これら成分を含有させることにより、ガラス形成能が向上し、均質な正極活物質前駆体粉末を得やすくなる。上記成分の含有量は合量で、0%~25%であることが好ましく、0.2%~10%であることがより好ましい。上記成分は電池特性に寄与しないため、その含有量が多すぎると、充放電容量が低下する傾向にある。
 正極活物質前駆体粉末は、原料バッチを溶融、成形することにより作製することが好ましい。当該方法によれば、均質性に優れた非晶質の正極活物質前駆体粉末を得やすくなるため好ましい。具体的には、正極活物質前駆体粉末は以下のようにして製造することができる。
 まず、所望の組成となるように原料を調製して原料バッチを得る。次に、得られた原料バッチを溶融する。溶融温度は、原料バッチが均質に溶融されるよう適宜調整すればよい。例えば、溶融温度は800℃以上であることが好ましく、900℃以上であることがより好ましい。上限は特に限定されないが、溶融温度が高すぎるとエネルギーロスや、ナトリウム成分等の蒸発につながるため、1500℃以下であることが好ましく、1400℃以下であることがより好ましい。
 次に、得られた溶融物を成形する。成形方法としては特に限定されず、例えば、溶融物を一対の冷却ロール間に流し込み、急冷しながらフィルム状に成形してもよいし、あるいは、溶融物を鋳型に流し出し、インゴット状に成形しても構わない。
 続いて、得られた成形体を粉砕することにより正極活物質前駆体粉末を得る。正極活物質前駆体粉末の平均粒子径は、0.01μm以上、0.7μm未満であることが好ましく、0.03μm以上、0.6μm以下であることがより好ましく、0.05μm以上、0.6μm以下であることがさらに好ましく、0.1μm以上、0.5μm以下であることが特に好ましい。正極活物質前駆体粉末の平均粒子径が小さすぎると、ペースト化して使用する場合に粒子同士の凝集力が強くなり、ペースト中に分散しにくくなる。また、固体電解質粉末等と混合する場合に、混合物中に正極活物質前駆体粉末を均一に分散することが困難となり、内部抵抗が上昇するため出力特性が下がり充放電容量が低下する恐れがある。一方、正極活物質前駆体粉末の平均粒子径が大きすぎると、結晶化温度が高くなる傾向がある。また、正極材料の単位表面積あたりのイオンと電子の拡散量が低下することで、内部抵抗が大きくなるため出力特性が下がり、結果として充放電容量が低下する傾向がある。さらに、固体電解質粉末と混合する場合に、正極活物質前駆体粉末と固体電解質粉末との密着性が低下するため、正極層2の機械的強度が低下し、結果的に充放電容量が低下する傾向にある。あるいは、正極層2と固体電解質層1との密着性にも劣り、正極層2が固体電解質層1から剥離する恐れがある。
 なお、正極活物質前駆体粉末の平均粒子径を小さくすると、緻密な正極層を得ることができるが、この場合、正極活物質前駆体粉末の比表面積が大きくなるため、ペースト化する際にバインダーの添加量を増やす必要がある。しかしながら、焼成時にバインダーは揮発するため、正極材料層内の空隙が多くなることから、正極材料層の体積収縮がより生じ易くなる。その結果、正極層の固体電解質層からの剥離がより生じ易くなる。本実施形態の製造方法では、固体電解質層1上に形成された正極材料層2Aを加圧しながら、焼成するので、正極活物質前駆体粉末の平均粒子径を小さくした場合においても、焼成により得られる正極層2が固体電解質層1から剥離し難い。
 なお、本発明において、平均粒子径は、D50(体積基準の平均粒子径)を意味し、レーザー回折散乱法により測定された値を指す。
 固体電解質粉末;
 固体電解質粉末は、全固体電池10において、正極層2におけるイオン伝導を担う成分である。
 固体電解質粉末としては、例えば、ナトリウムイオン伝導性に優れるベータアルミナまたはNASICON結晶が挙げられる。ベータアルミナは、β-アルミナ(理論組成式:NaO・11Al)とβ”-アルミナ(理論組成式:NaO・5.3Al)の2種類の結晶型が存在する。β”-アルミナは準安定物質であるため、通常、LiOやMgOを安定化剤として添加したものが用いられる。β-アルミナよりもβ”-アルミナの方が、ナトリウムイオン伝導度が高いため、β”-アルミナ単独、またはβ”-アルミナとβ-アルミナの混合物を用いることが好ましく、LiO安定化β”-アルミナ(Na1.7Li0.3Al10.717)またはMgO安定化β”-アルミナ((Al10.32Mg0.6816)(Na1.68O))を用いることがより好ましい。
