WO2021124377A1 - エンコーダ装置及びその使用方法、駆動装置、ステージ装置、並びにロボット装置 - Google Patents

エンコーダ装置及びその使用方法、駆動装置、ステージ装置、並びにロボット装置 Download PDF

Info

Publication number
WO2021124377A1
WO2021124377A1 PCT/JP2019/049083 JP2019049083W WO2021124377A1 WO 2021124377 A1 WO2021124377 A1 WO 2021124377A1 JP 2019049083 W JP2019049083 W JP 2019049083W WO 2021124377 A1 WO2021124377 A1 WO 2021124377A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
electric signal
position detection
detection unit
power supply
Prior art date
Application number
PCT/JP2019/049083
Other languages
English (en)
French (fr)
Inventor
桂 阿部
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76478622&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021124377(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/049083 priority Critical patent/WO2021124377A1/ja
Priority to JP2021565151A priority patent/JP7372604B2/ja
Publication of WO2021124377A1 publication Critical patent/WO2021124377A1/ja
Priority to JP2023179875A priority patent/JP2023181270A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains

Definitions

  • the present invention relates to an encoder device, a method of using the encoder device, a drive device, a stage device, and a robot device.
  • Patent Document 1 a device that detects multi-rotation even without a power source by driving a non-power supply multi-rotation detection circuit by a self-power generation means using a Wiegand wire or other magnetic power generation element is known (for example). , Patent Document 1).
  • a position detection unit that detects the position information of the moving unit, a magnet that moves due to the movement of the moving unit, and an electric signal generating unit that generates an electric signal due to a change in the magnetic field due to the movement of the magnet.
  • an encoder device including a circuit unit that outputs the output of the electric signal generation unit that changes according to the control signal from the position detection unit to the position detection unit are provided.
  • an electric signal is generated by a position detection unit that is supplied with electric power from a power source to detect the position information of the moving unit, a magnet that moves by the movement of the moving unit, and a change in the magnetic field due to the movement of the magnet. It is provided with an electric signal generation unit that generates electric power and a power supply unit that supplies electric power to the position detection unit by the electric signal, and the position detection unit is provided with power supply from the power source when the power supply is cut off. An encoder device is provided that detects the position information before the electric power is supplied from the power supply unit by the electric signal.
  • a drive device including the encoder device of the first or second aspect and a power supply unit for supplying power to the moving unit thereof is provided.
  • a stage device including a moving object and a driving device of a third aspect for moving the moving object is provided.
  • a robot device including the drive device of the third aspect and an arm that is relatively moved by the drive device is provided.
  • an electric signal is generated by a position detection unit that is supplied with electric power from a power source to detect the position information of the moving unit, a magnet that moves by the movement of the moving unit, and a change in the magnetic field due to the movement of the magnet.
  • This is a method of using an encoder device including an electric signal generating unit for generating electric power and a power supply unit for supplying electric power to the position detecting unit by the electric signal, and the position detecting unit is a method of using the electric power from the power source.
  • a usage method is provided that includes detecting the position information before the power is supplied from the power supply unit by the electric signal.
  • FIG. 1 is a perspective view showing a magnet, an electric signal generation unit, and a magnetic sensor in FIG. 1
  • (B) is a plan view showing a magnet and the like of FIG. 2 (A)
  • (C) is a plan view of FIG. 2 (A).
  • (A) is a plan view showing the magnet and the electric signal generation unit of FIG. 2 (A),
  • (B) and (C) are cross-sectional views of FIG. 3 (A), respectively
  • (D) is a plan view showing a modified example.
  • (E) is a side view of FIG. 3 (D).
  • FIG. 9 (A), (B), (C), (D), and (E) are diagrams showing predetermined signals corresponding to the operation of FIG. 9, respectively. It is a figure which shows an example of a drive device. It is a figure which shows an example of a stage apparatus. It is a figure which shows an example of a robot device.
  • FIG. 1 shows an encoder device EC according to the present embodiment.
  • the encoder device EC detects the rotation position information of the rotation axis SF (moving unit) of the motor M (power supply unit).
  • the rotary shaft SF is, for example, a shaft (rotor) of the motor M, but is an action shaft (output shaft) connected to the shaft of the motor M via a power transmission unit such as a transmission and connected to a load. You may.
  • the rotation position information detected by the encoder device EC is supplied to the motor control unit MC.
  • the motor control unit MC controls the rotation (for example, rotation position, rotation speed, etc.) of the motor M by using the rotation position information supplied from the encoder device EC.
  • the motor control unit MC controls the rotation of the rotation shaft SF.
  • the encoder device EC includes a position detection system (position detection unit) 1 and a power supply system (power supply unit) 2.
  • the position detection system 1 detects the rotation position information of the rotation axis SF.
  • the encoder device EC is a so-called multi-rotation absolute encoder, and detects multi-rotation information indicating the number of rotations of the rotation axis SF and rotational position information including angular position information indicating an angular position (rotation angle) of less than one rotation. ..
  • the encoder device EC includes a multi-rotation information detection unit 3 that detects the multi-rotation information of the rotation axis SF, and an angle detection unit 4 that detects the angle position of the rotation axis SF.
  • At least a part of the position detection system 1 (for example, the angle detection unit 4) is turned on (for example, the main power supply) of a device (for example, a drive device, a stage device, a robot device) on which the encoder device EC is mounted. It operates by receiving power from this device in the normal state (normal state). Further, at least a part of the position detection system 1 (for example, the multi-rotation information detection unit 3) is in a state (for example, an emergency state) in which the power supply (for example, the main power supply) of the device on which the encoder device EC is mounted is not turned on. It operates by receiving power from the power supply system 2 in the backup state, etc.).
  • a state for example, an emergency state
  • the power supply system 2 intermittently (for example, the multi-rotation information detection unit 3) with respect to at least a part of the position detection system 1 (for example, the multi-turn information detection unit 3). Power is supplied intermittently), and the position detection system 1 detects at least a part (for example, multi-rotation information) of the rotation position information of the rotation axis SF when the power is supplied from the power supply system 2.
  • the multi-rotation information detection unit 3 detects multi-rotation information by magnetism, for example.
  • the multi-rotation information detection unit 3 includes, for example, a magnet 11, a magnetic detection unit 12, a detection unit 13, and a storage unit 14.
  • the magnet 11 is provided on a disk 15 fixed to the rotating shaft SF. Since the disk 15 rotates together with the rotation axis SF, the magnet 11 rotates in conjunction with the rotation axis SF.
  • the magnet 11 is fixed to the outside of the rotation axis SF, and the relative positions of the magnet 11 and the magnetic detector 12 change with each other due to the rotation of the rotation axis SF.
  • the strength and direction of the magnetic field on the magnetic detector 12 formed by the magnet 11 change with the rotation of the rotation axis SF.
  • the magnetic detection unit 12 detects the magnetic field formed by the magnet 11, and the detection unit 13 detects the position information of the rotation axis SF based on the result of the magnetic detection unit 12 detecting the magnetic field formed by the magnet.
  • the storage unit 14 stores the position information detected by the detection unit 13.
  • the angle detection unit 4 is an optical or magnetic encoder and detects position information (angle position information) within one rotation of the scale. For example, in the case of an optical encoder, for example, by reading the patterning information of the scale with a light receiving element, the angular position within one rotation of the rotation axis SF is detected.
  • the patterning information of the scale is, for example, a light-dark slit on the scale.
  • the angle detection unit 4 detects the angle position information of the same rotation axis SF as the detection target of the multi-rotation information detection unit 3.
  • the angle detection unit 4 includes a light emitting element 21, a scale S, a light receiving sensor 22, and a detection unit 23.
  • the scale S is provided on, for example, a disk 5 fixed to the rotating shaft SF.
  • the scale S includes an incremental scale and an absolute scale.
  • the scale S may be provided on the disk 15 or may be a member integrated with the disk 15.
  • the scale S may be provided on the surface of the disk 15 opposite to the magnet 11.
  • the scale S may be provided on at least one of the inside and the outside of the magnet 11.
  • the light emitting element 21 irradiating unit, light emitting unit irradiates the scale S with light.
  • the light receiving sensor 22 (photodetector) detects the light emitted from the light emitting element 21 and passed through the scale S.
  • the angle detection unit 4 is a transmission type, and the light receiving sensor 22 detects the light transmitted through the scale S.
  • the angle detection unit 4 may be a reflection type.
  • the light receiving sensor 22 supplies a signal indicating the detection result to the detection unit 23.
  • the detection unit 23 detects the angular position of the rotation axis SF by using the detection result of the light receiving sensor 22. For example, the detection unit 23 detects the angular position of the first resolution using the result of detecting the light from the absolute scale. Further, the detection unit 23 detects the angle position of the second resolution higher than the first resolution by performing the interpolation calculation at the angle position of the first resolution using the result of detecting the light from the incremental scale. ..
  • the encoder device EC includes a signal processing unit 25.
  • the signal processing unit 25 calculates and processes the detection result by the position detection system 1.
  • the signal processing unit 25 includes a synthesis unit 26 and an external communication unit 27.
  • the synthesis unit 26 acquires the angle position information of the second resolution detected by the detection unit 23. Further, the synthesis unit 26 acquires the multi-rotation information of the rotation axis SF from the storage unit 14 of the multi-rotation information detection unit 3.
  • the synthesis unit 26 synthesizes the angle position information from the detection unit 23 and the multi-rotation information from the multi-rotation information detection unit 3 to calculate the rotation position information.
  • the synthesis unit 26 uses (2 ⁇ ⁇ n + ⁇ ) (rad) as the rotation position information. Is calculated.
