WO2021124827A1 - Earthquake monitoring system for boiler, and earthquake monitoring device for boiler - Google Patents
Earthquake monitoring system for boiler, and earthquake monitoring device for boiler Download PDFInfo
- Publication number
- WO2021124827A1 WO2021124827A1 PCT/JP2020/044011 JP2020044011W WO2021124827A1 WO 2021124827 A1 WO2021124827 A1 WO 2021124827A1 JP 2020044011 W JP2020044011 W JP 2020044011W WO 2021124827 A1 WO2021124827 A1 WO 2021124827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- furnace
- boiler
- cage
- monitoring system
- vibration detection
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
Definitions
- the present invention relates to an earthquake monitoring system and device for a boiler, and more particularly to a technique for monitoring the effect of a boiler having a cage portion at the rear of the furnace and the furnace due to the shaking of an earthquake.
- Non-Patent Document 1 discloses a technique for mounting a smart technology including a sensor in an industrial plant as a technique for monitoring the influence on an industrial plant when an earthquake occurs.
- Patent Document 1 discloses a vibration monitoring system in which a structure is provided with a 3-axis acceleration sensor, and the measured values of the 3-axis acceleration sensor are collected via a wireless communication network to monitor the vibration of the structure. ..
- the fuel-fired boiler used in the power plant is equipped with a furnace and a cage, which are suspended and supported by a steel beam via a suspension rod. Then, in order to prevent the furnace and the cage from swinging when an earthquake occurs, the steel column and the furnace and the steel column and the cage are connected via a cysmic tie.
- the furnace is a hollow box-shaped structure surrounded by a water wall formed by connecting heat transfer tubes through which boiler water flows inside with a membrane bar, whereas the cage portion is the box-shaped structure.
- a group of heat transfer tubes for convection heat transfer is installed inside. Therefore, there is a large difference between the mass per unit volume of the furnace (mass density) and the mass density of the cage portion. Specifically, the mass density of the furnace is very small compared to the mass density of the cage portion.
- the furnace and the cage tend to vibrate in a unique cycle according to their respective rigidity and mass. Therefore, for example, in the auxiliary side wall or nose provided between the furnace and the cage. Local stress is applied and there is a risk of damage.
- the part where the flow path direction of the smoke exhaust changes from the vertically upward direction to the horizontal direction on the upstream end side of the sub-side wall, and the horizontal on the downstream end side of the sub-side wall. Stress concentration occurs at the part that changes vertically downward from the direction (the part where the flow path direction changes), causing "boiler-specific damage" such as the furnace being torn from the secondary side wall and the cage being torn from the secondary side wall. There is a risk that a so-called "split" phenomenon will occur.
- Non-Patent Document 1 and Patent Document 1 merely disclose a general technique for monitoring vibration of an industrial plant and a power plant. Therefore, even if the techniques of Non-Patent Document 1 and Patent Document 1 are applied to the boiler, it is insufficient to predict the occurrence of "also tearing" due to the unique structure of having a furnace and a cage portion. There is.
- the present invention has been made in view of such circumstances, and an object of the present invention is a technique for detecting the behavior of a boiler having a furnace and a cage portion at the time of an earthquake with higher accuracy and leading to prediction of the occurrence of "again tears". Is to provide.
- the present invention has the configuration described in the claims.
- the present invention is an earthquake monitoring system for a boiler having a cage portion at the rear of the furnace and the furnace, and the rear wall of the furnace facing the cage portion in the furnace and the cage portion. Based on the vibration detection sensor that outputs sensor data to evaluate the relative displacement of the cage front wall facing the furnace rear wall and the sensor data, the relative displacement of the furnace and the cage portion in the three-dimensional direction is analyzed.
- the vibration detection sensor is provided on at least one of the rear wall of the boiler and the front wall of the cage. To do.
- FIG. 1 Schematic configuration diagram of the boiler earthquake monitoring system according to the first embodiment Perspective view showing an example of the configuration of the boiler Side view showing an example of boiler configuration Top view showing an example of boiler configuration Flow chart showing the flow of earthquake monitoring processing according to the first embodiment
- Schematic configuration diagram of the boiler earthquake monitoring system according to the second embodiment Flow chart showing the flow of earthquake monitoring processing in the second embodiment
- FIG. 1 is a schematic configuration diagram of a boiler earthquake monitoring system 100.
- the earthquake monitoring system 100 is configured by communicating and connecting a fuel-fired boiler 1 installed in a thermal power plant and a center 110 for monitoring the behavior of the boiler 1 via a network 105.
- Output to the boiler 1 from at least one vibration detection sensor (SHM sensor: Structural Health Monitoring Sensor) 101A1, 101A2, 101A3, ..., 101An and vibration detection sensors 101A1, 101A2, 101A3, ..., 101An. It includes a data collecting device 102 that collects the sensor data, and a first communication device 106 that transmits the sensor data to the center 110 via the network 105.
- the SHM sensor observes a physical quantity indicating motion such as vibration of the structure in which the sensor is installed, and outputs sensor data including vibration data indicating the observation result.
- a 3-axis acceleration sensor, a gauge sensor, or a distortion sensor can be used.
- the center 110 outputs the analysis results of the second communication device 107 that receives the sensor data via the network 105, the earthquake monitoring device 103 that monitors the behavior of the boiler 1 based on the sensor data, and the earthquake monitoring device 103. It is configured to include an output device 104.
- the output device 104 may be a display device that displays the analysis result on a screen, a terminal device, or a report creation device that outputs the analysis result as a report on a paper medium or a file format, regardless of the output mode.
- the earthquake monitoring device 103 includes, for example, a processor using a CPU, a RAM, a ROM, an HDD, and an earthquake monitoring program stored in the ROM or the HDD.
- the CPU reads the earthquake monitoring program, loads it into the RAM, and executes the earthquake monitoring program to realize the function of the earthquake monitoring program.
- ROM and HDD are examples of storage, and the type of storage such as EPROM does not matter.
- FIG. 2 is a perspective view showing an example of the configuration of the boiler 1.
- FIG. 3 is a side view showing an example of the configuration of the boiler 1.
- FIG. 4 is a plan view showing an example of the configuration of the boiler 1.
- the boiler 1 includes a furnace 2 in which a combustion space is formed, a sub-side wall portion 3 that forms a flow path for combustion gas generated in the furnace 2, and heat exchangers such as a superheater, a reheater, and an economizer.
- the cage portion 4 mounted inside is mainly divided into three spaces. These three spaces are arranged side by side in the order of the furnace 2, the sub-side wall portion 3, and the cage portion 4 from the upstream side to the downstream side in the flow direction of the combustion gas.
- the arrangement direction of the furnace 2, the sub-side wall portion 3, and the cage portion 4 is defined as the "depth direction" (or the front-rear direction), and the furnace 2 side in the depth direction is referred to as “front side” or “upstream side”.
- the cage portion 4 side, which is the opposite side, is referred to as the "rear side” or the "downstream side”.
- the direction orthogonal to the floor surface on which the boiler 1 is installed is defined as the "vertical direction”.
- the direction orthogonal to the depth direction and the vertical direction is referred to as a "left-right direction”.
- the furnace 2 includes a furnace front wall 21 arranged on the front side and serving as a front surface of the furnace 2, a furnace rear wall 22 arranged facing the furnace front wall 21 and serving as a rear surface of the furnace 2, a furnace front wall 21 and a furnace. It includes a pair of furnace side walls 23 arranged between the rear wall 22 and serving as side surfaces of the furnace 2, and a furnace ceiling wall 24 arranged above the pair of furnace side walls 23 and serving as a ceiling of the furnace 2.
- a plurality of burners 20 for supplying fuel pulverized coal and air into the furnace 2 are installed at the lower portions of the furnace front wall 21 and the furnace rear wall 22, respectively.
- eight burners 20 are arranged in two stages in the vertical direction, four on each of the front wall 21 of the furnace and the rear wall 22 of the furnace.
- the pulverized coal supplied from each burner 20 is burned in the combustion space in the furnace 2, which generates combustion gas.
- the generated combustion gas flows in an ascending direction from the lower side to the upper side of the furnace 2, and then flows down to the cage portion 4 through the sub-side wall portion 3.
- the sub-side wall portion 3 is a flow path that connects the furnace 2 and the cage portion 4 in the depth direction at the upper part.
- the sub-side wall 3 includes a pair of side walls 33 connected to the pair of furnace side walls 23 to form side surfaces of the sub-side wall 3, and a ceiling wall 34 connected to the furnace ceiling wall 24 to serve as the ceiling of the sub-side wall 3.
- a bottom wall 35 which is arranged below the pair of side walls 33 and serves as a bottom surface of the sub-side wall portion 3, is provided.
- a nose 22a formed of a recess formed by projecting the rear wall 22 of the furnace toward the combustion space side of the furnace 2 is formed at the upper end of the rear wall 22 of the furnace and the connection portion with the bottom wall 35.
- the cage portion 4 is arranged to face the rear wall 22 of the furnace of the furnace 2 and is the front surface of the cage portion 4, and is arranged to face the front wall 41 of the cage and is the rear surface of the cage portion 4.
- the cage portion is connected to the cage rear wall 42, a pair of cage side walls 43 arranged between the cage front wall 41 and the cage rear wall 42 to form side surfaces of the cage portion 4, and the ceiling wall 34 of the sub side wall portion 3.
- a cage ceiling wall 44 which serves as the ceiling of 4, is provided.
- the furnace 2 is connected to a plurality of steel frame columns 12f provided in front of the furnace 2 via a plurality of cysmic ties 13f. More specifically, the back stay 25f (hereinafter referred to as “front back stay”) provided on the front wall 21 of the furnace and the steel frame column 12f are connected by a cymic tie 13f.
- the cage portion 4 is connected to a plurality of steel frame columns 12b provided behind the cage portion 4 via a plurality of psychic ties 13b. More specifically, the back stay 25b (hereinafter referred to as "rear back stay”) provided on the rear wall 42 of the cage and the steel frame column 12b are connected by a cymic tie 13b.
- each wall constituting the furnace 2, the sub-side wall portion 3, and the cage portion 4 alternately has a heat transfer tube through which a fluid flows and a plate-shaped membrane bar extending in the direction in which the heat transfer tube extends. It is formed of a bonded panel-shaped membrane wall.
- a front back stay 25f made of H-shaped steel is attached to the rear wall 22 of the furnace.
- a rear back stay 25b made of H-shaped steel is also attached to the front wall 41 of the cage.
- the relative displacement between the furnace rear wall 22 and the cage front wall 41 is evaluated based on the sensor data detected by the vibration detection sensor.
- a 3-axis acceleration sensor is used as the vibration detection sensor. Then, the amplitude of the acceleration waveform in each direction of XYZ detected by the three-axis acceleration sensors installed on the rear wall 22 side of the furnace and the front wall 41 side of the cage is converted into the amplitude of the relative displacement waveform, and this amplitude is from the lower limit allowable value to the upper limit. Monitor whether the area is in the safe range between the tolerances, below the lower limit tolerance, or above the upper tolerance limit.
- the furnace 2 and the cage portion 4 Estimate the state of torsional deformation. This estimation also leads to the prediction of the occurrence of tears.
- the 3-axis accelerometer itself can only detect the motion of the furnace rear wall 22 and the cage front wall 41, but cannot detect the relative displacement, but the 3-axis acceleration sensor itself has three axes for each of the furnace rear wall 22 and the cage front wall 41. By arranging an acceleration sensor and converting the acceleration waveform into a relative displacement waveform, it is possible to detect the relative displacement amount.
- three three-axis acceleration sensors 101A1, 101A2, and 101A3 are installed in the left-right direction of the front back stay 25f at the height position L1 (the height where the nose 22a is).
- three 3-axis accelerometers 101A4, 101A5, 101A6 are installed facing the 3-axis accelerometers 101A1, 101A2, 101A3 along the left-right direction of the rear back stay 25b at the height position L1.