 NASICON結晶としては、NaZrSiPO12、Na3.2Zr1.3Si2.20.710.5、NaZr1.6Ti0.4SiPO12、NaHfSiPO12、Na3.4Zr0.9Hf1.4Al0.6Si1.21.812、NaZr1.7Nb0.24SiPO12、Na3.6Ti0.20.7Si2.8、NaZr1.880.12SiPO12、Na3.12Zr1.880.12SiPO12、Na3.6Zr0.13Yb1.67Si0.112.912等が挙げられ、特にNa3.12Zr1.880.12SiPO12がナトリウムイオン伝導性に優れるため好ましい。
 固体電解質粉末の平均粒子径は、0.05μm以上、3μm以下であることが好ましく、0.05μm以上、1.8μm未満であることがより好ましく、0.05μm以上、1.5μm以下であることがさらに好ましく、0.1μm以上、1.2μm以下であることが特に好ましく、0.1μm以上、0.7μm以下であることが最も好ましい。固体電解質粉末の平均粒子径が小さすぎると、正極活物質前駆体粉末とともに均一に混合することが困難となるだけでなく、吸湿や炭酸塩化することによりイオン伝導性が低下したり、正極活物質前駆体粉末との過剰反応を助長する恐れがある。その結果、正極材料層の内部抵抗が高くなり、電圧特性及び充放電容量が低下する傾向にある。一方、固体電解質粉末の平均粒子径が大きすぎると、正極活物質前駆体粉末の軟化流動を著しく阻害するため、得られる正極層2の平滑性に劣って機械的強度が低下したり、内部抵抗が大きくなる傾向がある。
 固体電解質粉末の平均粒子径を小さくすると、緻密な正極層を得ることができるが、この場合、固体電解質粉末の比表面積が大きくなるため、ペースト化する際にバインダーの添加量を増やす必要がある。しかしながら、焼成時にバインダーは揮発するため、正極材料層内の空隙が多くなることから、正極材料層の体積収縮がより生じ易くなる。その結果、正極層の固体電解質層からの剥離がより生じ易くなる。本実施形態の製造方法では、固体電解質層1上に形成された正極材料層2Aを加圧しながら、焼成するので、固体電解質粉末の平均粒子径を小さくした場合においても、焼成により得られる正極層2が固体電解質層1から剥離し難い。
 なお、固体電解質層1は上記固体電解質粉末と同様の材料から構成されていることが好ましい。固体電解質層1は、原料粉末を混合し、混合した原料粉末を成形した後、焼成することにより製造することができる。例えば、原料粉末をスラリー化してグリーンシートを作製した後、グリーンシートを焼成することにより製造することができる。また、ゾルゲル法により製造してもよい。
 導電助剤;
 導電助剤は、正極材料中において導電パスを形成する成分である。導電助剤としては、例えば、導電性炭素を用いることができる。導電性炭素としては、アセチレンブラックやケッチェンブラックといった高導電性カーボンブラック等の粉末状または繊維状の導電性炭素が好ましい。導電性炭素を添加する場合、正極活物質前駆体粉末を粉砕する際に添加することが好ましい。導電性炭素は粉砕助剤の役割を果たし、正極活物質前駆体粉末と均質に混合することが可能となるだけでなく、焼成時の正極活物質前駆体粉末粒子同士の過剰な融着を抑制し、導電性が確保されやすくなり、急速充放電特性が向上しやすくなる。
 バインダー;
 バインダーは、原料(原料粉末)同士を一体化させるための材料である。バインダーとしては、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシメチルセルロース等のセルロース誘導体またはポリビニルアルコール等の水溶性高分子;熱硬化性ポリイミド、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン等の熱硬化性樹脂;ポリプロピレンカーボネート等のポリカーボネート系樹脂;ポリフッ化ビニリデン等が挙げられる。
 原料の構成;
 固形原料は、質量%で、正極活物質前駆体粉末 30%~100%、固体電解質粉末 0%~70%、及び導電性炭素 0%~20%を含有することが好ましく、正極活物質前駆体粉末 44.5%~94.5%、固体電解質粉末 5%~55%、及び、導電性炭素 0.5%~15%を含有することがより好ましく、正極活物質前駆体粉末 50%~92%、固体電解質粉末 7%~50%、及び導電性炭素 1%~10%を含有することがさらに好ましい。正極活物質前駆体粉末の含有量が少なすぎると、正極材料中の充放電に伴ってナトリウムイオンを吸蔵または放出する成分が少なくなるため、蓄電デバイスの充放電容量が低下する傾向にある。導電性炭素または固体電解質粉末の含有量が多すぎると、正極活物質前駆体粉末の結着性が低下して内部抵抗が高くなるため、電圧特性や充放電容量が低下する傾向にある。