  • the rotation position information may be information that is a combination of multi-rotation information and angle position information of less than one rotation.
  • the synthesis unit 26 supplies the rotation position information to the external communication unit 27.
  • the external communication unit 27 is communicably connected to the communication unit MCC of the motor control unit MC by wire or wirelessly.
  • the external communication unit 27 supplies the rotation position information in digital format to the communication unit MCC of the motor control unit MC.
  • the motor control unit MC appropriately decodes the rotation position information from the external communication unit 27 of the angle detection unit 4.
  • the motor control unit MC controls the rotation of the motor M by controlling the electric power (driving power) supplied to the motor M using the rotation position information.
  • the power supply system 2 includes first and second electric signal generation units 31A and 31B, a battery (battery) 32, and a switching unit 33.
  • the electric signal generation units 31A and 31B generate electric signals by the rotation of the rotation axis SF, respectively.
  • This electric signal includes, for example, a waveform in which electric power (current, voltage) changes with time.
  • Each of the electric signal generation units 31A and 31B generates electric power as an electric signal by, for example, a magnetic field that changes based on the rotation of the rotation axis SF.
  • the electric signal generation units 31A and 31B generate power by changing the magnetic field formed by the magnet 11 used by the multi-rotation information detection unit 3 to detect the multi-rotation position of the rotation axis SF.
  • the electric signal generation units 31A and 31B are arranged so that their relative angular positions with respect to the magnet 11 change due to the rotation of the rotation axis SF, respectively.
  • the electric signal generation units 31A and 31B generate a pulse-shaped electric signal when, for example, the relative positions of the electric signal generation units 31A and 31B and the magnet 11 are at predetermined positions, respectively.
  • the battery 32 supplies at least a part of the electric power consumed by the position detection system 1 based on the electric signals generated by the electric signal generation units 31A and 31B.
  • the battery 32 includes, for example, a primary battery 36 such as a button battery or a dry battery, and a rechargeable secondary battery 37 (see FIG. 4).
  • the secondary battery of the battery 32 can be charged by, for example, an electric signal (for example, an electric current) generated by the electric signal generation units 31A and 31B.
  • the battery 32 is held by the holding unit 35.
  • the holding unit 35 is, for example, a circuit board on which at least a part of the position detection system 1 is provided.
  • the holding unit 35 holds, for example, the detecting unit 13, the switching unit 33, and the storage unit 14.
  • the holding portion 35 is provided with, for example, a plurality of battery cases capable of accommodating the battery 32, electrodes connected to the battery 32, wiring, and the like.
  • the switching unit 33 switches whether or not to supply electric power from the battery 32 to the position detection system 1 based on the electric signals generated by the electric signal generation units 31A and 31B. For example, the switching unit 33 starts supplying electric power from the battery 32 to the position detection system 1 when the level of the electric signal generated by the electric signal generation units 31A and 31B becomes equal to or higher than the threshold value. For example, the switching unit 33 starts supplying electric power from the battery 32 to the position detection system 1 when the electric signal generation units 31A and 31B generate electric power equal to or greater than a dark value. Further, the switching unit 33 stops the supply of electric power from the battery 32 to the position detection system 1 when the level of the electric signal generated by the electric signal generation units 31A and 31B becomes less than the threshold value.
  • the switching unit 33 stops the supply of electric power from the battery 32 to the position detection system 1 when the electric power generated by the electric signal generation units 31A and 31B becomes less than the threshold value.
  • the switching unit 33 changes the level (electric power) of the electric signal from a low level (hereinafter referred to as L level) to a high level (hereinafter referred to as L level).
  • L level low level
  • L level high level
  • the power supply from the battery 32 to the position detection system 1 is started, and after a predetermined time elapses after the level (power) of this electric signal changes to the L level, the battery 32 Stops the supply of power to the position detection system 1.
  • the encoder device EC has a configuration in which the electric signals (pulse signals) generated by the electric signal generation units 31A and 31B are used as switching signals (trigger signals) in supplying electric power from the battery 32 to the position detection system 1.
  • FIG. 2 (A) is a perspective view showing the magnet 11 in FIG. 1, the electric signal generation units 31A and 31B, and the two magnetic sensors 51 and 52 which are the magnetic detection units 12, and FIG. 2 (B) is FIG. 2 (B).
  • the rotation axis SF of FIG. 1 is represented by a straight line.
  • the direction of the magnetic field in the axial direction (also referred to as the axial direction), which is the direction parallel to the straight line (axis of symmetry) passing through the center of the rotation axis SF by rotation, of the magnet 11.
  • the magnet 11 is, for example, an annular member coaxial with the rotation axis SF.
  • the magnet 11 is a first circle composed of fan-shaped N poles 16A, S poles 16B, N poles 16C, and S poles 16D arranged in order so as to surround the rotation axis SF and having an opening angle of 90 °.
  • the magnet 11 is a permanent magnet that is magnetized so as to have four pairs of polarities along the circumferential direction (or the circumferential direction or the rotation direction) around the rotation axis SF to generate a magnetic force.
  • the front surface (the surface opposite to the motor M in FIG.
  • the angle between the N poles 16A to 16D on the front side and the S poles 17A to 17D on the back side is 90 ° (eg, the positions of the N and S poles of each other).
  • the phase is shifted by 180 °), and the boundary between the N pole and the S pole of the N pole 16A to the S pole 16D and the boundary between the S pole and the N pole of the S pole 17A to the N pole 17D are positioned in the circumferential direction. (Angle position) is almost the same.
  • the first annular magnet and the second annular magnet are one magnet that is continuously integrated in the moving direction (here, the circumferential direction and the rotational direction) or the axial direction and has a plurality of polarities.
  • the counterclockwise rotation is referred to as forward rotation and the clockwise rotation is referred to as reverse rotation when viewed from the tip side of the rotating shaft SF (the side opposite to the motor M in FIG. 1).
  • the forward rotation angle is represented by a positive value
  • the reverse rotation angle is represented by a negative value.
  • the counterclockwise rotation when viewed from the rear end side (motor M side in FIG. 1) of the rotation axis SF may be defined as forward rotation
  • clockwise rotation may be defined as reverse rotation.
  • the angular position of the boundary between the S pole 16D and the N pole 16A in the circumferential direction is represented by the position 11a
  • the angular position (N pole and S pole) rotated by 90 ° sequentially from the position 11a. (Boundary with) are represented by positions 11b, 11c, and 11d, respectively.
  • the north pole is arranged on the front surface side of the magnet 11
  • the south pole is arranged on the back surface side of the magnet 11.
  • the axial direction of the magnetic field of the magnet 11 is substantially parallel to the axial direction AD1 (see FIG. 3C) from the front surface side to the back surface side of the magnet 11.
  • the strength of the magnetic field is maximum between positions 11a and 11b and minimum near positions 11a and 11b.
  • the direction of the magnetic field of the magnet 11 in the axial direction is generally opposite to the direction from the back surface side to the front surface side of the magnet 11 (for example, the direction in the axial direction AD1 (direction in FIG. 3C).
  • the strength of the magnetic field is the position 11b. It becomes the maximum in the middle of the position 11c and the minimum in the vicinity of the positions 11b and 11c.
  • the axial directions of the magnetic field of the magnet 11 are substantially the direction from the front surface side to the back surface side of the magnet 11 and the direction from the back surface side to the front surface side, respectively.
  • the axial direction of the magnetic field formed by the magnet 11 is sequentially reversed at the positions 11a to 11d.
  • the magnet 11 forms an alternating magnetic field in which the direction of the magnetic field in the axial direction is reversed as the magnet 11 rotates with respect to the coordinate system fixed to the outside of the magnet 11.
  • the electric signal generation units 31A and 31B are arranged on the outer surface of the magnet 11 in a direction intersecting the normal direction of the main surface of the magnet 11.
  • the electric signal generation units 31A and 31B are separated from the magnet 11 in the radial direction (also referred to as a radial direction) of the magnet 11 orthogonal to the rotation axis SF or in a direction parallel to the radial direction, respectively. It is provided for contact.
  • the first electric signal generation unit 31A includes a first magnetic sensory unit 41A, a first power generation unit 42A, a first set of first magnetic body 45A, and a first set of second magnetic body 46A. One of the first magnetic body 45A and the second magnetic body 46A can be omitted.
  • the first magnetic sensory unit 41A, the first power generation unit 42A, the first magnetic body 45A, and the second magnetic body 46A are fixed to the outside of the magnet 11, and each position on the magnet 11 as the magnet 11 rotates.
  • the position 11b of the magnet 11 is arranged at a position 45 ° counterclockwise from the first electric signal generation unit 31A, and the magnet 11 is forward (counterclockwise) from this state. ),
  • the positions 11a, 11d, 11c, and 11b pass in this order in the vicinity of the electric signal generation unit 31A.
  • the first magnetically sensitive portion 41A is a magnetically sensitive wire such as a Wiegand wire.
  • a large bulk Hausen jump (Wiegand effect) occurs due to a change in the magnetic field accompanying the rotation of the magnet 11.
  • the first magnetic sensitive portion 41A is a member whose projected image is rectangular and cylindrical, and its axial direction is set to the circumferential direction of the magnet 11.
  • the axial direction of the first magnetic sensitive portion 41A that is, the direction perpendicular to the circular (or polygonal shape or the like) cross section of the first magnetic sensitive portion 41A is also referred to as the length direction of the first magnetic sensitive portion 41A.
  • the length of the magnetically sensitive portion in the direction (axial direction, length direction, longitudinal direction) perpendicular to the cross section of the magnetically sensitive portion (for example, the first magnetically sensitive portion 41A) is parallel to the cross section of the magnetically sensitive portion. It is configured to be longer than the length of the magnetically sensitive portion in any direction (shortward direction).
