WO2021124867A1 - 熱電変換素子及び熱電変換素子の製造方法 - Google Patents

熱電変換素子及び熱電変換素子の製造方法 Download PDF

Info

Publication number
WO2021124867A1
WO2021124867A1 PCT/JP2020/044649 JP2020044649W WO2021124867A1 WO 2021124867 A1 WO2021124867 A1 WO 2021124867A1 JP 2020044649 W JP2020044649 W JP 2020044649W WO 2021124867 A1 WO2021124867 A1 WO 2021124867A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion layer
heat
conversion element
power generation
Prior art date
Application number
PCT/JP2020/044649
Other languages
English (en)
French (fr)
Inventor
類 安藤
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020153636A external-priority patent/JP2021100100A/ja
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Publication of WO2021124867A1 publication Critical patent/WO2021124867A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to a thermoelectric conversion element and a method for manufacturing a thermoelectric conversion element.
  • Thermoelectric conversion materials are materials that convert heat into electric power by utilizing the phenomenon that electromotive force is generated when both ends of different types of metals or semiconductors are joined to generate a temperature difference, that is, the Seebeck effect, and are widely used as power generation modules. It is used.
  • a power generation module using a thermoelectric conversion material to an independent power source for a sensor in the IoT field and the like.
  • a power generation module is put into practical use as a power source, it is necessary to connect dozens of thermoelectric conversion elements in order to obtain a sufficient voltage.
  • Patent Document 1 discloses a technique relating to a thermoelectric power generation module in which p-type semiconductors and n-type semiconductors are alternately arranged radially and the p-type semiconductors and n-type semiconductors are electrically connected in series in order using electrodes. ing.
  • the p-type semiconductor and the n-type semiconductor generate electromotive forces in opposite directions in a state where there is a temperature difference in a predetermined direction. Therefore, in the technique disclosed in Patent Document 1, the output voltage can be increased by alternately connecting the p-type semiconductor and the n-type semiconductor in series.
  • the technique disclosed in Patent Document 1 has a problem that a thermoelectric conversion element is formed by combining a p-type semiconductor and an n-type semiconductor, and the structure is complicated.
  • an object of the present invention is to provide a thermoelectric conversion element having a simple structure and a method for manufacturing the same.
  • thermoelectric conversion element is provided so as to be in contact with a thermoelectric conversion layer having a plurality of power generation regions arranged apart from each other and the thermoelectric conversion layer, and each of the power generation regions is connected in series.
  • the plurality of conductive members are provided, and the conductivity of the plurality of conductive members is higher than that of the thermoelectric conversion layer.
  • the method for manufacturing a thermoelectric conversion element includes a step of forming a thermoelectric conversion layer by printing a thermoelectric conversion material on a base material and a plurality of places where the conductive material is separated on the thermoelectric conversion layer.
  • the plurality of conductive members include a step of forming a plurality of conductive members by printing on the thermoelectric conversion layer, and the plurality of conductive members generate an electromotive force when heat is supplied to a plurality of positions of the thermoelectric conversion layer. Are formed to connect in series.
  • the method for manufacturing a thermoelectric conversion element includes a step of forming a plurality of conductive members by printing conductive materials at a plurality of separated locations on a base material, and the plurality of conductive members are formed.
  • a step of forming a thermoelectric conversion layer by printing a thermoelectric conversion material on the base material is provided, and the plurality of conductive members are generated when heat is supplied to a plurality of positions of the thermoelectric conversion layer. It is formed so as to connect a plurality of power generation regions for generating electric power in series.
  • thermoelectric conversion element having a simple structure and a method for manufacturing the same.
  • thermoelectric conversion element which concerns on Embodiment 1. It is a top view for demonstrating the thermoelectric conversion element which concerns on Embodiment 1.
  • FIG. It is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 1.
  • FIG. It is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 1.
  • FIG. It is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 1.
  • FIG. is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 1.
  • thermoelectric conversion element which concerns on Embodiment 1. FIG. It is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 1.
  • FIG. It is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 2.
  • FIG. It is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 2.
  • FIG. It is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 2.
  • FIG. It is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 2.
  • FIG. It is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 2.
  • FIG. is sectional drawing for demonstrating the thermoelectric conversion element which concerns on Embodiment 2.
  • FIG. It is a top view for demonstrating the thermoelectric conversion element which concerns on Embodiment 3.
  • It is sectional drawing in the cutting line AA of FIG. It is a top view for demonstrating the thermoelectric conversion element which concerns on Embodiment 3.
  • thermoelectric conversion element which concerns on Embodiment 3. It is a perspective view for demonstrating an example of the thermoelectric conversion module using the thermoelectric conversion element which concerns on Embodiment 3.
  • thermoelectric conversion element is provided so as to be in contact with a thermoelectric conversion layer having a plurality of power generation regions arranged at a distance from each other and the thermoelectric conversion layer, and a plurality of thermoelectric conversion elements connecting the respective power generation regions in series. It is characterized in that it includes a conductive member, and the conductivity of the plurality of conductive members is higher than the conductivity of the thermoelectric conversion layer.
  • thermoelectric conversion element In the thermoelectric conversion element according to the present embodiment, a plurality of power generation regions are arranged in the thermoelectric conversion layer, and the plurality of power generation regions are connected in series by a plurality of conductive members. Therefore, a large output voltage can be obtained by a single thermoelectric conversion layer. Therefore, according to the invention according to the present embodiment, it is possible to provide a thermoelectric conversion element having a simple structure.
  • thermoelectric conversion element having the shape of the thermoelectric conversion layer in the shape of a meander will be described.
  • FIG. 1 is a top view for explaining the thermoelectric conversion element according to the first embodiment.
  • FIG. 2 is a cross-sectional view for explaining the thermoelectric conversion element according to the first embodiment.
  • the thermoelectric conversion element 11 includes a thermoelectric conversion layer 101 and a plurality of conductive members 102.
  • a plurality of power generation regions 101A are arranged in the thermoelectric conversion layer 101.
  • the right-handed xyz orthogonal coordinates shown in FIG. 1 and other drawings are for convenience to explain the positional relationship of the components, and are common to the drawings.
  • the thermoelectric conversion layer 101 is a strip-shaped layer whose longitudinal direction is the x-axis direction.
  • the thermoelectric conversion layer 101 is constructed by using a thermoelectric conversion material.
  • the thermoelectric conversion material is a material that converts heat into electric power by utilizing the Seebeck effect.
  • the plurality of power generation regions 101A are arranged apart from each other in the x-axis direction. Heat is supplied to each power generation region 101A at a position on the positive side of the x-axis.
  • the surface on which the thermoelectric conversion layer 101 receives heat is referred to as a heat receiving surface 101B.
  • the surface opposite to the heat receiving surface 101B is referred to as the heat radiating surface 101C.
  • Heat is supplied to the heat receiving surface 101B at a plurality of positions separated from a heat supply source (not shown) in the x-axis direction.
  • the heat supply source may include, for example, high temperature regions at a plurality of positions separated in the x-axis direction.
  • the heat supply source may be a plurality of heat sources arranged apart from each other in the x-axis direction.
  • the heat supply source is not particularly limited as long as it can supply heat to the heat receiving surface 101B and can be used as a heat supply source.
  • a body temperature, a cooling device for communication equipment, a heat exhaust pipe in a factory, a heat exhaust pipe of an automobile, or the like is used as the heat supply source.
  • each power generation region 101A receives heat from the x-axis positive direction side of the heat receiving surface 101B and dissipates heat from the heat radiating surface 101C. Therefore, each power generation region 101A has a high temperature on the positive side of the x-axis and a low temperature on the negative side of the x-axis. Since the temperature difference occurs in the x-axis direction in this way, each power generation region 101A generates an electromotive force in the x-axis direction.
  • the high temperature side that is, the x-axis positive direction side may be referred to as an upstream side
  • the low temperature side that is, the x-axis negative direction side may be referred to as a downstream side.
  • the thickness of the thermoelectric conversion layer 101 according to the present embodiment is preferably 0.1 ⁇ m or more and 3 mm or less, more preferably 0.2 ⁇ m or more and 1 mm or less, and preferably 0.3 ⁇ m or more and 500 ⁇ m or less. Especially preferable.
  • the thickness of the thermoelectric conversion layer 101 is an example, and the thickness of the thermoelectric conversion layer according to the present embodiment can be appropriately changed depending on the type of the thermoelectric conversion material contained therein.
  • thermoelectric conversion material is not particularly limited as long as it exhibits the Seebeck effect and can be used as a thermoelectric conversion material.
  • the thermoelectric conversion material includes tellurium compounds such as Bi-Te compounds, Pb-Te compounds and Sb-Te compounds, Co-Sb compounds, Fe-Sb compounds, Zn-Sb compounds, scutterdite compounds and the like.
  • Antimon compounds Fe-Si compounds, Ge-Si compounds, Mn-Si compounds, Mg-Si compounds and other silicon compounds, hexaborates and other boron compounds, crustrate compounds and other gallium compounds, Whistler compounds, Aluminum-based compounds such as Al-claslate compounds, tin-based and rare earth-based compounds such as half-Whisler metal-to-metal compounds, metal oxides such as Co oxides, Ti oxides, V oxides, and Zn oxides, organic low-molecular-weight materials, Organic conductive materials such as organic conductive polymer materials and carbon materials can be used.
  • thermoelectric conversion layer 101 has flexibility and that the thermoelectric conversion material can be printed or applied at the time of manufacturing