 また、バインダーの含有量は、固形原料100質量部に対して、1質量部~50質量部であることが好ましく、5質量部~40質量部であることがより好ましい。バインダーの含有量が少なすぎると、固形原料の結着性が不足して、正極材料層2Aの乾燥時にクラックが生じたり、固体電解質層1から剥離が生じたりする。バインダーの含有量が多すぎると、上述したように焼成時にバインダーが揮発するため、正極材料層2A内の空隙が多くなりやすく体積収縮が起こり易くなる。しかしながら、本実施形態の製造方法では、固体電解質層1上に形成された正極材料層2Aを加圧しながら、焼成するので、バインダーの含有量を多くした場合においても焼成により得られる正極層2が固体電解質層1から剥離し難い。
 原料の混合に際しては、例えば、自転公転ミキサー、タンブラー混合機等の混合器や、乳鉢、らいかい機、ボールミル、アトライター、振動ボールミル、衛星ボールミル、遊星ボールミル、ジェットミル、ビーズミル等の一般的な粉砕機を用いることができる。
 また、スラリーの乾燥温度としては、特に限定されないが、例えば、30℃以上、100℃以下とすることができる。また、スラリーの乾燥時間としては、特に限定されないが、例えば、10分以上、600分以下とすることができる。
 (焼成工程)
 焼成工程では、固体電解質層1上に形成された正極材料層2Aを加圧しながら、焼成する。本実施形態では、図1(b)に示すように、正極材料層2Aの第2の主面2b上にカーボンシート4を載置し、カーボンシート4上にさらにおもり5を載置する。それによって、正極材料層2Aを加圧しながら、焼成する。なお、正極材料層2Aの第1の主面2aは、固体電解質層1側の主面であり、第2の主面2bは第1の主面2aに対向している主面である。
 本実施形態では、正極材料層2Aの第2の主面2b全体を加圧する。このように、本発明においては、第2の主面2b全体を加圧することが望ましいが、第2の主面2bの少なくとも一部を加圧すればよく、特に限定されない。
 また、正極材料層2Aに加える圧力は、好ましくは1kPa以上、より好ましくは5kPa以上、さらに好ましくは10kPa以上である。この場合、焼成により得られる正極層2が固体電解質層1からより一層剥離し難い。なお、正極材料層2Aに加える圧力の上限値は、特に限定されないが、例えば、100MPaとすることができる。
 焼成時の雰囲気は還元雰囲気であることが好ましい。還元雰囲気としては、H、NH、CO、HS、及びSiHから選ばれる少なくとも1種の還元性ガスを含む雰囲気が挙げられる。なお、正極活物質前駆体粉末中のFeイオンを3価から2価に効率的に還元する観点からは、雰囲気中にH、NH、及びCOから選ばれる少なくとも1種を含有することが好ましく、Hガスを含有することがより好ましい。なお、Hガスを使用する場合、焼成中における爆発等の危険性を低減するため、N等の不活性ガスを混合することが好ましい。具体的には、還元性ガスが、体積%で、N 90%~99.9%及びH 0.1%~10%を含有することが好ましく、N 90%~99.5%及びH 0.5%~10%を含有することがより好ましく、N 92%~99%及びH 1~8%を含有することがさらに好ましい。
 焼成温度(最高温度)は、400℃~600℃であることが好ましく、410℃~580℃であることがより好ましく、420℃~575℃であることがさらに好ましく、425℃~560℃であることが特に好ましく、450℃~530℃であることが最も好ましい。焼成温度が低すぎると、正極活物質前駆体粉末の結晶化が不十分となり、残存する非晶質相が高抵抗部となって電圧特性及び充放電容量が低下する傾向にある。一方、焼成温度が高すぎると、正極活物質前駆体粉末同士が過剰に融着し、粗大な粒子が形成されるため、正極活物質の比表面積が小さくなって、充放電特性が低下する傾向にある。また、焼成時に正極活物質前駆体粉末と固体電解質粉末が反応し、充放電に寄与しない結晶(マリサイト型NaFePO結晶等)が析出して充放電容量が低下する恐れがある。あるいは、正極活物質前駆体粉末と固体電解質粉末に含まれる元素が焼成時に相互に拡散することで、部分的に高抵抗層が形成され、蓄電デバイスである全固体電池のレート特性が低下する場合がある。