- three pairs of three-axis accelerometer groups, 101A1 and 101A4, 101A2 and 101A5, 101A3 and 101A6, which are arranged to face each other, are arranged.
- the boiler 1 is provided with 12 3-axis accelerometers, 3 rows in the left-right direction and 2 stages in the up-down direction, for a total of 6 pairs.
- three pairs of 3-axis acceleration sensors may be arranged in each of the front back stay 25f and the rear back stay 25b at the height position L3 below the height position L2.
- the boiler 1 is provided with a total of 9 pairs of 18 3-axis accelerometers, 3 rows in the left-right direction and 3 stages in the up-down direction.
- FIG. 5 is a flowchart showing the flow of the earthquake monitoring process according to the first embodiment.
- the earthquake monitoring system 100 is activated while the boiler 1 is in operation. While the earthquake monitoring system 100 is running, each 3-axis accelerometer outputs sensor data.
- the earthquake monitoring device 103 acquires sensor data via the network 105 (S101).
- the earthquake monitoring device 103 monitors the relative displacements of the furnace rear wall 22 and the cage front wall 41.
- the seismic monitoring device 103 calculates the difference between the X-direction, Y-direction, and Z-direction component waveforms of the sensor data output from the three-axis acceleration sensors arranged so as to face each other (S102).
- the earthquake monitoring device 103 analyzes the relative displacement between the furnace 2 and the cage portion 4 from the difference between the waveforms of each component (S103). An example of relative displacement will be described later.
- the earthquake monitoring device 103 monitors whether the amplitude of the relative displacement analyzed above is between the lower limit allowable value and the upper limit allowable value (within the allowable range) (S104). If the permissible range is exceeded here, an alert may be output.
- the earthquake monitoring device 103 outputs the analysis result of the relative displacement between the furnace and the cage portion to the output device 104 (S105).
- S106 YES
- the process is terminated.
- S106 NO
- the process returns to step S101.
- FIG. 6 shows a state in which the furnace 2 and the cage portion 4 are twisted and deformed in the left-right direction (twist deformation A).
- the relative displacement between the furnace 2 in the Y direction and the cage portion 4 is measured. That is, among the differences between the component waveforms in each direction obtained in step S103, the amplitude of the component waveform in the Y direction is measured, and the amplitude of the component waveforms in the X and Z directions is hardly measured.
- FIG. 7 shows a state in which a torsional deformation (twisting deformation B) occurs in which the distance between the furnace 2 and the cage portion 4 increases from right to left in the left-right direction.
- a torsional deformation tilting deformation B
- the relative displacement in the X direction increases toward the left. That is, the amplitude of the difference between the component waveforms in the X direction is measured so as to spread from right to left.
- FIG. 8 shows a state in which a torsional deformation (twisting deformation C) occurs in which the distance between the furnace 2 and the cage portion 4 increases from left to right in the left-right direction.
- a torsional deformation tilting deformation C
- the relative displacement in the X direction increases toward the right. That is, the amplitude of the difference between the component waveforms in the X direction is measured so as to spread from left to right.
- a vibration detection sensor is attached to the facing surface between the furnace 2 and the cage portion 4, and the detected sensor data is converted into a relative displacement amount and output to the earthquake monitoring device 103.
- the seismic monitoring device 103 determines whether the relative displacement amount exceeds or does not exceed the damage tolerance.
- the vibration detection sensors are mounted in a plurality of stages in the vertical direction and in a plurality of rows in the horizontal direction, the relative displacements of the facing surfaces can be measured with respect to the relative displacement amounts of the furnace 2 and the cage portion 4. As a result, it is possible to measure how the furnace 2 and the cage portion 4 move in what period and direction, and it becomes easy to estimate whether the furnace 2 and the cage portion 4 will be damaged.
- the elastic deformation in the height direction of the furnace 2 and the cage portion 4 is taken into consideration.
- the relative displacement of the furnace 2 and the cage portion 4 can be measured.
- the furnace 2 and the cage portion 4 are twisted in the left-right direction, that is, left and right. It is easy to measure even when deformation occurs at any of the three points, the edge and the center.
- a 3-axis accelerometer is used as a vibration detection sensor, and vibrations in the X, Y, and Z directions at points on the facing surfaces of the furnace 2 and the cage 4 are detected and analyzed to detect and analyze the vibrations in the furnace 2 and the cage 4.
- the momentum in each of the X, Y, and Z directions of 4 can be measured, and what kind of torsional deformation is occurring can be estimated. From the estimation result, if there is a torsional deformation that is easily damaged, the repair preparation can be started promptly, the operation stop time due to the damage of the boiler 1 can be shortened, and the power transmission stop time to the grid can be shortened. Can be expected.
- a contact type distance sensor or a non-contact type distance sensor may be used instead of the 3-axis acceleration sensor.
- a contact type distance sensor for example, a wire type displacement meter that electrically outputs the length from which the stainless steel wire is pulled out may be used. Further, a transformer type displacement meter using a coil may be used. Further, a scale type displacement meter having a scale (ruler) inside may be used. Further, a scale shot system in which the absolute value glass scale is photographed at high speed with a CMOS sensor may be used.
- an ultrasonic range finder a lidar, or an infrared sensor may be used. Even when a distance sensor is used, the motion estimation of the furnace 2 and the cage portion 4 is performed by arranging a plurality of distance sensors on the facing surfaces of the furnace 2 and the cage portion 4 and measuring the relative displacement between the facing surfaces. As a result, damage can be predicted.
- the mode of monitoring the instantaneous value of the momentum of the furnace 2 and the instantaneous value of the momentum of the cage portion 4 is at least 1 for each of the furnace rear wall 22 or the cage front wall 41. This can be achieved by providing one or more vibration detection sensors.
- the rear wall 22 of the furnace or the front wall 41 of the cage may be compared with the warning threshold described later.
- a warning threshold value is set in advance for the instantaneous value of the momentum (acceleration and displacement in this embodiment) indicated by the sensor data of the vibration detection sensors 101A1 to 101An, and a warning is issued when the warning threshold value or more is reached. It is an embodiment that emits.
- the first embodiment is an embodiment in which seismic monitoring is performed focusing on the relative displacement between the furnace 2 and the cage portion 4, whereas in the present embodiment, the instantaneous value of the momentum indicated by the sensor data is not the relative displacement. It differs in that it focuses on.
- the warning threshold value corresponds to each of the upper limit value and the lower limit value of the range (allowable range) in which the instantaneous value of the momentum indicated by the sensor data is allowed to fluctuate. If it is within the permissible range, that is, if the instantaneous value of the sensor data is greater than the lower limit value of the permissible range and less than the upper limit value, no warning is issued.
- a 3-axis acceleration sensor is used as the vibration detection sensor, and the instantaneous value of the acceleration indicated by the sensor data and the instantaneous value of the displacement calculated based on the acceleration are monitored.
- a gauge sensor or a distance sensor may be used together as a vibration detection sensor, and the instantaneous value of displacement may be monitored based on these sensor data. Further, a gauge sensor or a distance sensor may be used to calculate the acceleration based on these sensor data and use it as a monitoring target.
- FIG. 9 is a schematic configuration diagram of the earthquake monitoring system 100a of the boiler 1 according to the second embodiment.
- the network 105 is a network for constructing a cloud environment. Then, the vibration detection sensors 101A1, 101A2, 101A3, ..., 101An installed in the boiler 1 and the center 110 are communicated and connected via the network 105.
- the network 105 may be connected by communication between the portable terminal device 104a carried by the operator of the boiler 1 and the control console 104b placed in the control room of the thermal power plant in which the boiler 1 is installed. Then, the warning from the earthquake monitoring device 103 may be output to the mobile terminal device 104a or the control console 104b in addition to the output device 104 of the center 110.
- FIG. 10 is a flowchart showing the flow of the earthquake monitoring process according to the second embodiment.
- the earthquake monitoring device 103 acquires a warning threshold value for comparison with the instantaneous value of momentum indicated by the sensor data output from the vibration detection sensors 101A1 to 101An (S201).
- the warning threshold value when acceleration is monitored includes a positive acceleration warning threshold value (upper limit value of the allowable range) and a negative acceleration warning threshold value (lower limit value of the allowable range). included.
- the warning threshold value when the displacement is monitored includes a displacement warning threshold value in the positive direction (upper limit value of the allowable range) and a displacement warning threshold value in the negative direction (lower limit value of the allowable range). These warning thresholds may be determined based on the values obtained as a result of structural analysis of the boiler 1 in advance, or may be determined from the design values.
- the earthquake monitoring device 103 acquires the sensor data of all the vibration detection sensors 101A1 to 101An via the network 105 (S202).
- the seismic monitoring device 103 If the acceleration indicated by the sensor data from all the vibration detection sensors 101A1 to 101An is included in the permissible range, that is, if the acceleration is larger than the negative acceleration warning threshold and less than the positive acceleration warning threshold, the seismic monitoring device 103 is used. It is determined that the acceleration is within the permissible range (S203: YES).
- the seismic monitoring device 103 if the displacement indicated by the sensor data from all the vibration detection sensors 101A1 to 101An is included in the allowable range, that is, if it is larger than the displacement warning threshold in the negative direction and less than the displacement warning threshold in the positive direction. , It is determined that the displacement is within the permissible range (S204: YES).
- the output mode of the warning information may be displayed on the screen of the output device 104. Further, the warning information may be transmitted from the earthquake monitoring device 103 to the mobile terminal device 104a and the control console 104b via the network 105. At that time, as warning information, the URL where the report containing the sensor data (RAW data) or the like is uploaded may be sent.
- RAW data sensor data
- Step S203 and step S204 may be in reverse order. Further, when only the acceleration is to be monitored, step S204 is skipped, and when only the displacement is to be monitored, step S203 is skipped.
- the earthquake monitoring device 103 returns to step S201 when the instantaneous values of all the acquired sensor data are within the permissible range (S204: YES) and the earthquake monitoring process is not completed (S206: NO). When the earthquake monitoring process is terminated (S206: YES), this process is terminated.
- the present embodiment by monitoring the instantaneous value of the sensor data, it is possible to monitor the motion state of each part of the furnace 2 and the cage portion 4 to predict or monitor the damage of the boiler 1. it can.
- first embodiment and the second embodiment may be used together for one boiler 1.
- Boiler 2 Fire furnace 3: Sub-side wall part 4: Cage part 12b, 12f: Steel column 13b, 13f: System tie 20: Burner 21: Fire furnace front wall 22: Fire furnace rear wall 22a: Nose 23: Fire furnace side wall 24: Boiler ceiling wall 25b: Rear back stay 25f: Front back stay 33: Side wall 34: Ceiling wall 35: Bottom wall 41: Cage front wall 42: Cage rear wall 43: Cage side wall 44: Cage ceiling wall 100, 100a: Seismic monitoring System 101A1 to 101A6,101An: 3-axis accelerometer (vibration detection sensor) 102: Data acquisition device 103: Earthquake monitoring device 104: Output device 104a: Mobile terminal device 104b: Control console 105: Network 106: First communication device 107: Second communication device 110: Center
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
The present invention is an earthquake monitoring system for a boiler, the boiler comprising a furnace and a cage part that is disposed at the back of the furnace. The boiler has vibration detection sensors for detecting: the vibration of a furnace rear wall opposing the cage part of the boiler; and the vibration of a cage front wall opposing the furnace rear wall. The sensors are disposed on the furnace rear wall and on the cage front wall. The earthquake monitoring device analyzes the relative displacement amount in the three-dimensional direction between the furnace and the cage part on the basis of sensor data, and outputs the analysis results.
Description
本発明は、ボイラの地震モニタリングシステム及び装置に関し、特に火炉及び前記火炉の後部にケージ部を備えたボイラが地震の揺れにより生じる影響を監視する技術に関する。
The present invention relates to an earthquake monitoring system and device for a boiler, and more particularly to a technique for monitoring the effect of a boiler having a cage portion at the rear of the furnace and the furnace due to the shaking of an earthquake.