  • the organic thermoelectric conversion material having conductivity (organic). It is preferable to use a conductive material) to form a thermoelectric conversion material, and it is more preferable to use an organic conductive material and a carbon material to form a thermoelectric conversion material.
  • Examples of the organic conductive material include a polymer having thiophene and its derivative as a skeleton, a polymer having phenylene vinylene and its derivative as a skeleton, a polymer having aniline and its derivative as a skeleton, and an oligomer having pyrrole and its derivative as a skeleton.
  • Low molecular weight materials such as derivatives, cyanine, quinone and naphthoquinone can be used.
  • polymers having thiophene and its derivatives in the skeleton, phenylene vinylene and its derivatives in the skeleton, polymers having aniline and its derivatives in the skeleton, and oligomers and polymers having pyrrole and its derivatives in the skeleton are preferable.
  • the carbon material for example, graphite, carbon nanotubes, carbon black, graphene nanoplates, graphene and the like can be used. Considering both the Seebeck effect and conductivity, at least one selected from the group consisting of carbon nanotubes, carbon black, graphene nanoplates and graphene is preferable, more preferably carbon nanotubes, and particularly preferably single-walled carbon nanotubes. Is. If necessary, these carbon materials can be modified by introducing a substituent, or can be used in coexistence with a compound capable of promoting charge transfer.
  • thermoelectric conversion material may be used alone or in combination of a plurality of thermoelectric conversion materials.
  • the plurality of conductive members 102 are provided so as to be in contact with the heat radiating surface 101C of the thermoelectric conversion layer 101.
  • Each conductive member 102 is arranged between each power generation region 101A, and each power generation region 101A is connected in series.
  • the plurality of conductive members 102 are made of a conductive material and have a higher conductivity than the thermoelectric conversion layer 101.
  • the thin solid arrow shown in FIG. 2 indicates the current flow. In the example shown in FIG. 2, a case where a p-type semiconductor is used as a thermoelectric conversion material is illustrated.
  • each power generation region 101A If a temperature difference occurs in each power generation region 101A, an electromotive force is generated by gathering holes of the p-type semiconductor on the low temperature side, and a current is generated from the upstream side to the downstream side. It is considered that the electric current members 102 arranged on the downstream side of the power generation region 101A pass through each of the conductive members 102 and enter the upstream side of the power generation region 101A arranged further downstream. In this way, since each conductive member 102 electrically connects each power generation region 101A in series, a high output voltage can be obtained from the electromotive force generated in each power generation region 101A.
  • thermoelectric conversion layer 101 can be configured by using only one of the n-type semiconductor and the p-type semiconductor. .. As described above, since the thermoelectric conversion element 11 has a simple structure, a large number of power generation regions 101A can be connected in series, and high integration is easy.
  • the thickness of the plurality of conductive members 102 according to the present embodiment is preferably 0.01 ⁇ m or more and 500 ⁇ m or less, more preferably 0.01 ⁇ m or more and 300 ⁇ m or less, and 0.01 ⁇ m or more and 100 ⁇ m or less. Is particularly preferable. By setting the thickness of the conductive member 102 to 500 ⁇ m or less, printability and flexibility can be improved. Further, by setting the thickness of the plurality of conductive members 102 to 0.01 ⁇ m or more, conductivity can be ensured.
  • the value of the thickness of the plurality of conductive members 102 is an example, and the thickness of the plurality of conductive members 102 according to the present embodiment can be appropriately changed depending on the type of the conductive material contained therein. ..
  • the conductive material is not particularly limited as long as it has a higher conductivity than the thermoelectric conversion material and can be used as the conductive material.
  • a carbon material, a metal, an alloy, a semiconductor, or the like can be used as the conductive material.
  • thermoelectric conversion layer 101 is formed.
  • the thermoelectric conversion layer 101 can be formed by processing the thermoelectric conversion material itself into a sheet or a film. Further, the thermoelectric conversion layer 101 may be formed by applying or printing a thermoelectric conversion material on the base material 107. Specifically, the thermoelectric conversion layer 101 may be formed by printing a liquid (dispersion liquid, solution, etc.) containing particles of the thermoelectric conversion material on the base material. In this case, if necessary, a solvent, a binder, an additive, or the like may be added to the liquid containing the particles of the thermoelectric conversion material.
  • the printing method is not particularly limited as long as the thermoelectric conversion material can be printed on the base material, and examples thereof include various printing methods such as gravure printing, inkjet printing, and silk screen printing.
  • a plurality of conductive members 102 are formed at predetermined positions on the thermoelectric conversion layer 101.
  • the plurality of conductive members 102 may be formed on the thermoelectric conversion layer 101 by using a vacuum vapor deposition method, a sputtering method, or thermocompression bonding of a film having a conductive foil or a conductive film.
  • a plurality of conductive members 102 may be formed by printing a conductive paste (silver paste or the like) in which powder of a conductive material is made into a paste at a predetermined position on the thermoelectric conversion layer 101.
  • the printing method is not particularly limited as long as a plurality of conductive members 102 can be formed at predetermined locations on the thermoelectric conversion layer 101, and examples thereof include various printing methods such as gravure printing, inkjet printing, and silk screen printing.
  • the thermoelectric conversion element 11 is used by peeling the thermoelectric conversion layer 101 from the base material after, for example, a plurality of conductive members 102 are formed. Although details will be described in the following modification, the thermoelectric conversion element 11 may be used without peeling the thermoelectric conversion layer 101 from the base material.
  • thermoelectric conversion element is an example, and in the present embodiment, the thermoelectric conversion element may be manufactured by using another manufacturing method.
  • thermoelectric conversion element 11 since the thermoelectric conversion element 11 has a simple structure, it has high productivity and is easy to mass-produce. In the present embodiment, productivity can be further improved by forming the thermoelectric conversion layer 101 and the plurality of conductive members 102 by printing (all-printing).
  • thermoelectric conversion element 11 In a general thermoelectric conversion module, a plurality of thermoelectric conversion elements and electrodes are alternately connected in series, so that if some electrodes and thermoelectric conversion elements are peeled off, most of them are normal. Even if it functions, the thermoelectric conversion module as a whole cannot be used or its function is significantly reduced.
  • the thermoelectric conversion element 11 according to the present embodiment having the structure shown in FIG. 2 has a structure having a plurality of power generation regions 101A for generating electromotive force in one continuous thermoelectric conversion layer 101, and thus is a part of the thermoelectric conversion element 11. Even when the conductive member 102 is peeled off from the thermoelectric conversion layer 101, the entire thermoelectric conversion module can function satisfactorily.
  • FIG. 3 is a cross-sectional view for explaining the thermoelectric conversion element according to the present embodiment.
  • the thermoelectric conversion element 12 shown in FIG. 3 includes a heat transfer member 103 and a heat insulating member 104 in addition to the configuration shown in FIG. Other configurations are the same as those shown in FIG.
  • the heat transfer member 103 is a member that promotes heat transfer to the upstream side of each power generation region 101A on the heat receiving surface 101B side of the thermoelectric conversion layer 101. As shown in FIG. 3, the heat transfer member 103 is provided so as to be in contact with the heat receiving surface 101B on the upstream side of each power generation region 101A. Considering the securing of the temperature difference, it is preferable that the upstream end of the heat transfer member 103 is located on the x-axis negative direction side with respect to the downstream end of each conductive member 102.
  • the heat transfer member 103 is constructed by using a high heat conductive material. High thermal conductivity materials have higher thermal conductivity than thermoelectric conversion materials.
  • examples of high thermal conductivity materials include resins containing insulating fillers such as aluminum oxide, silicon carbide, aluminum nitride, boron nitride, silicon nitride, magnesium oxide, and beryllium oxide, copper, aluminum, silicon, silicon carbide, and ceramics. Aligned graphite, carbon fiber, or the like can be used.
  • the heat transfer member 103 can be configured by using a resin containing an insulating filler such as aluminum oxide, silicon carbide, aluminum nitride, boron nitride, silicon nitride, magnesium oxide, and beryllium oxide. More preferable.
  • the heat insulating member 104 is a member that suppresses heat transfer to the downstream side of each power generation region 101A on the heat receiving surface 101B side of the thermoelectric conversion layer 101. As shown in FIG. 3, the heat insulating member 104 is provided so as to be in contact with the heat receiving surface 101B at least on the downstream side of each power generation region 101A. Further, the heat insulating member 104 may be provided so as to be in contact with the heat receiving surface 101B even in regions other than the respective power generation regions 101A.
  • the heat insulating member 104 is constructed by using a low thermal conductive material. The low thermal conductivity material has a lower thermal conductivity than the thermoelectric conversion material.
  • the low heat conductive material is a resin containing an inorganic hollow filler which is a balloon (hollow body) such as a glass balloon or a silica balloon, or a balloon (hollow body) such as an acrylonitrile resin, an epoxy resin or a urea resin.
  • a resin containing an organic resin-based hollow filler, glass wool, cellulose fiber, or the like can be used.
  • the heat insulating member 104 is configured by using a resin containing an organic resin-based hollow filler which is a balloon (hollow body) such as acrylonitrile resin, epoxy resin, and urea resin. Is preferable.
  • a heat transfer member 103 is provided so as to be in contact with the heat receiving surface 101B on the upstream side of each power generation region 101A, and the entire region where the heat transfer member 103 of the heat receiving surface 101B of the thermoelectric conversion layer 101 is not provided.