 焼成時間(焼成時における最高温度での保持時間)は3時間未満であることが好ましく、2時間以下であることがより好ましく、1時間以下であることがさらに好ましく、45分以下であることが特に好ましく、30分以下であることが最も好ましい。焼成時間が長すぎると、正極活物質前駆体粉末同士が過剰に融着し、粗大な粒子が形成されやすくなり、正極活物質の比表面積が小さくなって、充放電特性が低下する傾向にある。また、全固体電池の場合は、焼成時に正極活物質前駆体粉末と固体電解質粉末が反応し、充放電に寄与しない結晶(マリサイト型NaFePO結晶等)が析出して充放電容量が低下する恐れがある。あるいは、正極活物質前駆体粉末と固体電解質粉末に含まれる元素が焼成時に相互に拡散することで、部分的に高抵抗層が形成され、全固体電池のレート特性が低下する場合がある。一方、焼成時間が短すぎると、正極活物質前駆体粉末の結晶化が不十分となり、残存する非晶質相が高抵抗部となって電圧特性及び充放電容量が低下する傾向にある。そのため、焼成時間は1分以上であることが好ましく、5分以上であることがより好ましい。
 焼成には、電気加熱炉、ロータリーキルン、マイクロ波加熱炉、高周波加熱炉等を用いることができる。
 (負極層形成工程)
 負極層3は、例えば、負極活物質前駆体粉末に、必要に応じて、固体電解質粉末及び/または導電助剤を含むスラリーを用いて作製することができる。スラリーには、必要に応じて、バインダー、可塑剤、溶剤等が添加される。スラリーを固体電解質層1の第2の主面1b上に塗布した後、乾燥し、これを焼成することにより、負極層3を作製することができる。また、スラリーをPET(ポリエチレンテレフタレート)等の基材の上に塗布した後乾燥し、グリーンシートを作製し、このグリーンシートを焼成することにより作製してもよい。あるいは、負極層3は金属からなるものであってもよく、この場合はスパッタ法や蒸着法等により負極層3を形成することができる。
 (他の実施形態)
 なお、上記実施形態では、ナトリウムイオン伝導性を有する材料を用いた全固体ナトリウムイオン二次電池の製造方法について説明したが、リチウムイオン伝導性を有する材料を用いた全固体リチウムイオン二次電池など他の全固体電池の製造方法に用いてもよい。
 また、上記実施形態では、正極層2形成時に加圧しながら焼成を行ったが、負極層3形成時に加圧しながら焼成を行ってもよい。また、正極層2及び負極層3の双方の形成時に加圧しながら焼成を行ってもよい。正極層2及び負極層3の双方を同時に焼成してもよい。
 また、必要に応じて、正極層2及び負極層3上に、それぞれ、集電体層を形成してもよい。
 集電体層の形成方法としては、特に限定されず、例えば、蒸着又はスパッタリング等の物理的気相法や、熱CVD、MOCVD、プラズマCVD等の化学的気相法が挙げられる。集電体層のその他の形成方法として、メッキ、ゾルゲル法、スピンコートによる液相成膜法が挙げられる。もっとも、集電体層は、正極層2又は負極層3上にスパッタリング法により形成することが、密着性に優れるため好ましい。
 集電体層の材料としては、特に限定されないが、アルミニウム、チタン、銀、銅、ステンレス鋼又はこれらの合金などの金属材料を用いることができる。上記金属材料は、単独で用いてもよく、複数を併用してもよい。なお、これらの合金とは、少なくとも1種の上記金属を含む合金である。
 [全固体電池]
 図2に示すように、全固体電池10は、固体電解質層1、正極層2、及び負極層3を備える。固体電解質層1は、対向している第1の主面1a及び第2の主面1bを有している。固体電解質層1の第1の主面1a上に、正極層2が設けられている。これにより、蓄電デバイス用部材6が構成されている。また、固体電解質層1の第2の主面1b上に、負極層3が設けられている。
 正極層2は、平均粒子径が0.01μm以上、0.7μm未満である正極活物質前駆体粉末を含む正極材料層の焼結体からなる。そのため、緻密な正極層2となる。よって、エネルギー密度を高めることができ、それによって全固体電池10が高容量化されている。なお、その他の点は、上述の製造方法の欄で説明したものを用いることができる。
 正極層2に含まれる正極活物質としては特に限定されないが、NaCrO、Na0.7MnO、NaFe0.2Mn0.4Ni0.4等の層状ナトリウム遷移金属酸化物結晶やNaFeP、NaFePO、Na(PO等の、Na、M(MはCr、Fe、Mn、Co及びNiから選ばれる少なくとも1種の遷移金属元素)、P、Oを含むナトリウム遷移金属リン酸塩結晶等の活物質結晶を挙げることができる。
 特に、Na、M、P及びOを含む結晶は、高容量で化学的安定性に優れるため好ましい。なかでも、空間群P1またはP-1に属する三斜晶系結晶、特に一般式Na(MはFe、Cr、Mn、Co及びNiから選択される少なくとも1種以上の遷移金属元素、1.20≦x≦2.10、0.95≦y≦1.60)で表される結晶が、サイクル特性に優れるため好ましい。