地震発生時に産業用プラントが受ける影響を監視するための技術として、非特許文献1にはセンサを含むスマート技術を産業用プラントに実装させる技術が開示されている。
Non-Patent Document 1 discloses a technique for mounting a smart technology including a sensor in an industrial plant as a technique for monitoring the influence on an industrial plant when an earthquake occurs.
また特許文献1では、構造物に3軸加速度センサを備え、当該3軸加速度センサの計測値を、無線通信網を介して収集して構造物の振動を監視する振動モニタリングシステムが開示されている。
Further, Patent Document 1 discloses a vibration monitoring system in which a structure is provided with a 3-axis acceleration sensor, and the measured values of the 3-axis acceleration sensor are collected via a wireless communication network to monitor the vibration of the structure. ..
発電プラントに用いられる燃料焚きボイラは、火炉とケージ部とを備えており、これらが鉄骨梁に吊ロッドを介して吊り下げ支持されている。そして、地震発生時に火炉とケージ部が振れるのを防止するために、鉄骨柱と火炉及び鉄骨柱とケージ部がサイスミックタイを介して連結されている。
The fuel-fired boiler used in the power plant is equipped with a furnace and a cage, which are suspended and supported by a steel beam via a suspension rod. Then, in order to prevent the furnace and the cage from swinging when an earthquake occurs, the steel column and the furnace and the steel column and the cage are connected via a cysmic tie.
火炉は、内部をボイラ水が流れる伝熱管同士をメンブレンバーで接続して構成される水壁で囲まれた中空の箱型構造物であるのに対して、ケージ部は、当該箱型構造物の中に対流伝熱を行なうための伝熱管群が設置されている。そのため、火炉の単位容積当たりの質量(質量密度)とケージ部の質量密度との間には大きな差がある。具体的には、火炉の質量密度はケージ部の質量密度に比べて非常に小さい。
The furnace is a hollow box-shaped structure surrounded by a water wall formed by connecting heat transfer tubes through which boiler water flows inside with a membrane bar, whereas the cage portion is the box-shaped structure. A group of heat transfer tubes for convection heat transfer is installed inside. Therefore, there is a large difference between the mass per unit volume of the furnace (mass density) and the mass density of the cage portion. Specifically, the mass density of the furnace is very small compared to the mass density of the cage portion.
ゆえに、地震発生時には、火炉とケージ部とが、それぞれの剛性及び質量に応じて固有の周期で振動しようとするため、例えば、火炉とケージ部との間に設けられた副側壁部やノーズに局部的な応力がかかり、損傷する虞がある。特に火炉からの燃焼ガスの流路方向において、副側壁部の上流端部側で排煙の流路方向が鉛直上方向から水平方向に変化する部位、また副側壁部の下流端部側の水平方向から鉛直下方向に変化する部位(流路方向変更部位)では応力集中が発生し、副側壁部から火炉が、また副側壁部からケージ部が引き裂かれた様な“ボイラ特有の損傷”が生じる、所謂“又裂き”現象が生じる虞がある。
Therefore, when an earthquake occurs, the furnace and the cage tend to vibrate in a unique cycle according to their respective rigidity and mass. Therefore, for example, in the auxiliary side wall or nose provided between the furnace and the cage. Local stress is applied and there is a risk of damage. Especially in the direction of the flow path of the combustion gas from the furnace, the part where the flow path direction of the smoke exhaust changes from the vertically upward direction to the horizontal direction on the upstream end side of the sub-side wall, and the horizontal on the downstream end side of the sub-side wall. Stress concentration occurs at the part that changes vertically downward from the direction (the part where the flow path direction changes), causing "boiler-specific damage" such as the furnace being torn from the secondary side wall and the cage being torn from the secondary side wall. There is a risk that a so-called "split" phenomenon will occur.
ボイラが損傷すると発電プラントの操業、ひいては電力系統への送電停止につながるので、予期せぬタイミングでの発電プラント操業の停止を回避、また万一操業停止をした場合には一刻も早い復旧を行うために、ボイラ特有の損傷である“又裂き”の発生予測を行いたいという要望がある。この発生予測を行うためには、ボイラ固有の構造を考慮した上で地震のモニタリングを行う必要がある。
If the boiler is damaged, it will lead to the operation of the power plant and eventually the power transmission to the power system will be stopped. Therefore, avoid the power plant operation from being stopped at an unexpected timing, and if the operation is stopped, restore it as soon as possible. Therefore, there is a desire to predict the occurrence of "again tears", which is a damage peculiar to boilers. In order to predict this occurrence, it is necessary to monitor the earthquake after considering the structure peculiar to the boiler.
しかし、非特許文献1及び特許文献1では、単に産業用プラント及び発電プラントの振動モニタリングを行う一般的な技術が開示されているに過ぎない。従って、非特許文献1及び特許文献1の技術をボイラに適用しても、火炉とケージ部とを有するという特有な構造に起因する“又裂き”の発生予測を行うは不十分であるという実情がある。
However, Non-Patent Document 1 and Patent Document 1 merely disclose a general technique for monitoring vibration of an industrial plant and a power plant. Therefore, even if the techniques of Non-Patent Document 1 and Patent Document 1 are applied to the boiler, it is insufficient to predict the occurrence of "also tearing" due to the unique structure of having a furnace and a cage portion. There is.
本発明は、このような実情に鑑みてなされたもので、その目的は、地震発生時における火炉及びケージ部を有するボイラの挙動をより精度高く検出し、“又裂き”の発生予測につなげる技術を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is a technique for detecting the behavior of a boiler having a furnace and a cage portion at the time of an earthquake with higher accuracy and leading to prediction of the occurrence of "again tears". Is to provide.
上記目的を達成するために、本発明は、請求の範囲に記載の構成を有する。その一例をあげるならば、本発明は、火炉及び前記火炉の後部にケージ部を備えたボイラの地震モニタリングシステムであって、前記火炉における前記ケージ部に対向する火炉後壁及び前記ケージ部における前記火炉後壁に対向するケージ前壁の相対変位を評価するためセンサデータを出力する振動検出センサと、前記センサのデータに基づいて、前記火炉と前記ケージ部との3次元方向の相対変位を解析する地震モニタリング装置と、前記地震モニタリング装置による解析結果を出力する出力装置と、を備え、前記振動検出センサは、前記火炉後壁及び前記ケージ前壁の少なくとも一方に配置される、ことを特徴とする。
In order to achieve the above object, the present invention has the configuration described in the claims. To give an example thereof, the present invention is an earthquake monitoring system for a boiler having a cage portion at the rear of the furnace and the furnace, and the rear wall of the furnace facing the cage portion in the furnace and the cage portion. Based on the vibration detection sensor that outputs sensor data to evaluate the relative displacement of the cage front wall facing the furnace rear wall and the sensor data, the relative displacement of the furnace and the cage portion in the three-dimensional direction is analyzed. The vibration detection sensor is provided on at least one of the rear wall of the boiler and the front wall of the cage. To do.
本発明によれば、地震発生時における火炉及びケージ部を有するボイラの挙動をより精度高く検出し、“又裂き”の発生予測につなげる技術を提供することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a technique for detecting the behavior of a boiler having a furnace and a cage portion at the time of an earthquake with higher accuracy and connecting it to the prediction of the occurrence of "also tearing". Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
以下、本発明の実施形態に係るボイラの地震モニタリングシステム及び装置について、図面を参照して説明する。全図を通じて同一の構成には同一の符号を付し、重複説明を省略する。
Hereinafter, the boiler earthquake monitoring system and device according to the embodiment of the present invention will be described with reference to the drawings. The same components are designated by the same reference numerals throughout the drawings, and duplicate description is omitted.
<第1実施形態>
図1は、ボイラの地震モニタリングシステム100の概略構成図である。地震モニタリングシステム100は、火力発電所に設置される燃料焚きのボイラ1と、ボイラ1の挙動を監視するセンタ110とをネットワーク105を介して通信接続して構成される。 <First Embodiment>
FIG. 1 is a schematic configuration diagram of a boilerearthquake monitoring system 100. The earthquake monitoring system 100 is configured by communicating and connecting a fuel-fired boiler 1 installed in a thermal power plant and a center 110 for monitoring the behavior of the boiler 1 via a network 105.
図1は、ボイラの地震モニタリングシステム100の概略構成図である。地震モニタリングシステム100は、火力発電所に設置される燃料焚きのボイラ1と、ボイラ1の挙動を監視するセンタ110とをネットワーク105を介して通信接続して構成される。 <First Embodiment>
FIG. 1 is a schematic configuration diagram of a boiler
ボイラ1に少なくとも1つ以上の振動検出センサ(SHMセンサ:Structural Health Monitoring Sensor)101A1、101A2、101A3、・・・、101Anと、振動検出センサ101A1、101A2、101A3、・・・、101Anから出力されたセンサデータを収集するデータ収集装置102と、ネットワーク105を介してセンサデータをセンタ110に送信する第1通信装置106とを備える。SHMセンサは、当該センサが設置された構造物の振動等の運動を示す物理量を観測し、その観測結果を示す振動データを含んだセンサデータを出力する。SHMセンサの具体例として、例えば3軸加速度センサ、ゲージセンサ、ゆがみセンサを用いることができる。
Output to the boiler 1 from at least one vibration detection sensor (SHM sensor: Structural Health Monitoring Sensor) 101A1, 101A2, 101A3, ..., 101An and vibration detection sensors 101A1, 101A2, 101A3, ..., 101An. It includes a data collecting device 102 that collects the sensor data, and a first communication device 106 that transmits the sensor data to the center 110 via the network 105. The SHM sensor observes a physical quantity indicating motion such as vibration of the structure in which the sensor is installed, and outputs sensor data including vibration data indicating the observation result. As a specific example of the SHM sensor, for example, a 3-axis acceleration sensor, a gauge sensor, or a distortion sensor can be used.
センタ110には、ネットワーク105を介してセンサデータを受信する第2通信装置107と、センサデータを基にボイラ1の挙動を監視する地震モニタリング装置103と、地震モニタリング装置103の解析結果を出力する出力装置104とを含んで構成される。出力装置104は、画面に解析結果を表示する表示装置や、端末装置、また解析結果を紙媒体やファイル形式にレポートとして出力するレポート作成装置でもよく、出力態様を問わない。
The center 110 outputs the analysis results of the second communication device 107 that receives the sensor data via the network 105, the earthquake monitoring device 103 that monitors the behavior of the boiler 1 based on the sensor data, and the earthquake monitoring device 103. It is configured to include an output device 104. The output device 104 may be a display device that displays the analysis result on a screen, a terminal device, or a report creation device that outputs the analysis result as a report on a paper medium or a file format, regardless of the output mode.
地震モニタリング装置103は、例えばCPUを用いたプロセッサと、RAM、ROM、HDD等と、ROMやHDDに格納された地震モニタリングプログラムとを含んで構成される。CPUは地震モニタリングプログラムを読みだしてRAMにロードし、地震モニタリングプログラムを実行することにより、地震モニタリングプログラムの機能が実現される。ROM、HDDはストレージの一例であり、EPROM等、ストレージの種類は問わない。
The earthquake monitoring device 103 includes, for example, a processor using a CPU, a RAM, a ROM, an HDD, and an earthquake monitoring program stored in the ROM or the HDD. The CPU reads the earthquake monitoring program, loads it into the RAM, and executes the earthquake monitoring program to realize the function of the earthquake monitoring program. ROM and HDD are examples of storage, and the type of storage such as EPROM does not matter.
<ボイラ1の全体構成>
ボイラ1の全体構成について、図2、図3、図4を参照して説明する。図2は、ボイラ1の構成の一例を示す斜視図である。図3は、ボイラ1の構成の一例を示す側面図である。図4は、ボイラ1の構成の一例を示す平面図である。 <Overall configuration ofboiler 1>
The overall configuration of theboiler 1 will be described with reference to FIGS. 2, 3, and 4. FIG. 2 is a perspective view showing an example of the configuration of the boiler 1. FIG. 3 is a side view showing an example of the configuration of the boiler 1. FIG. 4 is a plan view showing an example of the configuration of the boiler 1.