  • the heat insulating member 104 is provided in the heat insulating member 104, the efficiency of heat supply to the upstream side of each power generation region 101A can be further improved. For example, by bringing the surface on which the heat transfer member 103 and the heat insulating member 104 are formed into contact with the heat supply source, heat is selected from the heat supply source to the heat receiving surface 101B of the thermoelectric conversion layer 101 via the heat transfer member 103. Can be supplied as a target. Only one of the heat transfer member 103 and the heat insulating member 104 may be provided.
  • FIG. 4 is a cross-sectional view for explaining the thermoelectric conversion element according to the present embodiment.
  • the thermoelectric conversion element 13 shown in FIG. 4 includes a heat radiating member 105 and a heat insulating member 106 in addition to the configuration shown in FIG. Other configurations are the same as those shown in FIG.
  • the heat radiating member 105 is a member that promotes heat radiating from the downstream side of each power generation region 101A on the heat radiating surface 101C side of the thermoelectric conversion layer 101. As shown in FIG. 4, the heat radiating member 105 is provided so as to be in contact with the heat radiating surface 101C at least on the downstream side of each power generation region 101A. Further, the heat radiating member 105 may be provided so as to be in contact with the upper surface (the surface on the positive direction side of the z-axis) of each conductive member 102.
  • the downstream end of the heat radiating member 105 is considered to prevent heat dissipation from the upstream side of the power generation region 101A located on the downstream side.
  • the conductive member 102 is located on the positive side of the x-axis rather than the downstream end of each conductive member 102.
  • the heat radiating member 105 is constructed by using a high thermal conductive material, and has a higher thermal conductivity than the thermoelectric conversion material. As an example, it is preferable to configure the heat radiating member 105 using the same high heat conductive material as that used in the heat transfer member 103 described above.
  • the high thermal conductive material constituting the heat radiating member 105 may be the same as or different from the high thermal conductive material constituting the heat transfer member 103.
  • the heat insulating member 106 is a member that suppresses heat dissipation from the upstream side of each power generation region 101A on the heat radiating surface 101C side of the thermoelectric conversion layer 101. As shown in FIG. 4, the heat insulating member 106 is provided so as to be in contact with the heat radiating surface 101C on the upstream side of each power generation region 101A.
  • the heat insulating member 106 is constructed by using a low thermal conductive material, and has a lower thermal conductivity than the thermoelectric conversion material. As an example, it is preferable to construct the heat insulating member 106 using the same low thermal conductive material as that used in the heat insulating member 104 described above.
  • the low thermal conductive material constituting the heat insulating member 106 may be the same as or different from the low thermal conductive material constituting the heat insulating member 104.
  • the heat radiating member 105 when the heat radiating member 105 is provided so as to be in contact with the upper surface of each conductive member 102 in addition to the heat radiating surface 101C on the downstream side of each power generation region 101A, the upper surface of the heat radiating member 105 (z-axis positive). Since the area of the surface on the direction side) becomes large, the efficiency of heat dissipation from the downstream side of each power generation region 101A can be further improved. Only one of the heat radiating member 105 and the heat insulating member 106 may be provided.
  • FIG. 5 is a cross-sectional view for explaining the thermoelectric conversion element according to the present embodiment.
  • the thermoelectric conversion element 14 shown in FIG. 5 includes a base material 107 in addition to the configuration shown in FIG. Other configurations are the same as those shown in FIG.
  • the base material 107 is a base material provided between the thermoelectric conversion layer 101 and the heat transfer member 103.
  • the thermoelectric conversion layer 101 can be formed by printing a liquid containing particles of the thermoelectric conversion material on the base material 107. Therefore, in the case of the configuration shown in FIG. 5, it is not necessary to peel the thermoelectric conversion layer 101 from the base material 107, and the number of manufacturing steps can be suppressed.
  • the base material 107 is preferably a flexible base material in consideration of the fact that the flexibility of the thermoelectric conversion element 14 can be maintained.
  • the flexible base material is a base material having flexibility and is a base material that can be bent when a predetermined stress is applied.
  • the flexible base material is a film or sheet-like base material, for example, a resin such as polyimide, polyamide, polyamideimide, polyetherimide, polybenzoxazole, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyphenylene sulfide, or a rubber-like elastomer. And so on.
  • a resin such as polyimide, polyamide, polyamideimide, polyetherimide, polybenzoxazole, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyphenylene sulfide, or a rubber-like elastomer. And so on.
  • FIG. 6 is a cross-sectional view for explaining the thermoelectric conversion element according to the present embodiment.
  • the thermoelectric conversion element 15 shown in FIG. 6 is provided with a plurality of through holes 107A in the portion of the base material 107 corresponding to the upstream side of each power generation region 101A, and the heat transfer member 103 is provided in each through hole 107A. It differs from the thermoelectric conversion element 12 shown in FIG. 3 in that it is embedded. Other configurations are the same as those shown in FIG.
  • a plurality of through holes 107A are provided in the base material 107.
  • the plurality of through holes 107A are provided in a portion corresponding to the upstream side of each power generation region 101A, that is, a portion in which the heat transfer member 103 is arranged in the configuration shown in FIG. 3 or the like. Since the heat transfer member 103 is embedded in each through hole 107A, the heat transfer property can be improved. Considering further improvement in heat transferability, the heat transfer member 103 is preferably provided so as to be filled in each through hole 107A as shown in FIG.
  • FIG. 7 is a cross-sectional view for explaining the thermoelectric conversion element according to the present embodiment.
  • the thermoelectric conversion element 16 shown in FIG. 7 is shown in FIG. 6 in that it includes a heat insulating member 106 and a heat radiating member 105 provided so as to cover the upper surface (the surface on the positive direction side of the z-axis) of the heat insulating member 106. It is different from the thermoelectric conversion element 15.
  • Other configurations are the same as those shown in FIG.
  • the heat radiating member 105 shown in FIG. 7 promotes heat radiating from the downstream side of each power generation region 101A. If the heat radiating member 105 is provided so as to cover the upper surface of the heat insulating member 106, the area of the upper surface of the heat radiating member 105 is further increased, so that the efficiency of heat radiating from the downstream side of each power generation region 101A can be further improved. it can.
  • FIG. 8 is a cross-sectional view for explaining the thermoelectric conversion element according to the second embodiment.
  • the thermoelectric conversion element 21 is different from the first embodiment in that a plurality of conductive members 102 are provided inside the thermoelectric conversion layer 101. Since the other configurations are the same as those of the thermoelectric conversion element described in the first embodiment, duplicated description will be omitted as appropriate.
  • thermoelectric conversion layer 101 is a strip-shaped layer whose longitudinal direction is the x-axis direction.
  • the thermoelectric conversion layer 101 is constructed by using a thermoelectric conversion material.
  • the plurality of power generation regions 101A are arranged apart from each other in the x-axis direction. Heat is supplied to each power generation region 101A at a position on the upstream side. Heat is supplied to the heat receiving surface 101B at a plurality of positions separated from a heat supply source (not shown) in the x-axis direction.
  • the thick solid arrow indicates the heat flow received by the thermoelectric conversion layer 101
  • the thick dotted arrow indicates the heat flow radiated from the thermoelectric conversion layer 101.
  • each power generation region 101A receives heat from the upstream side of the heat receiving surface 101B and dissipates heat from the heat radiating surface 101C. Therefore, each power generation region 101A has a high temperature on the upstream side and a low temperature on the downstream side. Since the temperature difference occurs in the x-axis direction in this way, each power generation region 101A generates an electromotive force in the x-axis direction.
  • the plurality of conductive members 102 are provided inside the thermoelectric conversion layer 101. Each conductive member 102 is arranged between each power generation region 101A, and each power generation region 101A is connected in series.
  • the plurality of conductive members 102 are made of a conductive material and have a higher conductivity than the thermoelectric conversion layer 101.
  • the thin solid arrow shown in FIG. 8 indicates the current flow. In the example shown in FIG. 8, a case where a p-type semiconductor is used as a thermoelectric conversion material is illustrated.
  • the current enters the upstream side of the power generation region 101A arranged further downstream through each of the conductive members 102 arranged on the downstream side of each power generation region 101A.
  • each conductive member 102 electrically connects each power generation region 101A in series, a high output voltage can be obtained from the electromotive force generated in each power generation region 101A.
  • thermoelectric conversion element 11 First, a plurality of conductive members 102 are formed. For example, a plurality of conductive members 102 can be formed by printing a conductive paste (silver paste or the like) in which powder of a conductive material is made into a paste at a predetermined position on a base material. Next, the thermoelectric conversion layer 101 is formed on the plurality of conductive members 102. For example, the thermoelectric conversion layer 101 can be formed by applying or printing a thermoelectric conversion material on the base material 107.
  • a conductive paste silver paste or the like
  • thermoelectric conversion element is an example, and in the present embodiment, the thermoelectric conversion element may be manufactured by using another manufacturing method.
  • thermoelectric conversion element 22 shown in FIG. 9 further includes a heat transfer member 103, a heat insulating member 104, and a heat radiating member 105 in addition to the configuration shown in FIG.
  • thermoelectric conversion element 23 shown in FIG. 10 further includes a heat insulating member 106 in addition to the configuration shown in FIG.
  • the thermoelectric conversion element 24 shown in FIG. 11 is provided with a heat radiating member 105 so as to cover the upper surface of the heat insulating member 106.
  • the thermoelectric conversion element 25 shown in FIG. 12 further includes a heat transfer member 103, a heat insulating member 104, and a base material 107 in addition to the configuration shown in FIG.