 正極層2の厚みは、20μm以上であることが好ましく、50μm以上であることがより好ましく、80μm以上であることがさらに好ましく、100μm以上であることが特に好ましく、120μm以上であることが最も好ましい。この場合、全固体電池10をより一層高容量化することができる。他方、正極層2の厚みが厚すぎると、電子伝導に対する抵抗が大きくなり放電容量及び作動電圧が低下することがあるほか、焼成時の収縮による応力が大きくなり剥離につながることがあるため、150μm以下であることが好ましい。
 また、正極層2に含まれる正極活物質の担持量は、好ましくは3mg/cm以上、より好ましくは5mg/cm以上、さらに好ましくは7mg/cm以上、特に好ましくは9mg/cm以上、最も好ましくは12mg/cm以上である。この場合、全固体電池10をより一層高容量化することができる。なお、正極活物質の担持量の上限値は、特に限定されないが、例えば、100mg/cmとすることができる。
 なお、固体電解質層1及び負極層3は、上述の製造方法で製造した固体電解質層1及び負極層3と同じものを用いることができる。
 固体電解質層1の厚みは、5μm~1500μmの範囲であることが好ましく、20μm~200μmの範囲であることがより好ましい。固体電解質層1の厚みが薄すぎると、機械的強度が低下して破損しやすくなるため、内部短絡が起こりやすくなる。固体電解質層1の厚みが厚すぎると、充放電に伴うナトリウムイオン伝導距離が長くなるため内部抵抗が高くなり、放電容量及び作動電圧が低下しやすくなる。また、全固体電池10の単位体積当たりのエネルギー密度も低下しやすくなる。
 負極活物質としては、Nb及びTiから選ばれる少なくとも1種及びOを含む結晶、Sn、Bi及びSbから選ばれる少なくとも1種の金属結晶等の活物質結晶を挙げることができる。
 Nb及びTiから選ばれる少なくとも1種及びOを含む結晶は、サイクル特性に優れるため好ましい。さらに、Nb及びTiから選ばれる少なくとも1種及びOを含む結晶が、Na及び/またはLiを含むと、充放電効率(充電容量に対する放電容量の比率)が高まり、高い充放電容量を維持することができるため好ましい。なかでも、Nb及びTiから選ばれる少なくとも1種及びOを含む結晶が、斜方晶系結晶、六方晶系結晶、立方晶系結晶または単斜晶系結晶、特に空間群P21/mに属する単斜晶系結晶であれば、大電流で充放電しても容量の低下が起こりにくいため好ましい。斜方晶系結晶としては、NaTi等が、六方晶系結晶としては、NaTiO、NaTi13、NaTiO、LiNbO、LiNbO、LiNbO、LiNbO、LiTi等が、立方晶系結晶としては、NaTiO、NaNbO、LiTi12、LiNbO等が、単斜晶系結晶としては、NaTi13、NaTi、NaTiO、NaTi12、NaTi、NaTi19、NaTi、NaTi、Li1.7Nb、Li1.9Nb、Li12Nb1333、LiNb等が、空間群P21/mに属する単斜晶系結晶としては、NaTi等が挙げられる。
 Nb及びTiから選ばれる少なくとも1種及びOを含む結晶は、さらに、B、Si、P及びGeから選ばれる少なくとも1種を含むことが好ましい。これらの成分は、活物質結晶とともに非晶質相を形成させやすくし、ナトリウムイオン伝導性を向上させる効果を有する。
 その他に、Sn、Bi及びSbから選ばれる少なくとも1種の金属結晶、またはSn、Bi及びSbから選ばれる少なくとも1種を含有するガラスを使用することができる。これらは、高容量であり、大電流で充放電しても容量の低下が起こりにくいため好ましい。
 負極層3の厚みは、0.3μm~300μmの範囲であることが好ましく、3μm~150μmの範囲であることがより好ましい。負極層3の厚みが薄すぎると、負極の絶対容量(mAh)が低下する傾向にある。負極層3の厚みが厚すぎると、抵抗が大きくなるため容量(mAh/g)が低下する傾向にある。
 なお、上記実施形態では、ナトリウムイオン伝導性を有する材料を用いた全固体ナトリウムイオン二次電池について説明したが、リチウムイオン伝導性を有する材料を用いた全固体リチウムイオン二次電池など他の全固体電池に用いてもよい。
 また、上記実施形態では、平均粒子径が0.01μm以上、0.7μm未満である正極活物質前駆体粉末を含む正極材料層2Aの焼結体からなる正極層2を用いたが、平均粒子径が0.01μm以上、0.7μm未満であり、好ましくは0.05μm以上、0.6μm以下である負極活物質前駆体粉末を含む負極材料層の焼結体からなる負極層3を用いてもよい。この場合、負極層3の厚みや負極活物質の担持量は、上述の正極層2の厚みや正極活物質の担持量を採用してもよい。なお、正極層2及び負極層3の双方がこれらの構成を備えていてもよい。