ボイラ1の全体構成について、図2、図3、図4を参照して説明する。図2は、ボイラ1の構成の一例を示す斜視図である。図3は、ボイラ1の構成の一例を示す側面図である。図4は、ボイラ1の構成の一例を示す平面図である。 <Overall configuration of
The overall configuration of the
ボイラ1は、燃焼空間が内部に形成された火炉2、火炉2で発生した燃焼ガスの流路を形成する副側壁部3、及び過熱器や再熱器、節炭器等の熱交換器が内部に搭載されたケージ部4の主に3つの空間に分かれて構成されている。これら3つの空間は、燃焼ガスの流れ方向の上流側から下流側に向かって、火炉2、副側壁部3、ケージ部4の順に並んで配置されている。
The boiler 1 includes a furnace 2 in which a combustion space is formed, a sub-side wall portion 3 that forms a flow path for combustion gas generated in the furnace 2, and heat exchangers such as a superheater, a reheater, and an economizer. The cage portion 4 mounted inside is mainly divided into three spaces. These three spaces are arranged side by side in the order of the furnace 2, the sub-side wall portion 3, and the cage portion 4 from the upstream side to the downstream side in the flow direction of the combustion gas.
なお、以下の説明において、火炉2、副側壁部3、及びケージ部4の並び方向を「奥行方向」(又は前後方向)とし、奥行方向における火炉2側を「前側」又は「上流側」、その反対側であるケージ部4側を「後側」又は「下流側」とする。また、ボイラ1が設置された床面に対して直交する方向を「上下方向」とする。また、奥行方向及び上下方向に直交する方向を「左右方向」という。
In the following description, the arrangement direction of the furnace 2, the sub-side wall portion 3, and the cage portion 4 is defined as the "depth direction" (or the front-rear direction), and the furnace 2 side in the depth direction is referred to as "front side" or "upstream side". The cage portion 4 side, which is the opposite side, is referred to as the "rear side" or the "downstream side". Further, the direction orthogonal to the floor surface on which the boiler 1 is installed is defined as the "vertical direction". Further, the direction orthogonal to the depth direction and the vertical direction is referred to as a "left-right direction".
火炉2は、前側に配置されて火炉2の前面となる火炉前壁21と、火炉前壁21に対向して配置されて火炉2の後面となる火炉後壁22と、火炉前壁21と火炉後壁22との間に配置されて火炉2の側面となる一対の火炉側壁23と、一対の火炉側壁23の上部に配置されて火炉2の天井となる火炉天井壁24と、を備える。
The furnace 2 includes a furnace front wall 21 arranged on the front side and serving as a front surface of the furnace 2, a furnace rear wall 22 arranged facing the furnace front wall 21 and serving as a rear surface of the furnace 2, a furnace front wall 21 and a furnace. It includes a pair of furnace side walls 23 arranged between the rear wall 22 and serving as side surfaces of the furnace 2, and a furnace ceiling wall 24 arranged above the pair of furnace side walls 23 and serving as a ceiling of the furnace 2.
火炉前壁21及び火炉後壁22にはそれぞれ、燃料となる微粉炭と空気とを火炉2内に供給する複数のバーナ20が下部に設置されている。本実施形態では、火炉前壁21及び火炉後壁22のそれぞれにおいて、8つのバーナ20が、上下方向に二段に分かれて4つずつ配置されている。
A plurality of burners 20 for supplying fuel pulverized coal and air into the furnace 2 are installed at the lower portions of the furnace front wall 21 and the furnace rear wall 22, respectively. In the present embodiment, eight burners 20 are arranged in two stages in the vertical direction, four on each of the front wall 21 of the furnace and the rear wall 22 of the furnace.
各バーナ20から供給された微粉炭は火炉2内の燃焼空間において燃焼され、これにより燃焼ガスが発生する。発生した燃焼ガスは、火炉2の下側から上側に向かう上昇方向に沿って流れ、その後、副側壁部3を通ってケージ部4へと流下する。
The pulverized coal supplied from each burner 20 is burned in the combustion space in the furnace 2, which generates combustion gas. The generated combustion gas flows in an ascending direction from the lower side to the upper side of the furnace 2, and then flows down to the cage portion 4 through the sub-side wall portion 3.
副側壁部3は、火炉2とケージ部4とを上部で奥行方向に連結する流路である。副側壁部3は、一対の火炉側壁23に接続されて副側壁部3の側面となる一対の側壁33と、火炉天井壁24に接続されて副側壁部3の天井となる天井壁34と、一対の側壁33の下部に配置されて副側壁部3の底面となる底壁35と、を備える。
The sub-side wall portion 3 is a flow path that connects the furnace 2 and the cage portion 4 in the depth direction at the upper part. The sub-side wall 3 includes a pair of side walls 33 connected to the pair of furnace side walls 23 to form side surfaces of the sub-side wall 3, and a ceiling wall 34 connected to the furnace ceiling wall 24 to serve as the ceiling of the sub-side wall 3. A bottom wall 35, which is arranged below the pair of side walls 33 and serves as a bottom surface of the sub-side wall portion 3, is provided.
火炉後壁22の上端、底壁35との接続部は、火炉後壁22を火炉2の燃焼空間側に向かって突出させて形成した凹部からなるノーズ22aが形成される。
A nose 22a formed of a recess formed by projecting the rear wall 22 of the furnace toward the combustion space side of the furnace 2 is formed at the upper end of the rear wall 22 of the furnace and the connection portion with the bottom wall 35.
ケージ部4は、火炉2の火炉後壁22に対向して配置されてケージ部4の前面となるケージ前壁41と、ケージ前壁41に対向して配置されてケージ部4の後面となるケージ後壁42と、ケージ前壁41とケージ後壁42との間に配置されてケージ部4の側面となる一対のケージ側壁43と、副側壁部3の天井壁34に接続されてケージ部4の天井となるケージ天井壁44と、を備える。
The cage portion 4 is arranged to face the rear wall 22 of the furnace of the furnace 2 and is the front surface of the cage portion 4, and is arranged to face the front wall 41 of the cage and is the rear surface of the cage portion 4. The cage portion is connected to the cage rear wall 42, a pair of cage side walls 43 arranged between the cage front wall 41 and the cage rear wall 42 to form side surfaces of the cage portion 4, and the ceiling wall 34 of the sub side wall portion 3. A cage ceiling wall 44, which serves as the ceiling of 4, is provided.
図3に示すように、火炉2は、火炉2の前方に設けられた複数の鉄骨柱12fに複数のサイスミックタイ13fを介して連結される。より詳細には、火炉前壁21に設けられたバックステー25f(以下「前側バックステー」という)と鉄骨柱12fとが、サイスミックタイ13fにより連結されている。
As shown in FIG. 3, the furnace 2 is connected to a plurality of steel frame columns 12f provided in front of the furnace 2 via a plurality of cysmic ties 13f. More specifically, the back stay 25f (hereinafter referred to as “front back stay”) provided on the front wall 21 of the furnace and the steel frame column 12f are connected by a cymic tie 13f.
また、ケージ部4は、ケージ部4の後方に設けられた複数の鉄骨柱12bに複数のサイスミックタイ13bを介して連結される。より詳細には、ケージ後壁42に設けられたバックステー25b(以下「後側バックステー」という)と鉄骨柱12bとが、サイスミックタイ13bにより連結されている。
Further, the cage portion 4 is connected to a plurality of steel frame columns 12b provided behind the cage portion 4 via a plurality of psychic ties 13b. More specifically, the back stay 25b (hereinafter referred to as "rear back stay") provided on the rear wall 42 of the cage and the steel frame column 12b are connected by a cymic tie 13b.
ボイラ1では、火炉2、副側壁部3、及びケージ部4を構成する各壁は、内部を流体が流れる伝熱管と、伝熱管が延びる方向に延在する板状のメンブレンバーとが交互に接合されたパネル状のメンブレン壁で形成されている。
In the boiler 1, each wall constituting the furnace 2, the sub-side wall portion 3, and the cage portion 4 alternately has a heat transfer tube through which a fluid flows and a plate-shaped membrane bar extending in the direction in which the heat transfer tube extends. It is formed of a bonded panel-shaped membrane wall.
図3の拡大図に示すように、火炉後壁22には、H型鋼から成る前側バックステー25fが取り付けられる。またケージ前壁41にも、H型鋼から成る後側バックステー25bが取り付けられる。
As shown in the enlarged view of FIG. 3, a front back stay 25f made of H-shaped steel is attached to the rear wall 22 of the furnace. A rear back stay 25b made of H-shaped steel is also attached to the front wall 41 of the cage.
地震発生時、火炉2から副側壁部3及びケージ部4へと続く燃焼ガスの流れ方向が変化する部位(図2、図3において“X”で示す)やノーズ22aには応力が集中し、破損につながりやすい。
When an earthquake occurs, stress is concentrated on the part where the flow direction of combustion gas from the furnace 2 to the sub-side wall 3 and the cage 4 changes (indicated by "X" in FIGS. 2 and 3) and the nose 22a. Easy to break.
そこで、本実施形態では火炉後壁22とケージ前壁41との相対変位を振動検出センサで検出したセンサデータに基づいて評価する。本実施形態では、振動検出センサとして3軸加速度センサを用いる。そして、火炉後壁22側とケージ前壁41側に設置の3軸加速度センサによって検出したXYZ各方向の加速度波形の振幅を、相対変位波形の振幅に換算し、この振幅が下限許容値から上限許容値の間の安全域にあるか、又は下限許容値を下回る、又は上限許容値を上回る損傷域にあるかを監視する。更に、火炉後壁22の3軸加速度センサからのセンサデータと、ケージ前壁41の3軸加速度センサからのセンサデータを用いて換算した相対変位をもとに、火炉2とケージ部4との捩れ変形の状況を推定する。この推定が、又裂きの発生予測につながる。なお、3軸加速度センサ自体は、火炉後壁22及びケージ前壁41のそれぞれの運動を検出するのみで相対変位量の検出ができないが、火炉後壁22及びケージ前壁41のそれぞれに3軸加速度センサを配置し、加速度波形を相対変位波形に換算することにより、相対変位量の検出が可能になる。
Therefore, in the present embodiment, the relative displacement between the furnace rear wall 22 and the cage front wall 41 is evaluated based on the sensor data detected by the vibration detection sensor. In this embodiment, a 3-axis acceleration sensor is used as the vibration detection sensor. Then, the amplitude of the acceleration waveform in each direction of XYZ detected by the three-axis acceleration sensors installed on the rear wall 22 side of the furnace and the front wall 41 side of the cage is converted into the amplitude of the relative displacement waveform, and this amplitude is from the lower limit allowable value to the upper limit. Monitor whether the area is in the safe range between the tolerances, below the lower limit tolerance, or above the upper tolerance limit. Further, based on the sensor data from the 3-axis acceleration sensor on the rear wall 22 of the furnace and the relative displacement converted using the sensor data from the 3-axis acceleration sensor on the front wall 41 of the cage, the furnace 2 and the cage portion 4 Estimate the state of torsional deformation. This estimation also leads to the prediction of the occurrence of tears. The 3-axis accelerometer itself can only detect the motion of the furnace rear wall 22 and the cage front wall 41, but cannot detect the relative displacement, but the 3-axis acceleration sensor itself has three axes for each of the furnace rear wall 22 and the cage front wall 41. By arranging an acceleration sensor and converting the acceleration waveform into a relative displacement waveform, it is possible to detect the relative displacement amount.