  • the thermoelectric conversion element 26 shown in FIG. 13 is further provided with a base material 107 in addition to the configuration shown in FIG. 11, and the base material 107 is provided with a plurality of through holes 107A.
  • a heat transfer member 103 is embedded in the through hole 107A.
  • FIG. 14 is a top view for explaining the thermoelectric conversion element according to the third embodiment.
  • FIG. 15 is a cross-sectional view taken along the cutting line AA of FIG.
  • the thermoelectric conversion element having a meander-like shape of the thermoelectric conversion layer will be described.
  • the materials, conductive members, etc. that make up the thermoelectric conversion layer are the same as those described in the first and second embodiments, and thus duplicated description will be omitted as appropriate.
  • thermoelectric conversion layer 201 of the thermoelectric conversion element 31 has a meander shape extending in a predetermined direction (left-right direction on the paper surface) while folding back between the one side 211 and the other side 212.
  • the plurality of power generation regions 203 generate an electromotive force by using the temperature difference between the one side 211 and the other side 212.
  • each of the plurality of conductive members 202 is provided so as to connect one side 211 and the other side 212 of each power generation region 203.
  • the thermoelectric conversion element 31 will be described in detail.
  • thermoelectric conversion element 31 a plurality of conductive members 202 are arranged on a uniform thermoelectric conversion layer 201 formed in a meander shape.
  • a high temperature portion H that becomes high temperature during use and a low temperature portion L that becomes lower temperature than the high temperature portion H are defined, and the thermoelectric conversion element 31 is arranged according to these high temperature portion H and low temperature portion L. It is decided.
  • a temperature difference occurs between the high temperature portion H and the low temperature portion L, a voltage is generated between the high temperature portion H and the low temperature portion L in the thermoelectric conversion layer 201 due to the Seebeck effect.
  • thermoelectric conversion layer 201 when a p-type semiconductor is used for the thermoelectric conversion layer 201, one side 211 is a high temperature portion H and the other side 212 is a low temperature portion L, holes of the p-type semiconductor are gathered on the other side 212 (low temperature side). Since an electromotive force is generated, a current flows from one side 211 to the other side 212.
  • thermoelectric conversion layer 201 When an n-type semiconductor is used for the thermoelectric conversion layer 201, one side 211 is a high temperature portion H and the other side 212 is a low temperature portion L, electrons of the n-type semiconductor are collected on the other side 212 (low temperature side). Since an electromotive force is generated, a current flows from the other side 212 to the one side 211.
  • the conductive members 202 are arranged so as to be in contact with each other in the folding direction of the thermoelectric conversion layer 201, and further, both ends thereof are arranged so as to be located at the high temperature portion H and the low temperature portion L, respectively. Since the conductivity of the conductive member 202 is larger than that of the thermoelectric conversion layer 201, the portion of the thermoelectric conversion layer 201 in contact with the conductive member 202 is electrically short-circuited by the conductive member 202, so that the Seebeck effect is reduced. Virtually no voltage is generated. As a result, a pseudo series circuit is formed at each turn of the high temperature portion or every turn of the low temperature portion, so that a high output voltage can be obtained.
  • thermoelectric conversion element made of a thermoelectric conversion material having a Seebeck coefficient of 30 ⁇ V / K and having a thermoelectric conversion layer having three folded points of a high temperature portion
  • a condition that the temperature difference between the high temperature portion H and the low temperature portion L is 10 K.
  • a voltage of 0.9 mV will be generated.
  • the thermoelectric conversion layer 201 can be obtained by forming a thermoelectric conversion material or a composition containing the thermoelectric conversion material so as to have a uniform layered shape, and then processing the thermoelectric conversion layer 201 so as to have a meander shape.
  • the term "uniform" as used herein means that the thermoelectric conversion layer is formed of a uniform material, and the thermoelectric conversion layer includes a thermoelectric conversion material and other materials. You may.
  • a composition containing the thermoelectric conversion material is applied or printed on the substrate.
  • thermoelectric conversion layer having a meander shape can be obtained by printing so as to form a meander shape at the time of printing.
  • various printing methods such as gravure printing, inkjet printing, and silk screen printing can be used.
  • it When it is processed into a sheet or film, or when it is formed into a layer by coating, it may be processed so as to have a meander shape by punching or the like.
  • the thermoelectric conversion layer may be peeled off from the base material and used as a single layer, or may be used in a state of being laminated on the base material.
  • thermoelectric conversion layer or the base material is a highly flexible material, it is possible to obtain a highly flexible thermoelectric conversion element that can be processed into various shapes.
  • thermoelectric conversion layer contains an organic thermoelectric conversion material or a carbon material.
  • the conductive member 202 can be formed by a vacuum deposition method, a sputtering method, thermocompression bonding of a film having a conductive foil or a conductive film, application of a paste in which fine particles of an electrode material are dispersed, and the like. As described above, it is possible to manufacture a thermoelectric conversion element capable of obtaining a high voltage that can be easily integrated with high integration in a simple and few steps.
  • FIG. 16 is a top view for explaining a modification of the thermoelectric conversion element according to the present embodiment.
  • the conductive member 202 reaches the folded portion of the thermoelectric conversion layer 201. That is, in the thermoelectric conversion element 32 shown in FIG. 16, the conductive member 202 is predetermined on the portion 202a extending in a predetermined direction on one side 211 of the meander-shaped thermoelectric conversion layer 201 and the other side 212 of the meander-shaped thermoelectric conversion layer 201.
  • a structure is provided in which a portion 202b extending in the direction and a portion 202c extending from one side 211 of the meander-shaped thermoelectric conversion layer 201 to the other side 212 are continuously formed. Both ends of the conductive member 202 may not exceed the low temperature portion L and the high temperature portion H. In this form, since the length of the conductive member 202 can be increased, the conductivity of the thermoelectric conversion element 32 can be increased.
  • FIG. 17 is a top view for explaining a modification of the thermoelectric conversion element according to the present embodiment.
  • the thermoelectric conversion element 33 shown in FIG. 17 has a form in which the thermoelectric conversion layer 201 is changed to a meander-like structure in which the thermoelectric conversion layer 201 is bent vertically as compared with the thermoelectric conversion element 31 shown in FIG. Since it is the same as the thermoelectric conversion element 31, the description thereof will be omitted here.
  • thermoelectric conversion element 33 the bent portions of the thermoelectric conversion layer 201 are arranged so as to be located in the high temperature portion H and the low temperature portion L, respectively. Even in such a form, the same effect as that of the thermoelectric conversion element 31 shown in FIG. 14 can be obtained.
  • thermoelectric conversion layer 201 since the thermoelectric conversion layer 201 has a meander-like structure in which the thermoelectric conversion layer 201 is bent vertically, the degree of freedom of arrangement can be improved, and the region on the low temperature portion L side (the other side 212) and the high temperature portion H side (one side 211) can be improved. It is also easy to increase the distance from the area of.
  • thermoelectric conversion layer 201 in the method for manufacturing the thermoelectric conversion element 31 shown in FIG. 14 may be bent up and down.
  • the order of bending the thermoelectric conversion layer 201 and forming the conductive member 202 is not particularly limited.
  • FIG. 18 is a perspective view for explaining an example of a thermoelectric conversion module using the thermoelectric conversion element according to the third embodiment.
  • the thermoelectric conversion module 300 shown in FIG. 18 is a module configured by winding the thermoelectric conversion element 31 shown in FIG. Specifically, the thermoelectric conversion module 300 can be formed by forming the thermoelectric conversion element 31 on a highly flexible base material and then winding the base material containing the thermoelectric conversion element 31. The thermoelectric conversion module 300 can generate electricity by utilizing the temperature difference in the vertical direction of the thermoelectric conversion module 300.
  • thermoelectric conversion module 300 shown in FIG. 18 is configured by winding a base material including the thermoelectric conversion element 31, the thermoelectric conversion element 31 can be integrated, and the power generation efficiency per unit volume of the thermoelectric conversion module 300 can be integrated. Can be enhanced.
  • thermoelectric conversion element according to the present invention can be in the shape of a strip (tape) having flexibility, and therefore may be used, for example, by being wound around a pipe.
  • the "belt shape” as used herein includes not only a linear shape but also a partially bent shape (see FIG. 17) and a meandering shape (see FIGS. 14 and 16).
  • the thermoelectric conversion element according to the present invention may be used alone as described in the above-described embodiment, or may be used by connecting a plurality of them in series or in parallel. The plurality of thermoelectric conversion elements may be connected so as to be parallel to each other or may be connected so as to be bent.
  • thermoelectric conversion element of the present invention is not particularly limited, but is used for cooling and heating, a cooling device for communication equipment, a temperature control device for silicon wafers during semiconductor manufacturing, and for culturing microorganisms for the purpose of cooling and temperature control. It can be used for incorporating into temperature control devices and other devices and devices. Further, it can be used for an independent power source such as an artificial satellite, an IoT sensor, a wearable device, or a power generation device using unused heat such as factory exhaust heat and automobile exhaust heat.
  • an independent power source such as an artificial satellite, an IoT sensor, a wearable device, or a power generation device using unused heat such as factory exhaust heat and automobile exhaust heat.
  • Thermoelectric conversion element 101 Thermoelectric conversion layer 101A Multiple power generation areas 101B Heat receiving surface 101C Heat dissipation surface 102 Multiple conductive members 103 Heat transfer member 104 Insulation member 105 Heat dissipation member 106 Insulation member 107 Base material 107A Multiple through holes 201 Thermoelectric conversion layer 202 Conductive member 203 Power generation area 300 Thermoelectric conversion module