 また、必要に応じて、正極層2及び負極層3上に、それぞれ、上述の製造方法の欄で説明した集電体層が設けられていてもよい。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例1~11、参考例1~2)
 (a)正極活物質前駆体粉末の作製
 メタリン酸ソーダ(NaPO)、酸化第二鉄(Fe)及びオルソリン酸(HPO)を原料とし、モル%で、NaO 40%、Fe 20%、及びP 40%の組成となるように原料粉末を調合し、1250℃にて45分間、大気雰囲気中にて溶融を行った。その後、溶融物を一対の回転ローラー間に流し出し、急冷しながら成形し、厚み0.1mm~2mmのフィルム状のガラスを得た。得られたフィルム状ガラスに対し、ボールミル及び遊星ボールミルでの粉砕を行うことにより、表1に示す平均粒子径を有するガラス粉末(正極活物質前駆体粉末)を得た。なお、粉末X線回折(XRD)測定の結果、得られたガラス粉末は非晶質であることが確認された。
 (b)固体電解質層及び固体電解質粉末の作製
 LiO安定化β”アルミナ(Ionotec社製、組成式:Na1.7Li0.3Al10.717)を厚み0.5mmのシート状に加工することにより固体電解質層を得た。また、シート状のLiO安定化β”アルミナをボールミル及び遊星ボールミルで粉砕することにより、平均粒子径が0.4μmである固体電解質粉末を得た。
 (c)試験電池の作製
 実施例1~11、参考例1~2では、上記で得られた正極活物質前駆体粉末、固体電解質粉末、さらに導電性炭素としてのアセチレンブラック(TIMCAL社製、SUPER C65)をそれぞれ下記の表1に記載の割合となるようにそれぞれ秤量し、メノウ製の乳鉢及び乳棒を用いて、30分間混合した。混合した粉末100質量部に、20質量部のポリプロピレンカーボネートを添加し、さらにN-メチルピロリドンを30質量部添加して、自転・公転ミキサーを用いて十分に撹拌し、スラリー化した。
 得られたスラリーを、上記で得られた固体電解質層の一方の表面に、面積1cm、厚さ80μmで塗布し、70℃で3時間乾燥させ、正極材料層を形成した。なお、実施例1~11では、それぞれ、形成した正極材料層の上にカーボンシート(20mm×20mm×0.5mm)を載置し、さらにその上に表1に示す圧力で加圧されるようにおもりを載置した。他方、参考例1~2では、おもりを載置しなかった。
 この状態で、H 4体積%及びN 96体積%の混合ガス中において、525℃で30分間焼成することにより、固体電解質層の一方の表面に正極層を形成し、蓄電デバイス用部材を作製した。なお、上記の操作はすべて露点-40℃以下の環境で行った。また、正極活物質の担持量(活物質担持量)は、下記の表1に示す通りである。また電極層の厚みはマイクロメーターで測定した。
 得られた正極層について粉末X線回折パターンを確認したところ、全てNaFeP結晶が確認された。なお、いずれの正極層においても、使用した固体電解質粉末に由来する結晶性回折線が確認された。
 図3は、実施例5で得られた正極層の平面視における写真である。また、図4は、参考例2で得られた正極層の平面視における写真である。
 図3から明らかなように、実施例5では、正極活物質の担持量が多いにも関わらず、焼成により得られる正極層が固体電解質層から剥離していないことがわかる。なお、図示していないが、同様に、実施例1~4,6~11においても、焼成により得られる正極層が固体電解質層から剥離していないことが確認された。他方、図4から明らかなように、参考例2では、焼成により得られる正極層が固体電解質層から剥離していることが確認された。
 次に、得られた正極層の表面にスパッタ装置(サンユー電子社製、品番「SC-701AT」)を用いて厚さ300nmの金電極からなる集電体を形成した。その後、露点-60℃以下のアルゴン雰囲気中にて、対極となる金属ナトリウムを固体電解質層の他方の表面に圧着し、コインセルの下蓋の上に載置した後、上蓋を被せてCR2032型試験電池を作製した。
 (d)充放電試験
 作製した試験電池について30℃で充放電試験を行い、電池容量を測定した。結果を表1に示す。なお、充放電試験において、Cレートは0.1Cとした。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~11では、正極活物質の担持量に関わらず、充放電が可能であることがわかる。従って、正極活物質の担持量が多い実施例2や実施例5~7では、電池容量が高められていることがわかる。他方、参考例2では、充放電できないことが確認された。
1…固体電解質層
1a,2a…第1の主面
1b,2b…第2の主面
2A…正極材料層
2…正極層
3…負極層
4…カーボンシート
5…おもり
6…蓄電デバイス用部材
10…全固体電池