そこで本実施形態では、高さ位置L1(ノーズ22aがある高さ)にある前側バックステー25fの左右方向に3つの3軸加速度センサ101A1、101A2、101A3を設置する。同様に、高さ位置L1にある後側バックステー25bの左右方向に沿って3軸加速度センサ101A1、101A2、101A3に対向させて3つの3軸加速度センサ101A4、101A5、101A6を設置する。高さ位置L1には対向配置された3対の3軸加速度センサ群、101A1と101A4、101A2と101A5、101A3と101A6とが配置される。
Therefore, in the present embodiment, three three-axis acceleration sensors 101A1, 101A2, and 101A3 are installed in the left-right direction of the front back stay 25f at the height position L1 (the height where the nose 22a is). Similarly, three 3-axis accelerometers 101A4, 101A5, 101A6 are installed facing the 3-axis accelerometers 101A1, 101A2, 101A3 along the left-right direction of the rear back stay 25b at the height position L1. At the height position L1, three pairs of three-axis accelerometer groups, 101A1 and 101A4, 101A2 and 101A5, 101A3 and 101A6, which are arranged to face each other, are arranged.
また高さ位置L1よりも下の高さ位置L2にある前側バックステー25f、後側バックステー25bのそれぞれにも3対の3軸加速度センサ群が配置される。以上より、ボイラ1には、左右方向に3列、上下方向に2段の合計6対、12個の3軸加速度センサが配置される。
Also, three pairs of 3-axis acceleration sensors are arranged in each of the front back stay 25f and the rear back stay 25b at the height position L2 below the height position L1. From the above, the boiler 1 is provided with 12 3-axis accelerometers, 3 rows in the left-right direction and 2 stages in the up-down direction, for a total of 6 pairs.
また、更に高さ位置L2よりも下の高さ位置L3にある前側バックステー25f、後側バックステー25bのそれぞれにも3対の3軸加速度センサ群が配置されるものであってもよい。この場合、ボイラ1には、左右方向に3列、上下方向に3段の合計9対、18個の3軸加速度センサが配置される。
Further, three pairs of 3-axis acceleration sensors may be arranged in each of the front back stay 25f and the rear back stay 25b at the height position L3 below the height position L2. In this case, the boiler 1 is provided with a total of 9 pairs of 18 3-axis accelerometers, 3 rows in the left-right direction and 3 stages in the up-down direction.
図5は、第1実施形態に係る地震モニタリング処理の流れを示すフローチャートである。ボイラ1の稼働中は地震モニタリングシステム100が起動している。地震モニタリングシステム100が起動中、各3軸加速度センサは、センサデータを出力する。地震モニタリング装置103はネットワーク105を介してセンサデータを取得する(S101)。
FIG. 5 is a flowchart showing the flow of the earthquake monitoring process according to the first embodiment. The earthquake monitoring system 100 is activated while the boiler 1 is in operation. While the earthquake monitoring system 100 is running, each 3-axis accelerometer outputs sensor data. The earthquake monitoring device 103 acquires sensor data via the network 105 (S101).
次に地震モニタリング装置103は、火炉後壁22及びケージ前壁41の相対変位の監視処理を行う。
Next, the earthquake monitoring device 103 monitors the relative displacements of the furnace rear wall 22 and the cage front wall 41.
具体的には、地震モニタリング装置103は、対向配置された各3軸加速度センサから出力されたセンサデータのX方向、Y方向、Z方向の各成分波形の差分を演算する(S102)。
Specifically, the seismic monitoring device 103 calculates the difference between the X-direction, Y-direction, and Z-direction component waveforms of the sensor data output from the three-axis acceleration sensors arranged so as to face each other (S102).
地震モニタリング装置103は、各成分波形の差分から火炉2とケージ部4との相対変位を解析する(S103)。相対変位例は後述する。
The earthquake monitoring device 103 analyzes the relative displacement between the furnace 2 and the cage portion 4 from the difference between the waveforms of each component (S103). An example of relative displacement will be described later.
地震モニタリング装置103は、上記にて解析された相対変位の振幅が下限許容値から上限許容値の間(許容範囲内)にあるかを監視する(S104)。ここで許容範囲を超える場合は、アラートを出力してもよい。
The earthquake monitoring device 103 monitors whether the amplitude of the relative displacement analyzed above is between the lower limit allowable value and the upper limit allowable value (within the allowable range) (S104). If the permissible range is exceeded here, an alert may be output.
地震モニタリング装置103は、火炉とケージ部との相対変位の解析結果を出力装置104に出力する(S105)。地震モニタリング処理を終了する場合は(S106:YES)、処理を終了する。地震モニタリング処理を継続する場合は(S106:NO)、ステップS101へ戻る。
The earthquake monitoring device 103 outputs the analysis result of the relative displacement between the furnace and the cage portion to the output device 104 (S105). When the earthquake monitoring process is terminated (S106: YES), the process is terminated. When continuing the earthquake monitoring process (S106: NO), the process returns to step S101.
図6から図8を参照して、相対変位例について説明する。
An example of relative displacement will be described with reference to FIGS. 6 to 8.
図6は、火炉2とケージ部4とが左右方向に捩れ変形した状態(捩れ変形A)を示す。この場合、X方向及びZ方向の火炉2とケージ部4との相対変位はほぼない。しかし、Y方向の火炉2とケージ部4との相対変位が計測される。すなわち、ステップS103で求めた各方向の成分波形の差分のうち、Y方向の成分波形の振幅が測定され、X方向、Z方向の成分波形は振幅がほとんど測定されない。
FIG. 6 shows a state in which the furnace 2 and the cage portion 4 are twisted and deformed in the left-right direction (twist deformation A). In this case, there is almost no relative displacement between the furnace 2 and the cage portion 4 in the X and Z directions. However, the relative displacement between the furnace 2 in the Y direction and the cage portion 4 is measured. That is, among the differences between the component waveforms in each direction obtained in step S103, the amplitude of the component waveform in the Y direction is measured, and the amplitude of the component waveforms in the X and Z directions is hardly measured.
図7は、火炉2とケージ部4とが左右方向の間隔が右から左に向かって広がる捩れ変形(捩れ変形B)が生じた状態を示す。この場合、Y方向、Z方向の火炉2とケージ部4との相対変位はない。しかし、X方向は、右側では相対変位は測定されないものの、左方向に向かうにつれて、X方向の相対変位が大きくなる。すなわち、X方向の成分波形の差分の振幅が、右から左に向かって広がるように測定される。
FIG. 7 shows a state in which a torsional deformation (twisting deformation B) occurs in which the distance between the furnace 2 and the cage portion 4 increases from right to left in the left-right direction. In this case, there is no relative displacement between the furnace 2 in the Y direction and the Z direction and the cage portion 4. However, in the X direction, although the relative displacement is not measured on the right side, the relative displacement in the X direction increases toward the left. That is, the amplitude of the difference between the component waveforms in the X direction is measured so as to spread from right to left.
図8は、火炉2とケージ部4とが左右方向の間隔が左から右に向かって広がる捩れ変形(捩れ変形C)が生じた状態を示す。この場合、Y方向、Z方向の火炉2とケージ部4との相対変位はない。しかし、X方向は、左側では相対変位は測定されないものの、右方向に向かうにつれて、X方向の相対変位が大きくなる。すなわち、X方向の成分波形の差分の振幅が、左から右に向かって広がるように測定される。
FIG. 8 shows a state in which a torsional deformation (twisting deformation C) occurs in which the distance between the furnace 2 and the cage portion 4 increases from left to right in the left-right direction. In this case, there is no relative displacement between the furnace 2 in the Y direction and the Z direction and the cage portion 4. However, in the X direction, although the relative displacement is not measured on the left side, the relative displacement in the X direction increases toward the right. That is, the amplitude of the difference between the component waveforms in the X direction is measured so as to spread from left to right.
本実施形態によれば、火炉2とケージ部4との対向面に振動検出センサを取り付け、検出したセンサデータを相対変位量に変換して地震モニタリング装置103に出力する。地震モニタリング装置103は、相対変位量が損傷の許容値を超えるか超えないかを判定する。
According to this embodiment, a vibration detection sensor is attached to the facing surface between the furnace 2 and the cage portion 4, and the detected sensor data is converted into a relative displacement amount and output to the earthquake monitoring device 103. The seismic monitoring device 103 determines whether the relative displacement amount exceeds or does not exceed the damage tolerance.
また、振動検出センサは、上下方向の複数段及び左右方向の複数列に取り付けられるので、火炉2及びケージ部4の相対変位量に関して、対向面の相対変位を測定できる。これにより、火炉2及びケージ部4がどのような周期や方向でどのように運動したかを測定することができ、火炉2及びケージ部4に破損が生じるかを推定しやすくなる。
Further, since the vibration detection sensors are mounted in a plurality of stages in the vertical direction and in a plurality of rows in the horizontal direction, the relative displacements of the facing surfaces can be measured with respect to the relative displacement amounts of the furnace 2 and the cage portion 4. As a result, it is possible to measure how the furnace 2 and the cage portion 4 move in what period and direction, and it becomes easy to estimate whether the furnace 2 and the cage portion 4 will be damaged.
特に、ノーズ22a近傍や、燃焼ガスの流路方向変更部位X付近の高さ位置L1とL2の相対変位を測定することで、火炉2及びケージ部4の高さ方向の弾性変形を考慮して、火炉2及びケージ部4の相対変位を測定することができる。
In particular, by measuring the relative displacements of the height positions L1 and L2 in the vicinity of the nose 22a and the vicinity of the flow path direction changing portion X of the combustion gas, the elastic deformation in the height direction of the furnace 2 and the cage portion 4 is taken into consideration. , The relative displacement of the furnace 2 and the cage portion 4 can be measured.
また、前側バックステー25f及び後側バックステー25bのそれぞれには、左右方向に沿って3つの相対変位検出センサが取り付けられるので、火炉2及びケージ部4のそれぞれについて左右方向の捩れ、すなわち、左右端部と中央部の3か所のいずれかに変形が生じたときにも測定がしやすくなる。
Further, since three relative displacement detection sensors are attached to each of the front back stay 25f and the rear back stay 25b along the left-right direction, the furnace 2 and the cage portion 4 are twisted in the left-right direction, that is, left and right. It is easy to measure even when deformation occurs at any of the three points, the edge and the center.
特に、振動検出センサとして3軸加速度センサを用い、火炉2及びケージ部4の対向面の各点におけるX方向、Y方向、Z方向の振動を検出して解析することにより、火炉2及びケージ部4のX方向、Y方向、Z方向の各方向における運動量を測定でき、どのような捩れ変形が生じているかを推定することができる。その推定結果から、破損が生じやすい捩れ変形が生じている場合は、速やかに修理準備に着手でき、ボイラ1の破損による稼働停止時間を短縮、ひいては系統への送電停止時間の短縮につながるという効果が期待できる。
In particular, a 3-axis accelerometer is used as a vibration detection sensor, and vibrations in the X, Y, and Z directions at points on the facing surfaces of the furnace 2 and the cage 4 are detected and analyzed to detect and analyze the vibrations in the furnace 2 and the cage 4. The momentum in each of the X, Y, and Z directions of 4 can be measured, and what kind of torsional deformation is occurring can be estimated. From the estimation result, if there is a torsional deformation that is easily damaged, the repair preparation can be started promptly, the operation stop time due to the damage of the boiler 1 can be shortened, and the power transmission stop time to the grid can be shortened. Can be expected.
振動検出センサとして3軸加速度センサに代えて、接触型距離センサ又は非接触型距離センサを用いてもよい。接触型距離センサとして、例えば、ステンレスのワイヤが出し引きされた長さを電気的に出力するワイヤ式変位計を用いてもよい。また、コイルを用いたトランス方式変位計を用いてもよい。更に、内部にスケール(物差し)を備えたスケール方式変位計を用いてもよい。更に、絶対値ガラススケールをCMOSセンサで高速撮影する用いたスケールショットシステムを用いてもよい。
As the vibration detection sensor, a contact type distance sensor or a non-contact type distance sensor may be used instead of the 3-axis acceleration sensor. As the contact type distance sensor, for example, a wire type displacement meter that electrically outputs the length from which the stainless steel wire is pulled out may be used. Further, a transformer type displacement meter using a coil may be used. Further, a scale type displacement meter having a scale (ruler) inside may be used. Further, a scale shot system in which the absolute value glass scale is photographed at high speed with a CMOS sensor may be used.