  • An alternating magnetic field is applied to the first magnetically sensitive portion 41A in the axial direction (longitudinal direction), and when the alternating magnetic field is inverted, a domain wall is generated from one end to the other end in the axial direction.
  • the length direction (axial direction) of the magnetically sensitive portion (for example, the first magnetically sensitive portion 41A) in the present embodiment is also referred to as an easy magnetization direction, which is a direction in which magnetization is easy to be directed.
  • the first and second magnetic materials 45A and 46A are formed of ferromagnetic materials such as iron, cobalt, and nickel.
  • the first and second magnetic bodies 45A and 46A can also be called yokes.
  • the first magnetic body 45A is provided between the front surface of the magnet 11 and one end of the first magnetic sensitive portion 41A, and the second magnetic body 46A is formed between the back surface of the magnet 11 and the other end of the first magnetic sensitive portion 41A. It is provided between them.
  • the tip portions of the first and second magnetic bodies 45A and 46A are arranged at the same angular position in the circumferential direction on the front surface and the back surface of the magnet 11.
  • the first and second magnetic bodies 45A and 46A have the magnetic field lines from two portions (for example, N pole 16A and S pole 17A) of the magnets 11 located at the same position in the circumferential direction of the magnet 11 and having different polarities. 1 It is guided in the length direction of the magnetic sensitive portion 41A. Then, the magnetic circuit MC1 (FIG.
  • a step (not shown) is provided on the peripheral edge of the disk 15 in FIG. 1, and a space into which the second magnetic body 46A can be inserted is provided between the peripheral edge of the disk 15 and the back surface of the magnet 11. Is secured.
  • the first power generation unit 42A is a high-density coil or the like that is wound around and arranged around the first magnetic sensitive unit 41A.
  • electromagnetic induction occurs with the generation of the domain wall in the first magnetic sensing unit 41A, and an induced current flows through the first power generation unit 42A.
  • a pulsed current (pulse-like current) is applied to the first power generation unit 42A. (Electrical signal, electric power) is generated.
  • the direction of the current generated in the first power generation unit 42A changes according to the direction before and after the reversal of the magnetic field.
  • the direction of the current generated when reversing from the magnetic field facing the front surface side of the magnet 11 to the magnetic field facing the back surface side is the direction of the current generated when reversing from the magnetic field facing the back surface side of the magnet 11 to the magnetic field facing the front surface side. Is the opposite of.
  • the electric power (induced current) generated in the first power generation unit 42A can be set by, for example, the number of turns of the high-density coil.
  • the first magnetically sensitive portion 41A, the first power generation portion 42A, and the first and second magnetic bodies 45A, 46A on the first magnetically sensitive portion 41A side are housed in the case 43A.
  • the case 43A is provided with terminals 42Aa and 42Ab.
  • One end and the other end of the high-density coil of the first power generation unit 42A are electrically connected to the terminals 42Aa and 42Ab, respectively.
  • the electric power generated by the first power generation unit 42A can be taken out to the outside of the first electric signal generation unit 31A via the terminals 42Aa and 42Ab.
  • the second electric signal generation unit 31B is arranged at an angle position larger than 0 ° and smaller than 180 ° from the angle position where the first electric signal generation unit 31A is arranged.
  • the angle between the electric signal generation units 31A and 31B is selected from, for example, a range of 22.5 ° or more and 67.5 ° or less, and is about 45 ° in FIG. 2 (B).
  • the second electric signal generation unit 31B has the same configuration as the first electric signal generation unit 31A.
  • the second electric signal generation unit 31B includes a second magnetic sensitivity unit 41B, a second power generation unit 42B, a second set of first magnetic body 45B, and a second set of second magnetic body 46B.
  • the second magnetic sensitive unit 41B, the second power generation unit 42B, and the first and second magnetic bodies 45B and 46B of the second set are the first magnetic sensory unit 41A, the first power generation unit 42A, and the first set of the first set, respectively. It is the same as the first and second magnetic bodies 45A and 46A, and the description thereof will be omitted.
  • the second magnetically sensitive portion 41B, the second power generation portion 42B, and the portions of the first and second magnetic bodies 45B and 46B on the second magnetically sensitive portion 41B side are housed in the case 43B.
  • the case 43B is provided with terminals 42Ba and 42Bb.
  • the electric power generated by the second power generation unit 42B can be taken out to the outside of the second electric signal generation unit 31B via the terminals 42Ba and 42Bb.
  • At least a part of the magnetically sensitive portion (for example, the first magnetically sensitive portion 41A and the second magnetically sensitive portion 41B) is arranged apart from the outside of the magnet 11 in the radial direction of the magnet 11 or in the parallel direction thereof.
  • the magnetic sensitive portion is formed on one surface or the other surface of the magnet 11. It is orthogonal to the side surface of the magnet 11 along the moving direction of the magnet (or the side surface parallel to the axial direction of the rotation axis SF) and is arranged apart from the outside.
  • the magnetic detection unit 12 includes magnetic sensors 51 and 52.
  • the magnetic sensor 51 is arranged at an angle position larger than 0 ° and less than 180 ° with respect to the second magnetic sensitive portion 41B (second electric signal generation unit 31B) in the rotation direction of the rotation axis SF.
  • the magnetic sensor 52 is arranged at an angle position (about 45 ° in FIG. 2B) that is larger than 22.5 ° and less than 67.5 ° with respect to the magnetic sensor 51 in the rotation direction of the rotation axis SF.
  • the magnetic sensor 51 includes a magnetoresistive element 56, a bias magnet (not shown) that applies a magnetic field of a constant strength to the magnetoresistive element 56, and waveforms from the magnetoresistive element 56. It is equipped with a waveform shaping circuit (not shown) that shapes the magnet.
  • the magnetoresistive element 56 has a full bridge shape in which the elements 56a, 56b, 56c, and 56d are connected in series. The signal line between the elements 56a and 56c is connected to the power supply terminal 51p, and the signal line between the elements 56b and 56d is connected to the ground terminal 51g.
  • the signal line between the elements 56a and 56b is connected to the first output terminal 51a, and the signal line between the elements 56c and 56d is connected to the second output terminal 51b.
  • the magnetic sensor 52 has the same configuration as the magnetic sensor 51, and the description thereof will be omitted.
  • the operation of the first electric signal generation unit 31A of the present embodiment will be described.
  • the first magnetic sensitive section 41A and the first power generation section 42A of the first electrical signal generation unit 31A of FIG. 2B will be integrally described as the magnetic sensitive member 47.
  • the length direction of the magnetic sensitive member 47 is the same as the length direction of the first magnetic sensitive portion 41A, and the center of the magnetic sensitive member 47 in the length direction is the same as the center of the first magnetic sensitive portion 41A in the length direction. is there. Since the operation of the second electric signal generation unit 31B is the same as that of the first electric signal generation unit 31A, the description thereof will be omitted.
  • FIGS. 3A is a plan view showing the magnet 11 of FIG. 2A and the electric signal generation unit 31A
  • FIGS. 3B and 3C are cross-sectional views of the magnet 11 of FIG. 3A. is there.
  • the magnet 11 has a flat plate shape along the rotation direction (hereinafter, also referred to as the ⁇ direction) around the rotation axis SF, and has a plurality of polarities (N poles 16A to 16A to) different from each other in the ⁇ direction.
  • the axial direction AD1 can also be referred to as the orientation direction (magnetization direction) of the portions of the magnet 11 having different polarities (N pole 16A, S pole 17A, etc.).
  • the direction and strength of the magnetic field in the axial direction or the orientation direction AD1 of the magnet 11 changes due to the rotation in the ⁇ direction.
  • the magnetically sensitive member 47 (or the magnetically sensitive portion) is arranged in the vicinity of the outer surface of the magnet 11 so that its length direction is parallel to the front surface (one surface or the back surface) of the flat magnet 11.
  • the length direction LD1 is parallel to the surface of the magnet 11.
  • the length direction LD1 of the magnetic sensitive member 47 is substantially parallel to the ⁇ direction (circumferential direction) and is in the magnetizing direction of the magnet 11 (for example, a specific direction in which the direction of the magnetic pole is fixed). It is substantially orthogonal to a certain axial direction (axial direction) AD1. Further, as shown in FIG.
  • the substantially center in the length direction of the magnetic sensitive member 47 (for example, the length in the length direction of the magnetic sensitive member 47 or the magnetic sensitive portions 41A and 41B).
  • the length direction of the magnetic sensitive member 47 is arranged so as to be substantially orthogonal to the tangential direction (here, the direction parallel to the axial direction AD1) of the magnetic field line MF1 passing through the half position).
  • the length direction LD1 of the magnetic sensitive member 47 is arranged so as to be substantially orthogonal to the thickness direction orthogonal to the ⁇ direction.
  • first and second magnetic bodies 45A and 46A are magnetically sensitive members 47 with magnetic force lines from two portions (for example, N pole 16A and S pole 17A) of magnets 11 having the same angular position in the ⁇ direction and having different polarities. It is guided to LD1 in the length direction of the magnetic sensitive member 47 via one end 47a and the other end 47b.
  • the magnetic field component unnecessary for pulse generation in the electric signal generation unit 31A including the magnetic field lines generated on the side surface of the magnet 11 is orthogonal to the length direction of the magnetic sensitive member 47, and the unnecessary magnetic field component is the rotation of the magnet 11. It does not adversely affect the generation of the magnetic wall from one end to the other end of the magnetic sensitive member 47 due to the large bulkhausen jump (Weigant effect) in the length direction of the magnetic sensitive member 47 caused by the reversal of the alternating magnetic field. Therefore, even if the magnetic sensitive member 47 is arranged in the vicinity of the magnet 11 to reduce the size of the electric signal generation unit 31A, the alternating magnetic field in the axial direction due to the rotation of the magnet 11 is not affected by the unnecessary magnetic field component. By inversion of, the electric signal generation unit 31A can be used to efficiently generate a stable high output pulse.