Claims (11)

  1.  固体電解質層と、
     前記固体電解質層上に設けられており、平均粒子径が0.01μm以上、0.7μm未満である電極活物質前駆体粉末を含む電極材料層の焼結体からなる電極層と、
    を備える、蓄電デバイス用部材。
  2.  前記電極層の厚みが20μm以上である、請求項1に記載の蓄電デバイス用部材。
  3.  前記電極層における電極活物質の担持量が、3mg/cm以上である、請求項1または2に記載の蓄電デバイス用部材。
  4.  請求項1~3のいずれか1項に記載の蓄電デバイス用部材を備える、全固体電池。
  5.  固体電解質層上に、電極活物質前駆体粉末を含有する電極材料層を形成する形成工程と、
     前記電極材料層を加圧しながら、焼成する焼成工程と、
    を備える、蓄電デバイス用部材の製造方法。
  6.  前記電極材料層が、前記固体電解質層側の第1の主面及び前記第1の主面に対向する第2の主面を有し、
     前記焼成工程において、前記第2の主面全体を加圧しながら、焼成する、請求項5に記載の蓄電デバイス用部材の製造方法。
  7.  前記焼成工程において、前記電極材料層を1kPa以上で加圧する、請求項5又は6に記載の蓄電デバイス用部材の製造方法。
  8.  前記電極活物質前駆体粉末の平均粒子径が、0.01μm以上、0.7μm未満である、請求項5~7のいずれか1項に記載の蓄電デバイス用部材の製造方法。
  9.  前記電極活物質前駆体粉末が、非晶質酸化物材料である、請求項5~8のいずれか1項に記載の蓄電デバイス用部材の製造方法。
  10.  前記電極材料層が、正極材料層である、請求項5~9のいずれか1項に記載の蓄電デバイス用部材の製造方法。
  11.  前記電極活物質前駆体粉末が、酸化物換算のモル%で、NaO 25%~55%、Fe+Cr+MnO+CoO+NiO 10%~30%、及びP 25%~55%を含有する、請求項5~10のいずれか1項に記載の蓄電デバイス用部材の製造方法。
PCT/JP2020/045384 2019-12-18 2020-12-07 蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法 WO2021124944A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020006182.5T DE112020006182T5 (de) 2019-12-18 2020-12-07 Elemente für Stromspeichervorrichtung, Festkörperbatterie und Verfahren zur Herstellung eines Elements für Stromspeichervorrichtung
US17/775,407 US20220407045A1 (en) 2019-12-18 2020-12-07 Member for power storage device, all-solid-state battery, and method for manufacturing member for power storage device
CN202080074616.7A CN114599623A (zh) 2019-12-18 2020-12-07 蓄电器件用部件、全固体电池和蓄电器件用部件的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-228143 2019-12-18
JP2019228143 2019-12-18
JP2020163045A JP2021097034A (ja) 2019-12-18 2020-09-29 蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法
JP2020-163045 2020-09-29