また、非接触型距離センサの例として、超音波距離計、Lidar、赤外線センサを用いてもよい。距離センサを用いた場合でも、複数の距離センサを火炉2とケージ部4との対向面に配置することにより、対向面同士の相対変位を測定することで、火炉2とケージ部4の運動推定、ひいては破損予測が可能となる。
Further, as an example of the non-contact type distance sensor, an ultrasonic range finder, a lidar, or an infrared sensor may be used. Even when a distance sensor is used, the motion estimation of the furnace 2 and the cage portion 4 is performed by arranging a plurality of distance sensors on the facing surfaces of the furnace 2 and the cage portion 4 and measuring the relative displacement between the facing surfaces. As a result, damage can be predicted.
第1実施形態では相対変位が解析できればよいので、火炉後壁22又はケージ前壁41のいずれか一方に振動検出センサを備える態様であっても実現可能である。これに対し、後述する第2実施形態において、火炉2の運動量の瞬間値、及びケージ部4の運動量の瞬間値をそれぞれ監視する態様は、火炉後壁22又はケージ前壁41のそれぞれに少なくとも1つ以上の振動検出センサを備えることで実現可能である。なお、第1実施形態と第2実施形態とを組み合わせて、第1実施形態で用いる振動検出センサのセンサデータが示す運動量の瞬間値を監視する場合は、火炉後壁22又はケージ前壁41のいずれか一方に備えられた振動検出センサのセンサデータが示す運動量と後述する警告閾値とを比較すればよい。
In the first embodiment, since it is sufficient that the relative displacement can be analyzed, it is feasible even if the vibration detection sensor is provided on either the rear wall 22 of the furnace or the front wall 41 of the cage. On the other hand, in the second embodiment described later, the mode of monitoring the instantaneous value of the momentum of the furnace 2 and the instantaneous value of the momentum of the cage portion 4 is at least 1 for each of the furnace rear wall 22 or the cage front wall 41. This can be achieved by providing one or more vibration detection sensors. When monitoring the instantaneous value of momentum indicated by the sensor data of the vibration detection sensor used in the first embodiment by combining the first embodiment and the second embodiment, the rear wall 22 of the furnace or the front wall 41 of the cage The momentum indicated by the sensor data of the vibration detection sensor provided in either one may be compared with the warning threshold described later.
<第2実施形態>
第2実施形態は、振動検出センサ101A1~101Anのセンサデータが示す運動量(本実施形態では加速度と変位)の瞬間値に対して、予め警告閾値を設定しておき、警告閾値以上となると警告を発する実施形態である。第1実施形態が、火炉2とケージ部4との相対変位に着目して地震モニタリングを行う実施形態であるのに対し、本実施形態では、相対変位ではなく、センサデータが示す運動量の瞬間値に着目する点で異なる。警告閾値は、センサデータが示す運動量の瞬間値の変動を許容する範囲(許容範囲)の上限値及び下限値のそれぞれに相当する。許容範囲内、即ちセンサデータの瞬間値が許容範囲の下限値より大きく上限値未満であれば、警告は発しない。 <Second Embodiment>
In the second embodiment, a warning threshold value is set in advance for the instantaneous value of the momentum (acceleration and displacement in this embodiment) indicated by the sensor data of the vibration detection sensors 101A1 to 101An, and a warning is issued when the warning threshold value or more is reached. It is an embodiment that emits. The first embodiment is an embodiment in which seismic monitoring is performed focusing on the relative displacement between thefurnace 2 and the cage portion 4, whereas in the present embodiment, the instantaneous value of the momentum indicated by the sensor data is not the relative displacement. It differs in that it focuses on. The warning threshold value corresponds to each of the upper limit value and the lower limit value of the range (allowable range) in which the instantaneous value of the momentum indicated by the sensor data is allowed to fluctuate. If it is within the permissible range, that is, if the instantaneous value of the sensor data is greater than the lower limit value of the permissible range and less than the upper limit value, no warning is issued.
第2実施形態は、振動検出センサ101A1~101Anのセンサデータが示す運動量(本実施形態では加速度と変位)の瞬間値に対して、予め警告閾値を設定しておき、警告閾値以上となると警告を発する実施形態である。第1実施形態が、火炉2とケージ部4との相対変位に着目して地震モニタリングを行う実施形態であるのに対し、本実施形態では、相対変位ではなく、センサデータが示す運動量の瞬間値に着目する点で異なる。警告閾値は、センサデータが示す運動量の瞬間値の変動を許容する範囲(許容範囲)の上限値及び下限値のそれぞれに相当する。許容範囲内、即ちセンサデータの瞬間値が許容範囲の下限値より大きく上限値未満であれば、警告は発しない。 <Second Embodiment>
In the second embodiment, a warning threshold value is set in advance for the instantaneous value of the momentum (acceleration and displacement in this embodiment) indicated by the sensor data of the vibration detection sensors 101A1 to 101An, and a warning is issued when the warning threshold value or more is reached. It is an embodiment that emits. The first embodiment is an embodiment in which seismic monitoring is performed focusing on the relative displacement between the
以下の説明では、振動検出センサとして3軸加速度センサを用い、センサデータが示す加速度の瞬間値と、加速度を基に算出した変位の瞬間値を監視対象とする。
In the following explanation, a 3-axis acceleration sensor is used as the vibration detection sensor, and the instantaneous value of the acceleration indicated by the sensor data and the instantaneous value of the displacement calculated based on the acceleration are monitored.
又は振動検出センサとして、ゲージセンサや距離センサを併用し、これらのセンサデータを基に変位の瞬間値を監視対象としてもよい。また、ゲージセンサや距離センサを用いて、これらのセンサデータを基に加速度を算出して監視対象としてもよい。
Alternatively, a gauge sensor or a distance sensor may be used together as a vibration detection sensor, and the instantaneous value of displacement may be monitored based on these sensor data. Further, a gauge sensor or a distance sensor may be used to calculate the acceleration based on these sensor data and use it as a monitoring target.
また、加速度のみ、又は変位のみを監視対象としてもよい。
Also, only acceleration or only displacement may be monitored.
図9は、第2実施形態に係るボイラ1の地震モニタリングシステム100aの概略構成図である。なお、第2実施形態では、ネットワーク105はクラウド環境を構築するためのネットワークである。そして、ボイラ1に設置された振動検出センサ101A1、101A2、101A3、・・・、101Anとセンタ110とは、ネットワーク105を介して通信接続される。
FIG. 9 is a schematic configuration diagram of the earthquake monitoring system 100a of the boiler 1 according to the second embodiment. In the second embodiment, the network 105 is a network for constructing a cloud environment. Then, the vibration detection sensors 101A1, 101A2, 101A3, ..., 101An installed in the boiler 1 and the center 110 are communicated and connected via the network 105.
ネットワーク105には、ボイラ1の運転作業員が携帯する携帯端末装置104aと、ボイラ1が設置された火力発電所の制御室に置かれた制御卓104bが通信接続されてもよい。そして、地震モニタリング装置103からの警告が、センタ110の出力装置104の他、携帯端末装置104aや制御卓104bに出力されてもよい。
The network 105 may be connected by communication between the portable terminal device 104a carried by the operator of the boiler 1 and the control console 104b placed in the control room of the thermal power plant in which the boiler 1 is installed. Then, the warning from the earthquake monitoring device 103 may be output to the mobile terminal device 104a or the control console 104b in addition to the output device 104 of the center 110.
以下、図10を参照して第2実施形態における地震モニタリング処理の流れを説明する。図10は、第2実施形態に係る地震モニタリング処理の流れを示すフローチャートである。
Hereinafter, the flow of the earthquake monitoring process in the second embodiment will be described with reference to FIG. FIG. 10 is a flowchart showing the flow of the earthquake monitoring process according to the second embodiment.
地震モニタリング装置103は、振動検出センサ101A1~101Anから出力されるセンサデータが示す運動量の瞬間値と比較するための警告閾値を取得する(S201)。図9に示すように、加速度を監視対象とする場合の警告閾値には、正方向の加速度警告閾値(許容範囲の上限値)と、負方向の加速度警告閾値(許容範囲の下限値)とが含まれる。また、変位を監視対象とする場合の警告閾値には、正方向の変位警告閾値(許容範囲の上限値)と、負方向の変位警告閾値(許容範囲の下限値)とが含まれる。これらの警告閾値は、事前にボイラ1の構造解析をした結果得られた値を基に定めてもよいし、設計値から定めてもよい。
The earthquake monitoring device 103 acquires a warning threshold value for comparison with the instantaneous value of momentum indicated by the sensor data output from the vibration detection sensors 101A1 to 101An (S201). As shown in FIG. 9, the warning threshold value when acceleration is monitored includes a positive acceleration warning threshold value (upper limit value of the allowable range) and a negative acceleration warning threshold value (lower limit value of the allowable range). included. Further, the warning threshold value when the displacement is monitored includes a displacement warning threshold value in the positive direction (upper limit value of the allowable range) and a displacement warning threshold value in the negative direction (lower limit value of the allowable range). These warning thresholds may be determined based on the values obtained as a result of structural analysis of the boiler 1 in advance, or may be determined from the design values.
地震モニタリング装置103はネットワーク105を介して全ての振動検出センサ101A1~101Anのセンサデータを取得する(S202)。
The earthquake monitoring device 103 acquires the sensor data of all the vibration detection sensors 101A1 to 101An via the network 105 (S202).
地震モニタリング装置103は、全ての振動検出センサ101A1~101Anからのセンサデータが示す加速度が許容範囲に含まれる、即ち負方向の加速度警告閾値よりも大きく、正方向の加速度警告閾値未満であれば、加速度は許容範囲に収まっていると判断する(S203:YES)。
If the acceleration indicated by the sensor data from all the vibration detection sensors 101A1 to 101An is included in the permissible range, that is, if the acceleration is larger than the negative acceleration warning threshold and less than the positive acceleration warning threshold, the seismic monitoring device 103 is used. It is determined that the acceleration is within the permissible range (S203: YES).
更に地震モニタリング装置103は、全ての振動検出センサ101A1~101Anからのセンサデータが示す変位が許容範囲に含まれる、即ち負方向の変位警告閾値よりも大きく、正方向の変位警告閾値未満であれば、変位は許容範囲に収まっていると判断する(S204:YES)。
Further, in the seismic monitoring device 103, if the displacement indicated by the sensor data from all the vibration detection sensors 101A1 to 101An is included in the allowable range, that is, if it is larger than the displacement warning threshold in the negative direction and less than the displacement warning threshold in the positive direction. , It is determined that the displacement is within the permissible range (S204: YES).
一方、一つ以上の振動検出センサ101A1~101Anからのセンサデータが示す加速度が正方向の加速度警告閾値以上、又は負方向の加速度警告閾値以下となった場合(S203:NO)、又は一つ以上の振動検出センサ101A1~101Anからのセンサデータが示す変位が正方向の変位警告閾値以上、又は負方向の変位警告閾値以下となった場合(S204:NO)、出力装置104に対して警告情報を出力する(S205)。
On the other hand, when the acceleration indicated by the sensor data from one or more vibration detection sensors 101A1 to 101An is equal to or more than the acceleration warning threshold in the positive direction or equal to or less than the acceleration warning threshold in the negative direction (S203: NO), or one or more. When the displacement indicated by the sensor data from the vibration detection sensors 101A1 to 101An is equal to or greater than the displacement warning threshold in the positive direction or equal to or less than the displacement warning threshold in the negative direction (S204: NO), warning information is sent to the output device 104. Output (S205).
警告情報の出力態様は、出力装置104の画面に表示してもよい。また、地震モニタリング装置103からネットワーク105を介して携帯端末装置104a、制御卓104bに警告情報を送信してもよい。その際、警告情報として、センサデータ(RAWデータ)などが記載されたレポートをアップロードしたURLを送ってもよい。
The output mode of the warning information may be displayed on the screen of the output device 104. Further, the warning information may be transmitted from the earthquake monitoring device 103 to the mobile terminal device 104a and the control console 104b via the network 105. At that time, as warning information, the URL where the report containing the sensor data (RAW data) or the like is uploaded may be sent.