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromechanical Clocks (AREA)

Abstract

本発明の一態様にかかる熱電変換素子(11)は、各々離間して配置された複数の発電領域(101A)を備える熱電変換層(101)と、熱電変換層(101)に接するように設けられ、各々の発電領域(101A)を直列に接続する複数の導電部材(102)と、を備え、複数の導電部材(102)の導電率が熱電変換層(101)の導電率よりも高い。

Description

熱電変換素子及び熱電変換素子の製造方法
 本発明は、熱電変換素子及び熱電変換素子の製造方法に関する。
 熱電変換材料は、異なる種類の金属または半導体の両端を接合して温度差を生じさせると起電力が生じる現象、つまりゼーベック効果を利用して熱を電力に変換する材料であり、発電モジュールとして広く用いられている。近年、熱電変換材料を用いた発電モジュールを、IoT分野等におけるセンサ用自立電源に応用する需要が高まっている。発電モジュールを電源として実用化する際には、十分な電圧を得るために、数十個の熱電変換素子を連結させる必要がある。
 特許文献1には、p型半導体とn型半導体とを交互に放射状に配置し、電極を用いてp型半導体とn型半導体とを順に電気的に直列接続した熱電発電モジュールに関する技術が開示されている。
特開2014-146708号公報
 p型半導体及びn型半導体は、所定方向に温度差がある状態で、互いに逆方向の起電力を生じる。したがって、特許文献1に開示されている技術では、p型半導体とn型半導体とを交互に直列接続することによって、出力電圧を大きくすることができる。しかしながら、特許文献1に開示されている技術は、p型半導体とn型半導体とを組み合わせて熱電変換素子を構成しており、構造が複雑であるという問題がある。
 上記課題に鑑み本発明の目的は、単純な構造の熱電変換素子及びその製造方法を提供することである。
 本発明の一態様にかかる熱電変換素子は、各々離間して配置された複数の発電領域を備える熱電変換層と、前記熱電変換層に接するように設けられ、前記各々の発電領域を直列に接続する複数の導電部材と、を備え、前記複数の導電部材の導電率が前記熱電変換層の導電率よりも高い。
 本発明の一態様にかかる熱電変換素子の製造方法は、基材上に熱電変換材料を印刷することによって熱電変換層を形成する工程と、前記熱電変換層上に導電性材料を離間した複数箇所に印刷することによって複数の導電部材を形成する工程と、を備え、前記複数の導電部材は、前記熱電変換層の複数の位置に熱が供給された際に起電力を発生させる複数の発電領域を直列に接続するように形成されている。
 本発明の一態様にかかる熱電変換素子の製造方法は、基材上に導電性材料を離間した複数箇所に印刷することによって複数の導電部材を形成する工程と、前記複数の導電部材が形成された前記基材上に熱電変換材料を印刷することによって熱電変換層を形成する工程と、を備え、前記複数の導電部材は、前記熱電変換層の複数の位置に熱が供給された際に起電力を発生させる複数の発電領域を直列に接続するように形成されている。
 本発明により、単純な構造の熱電変換素子及びその製造方法を提供することができる。
実施の形態1にかかる熱電変換素子を説明するための上面図である。 実施の形態1にかかる熱電変換素子を説明するための断面図である。 実施の形態1にかかる熱電変換素子を説明するための断面図である。 実施の形態1にかかる熱電変換素子を説明するための断面図である。 実施の形態1にかかる熱電変換素子を説明するための断面図である。 実施の形態1にかかる熱電変換素子を説明するための断面図である。 実施の形態1にかかる熱電変換素子を説明するための断面図である。 実施の形態2にかかる熱電変換素子を説明するための断面図である。 実施の形態2にかかる熱電変換素子を説明するための断面図である。 実施の形態2にかかる熱電変換素子を説明するための断面図である。 実施の形態2にかかる熱電変換素子を説明するための断面図である。 実施の形態2にかかる熱電変換素子を説明するための断面図である。 実施の形態2にかかる熱電変換素子を説明するための断面図である。 実施の形態3にかかる熱電変換素子を説明するための上面図である。 図14の切断線A-Aにおける断面図である。 実施の形態3にかかる熱電変換素子を説明するための上面図である。 実施の形態3にかかる熱電変換素子を説明するための上面図である。 実施の形態3にかかる熱電変換素子を用いた熱電変換モジュールの一例を説明するための斜視図である。
 以下、本発明の実施の形態について説明する。
 本実施の形態にかかる熱電変換素子は、各々離間して配置された複数の発電領域を備える熱電変換層と、熱電変換層に接するように設けられ、各々の発電領域を直列に接続する複数の導電部材と、を備え、複数の導電部材の導電率が熱電変換層の導電率よりも高いことを特徴としている。
 本実施の形態にかかる熱電変換素子は、熱電変換層に複数の発電領域が配置されており、当該複数の発電領域が複数の導電部材によって直列に接続されている。したがって、単一の熱電変換層によって大きな出力電圧を得ることができる。よって、本実施の形態にかかる発明により、単純な構成の熱電変換素子を提供することができる。
 以下、実施の形態1~3を用いて、本発明について詳細に説明する。
 実施の形態1では、複数の導電部材が熱電変換層の一方の面に接している構成について説明する。
 実施の形態2では、複数の導電部材が熱電変換層の内部に設けられている構成について説明する。
 実施の形態3では、熱電変換層の形状がミアンダ状である熱電変換素子について説明する。
<実施の形態1>
 図1は、実施の形態1にかかる熱電変換素子を説明するための上面図である。図2は、実施の形態1にかかる熱電変換素子を説明するための断面図である。
 図1に示すように、熱電変換素子11は、熱電変換層101、及び複数の導電部材102を備える。図2に示すように、熱電変換層101には、複数の発電領域101Aが配置されている。なお当然のことながら、図1及びその他の図面に示した右手系xyz直交座標は、構成要素の位置関係を説明するための便宜的なものであり、図面間で共通である。
(熱電変換層)
 本実施の形態において、熱電変換層101は、x軸方向を長手方向とする帯状の層である。熱電変換層101は、熱電変換材料を用いて構成されている。上述のように、熱電変換材料はゼーベック効果を利用して熱を電力に変換する材料である。本実施の形態において、複数の発電領域101Aは、x軸方向に離間して配置されている。各々の発電領域101Aは、x軸正方向側の位置に熱が供給される。熱電変換層101が熱を受け取る面を、受熱面101Bとする。受熱面101Bと反対側の面を、放熱面101Cとする。受熱面101Bには、図示しない熱供給源からx軸方向に離間した複数の位置に熱が供給される。本実施の形態では、熱供給源は、例えば、x軸方向に離間した複数の位置に高温領域を備えていてもよい。また、熱供給源は、x軸方向に離間して配置された複数の熱源であってもよい。熱供給源は、受熱面101Bに熱を供給し、熱供給源として用いることができるものであれば特に限定されることはない。一例を挙げると、熱供給源は、体温、通信機器の冷却装置、工場における排熱管、自動車の排熱管等が用いられる。
 図2において、太い実線矢印は、熱電変換層101が受け取る熱の流れを示し、太い点線矢印は、熱電変換層101から放熱される熱の流れを示す。本実施の形態において、各々の発電領域101Aは、受熱面101Bのx軸正方向側から熱を受け取り、放熱面101Cから熱を放熱する。したがって、各々の発電領域101Aは、x軸正方向側が高温となり、x軸負方向側が低温となる。このようにx軸方向に温度差が生じるため、各々の発電領域101Aは、x軸方向に起電力を発生させる。以下、高温側すなわちx軸正方向側を上流側、低温側すなわちx軸負方向側を下流側と称することがある。
 本実施の形態にかかる熱電変換層101の厚さは、0.1μm以上3mm以下であることが好ましく、0.2μm以上1mm以下であることがより好ましく、0.3μm以上500μm以下であることが特に好ましい。熱電変換層101の厚さを3mm以下とすることで、印刷適性、フレキシブル性を向上することができる。また、熱電変換層101の厚さを0.1μm以上とすることで、膜強度を向上することができる。なお、熱電変換層101の厚さの値は一例であり、本実施の形態にかかる熱電変換層の厚さは含んでいる熱電変換材料の種類等に応じて適宜変更することができる。
 本実施の形態において熱電変換材料は、ゼーベック効果を発現し、熱電変換材料として用いることができる材料であれば特に限定されることはない。一例を挙げると、熱電変換材料は、Bi-Te化合物、Pb-Te化合物、Sb-Te化合物等のテルル系化合物、Co-Sb化合物、Fe-Sb化合物、Zn-Sb化合物、スクッテルダイト化合物等のアンチモン系化合物、Fe-Si化合物、Ge-Si化合物、Mn-Si化合物、Mg-Si化合物等のシリコン系化合物、六ホウ化物等のホウ素化合物、クラスレート化合物等のガリウム系化合物、ホイスラー化合物、Alクラスレート化合物等のアルミニウム系化合物、ハーフホイスラー金属間化合物等の錫系・希土類系化合物、Co酸化物、Ti酸化物、V酸化物、Zn酸化物等の金属酸化物、有機低分子材料、有機導電性高分子材料等の有機導電性材料、炭素材料を用いることができる。
 本実施の形態では、熱電変換層101が柔軟性(フレキシブル性)を有する点、また製造時に熱電変換材料を印刷や塗布することができる点を考慮すると、導電性を有する有機熱電変換材料(有機導電性材料)を用いて熱電変換材料を構成することが好ましく、有機導電性材料及び炭素材料を用いて熱電変換材料を構成することがより好ましい。
 有機導電性材料としては、例えば、チオフェンおよびその誘導体を骨格にもつポリマー、フェニレンビニレンおよびその誘導体を骨格にもつポリマー、アニリンおよびその誘導体を骨格にもつポリマー、ピロールおよびその誘導体を骨格にもつオリゴマーやポリマー、アセチレンおよびその誘導体を骨格にもつオリゴマーやポリマー、ヘプタジエンおよびその誘導体を骨格にもつポリマー、フタロシアニン類およびそれらの誘導体、ジアミン類、フェニルジアミン類およびそれらの誘導体、ペンタセンおよびその誘導体、ポルフィリンおよびその誘導体、シアニン、キノン、ナフトキノンなどの低分子材料を用いることができる。特に、フレキシブル性を考慮すると、チオフェンおよびその誘導体を骨格にもつポリマー、フェニレンビニレンおよびその誘導体を骨格にもつポリマー、アニリンおよびその誘導体を骨格にもつポリマー、ピロールおよびその誘導体を骨格にもつオリゴマーやポリマー、アセチレンおよびその誘導体を骨格にもつオリゴマーやポリマー、ヘプタジエンおよびその誘導体を骨格にもつポリマーが好ましい。
 炭素材料としては、例えば、黒鉛、カーボンナノチューブ、カーボンブラック、グラフェンナノプレート及びグラフェン等を用いることができる。ゼーベック効果と導電率との両立を考慮すると、カーボンナノチューブ、カーボンブラック、グラフェンナノプレート及びグラフェンからなる群から選ばれる少なくとも1種が好ましく、より好ましくはカーボンナノチューブであり、特に好ましくは単層カーボンナノチューブである。これらの炭素材料は、必要に応じて置換基を導入して変性したり、電荷移動を促進し得る化合物を共存させて使用したりすることもできる。
 熱電変換材料は、単独で用いてもよく、また複数の熱電変換材料を組合せて用いてもよい。
(導電部材)
 本実施の形態において、複数の導電部材102は、熱電変換層101の放熱面101Cに接するように設けられている。各々の導電部材102は、各々の発電領域101Aの間に配置されており、各々の発電領域101Aを直列に接続している。複数の導電部材102は、導電性材料を用いて構成されており、熱電変換層101よりも導電率が高い。図2に示す細い実線矢印は、電流の流れを示す。図2に示す例では、熱電変換材料としてp型半導体を使用する場合について図示している。各々の発電領域101Aにおいて温度差が生じると、低温側にp型半導体のホールが集まることによって起電力が発生し、上流側から下流側に向かって電流が生じるとすると、当該電流は、各々の発電領域101Aの下流側に配置された各々の導電部材102を通ってさらに下流側に配置された発電領域101Aの上流側に入ると考えられる。このように、各々の導電部材102が各々の発電領域101Aを電気的に直列接続しているため、各々の発電領域101Aにおいて生じた起電力から高い出力電圧を得ることができる。
 本実施の形態では、1つの熱電変換層101内に複数の発電領域101Aを設けているため、熱電変換層101をn型半導体又はp型半導体のいずれか一方のみを用いて構成することができる。このように、熱電変換素子11は、単純な構造であるため、多数の発電領域101Aを直列接続可能であり、高集積化が容易である。