Publications (1)

Publication Number Publication Date
WO2021124944A1 true WO2021124944A1 (ja) 2021-06-24

Family

ID=76431538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045384 WO2021124944A1 (ja) 2019-12-18 2020-12-07 蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法

Country Status (5)

Country Link
US (1) US20220407045A1 (ja)
JP (1) JP2021097034A (ja)
CN (1) CN114599623A (ja)
DE (1) DE112020006182T5 (ja)
WO (1) WO2021124944A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070777A1 (ja) * 2020-09-30 2022-04-07 国立研究開発法人産業技術総合研究所 全固体ナトリウム蓄電池に用いられる電極合材、およびこれを用いた蓄電池
WO2023090248A1 (ja) * 2021-11-19 2023-05-25 日本電気硝子株式会社 蓄電デバイス用部材の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127717A1 (ja) * 2021-12-27 2023-07-06 日本電気硝子株式会社 全固体電池用電極材料、全固体電池用電極及びその製造方法、並びに全固体電池及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243743A (ja) * 2011-05-24 2012-12-10 Ohara Inc 全固体リチウムイオン電池
JP2013243006A (ja) * 2012-05-18 2013-12-05 Ohara Inc 全固体二次電池
JP2019079615A (ja) * 2017-10-20 2019-05-23 トヨタ自動車株式会社 正極の製造方法
JP2019079769A (ja) * 2017-10-27 2019-05-23 日本電気硝子株式会社 固体電解質シートの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3082388B2 (ja) 1992-01-24 2000-08-28 松下電器産業株式会社 リチウム二次電池
WO2016084573A1 (ja) 2014-11-26 2016-06-02 日本電気硝子株式会社 蓄電デバイス用正極材料の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243743A (ja) * 2011-05-24 2012-12-10 Ohara Inc 全固体リチウムイオン電池
JP2013243006A (ja) * 2012-05-18 2013-12-05 Ohara Inc 全固体二次電池
JP2019079615A (ja) * 2017-10-20 2019-05-23 トヨタ自動車株式会社 正極の製造方法
JP2019079769A (ja) * 2017-10-27 2019-05-23 日本電気硝子株式会社 固体電解質シートの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070777A1 (ja) * 2020-09-30 2022-04-07 国立研究開発法人産業技術総合研究所 全固体ナトリウム蓄電池に用いられる電極合材、およびこれを用いた蓄電池
WO2023090248A1 (ja) * 2021-11-19 2023-05-25 日本電気硝子株式会社 蓄電デバイス用部材の製造方法

Also Published As

Publication number Publication date
CN114599623A (zh) 2022-06-07
JP2021097034A (ja) 2021-06-24
US20220407045A1 (en) 2022-12-22
DE112020006182T5 (de) 2022-09-29

Similar Documents

Publication Publication Date Title
KR102410194B1 (ko) 나트륨 이온 전지용 전극합재, 그 제조 방법 및 나트륨 전고체 전지
JP6861942B2 (ja) 固体電解質シート及びその製造方法、並びにナトリウムイオン全固体二次電池
WO2021124944A1 (ja) 蓄電デバイス用部材、全固体電池及び蓄電デバイス用部材の製造方法
CN110383559B (zh) 全固体钠离子二次电池
JP7120230B2 (ja) 全固体ナトリウムイオン二次電池
WO2019044902A1 (ja) 共焼成型全固体電池
US20170346094A1 (en) Method of manufacturing positive electrode material for electrical storage device
CN110870123A (zh) 固体电解质片及其制造方法、以及全固体二次电池
WO2022009811A1 (ja) 焼結体電極、電池用部材、並びに焼結体電極及び電池用部材の製造方法、固体電解質前駆体溶液、固体電解質前駆体、並びに固体電解質
WO2018131627A1 (ja) ナトリウムイオン二次電池用電極合材及びその製造方法
JP7172245B2 (ja) 固体電解質シート及びその製造方法、並びに全固体二次電池
JP7070833B2 (ja) 固体電解質シート及びその製造方法、並びに全固体二次電池
WO2023127717A1 (ja) 全固体電池用電極材料、全固体電池用電極及びその製造方法、並びに全固体電池及びその製造方法
WO2021054273A1 (ja) 蓄電デバイス用正極材料の製造方法
WO2023234296A1 (ja) 二次電池用電極合材、全固体二次電池用電極、及び全固体二次電池
JP7205809B2 (ja) 電極付き固体電解質シート
WO2018235575A1 (ja) ナトリウムイオン二次電池
WO2024111514A1 (ja) 全固体ナトリウムイオン二次電池用正極合材、全固体ナトリウムイオン二次電池用正極、及び全固体ナトリウムイオン二次電池
WO2023090248A1 (ja) 蓄電デバイス用部材の製造方法
JP2022191519A (ja) 固体電解質シート及びその製造方法、並びに全固体二次電池
CN115954537A (zh) 固体电解质片及其制造方法、以及全固体二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903673

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20903673

Country of ref document: EP

Kind code of ref document: A1