ステップS203とステップS204とは逆順でもよい。また、加速度のみを監視対象とする場合はステップS204をスキップし、変位のみを監視対象とする場合はステップS203をスキップする。
Step S203 and step S204 may be in reverse order. Further, when only the acceleration is to be monitored, step S204 is skipped, and when only the displacement is to be monitored, step S203 is skipped.
地震モニタリング装置103は、取得した全てのセンサデータの瞬間値が許容範囲に収まっており(S204:YES)、地震モニタリング処理を終了しない場合は(S206:NO)、ステップS201へ戻る。地震モニタリング処理を終了する場合は(S206:YES)、本処理を終了する。
The earthquake monitoring device 103 returns to step S201 when the instantaneous values of all the acquired sensor data are within the permissible range (S204: YES) and the earthquake monitoring process is not completed (S206: NO). When the earthquake monitoring process is terminated (S206: YES), this process is terminated.
本実施形態によれば、センサデータの瞬間値を監視対象とすることで、火炉2、ケージ部4の各部位の運動状態を監視してボイラ1の損傷を予測したり監視したりすることができる。
According to the present embodiment, by monitoring the instantaneous value of the sensor data, it is possible to monitor the motion state of each part of the furnace 2 and the cage portion 4 to predict or monitor the damage of the boiler 1. it can.
例えば、火炉2とケージ部4とが同一方向にほぼ等しい加速度又は変位を伴って運動すると、相対変位の変化量だけでは、火炉2及びケージ部4がどのように運動したかが測定しづらい。しかし、本実施形態では、各センサデータの瞬間値と警告閾値とを比較するので、相対変位には表れにくい動きも測定し、警告することができる。
For example, when the furnace 2 and the cage 4 move in the same direction with substantially the same acceleration or displacement, it is difficult to measure how the furnace 2 and the cage 4 move only by the amount of change in the relative displacement. However, in the present embodiment, since the instantaneous value of each sensor data is compared with the warning threshold value, it is possible to measure and warn the movement that is unlikely to appear in the relative displacement.
なお、本発明は上記した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変形が可能であり、請求の範囲に記載された技術思想に含まれる技術的事項の全てが本発明の対象となる。前記実施形態は、好適な例を示したものであるが、当業者ならば、本明細書に開示の内容から、各種の代替例、修正例、変形例あるいは改良例を実現することができ、これらは添付の特許請求の範囲に記載された技術的範囲に含まれる。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. It is the subject of the invention. Although the above-described embodiment shows a suitable example, those skilled in the art can realize various alternative examples, modified examples, modified examples, or improved examples from the contents disclosed in the present specification. These are included in the technical scope described in the appended claims.
また、第1実施形態及び第2実施形態を一つのボイラ1に対して併用してもよい。
Further, the first embodiment and the second embodiment may be used together for one boiler 1.
1 :ボイラ
2 :火炉
3 :副側壁部
4 :ケージ部
12b、12f:鉄骨柱
13b、13f:サイスミックタイ
20 :バーナ
21 :火炉前壁
22 :火炉後壁
22a :ノーズ
23 :火炉側壁
24 :火炉天井壁
25b :後側バックステー
25f :前側バックステー
33 :側壁
34 :天井壁
35 :底壁
41 :ケージ前壁
42 :ケージ後壁
43 :ケージ側壁
44 :ケージ天井壁
100、100a:地震モニタリングシステム
101A1~101A6,101An:3軸加速度センサ(振動検出センサ)
102 :データ収集装置
103 :地震モニタリング装置
104 :出力装置
104a :携帯端末装置
104b :制御卓
105 :ネットワーク
106 :第1通信装置
107 :第2通信装置
110 :センタ 1: Boiler 2: Fire furnace 3: Sub-side wall part 4: Cage part 12b, 12f: Steel column 13b, 13f: System tie 20: Burner 21: Fire furnace front wall 22: Fire furnace rear wall 22a: Nose 23: Fire furnace side wall 24: Boiler ceiling wall 25b: Rear back stay 25f: Front back stay 33: Side wall 34: Ceiling wall 35: Bottom wall 41: Cage front wall 42: Cage rear wall 43: Cage side wall 44: Cage ceiling wall 100, 100a: Seismic monitoring System 101A1 to 101A6,101An: 3-axis accelerometer (vibration detection sensor)
102: Data acquisition device 103: Earthquake monitoring device 104:Output device 104a: Mobile terminal device 104b: Control console 105: Network 106: First communication device 107: Second communication device 110: Center
2 :火炉
3 :副側壁部
4 :ケージ部
12b、12f:鉄骨柱
13b、13f:サイスミックタイ
20 :バーナ
21 :火炉前壁
22 :火炉後壁
22a :ノーズ
23 :火炉側壁
24 :火炉天井壁
25b :後側バックステー
25f :前側バックステー
33 :側壁
34 :天井壁
35 :底壁
41 :ケージ前壁
42 :ケージ後壁
43 :ケージ側壁
44 :ケージ天井壁
100、100a:地震モニタリングシステム
101A1~101A6,101An:3軸加速度センサ(振動検出センサ)
102 :データ収集装置
103 :地震モニタリング装置
104 :出力装置
104a :携帯端末装置
104b :制御卓
105 :ネットワーク
106 :第1通信装置
107 :第2通信装置
110 :センタ 1: Boiler 2: Fire furnace 3: Sub-side wall part 4:
102: Data acquisition device 103: Earthquake monitoring device 104:
Claims (12)
- 火炉及び前記火炉の後部にケージ部を備えたボイラの地震モニタリングシステムであって、
前記火炉における前記ケージ部に対向する火炉後壁及び前記ケージ部における前記火炉後壁に対向するケージ前壁の振動を検出し、センサデータを出力する振動検出センサと、
前記センサのデータに基づいて、前記火炉と前記ケージ部との3次元方向の相対変位を解析する地震モニタリング装置と、
前記地震モニタリング装置による解析結果を出力する出力装置と、を備え、
前記振動検出センサは、前記火炉後壁及び前記ケージ前壁の少なくとも一つに配置される、
ことを特徴とするボイラの地震モニタリングシステム。 An earthquake monitoring system for a boiler equipped with a cage at the rear of the furnace and the furnace.
A vibration detection sensor that detects the vibration of the rear wall of the furnace facing the cage portion in the furnace and the front wall of the cage facing the rear wall of the furnace in the cage portion and outputs sensor data.
An earthquake monitoring device that analyzes the relative displacement of the furnace and the cage portion in the three-dimensional direction based on the data of the sensor.
It is equipped with an output device that outputs the analysis result by the earthquake monitoring device.
The vibration detection sensor is arranged on at least one of the furnace rear wall and the cage front wall.
The boiler's seismic monitoring system is characterized by this. - 請求項1に記載のボイラの地震モニタリングシステムにおいて、
前記火炉後壁は、軸方向を上下方向と平行に配置した複数の伝熱管を左右方向に並べて構成され、これら複数の伝熱管を繋いで左右方向に延在する前側バックステーを備え、
前記ケージ前壁は、軸方向を上下方向と平行に配置した複数の伝熱管を左右方向に並べて構成され、これら複数の伝熱管を繋いで左右方向に延在する後側バックステーを備え、
前記前側バックステーには、当該前側バックステーの延在方向に沿って複数の振動検出センサが配置され、
前記後側バックステーには、当該後側バックステーの延在方向に沿って複数の振動検出センサが配置される、
ことを特徴とするボイラの地震モニタリングシステム。 In the boiler earthquake monitoring system according to claim 1,
The rear wall of the furnace is configured by arranging a plurality of heat transfer tubes arranged in parallel with the vertical direction in the left-right direction, and includes a front back stay extending in the left-right direction by connecting the plurality of heat transfer tubes.
The front wall of the cage is configured by arranging a plurality of heat transfer tubes arranged in parallel with the vertical direction in the left-right direction, and includes a rear back stay extending in the left-right direction by connecting the plurality of heat transfer tubes.
A plurality of vibration detection sensors are arranged on the front backstay along the extending direction of the front backstay.
A plurality of vibration detection sensors are arranged on the rear back stay along the extending direction of the rear back stay.
The boiler's seismic monitoring system is characterized by this. - 請求項2に記載のボイラの地震モニタリングシステムにおいて、
前記火炉後壁は、異なる高さ位置に備えられた複数段の前記前側バックステーを備え、
前記ケージ前壁は、異なる高さ位置に備えられた複数段の前記後側バックステーを備え、
前記前側バックステーの各段には、当該前側バックステーの延在方向に沿って複数の振動検出センサが配置され、
前記後側バックステーの各段には、当該後側バックステーの延在方向に沿って複数の振動検出センサが配置される、
ことを特徴とするボイラの地震モニタリングシステム。 In the boiler earthquake monitoring system according to claim 2.
The rear wall of the furnace is provided with a plurality of stages of the front backstays provided at different height positions.
The front wall of the cage comprises a plurality of stages of the rear backstays provided at different height positions.
A plurality of vibration detection sensors are arranged in each stage of the front back stay along the extending direction of the front back stay.
A plurality of vibration detection sensors are arranged in each stage of the rear back stay along the extending direction of the rear back stay.
The boiler's seismic monitoring system is characterized by this. - 請求項3に記載のボイラの地震モニタリングシステムにおいて、
複数の前記前側バックステーの少なくとも一段は、前記火炉の上部において、前記火炉内で生じた燃焼ガスが上昇方向から前後方向へと変化する高さ位置近傍に備えられる、
ことを特徴とするボイラの地震モニタリングシステム。 In the boiler earthquake monitoring system according to claim 3,
At least one stage of the plurality of front back stays is provided in the upper part of the furnace in the vicinity of a height position where the combustion gas generated in the furnace changes from the ascending direction to the front-rear direction.
The boiler's seismic monitoring system is characterized by this. - 請求項2に記載のボイラの地震モニタリングシステムにおいて、
前記前側バックステーには、当該前側バックステーの延在方向に沿って少なくとも3つの振動検出センサが配置され、
前記後側バックステーには、当該後側バックステーの延在方向に沿って少なくとも3つの振動検出センサが配置される、
ことを特徴とするボイラの地震モニタリングシステム。 In the boiler earthquake monitoring system according to claim 2.
At least three vibration detection sensors are arranged on the front backstay along the extending direction of the front backstay.
At least three vibration detection sensors are arranged on the rear backstay along the extending direction of the rear backstay.
The boiler's seismic monitoring system is characterized by this. - 請求項1に記載のボイラの地震モニタリングシステムにおいて、
前記振動検出センサは、前記火炉後壁及び前記ケージ前壁のそれぞれに設置された一対の3軸加速度センサ、又は前記火炉後壁及び前記ケージ前壁の少なくとも一方に設置された距離センサである、
ことを特徴とするボイラの地震モニタリングシステム。 In the boiler earthquake monitoring system according to claim 1,
The vibration detection sensor is a pair of three-axis acceleration sensors installed on the rear wall of the furnace and the front wall of the cage, or a distance sensor installed on at least one of the rear wall of the furnace and the front wall of the cage.