 本実施の形態にかかる複数の導電部材102の厚さは、0.01μm以上500μm以下であることが好ましく、0.01μm以上300μm以下であることがより好ましく、0.01μm以上100μm以下であることが特に好ましい。導電部材102の厚さを500μm以下とすることで、印刷適性、フレキシブル性を向上することができる。また、複数の導電部材102の厚さを0.01μm以上とすることで、導電性を確保することができる。なお、複数の導電部材102の厚さの値は一例であり、本実施の形態にかかる複数の導電部材102の厚さは含んでいる導電性材料の種類等に応じて適宜変更することができる。
 本実施の形態において導電性材料は、熱電変換材料よりも導電率が高く、導電性材料として用いることができる材料であれば特に限定されることはない。一例を挙げると、導電性材料は、炭素材料、金属、合金、半導体等を用いることができる。導電率が高い点を考慮すると、金、銀、白金、銅、ニッケル、アルミニウム、及びこれらのうち少なくとも1つを含む合金を用いて導電性材料を構成することが好ましい。
(熱電変換素子の製造方法)
 次に、本実施の形態にかかる熱電変換素子の製造方法について説明する。
 熱電変換素子11を製造する際は、まず、熱電変換層101を形成する。例えば、熱電変換層101は、熱電変換材料自体をシート状又はフィルム状に加工することで形成することができる。また、熱電変換層101は、基材107に熱電変換材料を塗布または印刷することで形成されてもよい。具体的には、熱電変換材料の粒子を含む液体(分散液、溶液など)を基材に印刷することで熱電変換層101を形成してもよい。この場合は必要に応じて、熱電変換材料の粒子を含む液体に、溶剤、バインダー、添加剤等を加えてもよい。印刷方法としては、基材上に熱電変換材料を印刷可能であれば特に限定されず、一例としてグラビア印刷、インクジェット印刷、シルクスクリーン印刷等の各種印刷方法が挙げられる。
 次に、複数の導電部材102を熱電変換層101上の所定箇所に形成する。例えば、複数の導電部材102は、真空蒸着法、スパッタリング法、導電箔や導電膜を有するフィルムの熱圧着を用いて熱電変換層101上に形成されてもよい。また、導電性材料の粉末をペースト状にした導電ペースト(銀ペーストなど)を熱電変換層101上の所定箇所に印刷することで複数の導電部材102を形成してもよい。印刷方法としては熱電変換層101上の所定箇所に複数の導電部材102を形成可能であれば特に限定されず、一例としてグラビア印刷、インクジェット印刷、シルクスクリーン印刷等の各種印刷方法が挙げられる。熱電変換層101を印刷によって形成した場合、熱電変換素子11は、例えば複数の導電部材102が形成された後に基材から熱電変換層101を剥離して使用される。なお、詳細は下記の変形例において説明するが、熱電変換素子11は、基材から熱電変換層101を剥離せずに使用されてもよい。
 なお、上述した熱電変換素子の製造方法は一例であり、本実施の形態では他の製造方法を用いて熱電変換素子を製造してもよい。
 このように、熱電変換素子11は、単純な構造であるため、生産性が高く、大量生産が容易である。本実施の形態では、熱電変換層101及び複数の導電部材102をいずれも印刷することで形成する(オールプリント化)ことによって、さらに生産性を向上させることができる。
 なお、一般的な熱電変換モジュールは、複数の熱電変換素子と、電極とを交互に直列に接続しているため、一部の電極と熱電変換素子間で剥離が生じた場合、大部分が正常に機能するとしても熱電変換モジュール全体では使用不可能もしくは大幅な機能低下が生じる。一方、図2に示す構造を備える本実施の形態にかかる熱電変換素子11は、一つの連続した熱電変換層101に起電力を発生させる複数の発電領域101Aを有する構造であるため、一部の導電部材102が熱電変換層101から剥離した場合であっても、熱電変換モジュール全体では良好に機能することが可能である。
(変形例)
 次に、本実施の形態にかかる熱電変換素子の変形例について説明する。
 図3は、本実施の形態にかかる熱電変換素子を説明するための断面図である。図3に示す熱電変換素子12は、図2に示した構成に加えて、伝熱部材103及び断熱部材104を備える。これ以外の構成については図2に示した構成と同様である。
 伝熱部材103は、熱電変換層101の受熱面101B側に、各々の発電領域101Aの上流側への伝熱を促進する部材である。図3に示すように、伝熱部材103は、各々の発電領域101Aの上流側において受熱面101Bと接するように設けられる。温度差の確保を考慮すると、伝熱部材103の上流側の端は、各々の導電部材102の下流側の端よりも、x軸負方向側に位置していることが好ましい。伝熱部材103は、高熱伝導材料を用いて構成される。高熱伝導材料は、熱伝導率が熱電変換材料よりも高い。一例を挙げると、高熱伝導材料としては、酸化アルミニウム、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化マグネシウム、酸化ベリリウム等の絶縁フィラーを含む樹脂、銅、アルミニウム、シリコン、シリコンカーバイド、セラミック、配向処理を行った黒鉛、炭素繊維等を用いることができる。特に、フレキシブル性が高い点を考慮すると、酸化アルミニウム、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化マグネシウム、酸化ベリリウム等の絶縁フィラーを含む樹脂を用いて伝熱部材103を構成することがより好ましい。
 断熱部材104は、熱電変換層101の受熱面101B側に、各々の発電領域101Aの下流側への伝熱を抑制する部材である。図3に示すように、断熱部材104は、少なくとも、各々の発電領域101Aの下流側において受熱面101Bと接するように設けられている。さらに、断熱部材104は、各々の発電領域101A以外の領域においても受熱面101Bと接するように設けられていてもよいものとする。断熱部材104は、低熱伝導材料を用いて構成される。低熱伝導材料は、熱伝導率が熱電変換材料よりも低い。一例を挙げると、低熱伝導材料としては、ガラスバルーン、シリカバルーン等のバルーン(中空体)である無機物系中空フィラーを含む樹脂、アクリロニトリル樹脂、エポキシ樹脂、尿素樹脂等のバルーン(中空体)である有機樹脂物系中空フィラーを含む樹脂、ガラスウール、セルロースファイバー等を用いることができる。特に、熱電変換層101との密着性を考慮すると、アクリロニトリル樹脂、エポキシ樹脂、尿素樹脂等のバルーン(中空体)である有機樹脂物系中空フィラーを含む樹脂を用いて断熱部材104を構成することが好ましい。
 図3に示すように、各々の発電領域101Aの上流側において受熱面101Bと接するように伝熱部材103を設け、熱電変換層101の受熱面101Bの伝熱部材103が設けられていない領域全体に断熱部材104を設けると、各々の発電領域101Aの上流側への熱の供給の効率をより向上させることができる。例えば、伝熱部材103と断熱部材104とが形成されている面を熱供給源に接触させることで、熱供給源から熱電変換層101の受熱面101Bに伝熱部材103を介して熱を選択的に供給することができる。なお、伝熱部材103及び断熱部材104は、いずれか一方のみ設けられてもよい。
 図4は、本実施の形態にかかる熱電変換素子を説明するための断面図である。図4に示す熱電変換素子13は、図3に示した構成に加えて、放熱部材105及び断熱部材106を備える。これ以外の構成については図2に示した構成と同様である。
 放熱部材105は、熱電変換層101の放熱面101C側に、各々の発電領域101Aの下流側からの放熱を促進する部材である。図4に示すように、放熱部材105は、少なくとも、各々の発電領域101Aの下流側において放熱面101Cと接するように設けられている。さらに、放熱部材105は、各々の導電部材102の上面(z軸正方向側の面)と接するように設けられていてもよいものとする。各々の導電部材102の上面にも接するように放熱部材105を設ける場合、より下流側に位置する発電領域101Aの上流側からの放熱を防ぐ点を考慮すると、放熱部材105の下流側の端は、各々の導電部材102の下流側の端よりも、x軸正方向側に位置していることが好ましい。放熱部材105は、高熱伝導材料を用いて構成されており、熱伝導率が熱電変換材料よりも高い。一例を挙げると、上で述べた伝熱部材103で用いられるものと同じ高熱伝導材料を用いて放熱部材105を構成することが好ましい。放熱部材105を構成する高熱伝導材料は、伝熱部材103を構成する高熱伝導材料と同じであってもよいし、異なっていてもよい。
 断熱部材106は、熱電変換層101の放熱面101C側に、各々の発電領域101Aの上流側からの放熱を抑制する部材である。図4に示すように、断熱部材106は、各々の発電領域101Aの上流側において放熱面101Cと接するように設けられている。断熱部材106は、低熱伝導材料を用いて構成されており、熱伝導率が熱電変換材料よりも低い。一例を挙げると、上で述べた断熱部材104で用いられるものと同じ低熱伝導材料を用いて断熱部材106を構成することが好ましい。断熱部材106を構成する低熱伝導材料は、断熱部材104を構成する低熱伝導材料と同じであってもよいし、異なっていてもよい。
 図4に示すように、各々の発電領域101Aの下流側の放熱面101Cに加えて各々の導電部材102の上面にも接するように放熱部材105を設けると、放熱部材105の上面(z軸正方向側の面)の面積が大きくなるため、各々の発電領域101Aの下流側からの熱の放熱の効率をより向上させることができる。なお、放熱部材105及び断熱部材106は、いずれか一方のみ設けられてもよい。
 図3及び図4に示すように伝熱部材103、放熱部材105、断熱部材104、106のうち少なくとも1つを設けると、熱供給源が受熱面101B全体に熱を供給する場合であっても、複数の発電領域101A内に温度差を生じさせることができる。
 図5は、本実施の形態にかかる熱電変換素子を説明するための断面図である。図5に示す熱電変換素子14は、図3に示した構成に加えて、基材107を備える。これ以外の構成については図2に示した構成と同様である。
 基材107は、熱電変換層101と伝熱部材103との間に設けられる基材である。上述したように熱電変換層101を印刷することで形成する場合、基材107上に熱電変換材料の粒子を含む液体を印刷することによって熱電変換層101を形成することができる。したがって、図5に示す構成の場合、熱電変換層101を基材107から剥離する必要がなく、製造工程数を抑制することができる。基材107は、熱電変換素子14の柔軟性を維持することができる点を考慮すると、フレキシブル基材であることが好ましい。フレキシブル基材は、柔軟性を有する基材であり、所定の応力が印加されると屈曲可能な基材である。フレキシブル基材は、フィルムやシート状の基材であり、例えば、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリベンゾオキサゾール、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリフェニレンサルファイド等の樹脂やゴム状エラストマー等を用いて構成することができる。
 図6は、本実施の形態にかかる熱電変換素子を説明するための断面図である。図6に示す熱電変換素子15は、各々の発電領域101Aの上流側に対応する基材107の部分に複数の貫通孔107Aが設けられており、伝熱部材103が各々の貫通孔107A内に埋設されている点で図3に示した熱電変換素子12と異なる。これ以外の構成については図5に示した構成と同様である。
 図6に示す構成では、基材107に、複数の貫通孔107Aが設けられている。複数の貫通孔107Aは、各々の発電領域101Aの上流側に対応する部分すなわち図3等に示す構成において伝熱部材103が配置されている部分に設けられている。伝熱部材103が各々の貫通孔107A内に埋設されているため、伝熱性を向上させることができる。伝熱部材103は、さらなる伝熱性の向上を考慮すると、図6に示すように各々の貫通孔107Aに充填されるように設けられていることが好ましい。
 図7は、本実施の形態にかかる熱電変換素子を説明するための断面図である。図7に示す熱電変換素子16は、断熱部材106と、断熱部材106の上面(z軸正方向側の面)を覆うように設けられている放熱部材105と、を備える点で図6に示した熱電変換素子15と異なる。これ以外の構成については図6に示した構成と同様である。
 図7に示す放熱部材105は、各々の発電領域101Aの下流側からの放熱を促進する。断熱部材106の上面を覆うように放熱部材105を設けると、放熱部材105の上面の面積がさらに大きくなるため、各々の発電領域101Aの下流側からの熱の放熱の効率をさらに向上させることができる。
<実施の形態2>
 図8は、実施の形態2にかかる熱電変換素子を説明するための断面図である。
 図8に示すように、熱電変換素子21は、複数の導電部材102が熱電変換層101の内部に設けられている点で実施の形態1と異なる。これ以外の構成については、実施の形態1で説明した熱電変換素子と同様であるので重複した説明は適宜省略する。