  • FIG. 4 shows the circuit configuration of the power supply system 2 and the multi-rotation information detection unit 3 of the encoder device EC according to the present embodiment.
  • the power supply system 2 includes a first electric signal generation unit 31A, a rectifying stack 61, a second electric signal generating unit 31B, a rectifying stack 62, and a battery 32. Further, the power supply system 2 includes a regulator (smoothing unit) 63 as the switching unit 33 shown in FIG.
  • the rectifier stack 61 is a rectifier that rectifies the current flowing from the first electric signal generation unit 31A.
  • the first input terminal 61a of the rectifying stack 61 is connected to the terminal 42Aa of the first electric signal generation unit 31A.
  • the second input terminal 61b of the rectifying stack 61 is connected to the terminal 42Ab of the first electric signal generation unit 31A.
  • the ground terminal 61g of the rectifying stack 61 is connected to the ground wire GL to which the same potential as the signal ground SG is supplied. When the multi-rotation information detection unit 3 operates, the potential of the ground wire GL becomes the reference potential of the circuit.
  • the output terminal 61c of the rectifying stack 61 is connected to the input unit of the buffer circuit 74, and the output unit of the buffer circuit 74 is connected to the control terminal 63a of the regulator 63 and the first input unit of the AND circuit 72.
  • the rectifier stack 62 is a rectifier that rectifies the current flowing from the second electric signal generation unit 31B.
  • the first input terminal 62a of the rectifying stack 62 is connected to the terminal 42Ba of the second electric signal generation unit 31B.
  • the second input terminal 62b of the rectifying stack 62 is connected to the terminal 42Bb of the second electric signal generation unit 31B.
  • the ground terminal 62g of the rectifying stack 62 is connected to the ground wire GL.
  • the output terminal 62c of the rectifying stack 62 is connected to the input portion of the buffer circuit 74.
  • the output signal (hereinafter, referred to as an enable signal) 7B of the buffer circuit 74 is a signal that becomes L level when the signal of the input unit is equal to or less than a predetermined threshold value and becomes H level when the signal becomes larger than the threshold value.
  • a capacitor 69A for temporarily storing a pulse signal (pulse current) generated at the output terminals 61c and 62c is connected between the output terminals 61c and 62c of the rectifying stacks 61 and 62 and the ground wire GL.
  • the pulse signals generated at the output terminals 61c and 62c are referred to as WW output 7A (meaning of Wiegand wire output).
  • a discharge switching element 70 is connected between the output terminals 61c and 62c and the ground wire GL, and a discharge signal 7D is supplied from the counter 67 to the control terminal of the switching element 70.
  • the switching element 70 is, for example, a MOS type FET
  • the output terminals 61c and 62c are connected to the drain electrode D
  • the source electrode S is connected to the ground wire GL
  • the control terminal thereof is the gate electrode G.
  • the discharge signal 7D reaches a high level
  • the switching element 70 conducts, and the WW output 7A (potential of the capacitor 69A) generated at the output terminals 61c and 62c rapidly decreases to the reference potential.
  • Making the switching element 70 conductive and setting the WW output 7A to the reference potential in this way is hereinafter also referred to as discharging the electric signal generation units 31A and 31B or discharging the WW output 7A.
  • the regulator 63 adjusts (smooths) the power supplied from the battery 32 to the position detection system 1.
  • the regulator 63 may include a switch 64 provided in the power supply path between the battery 32 and the position detection system 1.
  • the regulator 63 controls the operation of the switch 64 based on the electric signals generated by the electric signal generation units 31A and 31B.
  • the input terminal 63b of the regulator 63 is connected to the battery 32 via the power switch 38.
  • the output terminal 63c of the regulator 63 is connected to the power supply line PL and the second input portion of the AND circuit 72.
  • the ground terminal 63g of the regulator 63 is connected to the ground wire GL.
  • the input side capacitor 69B (second capacitor) is connected between the input terminal 63b of the regulator 63 and the ground wire GL, and the output side capacitor 69C (first capacitor) is connected between the output terminal 63c and the ground wire GL. It is connected.
  • the control terminal 63a of the regulator 63 is an enable terminal, and the regulator 63 has a potential of the output terminal 63c (power line PL) in a state where the enable signal 7B (voltage) equal to or higher than the threshold value is supplied to the control terminal 63a from the buffer circuit 74. Potential) is maintained at a predetermined voltage.
  • the output voltage of the regulator 63 (the above-mentioned predetermined voltage) is, for example, 3V when the counter 67 is composed of CMOS or the like.
  • the operating voltage of the non-volatile memory 68 of the storage unit 14 is set to, for example, the same voltage as a predetermined voltage.
  • the predetermined voltage is a voltage required for power supply, and may be a voltage that changes stepwise as well as a constant voltage value.
  • the switch 64 the first terminal 64a is connected to the input terminal 63b, and the second terminal 64b is connected to the output terminal 63c.
  • the regulator 63 uses the enable signal 7B supplied from the buffer circuits 74 (electric signal generation units 31A and 31B) to the control terminals 63a as a control signal between the first terminal 64a and the second terminal 64b of the switch 64. Switch between the conductive state and the insulated state.
  • the switch 64 includes switching elements such as MOS, TFT, and FET, the first terminal 64a and the second terminal 64b are a source electrode and a drain electrode, and a gate electrode is connected to a control terminal 63a.
  • the switch 64 is in a state in which the gate electrode is charged by the electric signals (electric power) generated by the electric signal generation units 31A and 31B, and when the potential of the gate electrode exceeds the threshold value, conduction is possible between the source electrode and the drain electrode ( (On state).
  • the switch 64 may be provided outside the regulator 63, or may be externally attached to, for example, a relay.
  • the AND circuit 72 outputs a signal 7E (second signal) which becomes H level when the enable signal 7B is H level and the output signal of the regulator 63 is equal to or higher than a predetermined threshold value (H level) to the delay circuit 73.
  • the delay circuit 73 supplies the reset signal 7R generated by using the signal 7E to the counter 67 and the non-volatile memory 68.
  • the reset signal 7R is a signal that becomes H level after a predetermined delay time after the input signal 7E becomes H level, and then becomes L level when the signal 7E becomes L level.
  • the reset signal 7R can also be regarded as a second signal in the same manner as the signal 7E.
  • the counter 67 and the non-volatile memory 68 stop the counting operation during the period when the reset signal 7R is at the L level.
  • the fact that the counter 67 and the non-volatile memory 68 stop the counting operation is hereinafter also referred to as initializing or resetting the counter 67 and the non-volatile memory 68.
  • the signal relay circuit 75 is composed of the buffer circuit 74, the AND circuit 72, and the delay circuit 73.
  • the multi-rotation information detection unit 3 includes magnetic sensors 51 and 52 and analog comparators 65 and 66 as the magnetic detection unit 12.
  • the magnetic detection unit 12 detects the magnetic field formed by the magnet 11 by using the electric power supplied from the battery 32. Further, the multi-rotation information detection unit 3 includes a counter 67 as the detection unit 13 shown in FIG. 1 and a non-volatile memory 68 as the storage unit 14.
  • the power supply terminal 51p of the magnetic sensor 51 is connected to the power supply line PL.
  • the ground terminal 51g of the magnetic sensor 51 is connected to the ground wire GL.
  • the output terminal 51c of the magnetic sensor 51 is connected to the input terminal 65a of the analog comparator 65.
  • the output terminal 51c of the magnetic sensor 51 outputs a voltage corresponding to the difference between the potential of the second output terminal 51b shown in FIG. 2C and the reference potential.
  • the analog comparator 65 is a comparator that compares the voltage output from the magnetic sensor 51 with a predetermined voltage.
  • the power supply terminal 65p of the analog comparator 65 is connected to the power supply line PL.
  • the ground terminal 65g of the analog comparator 65 is connected to the ground wire GL.
  • the output terminal 65b of the analog comparator 65 is connected to the first input terminal 67a of the counter 67.
  • the analog comparator 65 outputs a signal from the output terminal 65b that becomes H level when the output voltage of the magnetic sensor 51 is equal to or higher than the threshold value and becomes L level when the output voltage is less than the threshold value.
  • the analog comparator 65 is configured to have two input terminals, and the output terminals 51a and 51b of the magnetic sensor 51 shown in FIG. 2C are connected to the two input terminals.
  • the analog comparator 65 has the output terminals 51a and 51a. The voltages of 51b may be compared.
  • the magnetic sensor 52 and the analog comparator 66 have the same configuration as the magnetic sensor 51 and the analog comparator 65.
  • the power supply terminal 52p and the grounding terminal 52g of the magnetic sensor 52 are connected to the power supply line PL and the grounding line GL, respectively.
  • the output terminal 52c of the magnetic sensor 52 is connected to the input terminal 66a of the analog comparator 66.
  • the power supply terminal 66p and the grounding terminal 66g of the analog comparator 66 are connected to the power supply line PL and the grounding line GL, respectively.
  • the output terminal 66b of the analog comparator 66 is connected to the second input terminal 67b of the counter 67.
  • the analog comparator 66 outputs a signal from the output terminal 66b that becomes H level when the output voltage of the magnetic sensor 52 is equal to or higher than the threshold value and becomes L level when the output voltage is less than the threshold value.