The boiler's seismic monitoring system is characterized by this. - 請求項3に記載のボイラの地震モニタリングシステムにおいて、
前記地震モニタリング装置は、同じ高さ位置にある前側バックステー及び後側バックステーのそれぞれに設置された前記振動検出センサのセンサデータを用いて、X方向、Y方向、Z方向の変位に演算し、前側バックステー側のX方向変位と前記後側バックステー側のX方向変位との差分であるX方向差分、前側バックステー側のY方向変位と前記後側バックステー側のY方向変位との差分であるY方向差分、及び前側バックステー側のZ方向変位と前記後側バックステー側のZ方向変位との差分であるZ方向差分を演算し、前記X方向差分、前記Y方向差分、及び前記Z方向差分に基づいて、前記火炉と前記ケージ部との相対変位を評価する、
ことを特徴とするボイラの地震モニタリングシステム。 In the boiler earthquake monitoring system according to claim 3,
The seismic monitoring device calculates displacements in the X, Y, and Z directions using the sensor data of the vibration detection sensor installed in each of the front backstay and the rear backstay at the same height position. , The X-direction difference, which is the difference between the X-direction displacement on the front backstay side and the X-direction displacement on the rear backstay side, and the Y-direction displacement on the front backstay side and the Y-direction displacement on the rear backstay side. The Y-direction difference, which is the difference, and the Z-direction difference, which is the difference between the Z-direction displacement on the front backstay side and the Z-direction displacement on the rear backstay side, are calculated, and the X-direction difference, the Y-direction difference, and the Y-direction difference are calculated. Based on the Z-direction difference, the relative displacement between the furnace and the cage portion is evaluated.
The boiler's seismic monitoring system is characterized by this. - 請求項7に記載のボイラの地震モニタリングシステムにおいて、
前記地震モニタリング装置は、前記火炉と前記ケージ部との相対位置が左右方向に変位した捩れ変形、前記火炉及び前記ケージ部との相対位置が右から左に広がる捩れ変形、又は前記火炉及び前記ケージ部との相対位置が左から右に広がる捩れ変形のいずれの捩れ変形をしているかを解析する、
ことを特徴とするボイラの地震モニタリングシステム。 In the boiler earthquake monitoring system according to claim 7.
The seismic monitoring device includes a torsional deformation in which the relative positions of the furnace and the cage portion are displaced in the left-right direction, a torsional deformation in which the relative positions of the furnace and the cage portion spread from right to left, or the furnace and the cage. Analyze which of the torsional deformations the relative position with the part spreads from left to right is the torsional deformation.
The boiler's seismic monitoring system is characterized by this. - 請求項1に記載のボイラの地震モニタリングシステムにおいて、
前記地震モニタリング装置は、前記センサデータが示す前記火炉及び前記ゲージ部のそれぞれの運動量の瞬間値と、前記瞬間値の変動を許容する許容範囲の限界値からなる警告閾値と、を比較し、
前記瞬間値が前記警告閾値と同一又は前記許容範囲から逸脱すると、前記出力装置に対して警告情報を出力する、
ことを特徴とするボイラの地震モニタリングシステム。 In the boiler earthquake monitoring system according to claim 1,
The seismic monitoring device compares the instantaneous values of the momentums of the furnace and the gauge unit indicated by the sensor data with the warning threshold value consisting of the limit value of the permissible range that allows the fluctuation of the instantaneous value.
When the instantaneous value is the same as the warning threshold value or deviates from the permissible range, warning information is output to the output device.
The boiler's seismic monitoring system is characterized by this. - 請求項9に記載のボイラの地震モニタリングシステムであって、
前記地震モニタリング装置は、前記瞬間値として、加速度又は変位を用いる、
ことを特徴とするボイラの地震モニタリングシステム。 The boiler earthquake monitoring system according to claim 9.
The seismic monitoring device uses acceleration or displacement as the instantaneous value.
The boiler's seismic monitoring system is characterized by this. - 火炉及び前記火炉の後部にケージ部を備えたボイラの地震モニタリングシステムであって、
前記火炉における前記ケージ部に対向する火炉後壁及び前記ケージ部における前記火炉後壁に対向するケージ前壁の振動を検出し、センサデータを出力する振動検出センサと、
前記センサのデータに基づいて、前記火炉と前記ケージ部との運動を解析する地震モニタリング装置と、
前記地震モニタリング装置による解析結果を出力する出力装置と、を備え、
前記振動検出センサは、前記火炉後壁に少なくとも一つ、及び前記ケージ前壁に少なくとも一つに配置され、
前記地震モニタリング装置は、前記センサデータが示す前記火炉及び前記ゲージ部のそれぞれの運動量の瞬間値と、前記瞬間値の変動を許容する許容範囲の限界値からなる警告閾値と、を比較し、
前記瞬間値が前記警告閾値と同一又は前記許容範囲から逸脱すると、前記出力装置に対して警告情報を出力する、
ことを特徴とするボイラの地震モニタリングシステム。 An earthquake monitoring system for a boiler equipped with a cage at the rear of the furnace and the furnace.
A vibration detection sensor that detects the vibration of the rear wall of the furnace facing the cage portion in the furnace and the front wall of the cage facing the rear wall of the furnace in the cage portion and outputs sensor data.
An earthquake monitoring device that analyzes the motion between the furnace and the cage based on the data from the sensor.
It is equipped with an output device that outputs the analysis result by the earthquake monitoring device.
The vibration detection sensor is arranged at least one on the rear wall of the furnace and at least one on the front wall of the cage.
The seismic monitoring device compares the instantaneous values of the momentums of the furnace and the gauge unit indicated by the sensor data with the warning threshold value consisting of the limit value of the permissible range that allows the fluctuation of the instantaneous value.
When the instantaneous value is the same as the warning threshold value or deviates from the permissible range, warning information is output to the output device.
The boiler's seismic monitoring system is characterized by this. - 火炉及び前記火炉の後部にケージ部を備えたボイラの地震モニタリング装置であって、
前記火炉における前記ケージ部に対向する火炉後壁及び前記ケージ部における前記火炉後壁に対向するケージ前壁の少なくとも一方には、前記火炉後壁及び前記ケージ前壁の振動を検出し、この振動データに基づいて前記火炉と前記ケージ部との3次元方向の相対変位を解析し、当該解析結果を出力する、
ことを特徴とするボイラの地震モニタリング装置。
An earthquake monitoring device for a boiler equipped with a cage at the rear of the furnace and the furnace.
Vibrations of the furnace rear wall and the cage front wall are detected in at least one of the furnace rear wall facing the cage portion in the furnace and the cage front wall facing the furnace rear wall in the cage portion, and the vibrations are detected. Based on the data, the relative displacement of the furnace and the cage portion in the three-dimensional direction is analyzed, and the analysis result is output.
Boiler seismic monitoring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021565420A JP7058811B2 (en) | 2019-12-20 | 2020-11-26 | Boiler seismic monitoring system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-230769 | 2019-12-20 | ||
JP2019230769 | 2019-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021124827A1 true WO2021124827A1 (en) | 2021-06-24 |
Family
ID=76477511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/044011 WO2021124827A1 (en) | 2019-12-20 | 2020-11-26 | Earthquake monitoring system for boiler, and earthquake monitoring device for boiler |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7058811B2 (en) |
TW (1) | TWI750936B (en) |
WO (1) | WO2021124827A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05322103A (en) * | 1992-05-21 | 1993-12-07 | Babcock Hitachi Kk | Vibration-damping supporting structure for boiler |
JPH09178109A (en) * | 1995-12-25 | 1997-07-11 | Babcock Hitachi Kk | Seismic tie for boiler |
JP2009204604A (en) * | 2008-01-31 | 2009-09-10 | Mitsubishi Heavy Ind Ltd | Inspection apparatus and inspection method for boiler furnace steam generating tube |
EP2784548A2 (en) * | 2013-03-29 | 2014-10-01 | Korea Institute of Geoscience & Mineral Resources | Earthquake monitoring sensor and earthquake monitoring system including the same |
JP2019100914A (en) * | 2017-12-05 | 2019-06-24 | 四国電力株式会社 | Vibration monitoring system |
JP2020148394A (en) * | 2019-03-13 | 2020-09-17 | 三菱日立パワーシステムズ株式会社 | Boiler device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10203268B2 (en) * | 2008-12-04 | 2019-02-12 | Laura P. Solliday | Methods for measuring and modeling the process of prestressing concrete during tensioning/detensioning based on electronic distance measurements |
US9599750B2 (en) * | 2013-10-14 | 2017-03-21 | Hunt Energy Enterprises L.L.C. | Electroseismic surveying in exploration and production environments |
US10060688B2 (en) * | 2014-07-25 | 2018-08-28 | Integrated Test & Measurement (ITM) | System and methods for detecting, monitoring, and removing deposits on boiler heat exchanger surfaces using vibrational analysis |
-
2020
- 2020-11-26 WO PCT/JP2020/044011 patent/WO2021124827A1/en active Application Filing
- 2020-11-26 JP JP2021565420A patent/JP7058811B2/en active Active
- 2020-12-07 TW TW109142982A patent/TWI750936B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05322103A (en) * | 1992-05-21 | 1993-12-07 | Babcock Hitachi Kk | Vibration-damping supporting structure for boiler |
JPH09178109A (en) * | 1995-12-25 | 1997-07-11 | Babcock Hitachi Kk | Seismic tie for boiler |
JP2009204604A (en) * | 2008-01-31 | 2009-09-10 | Mitsubishi Heavy Ind Ltd | Inspection apparatus and inspection method for boiler furnace steam generating tube |
EP2784548A2 (en) * | 2013-03-29 | 2014-10-01 | Korea Institute of Geoscience & Mineral Resources | Earthquake monitoring sensor and earthquake monitoring system including the same |
JP2019100914A (en) * | 2017-12-05 | 2019-06-24 | 四国電力株式会社 | Vibration monitoring system |
JP2020148394A (en) * | 2019-03-13 | 2020-09-17 | 三菱日立パワーシステムズ株式会社 | Boiler device |
Also Published As
Publication number | Publication date |
---|---|
TWI750936B (en) | 2021-12-21 |
TW202142838A (en) | 2021-11-16 |
JPWO2021124827A1 (en) | 2021-06-24 |
JP7058811B2 (en) | 2022-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007333635A (en) | Bridge soundness evaluation system, bridge soundness evaluation method and bridge soundness evaluation program | |
CN103940903B (en) | A kind of truss structure Joint Damage detecting system and its method | |
CN106321968A (en) | Spring support hanger with automatic monitoring, analyzing and early warning functions | |
CN112162034B (en) | Steel-concrete combined beam damage identification method applying structural noise | |
JP5306561B1 (en) | Tube leak detection device and tube leak detection method | |
CN103759868B (en) | A kind of bridge lateral based on stress proportion couples real time evaluating method | |
CN104019849A (en) | Steel penstock and expansion joint operating parameter automatic monitoring system and evaluation method thereof | |
JP2016109611A (en) | Displacement measuring device | |
WO2021124827A1 (en) | Earthquake monitoring system for boiler, and earthquake monitoring device for boiler | |
CN111256102B (en) | Boiler expansion monitoring method and system | |
CN106197564B (en) | A kind of method and system suitable for identifying connection Complexed Prostate Specific Antigen | |
JP6438945B2 (en) | Method and system for monitoring mass changes in a steam boiler heat exchanger | |
JP7050194B1 (en) | Boiler damage estimation system and boiler damage estimation device | |
JP4326453B2 (en) | Two-dimensional wind tunnel and wind resistance stability evaluation method | |
CN109753679B (en) | Visual monitoring method and system for dust accumulation blockage of air preheater | |
JP2009168378A (en) | Clinker distribution imaging apparatus for piping in coal burning boiler | |
CN110926741B (en) | High-temperature-resistant high-strength L-shaped structure response guide rod with heat insulation naan | |
CN110285939B (en) | Railway steel bridge node welding line random crack propagation inhibition system based on vibration control | |
CN110702392A (en) | Pantograph equivalent parameter testing method and system | |
CN104776420A (en) | Boiler superheater slagging diagnosis method and system on basis of vibration signal characteristic analysis | |
CN213178312U (en) | CFB boiler running state monitoring system | |
CN105607549B (en) | Flue gas washing absorption cleaning heat exchange tower with life-span real-time estimate function | |
TW202324280A (en) | Monitoring and feedback system for building structure and operation method thereof | |
Adel et al. | Study of Wind Turbine Blades under Static Loading Using Acoustic Emission Method | |
JP3793787B2 (en) | P wave detection method of earthquake motion and alarm issuing method based on it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20903665 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021565420 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20903665 Country of ref document: EP Kind code of ref document: A1 |