(熱電変換層)
 本実施の形態において、熱電変換層101は、x軸方向を長手方向とする帯状の層である。熱電変換層101は、熱電変換材料を用いて構成されている。本実施の形態において、複数の発電領域101Aは、x軸方向に離間して配置されている。各々の発電領域101Aは、上流側の位置に熱が供給される。受熱面101Bには、図示しない熱供給源からx軸方向に離間した複数の位置に熱が供給される。図8において、太い実線矢印は、熱電変換層101が受け取る熱の流れを示し、太い点線矢印は、熱電変換層101から放熱される熱の流れを示す。本実施の形態において、各々の発電領域101Aは、受熱面101Bの上流側から熱を受け取り、放熱面101Cから熱を放熱する。したがって、各々の発電領域101Aは、上流側が高温となり、下流側が低温となる。このようにx軸方向に温度差が生じるため、各々の発電領域101Aは、x軸方向に起電力を発生させる。
(導電部材)
 本実施の形態において、複数の導電部材102は、熱電変換層101の内部に設けられている。各々の導電部材102は、各々の発電領域101Aの間に配置されており、各々の発電領域101Aを直列に接続している。複数の導電部材102は、導電性材料を用いて構成されており、熱電変換層101よりも導電率が高い。図8に示す細い実線矢印は、電流の流れを示す。図8に示す例では、熱電変換材料としてp型半導体を使用する場合について図示している。各々の発電領域101Aにおいて温度差が生じると、低温側にp型半導体のホールが集まることによって起電力が発生し、上流側から下流側に向かって電流が流れる。当該電流は、各々の発電領域101Aの下流側に配置された各々の導電部材102を通ってさらに下流側に配置された発電領域101Aの上流側に入る。このように、各々の導電部材102が各々の発電領域101Aを電気的に直列接続しているため、各々の発電領域101Aにおいて生じた起電力から高い出力電圧を得ることができる。
(熱電変換素子の製造方法)
 次に、本実施の形態にかかる熱電変換素子の製造方法について説明する。
 熱電変換素子11を製造する際は、まず、複数の導電部材102を形成する。例えば、導電性材料の粉末をペースト状にした導電ペースト(銀ペーストなど)を基材上の所定箇所に印刷することで複数の導電部材102を形成することができる。次に、熱電変換層101を複数の導電部材102上に形成する。例えば、基材107に熱電変換材料を塗布または印刷することで熱電変換層101を形成することができる。
 なお、上述した熱電変換素子の製造方法は一例であり、本実施の形態では他の製造方法を用いて熱電変換素子を製造してもよい。
(変形例)
 次に、本実施の形態にかかる熱電変換素子の変形例について説明する。
 図9~13は、本実施の形態にかかる熱電変換素子を説明するための断面図である。図9~13に示すように、実施の形態2においても、実施の形態1と同様に、伝熱部材、放熱部材、断熱部材、基材等の各種部材をさらに備える構成としてもよい。例えば、図9に示す熱電変換素子22は、図8に示した構成に加えて、さらに、伝熱部材103、断熱部材104、及び放熱部材105を備える。図10に示す熱電変換素子23は、図9に示した構成に加えて、さらに、断熱部材106を備える。図11に示す熱電変換素子24は、断熱部材106の上面を覆うように放熱部材105が設けられている。図12に示す熱電変換素子25は、図8に示した構成に加えて、さらに、伝熱部材103、断熱部材104、及び基材107を備える。図13に示す熱電変換素子26は、図11に示した構成に加えて、さらに基材107を備え、基材107に複数の貫通孔107Aが設けられている。貫通孔107Aには伝熱部材103が埋設されている。
<実施の形態3>
 図14は、実施の形態3にかかる熱電変換素子を説明するための上面図である。図15は、図14の切断線A-Aにおける断面図である。図14に示すように、実施の形態3では、熱電変換層の形状がミアンダ状である熱電変換素子について説明する。なお、熱電変換層を構成する材料、導電部材等については、実施の形態1、2で説明した材料と同様であるので重複した説明は適宜省略する。
 図14に示すように、熱電変換素子31の熱電変換層201は、一方側211と他方側212との間を折り返しながら所定方向(紙面左右方向)に伸びるミアンダ状である。複数の発電領域203は、一方側211と他方側212との間の温度差を用いて起電力を発生する。また、複数の導電部材202はそれぞれ、各々の発電領域203の一方側211と他方側212とを接続するように設けられている。以下、熱電変換素子31について詳細に説明する。
 図14に示すように、熱電変換素子31は、ミアンダ状に形成された均一な熱電変換層201の上に複数の導電部材202が配置されている。熱電変換素子31では、使用時に高温となる高温部Hと、それと比較して低温となる低温部Lが定められており、これら高温部Hと低温部Lに応じて熱電変換素子31の配置が定められる。高温部Hと低温部Lとの間に温度差が生じると、ゼーベック効果により、熱電変換層201における高温部Hと低温部Lとの間に電圧が生じる。
 例えば、熱電変換層201にp型半導体を用い、一方側211を高温部H、他方側212を低温部Lとした場合は、他方側212(低温側)にp型半導体のホールが集まることによって起電力が発生するので、一方側211から他方側212に電流が流れる。また、熱電変換層201にn型半導体を用い、一方側211を高温部H、他方側212を低温部Lとした場合は、他方側212(低温側)にn型半導体の電子が集まることによって起電力が発生するので、他方側212から一方側211に電流が流れる。
 導電部材202は、熱電変換層201の折り返し方向に交互に接するように配置され、さらに、両端部がそれぞれ高温部Hと低温部Lに位置するように配置される。導電部材202の導電率が熱電変換層201の導電率よりも大きいことにより、導電部材202が接する熱電変換層201の部分は導電部材202によって電気的に短絡されるため、ゼーベック効果が低減して実質的に電圧が生じない。その結果、高温部の折り返し毎、または低温部の折り返し毎に擬似的な直列回路が形成されることになるため、高い出力電圧を得ることができる。例えば、ゼーベック係数が30μV/Kの熱電変換材料からなり高温部の折り返し箇所を3箇所有する熱電変換層を具備する熱電変換素子の場合、高温部Hと低温部Lとの温度差が10Kの条件下では、0.9mVの電圧が生じることになる。
 次に、本実施形態の熱電変換素子31の製造方法について説明する。
 熱電変換層201は、熱電変換材料または熱電変換材料を含む組成物を、均一な層状になるように形成した後、ミアンダ状となるように加工することによって得ることができる。ここでいう「均一」とは、熱電変換層が均一な材料によって形成されている層を成していることを意味しており、熱電変換層中には熱電変換材料やその他材料が含まれていてもよい。均一な層に形成する方法としては、熱電変換材料そのものをシート状やフィルム状に加工する方法の他、熱電変換材料を含む組成物(分散液や溶液等)を基材上に塗布または印刷して形成しても良い。印刷によって層を形成する場合には、印刷時にミアンダ状になるように印刷することにより、ミアンダ状の均一な熱電変換層を得ることができる。印刷方法としては、グラビア印刷、インクジェット印刷、シルクスクリーン印刷等の各種印刷方法を用いることができる。シート状やフィルム状に加工した場合や塗布によって層状に形成した場合には、打ち抜き加工等によってミアンダ状になるように加工しても良い。熱電変換層は、基材から剥離して単一層として使用しても良いが、基材に積層された状態で使用しても構わない。ここで、熱電変換層や基材が、柔軟(フレキシブル)性の高い材料であると、様々な形状に加工できる柔軟性の高い熱電変換素子を得ることができる。柔軟性の高い熱電変換素子を得るためには、熱電変換層が、有機熱電変換材料や炭素材料を含有することが好ましい。
 導電部材202は、真空蒸着法、スパッタリング法、導電箔や導電膜を有するフィルムの熱圧着、電極材料の微粒子を分散したペーストの塗布等の方法によって形成することができる。以上説明したとおり、簡単かつ少ない工程で高集積化が容易な高い電圧を得ることができる熱電変換素子を製造することができる。
 次に、本実施の形態にかかる熱電変換素子の変形例について説明する。
 図16は、本実施の形態にかかる熱電変換素子の変形例を説明するための上面図である。図16に示す熱電変換素子32では、導電部材202が、熱電変換層201の折り返し部に達している。つまり、図16に示す熱電変換素子32において、導電部材202は、ミアンダ状の熱電変換層201の一方側211において所定方向に伸びる部分202aと、ミアンダ状の熱電変換層201の他方側212において所定方向に伸びる部分202bと、ミアンダ状の熱電変換層201の一方側211から他方側212に伸びる部分202cと、が連続的に形成された構造を備える。導電部材202の両端部は、低温部Lおよび高温部Hを越えなければよい。この形態では、導電部材202の長さを長くすることができるため、熱電変換素子32の導電性を高めることができる。
 図17は、本実施の形態にかかる熱電変換素子の変形例を説明するための上面図である。図17に示す熱電変換素子33は、図14に示した熱電変換素子31と比べて、熱電変換層201を上下に屈曲したミアンダ状の構造に変更した形態であり、その他に関しては図14に示した熱電変換素子31と同様であるため、ここでは説明を省略する。
 熱電変換素子33では、熱電変換層201の屈曲している部分がそれぞれ高温部Hと低温部Lに位置するように配置される。このような形態としても、図14に示した熱電変換素子31と同様の効果を得ることができる。この場合、熱電変換層201を上下に屈曲したミアンダ状の構造となるために、配置の自由度が向上でき、低温部L側(他方側212)の領域と高温部H側(一方側211)の領域との間隔を長くすることも容易である。
 図17に示す熱電変換素子33の製造方法としては、図14に示した熱電変換素子31の製造方法における熱電変換層201を上下に屈曲させればよい。熱電変換層201の屈曲と導電部材202の形成の順序は特に限定されない。
 図18は、実施の形態3にかかる熱電変換素子を用いた熱電変換モジュールの一例を説明するための斜視図である。図18に示す熱電変換モジュール300は、図14に示した熱電変換素子31を捲回して構成したモジュールである。具体的には、熱電変換素子31をフレキシブル性の高い基材の上に形成し、その後、熱電変換素子31を含む基材を捲回することで熱電変換モジュール300を形成することができる。熱電変換モジュール300は、熱電変換モジュール300の上下方向の温度差を利用して発電することができる。
 図18に示す熱電変換モジュール300は、熱電変換素子31を含む基材を捲回して構成しているので、熱電変換素子31を集約することができ、熱電変換モジュール300の単位体積当たりの発電効率を高めることができる。
 本発明にかかる熱電変換素子は、上述の実施形態において説明したように、柔軟性を有する帯状(テープ状)とすることが可能であるため、例えば配管に巻き付けられて使用されてもよい。なお、本明細書でいう「帯状」とは、直線的な形状だけでなく、部分的に屈曲した形状(図17参照)や蛇行した形状(図14、図16参照)も含まれる。また、本発明にかかる熱電変換素子は、上述の実施形態において説明したように単独で使用してもよいし、複数を直列又は並列に接続して使用してもよい。複数の熱電変換素子同士は、互いに平行になるように接続されてもよいし、屈曲するように接続されてもよい。
 以上で説明した本発明の熱電変換素子は、特に限定されないが、冷却及び温度調節用途の目的で、冷温庫、通信機器の冷却装置、半導体製造時のシリコンウエハの温度管理装置、微生物培養用の温度管理装置その他の機器及び装置等に組み込むために使用できる。また、人工衛星、IoTセンサ、ウェアラブルデバイス等の自立電源、あるいは工場排熱、自動車排熱等の未利用熱を用いた発電装置等に使用することができる。
 以上、本発明を上記実施の形態に即して説明したが、本発明は上記実施の形態の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。
 この出願は、2019年12月19日に出願された日本出願特願2019-229118、及び2020年9月14日に出願された日本出願特願2020-153636を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 11~16、21~26、31~33 熱電変換素子
 101 熱電変換層
 101A 複数の発電領域
 101B 受熱面
 101C 放熱面
 102 複数の導電部材
 103 伝熱部材
 104 断熱部材
 105 放熱部材
 106 断熱部材
 107 基材
 107A 複数の貫通孔
 201 熱電変換層
 202 導電部材
 203 発電領域
 300 熱電変換モジュール