  • the counter 67 counts the multi-rotation information of the rotating shaft SF using the electric power supplied from the battery 32.
  • the counter 67 includes, for example, a CMOS logic circuit.
  • the counter 67 operates by using the electric power supplied via the power supply terminal 67p connected to the power supply line PL and the ground terminal 67g connected to the ground line GL.
  • the counter 67 performs counting processing using the voltage supplied via the first input terminal 67a and the voltage supplied via the second input terminal 67b as detection signals. Further, after the counting process and the writing process to the non-volatile memory 68 are completed, the counter 67 sets the discharge signal 7D to the H level to conduct the switching element 70 and discharges the electric charge accumulated in the capacitor 69A.
  • the electric signal generation units 31A and 31B are discharged (the level of the WW output 7A is lowered). As a result, the enable signal 7B becomes the L level and the regulator 63 is turned off. In the following, discharging the electric signal generation units 31A and 31B is also referred to as resetting the WW output 7A.
  • the non-volatile memory 68 stores at least a part of the rotation position information (for example, multi-rotation information) detected by the detection unit 13 using the electric power supplied from the battery 32 (performs a writing operation).
  • the non-volatile memory 68 stores the result of counting by the counter 67 (multi-rotation information) as the rotation position information detected by the detection unit 13.
  • the power supply terminal 68p and the grounding terminal 68g of the non-volatile memory 68 are connected to the power supply line PL and the grounding line GL, respectively.
  • the counter 67 and the non-volatile memory 68 stop the counting operation and the writing operation to the storage unit during the period when the reset signal 7R output from the delay circuit 73 is at the L level.
  • the counter 67 and the non-volatile memory 68 perform a counting operation and write to or read from the storage unit during the period when the voltage of the power supply line PL is equal to or higher than a predetermined threshold value and the reset signal 7R is at the H level.
  • the delay time of the reset signal 7R (the time from the rise of the output signal 7E of the AND circuit 72 to the rise of the reset signal 7R) is such that the voltage of the power supply line PL becomes equal to or higher than the predetermined threshold value, and the magnetic detector 12 and the count are counted. The time is set to slightly exceed the time until the vessel 67 operates correctly.
  • the storage unit 14 of FIG. 1 includes the non-volatile memory 68, and can hold the information written while the power is being supplied even in a state where the power is not supplied.
  • a capacitor 69A is provided between the rectifying stacks 61 and 62 and the ground wire GL.
  • the capacitor 69A is a so-called smoothing capacitor and reduces the pulsation of the input signal to the buffer circuit 74.
  • an input capacitor 69B is connected between the input terminal 63b of the regulator 63 and the ground wire GL
  • an output capacitor 69C is connected between the output terminal 63c of the regulator 63 and the ground wire GL.
  • the input capacitor 69B and the output capacitor 69C are smoothing capacitors for stabilizing the operation of the regulator 63 (improving load response, improving pulsation (ripple), preventing oscillation, etc.), respectively.
  • the constants of the capacitors 69B and 69C are, for example, from the battery 32 to the magnetic detector 12 and the non-volatile memory 68 during the period from the detection of the rotation position information by the magnetic detector 12 to the writing of the rotation position information to the non-volatile memory 68.
  • the power supply may be set to be maintained.
  • the input capacitor 69B can be omitted. Further, the electric charge of the output capacitor 69C is gradually discharged by a minute leakage current.
  • the output capacitor 69C When the electric charge of the output capacitor 69C is empty, the output capacitor 69C needs to be charged when the regulator 63 is turned on during the intermittent operation by the electric signal generation units 31A and 31B, so that the voltage of the battery 32 is instantaneous. Descent to. After the output capacitor 69C is charged, the voltage of the battery 32 is restored, and the regulator 63 operates stably. In this regard, for example, it is possible to adopt a configuration in which the output of the output capacitor 69C is discharged to lower the reset signal 7R to a low level after the counting operation of the counter 67 is completed.
  • the switching element 70 discharges the WW output 7A of the electric signal generation units 31A and 31B, so that the rotating shaft SF rotates at high speed. Even so, the voltage of the power supply line PL will surely reach the H level (details will be described later).
  • the battery 32 includes a primary battery 36 such as a button type battery and a rechargeable secondary battery 37.
  • the secondary battery 37 is electrically connected to the power supply unit MCE of the motor control unit MC.
  • the power supply unit MCE can drive the motor M of FIG. 1 with electric power obtained from, for example, an AC power source (not shown), and can supply a DC voltage obtained from the electric power to the secondary battery 37 of the battery 32.
  • Power is supplied from the power supply MCE to the secondary battery 37 during at least a part of the period during which the power supply MCE of the control unit MC can supply power (for example, the period when the main power supply is on), and the power is used to supply power to the secondary battery 37.
  • the next battery 37 is charged.
  • the power supply from the power supply unit MCE to the secondary battery 37 is cut off.
  • the secondary battery 37 may be electrically connected to the transmission path of the electric signal from the electric signal generation units 31A and 31B.
  • the secondary battery 37 can be charged by the electric power of the electric signals from the electric signal generation units 31A and 31B.
  • the secondary battery 37 is electrically connected to the circuit between the rectifying stack 61 and the regulator 63.
  • the secondary battery 37 can be charged by the electric power of the electric signals generated by the electric signal generation units 31A and 31B by the rotation of the rotating shaft SF in a state where the electric power supply from the power supply unit MCE is cut off. ..
  • the secondary battery 37 may be charged by electric power generated by a generator (not shown) by being driven by the motor M and rotating the rotating shaft SF.
  • the encoder device EC selects whether to supply power to the position detection system 1 from the primary battery 36 or the secondary battery 37 in a state where the power supply from the outside is cut off.
  • the power supply system 2 includes a power switch (power selection unit, selection unit) 38, and the power switch 38 supplies power to the position detection system 1 from either the primary battery 36 or the secondary battery 37.
  • the first input terminal of the power switch 38 is electrically connected to the positive electrode of the primary battery 36, and the second input terminal of the power switch 38 is electrically connected to the secondary battery 37.
  • the output terminal of the power switch 38 is electrically connected to the input terminal 63b of the regulator 63.
  • the power switch 38 selects, for example, the primary battery 36 or the secondary battery 37 as the battery that supplies power to the position detection system 1 based on the remaining amount of the secondary battery 37. For example, when the remaining amount of the secondary battery 37 is equal to or greater than the threshold value, the power switch 38 supplies power from the secondary battery 37 and does not supply power from the primary battery 36.
  • This threshold value is set based on the power consumed by the position detection system 1, and is set to be equal to or higher than the power to be supplied to the position detection system 1, for example.
  • the power switch 38 can cover the power consumed by the position detection system 1 with the power from the secondary battery 37, the power switch 38 supplies power from the secondary battery 37 and supplies power from the primary battery 36. I won't let you.
  • the power switch 38 When the remaining amount of the secondary battery 37 is less than the threshold value, the power switch 38 does not supply power from the secondary battery 37, but supplies power from the primary battery 36.
  • the power switch 38 may also serve as a charger for controlling the charging of the secondary battery 37, for example, and uses the information on the remaining amount of the secondary battery 37 used for controlling the charging to control the charging of the secondary battery 37. It may be determined whether or not the remaining amount is equal to or greater than the threshold value.
  • the battery 32 may include at least one of the primary battery 36 and the secondary battery 37. Further, in the above-described embodiment, the power is selectively supplied from the primary battery 36 or the secondary battery 37, but the power may be supplied in parallel from the primary battery 36 and the secondary battery 37.
  • the processing unit that supplies the power may be defined.
  • the secondary battery 37 may be charged using at least one of the electric power supplied from the power supply unit MEC and the electric power of the electric signals generated by the electric signal generation units 31A and 31B.
  • FIG. 5 is a timing chart showing the operation of the multi-rotation information detection unit 3 when the rotation axis SF rotates counterclockwise (forward rotation). Since the timing chart showing the operation of the multi-rotation information detection unit 3 when the rotation axis SF rotates counterclockwise (counterclockwise) is the chart of FIG. 4 inverted with time, the description thereof is omitted. To do.
  • the solid line shows the magnetic field at the position of the first electric signal generation unit 31A
  • the broken line shows the magnetic field at the position of the second electric signal generation unit 31B.
  • the "first electric signal generation unit” and the “second electric signal generation unit” indicate the output of the first electric signal generation unit 31A and the output of the second electric signal generation unit 31B, respectively, and output the current flowing in one direction. was positive (+), and the output of the current flowing in the opposite direction was negative (-).
  • the “enable signal” indicates an enable signal 7B (potential) applied to the control terminal 63a of the regulator 63 by an electric signal generated by the electric signal generation units 31A and 31B, the H level is represented by “H", and the L level is represented by “H”. It is represented by "L”.
  • the “regulator output” indicates the output of the regulator 63 (potential of the power supply line PL), the H level is represented by “H”, and the L level is represented by “L”.
  • the “magnetic field on the first magnetic sensor” and the “magnetic field on the second magnetic sensor” in FIG. 5 are magnetic fields formed on the magnetic sensors 51 and 52.
  • the magnetic field formed by the magnet 11 is shown by a long broken line
  • the magnetic field formed by the bias magnet is shown by a short broken line
  • the combined magnetic field of these is shown by a solid line.
  • the "first magnetic sensor” and “second magnetic sensor” indicate the output when the magnetic sensors 51 and 52 are constantly driven, respectively, and the output from the first output terminal is represented by a broken line, and the output from the second output terminal is shown.
  • the output is represented by a solid line.
  • the “first analog comparator” and the “second analog comparator” indicate the outputs from the analog comparators 65 and 66, respectively.