Claims (16)

  1.  各々離間して配置された複数の発電領域を備える熱電変換層と、
     前記熱電変換層に接するように設けられ、前記各々の発電領域を直列に接続する複数の導電部材と、を備え、
     前記複数の導電部材の導電率が、前記熱電変換層の導電率よりも高い、
     熱電変換素子。
  2.  前記熱電変換層は、所定方向を長手方向とする帯状の層であり、
     前記複数の発電領域は、前記所定方向に離間して配置されており、前記所定方向に離間している複数の位置に熱が供給されることで起電力を発生し、
     前記複数の導電部材は、前記熱電変換層の少なくとも一方の面に接している、
     請求項1に記載の熱電変換素子。
  3.  前記熱電変換層は、所定方向を長手方向とする帯状の層であり、
     前記複数の発電領域は、前記所定方向に離間して配置されており、前記所定方向に離間している複数の位置に熱が供給されることで起電力を発生し、
     前記複数の導電部材は、前記熱電変換層の内部に設けられている、
     請求項1に記載の熱電変換素子。
  4.  前記熱電変換層は、前記熱電変換層への熱を受け取る受熱面と、前記熱電変換層から熱を放熱する放熱面と、を備え、
     前記各々の発電領域の前記所定方向の上流側において前記受熱面に熱が供給され、前記各々の発電領域の前記所定方向の下流側において前記放熱面から熱が放熱される、
     請求項2または3に記載の熱電変換素子。
  5.  さらに、前記熱電変換層の前記受熱面側に、前記各々の発電領域の上流側への伝熱を促進する伝熱部材を備える、請求項4に記載の熱電変換素子。
  6.  さらに、前記熱電変換層と前記伝熱部材との間に、基材を備える、請求項5に記載の熱電変換素子。
  7.  前記各々の発電領域の前記上流側に対応する前記基材の部分に複数の貫通孔が設けられており、前記伝熱部材が前記各々の貫通孔内に埋設されている、請求項6に記載の熱電変換素子。
  8.  さらに、前記熱電変換層の前記受熱面側に、前記各々の発電領域の下流側への伝熱を抑制する断熱部材を備える、請求項4~7のいずれか一項に記載の熱電変換素子。
  9.  さらに、前記熱電変換層の前記放熱面側に、前記各々の発電領域の下流側からの放熱を促進する放熱部材を備える、請求項4~8のいずれか一項に記載の熱電変換素子。
  10.  さらに、前記熱電変換層の前記放熱面側に、前記各々の発電領域の上流側からの放熱を抑制する断熱部材を備える、請求項4~9のいずれか一項に記載の熱電変換素子。
  11.  さらに、前記熱電変換層の前記放熱面側に、前記各々の発電領域の下流側からの放熱を促進する放熱部材が、前記断熱部材を覆うように設けられている、請求項10に記載の熱電変換素子。
  12.  前記熱電変換層は、一方側と他方側との間を折り返しながら所定方向に伸びるミアンダ状であり、
     前記複数の発電領域は、前記一方側と前記他方側との間の温度差を用いて起電力を発生し、
     前記複数の導電部材は各々、前記各々の発電領域の前記一方側と前記他方側とを接続するように設けられている、
     請求項1に記載の熱電変換素子。
  13.  前記導電部材は、前記ミアンダ状の前記熱電変換層の前記一方側において前記所定方向に伸びる部分と、前記ミアンダ状の前記熱電変換層の前記他方側において前記所定方向に伸びる部分と、前記ミアンダ状の前記熱電変換層の前記一方側から前記他方側に伸びる部分と、が連続的に形成された構造を備える、
     請求項12に記載の熱電変換素子。
  14.  前記熱電変換層は、有機熱電変換材料、及び炭素材料のうち少なくとも一方を含む、請求項1~13のいずれか一項に記載の熱電変換素子。
  15.  基材上に熱電変換材料を印刷することによって熱電変換層を形成する工程と、
     前記熱電変換層上に導電性材料を離間した複数箇所に印刷することによって複数の導電部材を形成する工程と、を備え、
     前記複数の導電部材は、前記熱電変換層の複数の位置に熱が供給された際に起電力を発生させる複数の発電領域を直列に接続するように形成されている、
     熱電変換素子の製造方法。
  16.  基材上に導電性材料を離間した複数箇所に印刷することによって複数の導電部材を形成する工程と、
     前記複数の導電部材が形成された前記基材上に熱電変換材料を印刷することによって熱電変換層を形成する工程と、を備え、
     前記複数の導電部材は、前記熱電変換層の複数の位置に熱が供給された際に起電力を発生させる複数の発電領域を直列に接続するように形成されている、
     熱電変換素子の製造方法。
PCT/JP2020/044649 2019-12-19 2020-12-01 熱電変換素子及び熱電変換素子の製造方法 WO2021124867A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-229118 2019-12-19
JP2019229118 2019-12-19
JP2020153636A JP2021100100A (ja) 2019-12-19 2020-09-14 熱電変換素子及び熱電変換素子の製造方法
JP2020-153636 2020-09-14

Publications (1)

Publication Number Publication Date
WO2021124867A1 true WO2021124867A1 (ja) 2021-06-24

Family

ID=76478737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044649 WO2021124867A1 (ja) 2019-12-19 2020-12-01 熱電変換素子及び熱電変換素子の製造方法

Country Status (1)

Country Link
WO (1) WO2021124867A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141890A1 (ja) * 2006-06-09 2007-12-13 Murata Manufacturing Co., Ltd. 熱電変換モジュールおよびその製造方法
JP2016187008A (ja) * 2015-03-27 2016-10-27 シャープ株式会社 熱電変換デバイス
WO2017110589A1 (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 熱電変換デバイス
WO2018143178A1 (ja) * 2017-01-31 2018-08-09 日本ゼオン株式会社 熱電変換モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141890A1 (ja) * 2006-06-09 2007-12-13 Murata Manufacturing Co., Ltd. 熱電変換モジュールおよびその製造方法
JP2016187008A (ja) * 2015-03-27 2016-10-27 シャープ株式会社 熱電変換デバイス
WO2017110589A1 (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 熱電変換デバイス
WO2018143178A1 (ja) * 2017-01-31 2018-08-09 日本ゼオン株式会社 熱電変換モジュール

Similar Documents

Publication Publication Date Title
EP3475991B1 (en) Flexible thermoelectric module
WO2013114854A1 (ja) 有機熱電発電素子およびその製造方法
US20090165835A1 (en) Thermoelectric device with thin film elements, apparatus and stacks having the same
US20190181323A1 (en) Flexible thermoelectric module
WO2017038324A1 (ja) 熱電変換モジュール
JP2011091243A (ja) 熱電変換モジュール及び熱電変換モジュール作製方法
JP2015144212A (ja) 熱電変換モジュール
US20190181322A1 (en) Thermoelectric tape
JP2016187008A (ja) 熱電変換デバイス
US20180183360A1 (en) Thermoelectric conversion module
WO2018143178A1 (ja) 熱電変換モジュール
US10236431B2 (en) Thermoelectric conversion element and thermoelectric conversion module
WO2021124867A1 (ja) 熱電変換素子及び熱電変換素子の製造方法
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
US10347811B2 (en) Thermoelectric conversion module
JP2021100100A (ja) 熱電変換素子及び熱電変換素子の製造方法
JP2020123744A (ja) 熱電発電機
JP6505585B2 (ja) 熱電変換素子
JP2012532468A (ja) 複数の熱電素子を有するモジュール
CN116368965A (zh) 热电转换组件
WO2016136363A1 (ja) 熱電変換素子および熱電変換モジュール
JP6801752B1 (ja) 熱電変換素子
JP2004179480A (ja) 薄膜熱電素子及び薄膜熱電素子の製造方法
US20200176661A1 (en) Series-parallel cluster configuration of a thin-film based thermoelectric module
JP2022124833A (ja) 発電素子、発電装置、電子機器、及び発電素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901534

Country of ref document: EP

Kind code of ref document: A1