  • the output when the magnetic sensor and the analog comparator are constantly driven is shown in “Constant drive”, and the output when the magnetic sensor and the analog comparator are intermittently driven is shown in "Intermittent drive”.
  • the first electric signal generation unit 31A When the rotation axis SF rotates counterclockwise, the first electric signal generation unit 31A outputs a current pulse (+ of the "first electric signal generation unit") flowing in the forward direction at the angle positions of 45 ° and 225 °. To do. Further, the first electric signal generation unit 31A outputs a current pulse (-) flowing in the opposite direction at the angle positions of 135 ° and 315 °. The second electric signal generation unit 31B outputs a current pulse (-) flowing in the opposite direction at the angle positions of 90 ° and 270 °. Further, the second electric signal generation unit 31B outputs a current pulse (-) flowing in the forward direction at the angle positions of 180 ° and 0 ° (360 °).
  • the enable signal switches to the H level at the angular positions 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, 315 °, and 0 °, respectively.
  • the regulator 63 corresponds to the state where the enable signal is maintained at the H level at the angle positions of 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, 315 °, and 0 °, respectively.
  • the output of the magnetic sensor 51 and the output of the magnetic sensor 52 have a phase difference of 90 °, and the detection unit 13 detects the rotation position information by using this phase difference.
  • the output of the magnetic sensor 51 has a positive sine wave shape in the range from the angle position 22.5 ° to the angle position 112.5 °. In this angular range, the regulator 63 outputs power at angular positions of 45 ° and 90 °.
  • the magnetic sensor 51 and the analog comparator 65 are driven by the electric power supplied at the angle positions 45 ° and 90 °, respectively.
  • the signal output from the analog comparator 65 (hereinafter referred to as A-phase signal) is maintained at the L level in a state where power is not supplied, and becomes the H level at each of the angle positions 45 ° and 90 °.
  • the output of the magnetic sensor 52 has a positive sine wave shape in the range of the angle position 157.5 to 247.5 °.
  • the regulator 63 outputs power at angular positions 180 ° and 225 °.
  • the magnetic sensor 52 and the analog comparator 66 are driven by the electric power supplied at the angle positions of 180 ° and 225 °, respectively.
  • the signal output from the analog comparator 66 (hereinafter referred to as a B-phase signal) is maintained at the L level in a state where power is not supplied, and becomes the H level at the angle positions of 180 ° and 225 °, respectively.
  • the A-phase signal supplied to the counter 67 is the H level (H) and the B-phase signal supplied to the counter 67 is the L level
  • a set of these signal levels is set (H, L).
  • the signal level set is (L, H) at the angle position 180 °
  • the signal level set is (H, H) at the angle position 225 °
  • the signal level set is (H, H) at the angle position 270 °. , L).
  • the counter 67 stores a set of signal levels in the non-volatile memory 68 when one or both of the detected A-phase signal and B-phase signal are at H level. When one or both of the A-phase signal and the B-phase signal detected next are H level, the counter 67 reads the previous level set from the non-volatile memory 68, and reads the previous level set and the current level set. The rotation direction of the rotation axis SF is determined in comparison with the set of.
  • the angle position is 225 ° in the previous detection, and the angle is in the current detection. Since the position is 270 °, it can be seen that it is counterclockwise (forward rotation).
  • the counter 67 sends an up signal indicating that the counter is up when the current level set is (H, L) and the previous level set is (H, H). Supply to.
  • the non-volatile memory 68 detects the up signal from the counter 67, the non-volatile memory 68 updates the stored multi-rotation information to a value incremented by 1.
  • the counter 67 supplies a down signal indicating that the counter is down to the non-volatile memory 68.
  • the non-volatile memory 68 updates the stored multi-rotation information to a value reduced by 1.
  • the multi-rotation information detection unit 3 can detect the multi-rotation information while determining the rotation direction of the rotation axis SF.
  • step 102 of FIG. 6 the WW output 7A of the electric signal generation unit 31A or 31B of FIG. 4 is generated, and the enable signal 7B of the buffer circuit 74 (see FIG. 7C) becomes H level.
  • the WW output 7A occurs intermittently in a short cycle as shown in FIG. 7A, but in the following, as shown in FIGS.
  • step 104 the regulator 63 is turned on (operated) in response to the enable signal 7B, and the potential of the power supply line PL connected to the output terminal 63c of the regulator 63 rises as shown by the dotted waveform (FIG. 7). (B)). At this time, the signal 7E of the AND circuit 72 becomes the H level.
  • step 106 the reset signal 7R of the delay circuit 73 becomes H level after the elapse of the predetermined time ⁇ t (see FIG. 7B), and in step 108, the counter 67 and the non-volatile memory 68 start operating.
  • step 110 the counter 67 writes rotation information (the above-mentioned up signal or down signal) to the non-volatile memory 68.
  • the data 7RD of FIG. 7B shows an example of a signal exchanged between the counter 67 and the non-volatile memory 68.
  • step 112 the counter 67 sets the discharge signal 7D to the H level (see FIG. 7 (E)), and the switching element 70 conducts in accordance with this, and the WW output 7A decreases (discharges).
  • step 114 the enable signal 7B of the buffer circuit 74 becomes the L level
  • step 116 the output 7E of the AND circuit 72 becomes the L level (see FIG. 7D), and the regulator 63 turns off (stops operating).
  • the potential of the power supply line PL drops.
  • step 118 the reset signal 7R becomes the L level (see FIG. 7B), and the counter 67 and the non-volatile memory 68 are stopped.
  • the rotation axis SF can be accurately supplied and cut off from the battery 32 to the position detection system 1 (multi-rotation information detection unit 3), and the power consumption of the battery 32 can be reduced. Therefore, the rotation information of the rotation axis SF can be obtained with high accuracy. As a result, maintenance (for example, replacement) of the battery 32 can be eliminated, or the frequency of maintenance of the battery 32 can be reduced.
  • the encoder device EC is rotated by the position detection system 1 (position detection unit) that detects the rotation position information of the rotation axis SF (moving unit) and the rotation (movement) of the rotation axis SF.
  • the magnet 11 to be generated the electric signal generation unit 31A (electric signal generator) that generates a WW output 7A (electric signal) due to the change in the magnetic field due to the rotation of the magnet 11, and the discharge signal 7D (control signal) from the position detection system 1.
  • Signal relay circuit 5 (circuit unit) that outputs the WW output 7A or enable signal 7B (first signal) output from the electric signal generation unit 31A to the position detection system 1 by discharging the electric charge accumulated in the capacitor 69A. ) And.
  • the electric signal generation unit 31A is discharged by the discharge signal 7D (the WW output 7A is reduced), and the regulator 63 is turned off. By doing so, it is possible to prevent the power consumption of the battery 32 thereafter. Further, since the output of the electric signal generation unit 31A is discharged instead of the output of the regulator 63, it is possible to suppress a decrease in the output of the regulator 63 (potential of the power supply of the position detection system 1). Therefore, when the rotating shaft SF rotates at high speed, the amount of charge from the regulator 63 to the position detection system 1 each time each WW output 7A (pulse signal) is generated can be reduced, and the voltage of the battery 32 drops.
  • the amount can be reduced to shorten the recovery time of the voltage of the battery 32. Therefore, even when the rotating shaft SF is rotating at high speed, the power consumption of the battery 32 can be reduced and the power can be supplied to the position detection system 1, and the rotation information of the rotating shaft SF can be obtained with high accuracy. be able to.
  • the output capacitor 69C is provided.
  • the operation of the regulator 63 is stabilized (improvement of load response, etc.) by the capacitor 69A. Further, since the output capacitor 69C is not discharged, the amount of charge from the regulator 63 to the output capacitor 69C each time each WW output 7A is generated can be reduced when the rotating shaft SF rotates at high speed, and the voltage of the battery 32 can be reduced. The amount of drop in the battery 32 can be reduced to shorten the recovery time of the voltage of the battery 32.
  • the signal relay circuit 75 sets the reset signal 7R (second signal equivalent to the signal 7E) by the WW output 7A after the potential of the power supply line PL of the position detection system 1 is lowered to the counter 67 of the position detection system 1 and the counter.
  • the output is output to the non-volatile memory 68, and the counter 67 and the non-volatile memory 68 are initialized by the reset signal 7R (the counting operation is stopped). This prevents malfunction due to an unstable signal due to a decrease in potential.
  • the magnetic field component unnecessary for pulse generation in the electric signal generation unit 31A including the magnetic field lines generated on the side surface of the magnet 11 is orthogonal to the length direction of the magnetic sensitive member 47 and is unnecessary.
  • the magnetic field component does not adversely affect the generation of the magnetic wall from one end to the other end in the length direction of the magnetic sensitive member 47 due to the reversal of the alternating magnetic field due to the rotation of the magnet 11. Therefore, even if the magnetic sensitive member 47 is arranged in the vicinity of the magnet 11 to reduce the size of the electric signal generation unit 31A, the alternating magnetic field in the axial direction due to the rotation of the magnet 11 is not affected by the unnecessary magnetic field component.
  • the electric signal generation unit 31A can be used to efficiently generate a high output WW output 7A (pulse signal) with high reliability (stable output).
  • the encoder device EC power is supplied from the battery 32 to the multi-rotation information detection unit 3 within a short time after the electric signal is generated in the electric signal generation unit 31A, and the multi-rotation information detection unit 3 is dynamically driven. (Intermittent drive). After the detection and writing of the multi-rotation information is completed, the power supply to the multi-rotation information detection unit 3 is cut off, but the count value is stored because it is stored in the storage unit 14. Such a sequence is repeated every time a predetermined position on the magnet 11 passes in the vicinity of the electric signal generation unit 31A even when the power supply from the outside is cut off.
  • the multi-rotation information stored in the storage unit 14 is read out by the motor control unit MC or the like the next time the motor M is started, and is used for calculating the initial position of the rotation axis SF and the like.
  • the battery 32 supplies at least a part of the electric power consumed by the position detection system 1 in response to the electric signal generated by the electric signal generation unit 31A, so that the battery 32 has a long life. be able to. Therefore, maintenance (for example, replacement) of the battery 32 can be eliminated, and the frequency of maintenance can be reduced. For example, if the life of the battery 32 is longer than the life of other parts of the encoder device EC, it is possible to eliminate the need to replace the battery 32.
  • a pulse current (electric signal) can be output from the electric signal generation unit 31A even if the rotation of the magnet 11 is extremely low. Therefore, for example, in a state where power is not supplied to the motor M, the output of the electric signal generation unit 31A can be used as an electric signal even when the rotation of the rotating shaft SF (magnet 11) is extremely low.
  • the magnetically sensitive wire first magnetically sensitive portion 41A
  • an amorphous magnetostrictive wire or the like can also be used as the magnetically sensitive wire.
  • the encoder device EC full-wave rectifies and rectifies the electric signal (current) generated from the above-mentioned electric signal generation unit (eg, 31A, 31B) by using the above-mentioned rectification stack (eg, rectifier).
  • the generated power may be supplied to the multi-rotation information detection unit 3 or the like.
  • FIG. 8 shows an encoder device ECA according to the present embodiment.
  • an or circuit 71 having three input units is provided. Then, the WW output 7A generated at the output terminals 61c and 62c of the rectifying stacks 61 and 62 connected to the electric signal generation units 31A and 31B is supplied to the first input unit of the or circuit 71.
  • a switching signal 7ND indicating switching between normal operation and backup operation is supplied from the power supply unit MCE of the motor control unit MC to the second input unit of the or circuit 71 and the switching signal input unit of the counter 67.
  • a processing completion signal 7TC for indicating that the counting operation is completed is supplied from the counter 67 to the third input unit of the or circuit 71.
  • the output of the or circuit 71 is supplied as an enable signal 7B to the first input unit of the AND circuit 72 and the control terminal 63a of the regulator 63.
  • the output signal 7E of the AND circuit 72 is supplied to the counter 67 and the non-volatile memory 68 as a reset signal 7R via the delay circuit 73.
  • the signal relay circuit 75A is composed of the or circuit 71, the AND circuit 72, and the delay circuit 73.
  • the power supply unit MCE drives the motor M of FIG. 1 with the electric power obtained from, for example, an AC power source (not shown), and the DC voltage obtained from the electric power is used as the battery 32, as in the first embodiment. It is supplied to the secondary battery 37 of. Further, as an example in the present embodiment, in normal operation, the power supply unit MCE sets the switching signal 7ND to the H level, supplies a DC voltage to the secondary battery 37 of the battery 32, and the power of the secondary battery 37 is the power source. It is supplied to the input terminal 63b of the regulator 63 via the switch 38.
  • the enable signal 7B of the or circuit 71 is at the H level, the regulator 63 is continuously turned on, and the potential of the power supply line PL is continuously at the H level. Therefore, the magnetic detector 12, the counter 67, and the non-volatile memory 68 are continuously operating. Further, since the switching signal 7ND is also supplied to the counter 67, the counter 67 can recognize that the current state is the normal operation because the switching signal 7ND is at the H level. In this case, the counter 67 takes in the outputs of the analog comparators 65 and 66 at a predetermined sampling rate as an example, obtains the rotation information of the rotation axis SF in multiple rotations, and writes the obtained information in the non-volatile memory 68.
  • the power supply unit MCE main power supply
  • the driving of the motor M (rotating shaft SF) in FIG. 1 is stopped, and the power supply from the power supply unit MCE to the battery 32 is stopped.
  • the power supply unit MCE sets the switching signal 7ND to the L level.
  • the counter 67 can recognize that the normal operation has been switched to the backup operation.
  • the regulator 63 is turned on during the period when the WW output 7A of the electric signal generation units 31A and 31B is equal to or higher than a predetermined threshold, and the regulator 63 is turned on within that period. Power is supplied to the detection unit 12, the counter 67, and the non-volatile memory 68 to obtain the rotation information of the rotation axis SF.
  • the counter 67 sets the processing completion signal 7TC to the H level, turns on the regulator 63, and powers the magnetic detector 12 and the like. To supply.
  • the processing completion signal 7TC may always be at the H level as an example.
  • the counter 67 sets the switching signal 7ND to the L level. After that, the backup operation described above can be smoothly performed. Since the other configurations of the present embodiment are the same as those of the first embodiment, the description thereof will be omitted.
  • the encoder device ECA of the present embodiment for example, an example of an operation when the power supply unit MCE (main power supply) is turned off from a state where the rotation axis SF is rotating at high speed and the normal operation is shifted to the backup operation.
  • the flowchart of FIG. 9 and the waveform diagram of FIG. 10 will be described.
  • the power supply unit MCE is on and the rotating shaft SF is rotating at high speed
  • the power supply unit MCE is turned off due to an emergency stop or the like, and from that state, the rotating shaft SF is inertially changed from high speed rotation to a stopped state. Occurs when migrating.
  • step 120 of FIG. 9 the power supply unit MCE (main power supply) is turned off, and the switching signal 7ND becomes the L level (see FIG. 10 (A)).
  • step 122 the counter 67 sets the processing completion signal 7TC to the H level (see FIG. 10B).
  • step 104 the enable signal 7B of the or circuit 71 becomes the H level
  • the regulator 63 operates, the potential of the power supply line PL becomes the H level, and the signal 7E of the AND circuit 72 becomes the H level.
  • step 106 the reset signal 7R becomes H level after a lapse of a predetermined time (see FIG.
  • the counter 67 and the non-volatile memory 68 start operating in step 108, and the counter in step 110.
  • 67 writes rotation information (the above-mentioned up signal or down signal) to the non-volatile memory 68. This completes the backup of rotation information when the power is turned off.
  • step 124 the counter 67 sets the processing completion signal 7TC to L level (see FIG. 10B), and in step 112, the counter 67 sets the discharge signal 7D to H level (FIG. 10 (B)). E)), the switching element 70 is electrically connected accordingly, and the WW output 7A is reduced (the electric signal generation units 31A and 31B are discharged). Then, the enable signal 7B of the or circuit 71 becomes the L level, the regulator 63 is turned off (operation stopped) in step 116, and the output 7E of the and circuit 72 becomes the L level. Then, in step 118, the reset signal 7R becomes the L level (see FIG. 10C), and the counter 67 and the non-volatile memory 68 are stopped. After that, the operation shifts to step 102 of FIG. Then, when the WW output 7A rises, the operations of steps 104 to 118 of FIG. 6 are repeated.
  • the counter 67 processes.
  • the completion signal 7TC ensures that the enable signal 7B of the or circuit 71 becomes H level, the regulator 63 is turned on, power is supplied to the magnetic detector 12 and the like, and the rotation information of the rotation axis SF is obtained and the non-volatile memory is obtained.
  • the rotation information of the rotation axis SF is obtained by efficiently using the power of the battery 32 as in the intermittent operation sequence of the first embodiment. Therefore, even if the rotation axis SF is rotating at high speed, the normal operation can be smoothly shifted to the intermittent operation sequence.
  • the encoder device ECA includes a position detection system 1 (position detection unit) for detecting the rotation position information of the rotation axis SF (moving unit) by being supplied with electric power from the power supply unit MCE, and rotation.
  • a magnet 11 that rotates due to the rotation of the shaft SF an electric signal generation unit 31A (electric signal generator) that generates a WW output 7A (electric signal) due to a change in the magnetic field due to the rotation of the magnet 11, and a battery 32 due to the WW output 7A.
  • It includes a regulator 63 (power supply unit) that supplies power from (or the power supply unit MCE) to the position detection system 1.
  • the position detection system 1 of the encoder device ECA supplies power from the regulator 63 by the WW output 7A when the power supply from the power supply unit MCE is cut off (when the power supply or the power supply unit MCE is turned off).
  • the rotation position information is detected by the time it is performed.
  • the regulator 63 with the WW output 7A is used. It includes steps 122, 108, 110, 124 of detecting the rotation position information before the power is supplied from the power supply. According to this embodiment, even when the power supply unit MCE is turned off while the rotating shaft SF is rotating at high speed, the regulator 63 is turned on by the processing completion signal 7TC of the counter 67, and the magnetic detection of the position detection system 1 is performed. Power is supplied to the unit 12 and the like, and the rotation information of the rotation axis SF is obtained and stored.
  • the electric signal generation unit 31A has a magnetically sensitive portion 41A whose magnetic characteristics change due to a change in the magnetic field accompanying the rotation of the magnet 11, and generates a WW output 7A based on the magnetic characteristics of the magnetically sensitive portion 41A.
  • a signal relay circuit 75A (signal output unit) is provided, and when the power supply unit MCE is turned off, the regulator 63 is operated to smooth the output of the battery 32 and supply it to the position detection system 1 (step). 120, 122, 104).
  • the effects of the magnetic sensitive portion 41A and the signal relay circuit 75A are the same as those in the first embodiment.
  • the counter 67 outputs the processing completion signal 7TC for operating the regulator 63, the outputs of the electric signal generation units 31A and 31B can be smoothly used.
  • the element that outputs the processing completion signal 7TC does not necessarily have to be the counter 67.
  • the tips of the first and second magnetic bodies 45A and 46A of the electric signal generation unit 31A are the surfaces of the magnet 11 (N poles 16A to Since the S pole 16D) and the back surface (S pole 17A to N pole 17D) are arranged in the vicinity of portions having different polarities at the same angle position, the electric signal generation unit 31A can be further miniaturized.
  • the tip of the first magnetic body 45C on one end side of the magnetic sensitive member 47 has a certain polarity on the surface of the magnet 11.
  • the tip of the second magnetic body 46C on the other end side of the magnetic sensitive member 47 is a portion having a different polarity on the surface of the magnet 11 (for example, S pole 16D).
  • it may be arranged in the vicinity of the N pole 16A or the like).
  • the first and second magnetic bodies 45C and 46C are magnetically sensitive members 47 with magnetic force lines from two portions (for example, N pole 16A and S pole 16D) of magnets 11 located at different positions in the rotation direction and having different polarities. It leads in the length direction of. Also in the electric signal generation unit 31C, since the magnetic circuit MC2 is formed from the magnet 11 so as to pass through the first magnetic body 45C, the magnetic sensitive member 47, and the second magnetic body 46C, an unnecessary magnetic field on the side surface of the magnet 11 can be generated. The magnetic sensitive member 47 can efficiently output a stable pulse by reversing the AC magnetic field due to the rotation of the magnet 11 without being affected.
  • the configuration of the magnet 11 is arbitrary, and the configurations of the electric signal generation units 31A and 31B are also arbitrary.
  • the encoder devices EC and ECA may only include one electric signal generation unit 31A. Further, the encoder devices EC and ECA may include three or more electric signal generation units. When a plurality of electric signal generation units are provided as in the above-described embodiment, the electric power output from the electric signal generation unit 31A may be used as a detection signal for detecting the multi-rotation information. However, it may be used for supply to a detection system or the like.
  • the magnet 11 is an 8-pole magnet having 4 poles in the circumferential direction and 2 poles in the thickness direction, but the magnet 11 is not limited to such a configuration and can be appropriately changed.
  • the magnet 11 may have two or more poles in the circumferential direction.
  • the position detection system 1 detects the rotation position information of the rotation axis SF (moving part) as the position information, but detects at least one of the position, speed, and acceleration in the predetermined direction as the position information. You may.
  • the encoder devices EC and ECA may include a rotary encoder or a linear encoder.
  • the power generation unit and the detection unit are provided on the rotating shaft SF, and the magnet 11 is provided outside the moving body (for example, the rotating shaft SF), so that the relative position between the magnet and the detecting unit can be set. It may change as the moving portion moves.
  • the position detection system 1 does not have to detect the multi-rotation information of the rotation axis SF, and the multi-rotation information may be detected by an external processing unit of the position detection system 1.
  • the electric signal generation units 31A and 31B generate electric power (electrical signal) when they have a predetermined positional relationship with the magnet 11.
  • the position detection system 1 uses changes in electric power (signals) generated in the electric signal generation units 31A and 31B as detection signals to obtain position information (for example, multi-rotation information or angular position information) of a moving unit (eg, rotation axis SF). Rotational position information including) may be detected (counted).
  • the electric signal generation units 31A and 31B may be used as sensors (position sensors), and the position detection system 1 is based on the electric signal generation units 31A and 31B and one or more sensors (for example, a magnetic sensor and a light receiving sensor).
  • the position information of the moving part may be detected.
  • the position detection system 1 may detect the position information by using two or more electric signal generation units as sensors.
  • the position detection system 1 may use two or more electric signal generation units as sensors to detect the position information of the moving part without using the magnetic sensor, or the position of the moving part without using the light receiving sensor. Information may be detected.
  • the position detection system 1 may use two or more electric signal generation units as sensors to determine the rotation direction of the rotation axis SF based on the two or more electric signals. Good.
  • the electric signal generation units 31A and 31B may supply at least a part of the electric power consumed by the position detection system 1.
  • the electric signal generation units 31A and 31B may supply electric power to the processing unit having relatively low power consumption in the position detection system 1.
  • the electric power supply system 2 does not have to supply electric power to a part of the position detection system 1.
  • the power supply system 2 may intermittently supply power to the detection unit 13 and may not supply power to the storage unit 14. In this case, power may be intermittently or continuously supplied to the storage unit 14 from a power source, a battery, or the like provided outside the power supply system 2.
  • the power generation unit may generate electric power by a phenomenon other than the large Barkhausen jump, and may not supply electric power to, for example, a moving unit (for example, a rotating shaft SF) and a part of the position detection system 1.
  • the power supply system 2 may intermittently supply power to the detection unit 13 and may not supply power to the storage unit 14.
  • power may be intermittently or continuously supplied to the storage unit 14 from a power source, a battery, or the like provided outside the power supply system 2.
  • the power generation unit may generate electric power by a phenomenon other than the large bulkhausen jump, and may generate electric power by electromagnetic induction accompanying a change in the magnetic field accompanying the movement of the moving unit (for example, the rotating shaft SF).
  • the storage unit that stores the detection result of the detection unit may be provided outside the position detection system 1, or may be provided outside the encoder devices EC and ECA.
  • FIG. 11 is a diagram showing an example of the drive device MTR.
  • This drive device MTR is a motor device including an electric motor.
  • the drive device MTR includes a rotation axis SF, a main body (drive unit) BD that rotationally drives the rotation axis SF, and an encoder device EC that detects rotation position information of the rotation axis SF.
  • An encoder device ECA may be provided instead of the encoder device EC.
  • the rotating shaft SF has a load side end SFa and a non-load side end SFb.
  • the load side end SFa is connected to another power transmission mechanism such as a speed reducer.
  • the scale S is fixed to the counterload side end SFb via the fixing portion.
  • an encoder device EC is attached.
  • the encoder device EC is an encoder device according to the above-described embodiment, modification, or combination thereof.
  • the motor control unit MC shown in FIG. 1 controls the main body unit BD using the detection result of the encoder device EC. Since the drive device MTR does not require or reduces the need for battery replacement of the encoder device EC, the maintenance cost can be reduced.
  • the drive device MTR is not limited to the motor device, and may be another drive device having a shaft portion that rotates using hydraulic pressure or pneumatic pressure.
  • FIG. 12 shows the stage device STG.
  • This stage device STG has a configuration in which a rotary table (moving object) TB is attached to the load side end SFa of the rotary shaft SF of the drive device MTR shown in FIG.
  • the same or equivalent components as those in the above-described embodiment are designated by the same reference numerals to omit or simplify the description.
  • the stage device STG drives the drive device MTR to rotate the rotation axis SF
  • this rotation is transmitted to the rotary table TB.
  • the encoder device EC detects the angular position of the rotation axis SF and the like. Therefore, the angular position of the rotary table TB can be detected by using the output from the encoder device EC.
  • a speed reducer or the like may be arranged between the load side end SFa of the drive device MTR and the rotary table TB.
  • FIG. 13 is a perspective view showing the robot device RBT. Note that FIG. 13 schematically shows a part (joint portion) of the robot device RBT. In the following description, the same or equivalent components as those in the above-described embodiment are designated by the same reference numerals to omit or simplify the description.
  • This robot device RBT has a first arm AR1, a second arm AR2, and a joint portion JT. The first arm AR1 is connected to the second arm AR2 via the joint JT.
  • the first arm AR1 includes an arm portion 101, a bearing 101a, and a bearing 101b.
  • the second arm AR2 has an arm portion 102 and a connecting portion 102a.
  • the connecting portion 102a is arranged between the bearing 101a and the bearing 101b in the joint portion JT.
  • the connecting portion 102a is provided integrally with the rotating shaft SF2.
  • the rotating shaft SF2 is inserted into both the bearing 101a and the bearing 101b at the joint portion JT.
  • the end of the rotating shaft SF2 on the side inserted into the bearing 101b penetrates the bearing 101b and is connected to the speed reducer RG.
  • the speed reducer RG is connected to the drive device MTR, and reduces the rotation of the drive device MTR to, for example, 1/100 or the like and transmits it to the rotation shaft SF2.
  • the load-side end SFa of the rotation shaft SF of the drive device MTR is connected to the speed reducer RG.
  • a scale S of the encoder device EC is attached to the counterload side end SFb of the rotating shaft SF of the drive device MTR.
  • the robot device RBT drives the drive device MTR to rotate the rotation shaft SF
  • this rotation is transmitted to the rotation shaft SF2 via the speed reducer RG.
  • the rotation of the rotation shaft SF2 causes the connection portion 102a to rotate integrally, whereby the second arm AR2 rotates with respect to the first arm AR1.
  • the encoder device EC detects the angular position of the rotation axis SF and the like. Therefore, the angular position of the second arm AR2 can be detected by the output from the encoder device EC.
  • the robot device RBT does not require or the battery replacement of the encoder device EC is unnecessary or low, the maintenance cost can be reduced.
  • the robot device RBT is not limited to the above configuration, and the drive device MTR can be applied to various robot devices having joints.
  • Counter 70 ... Switching Element, 71 ... Or circuit, 72 ... And circuit, 73 ... Delay circuit, 75, 75A ... Signal relay circuit, EC, ECA ... Encoder device, SF ... Rotating axis, AR1 ... 1st arm, AR2 ... 2nd arm, MTR ... Drive device, RBT... Robot device, STG... Stage device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Manipulator (AREA)

Abstract

移動部の位置情報を検出する位置検出部と、前記移動部の移動によって移動する磁石と、前記磁石の移動による磁界の変化によって電気信号を発生する電気信号発生部と、前記位置検出部からの制御信号により前記位置検出部に電力を供給する電力供給部と、前記位置検出部からの前記制御信号によって変化する前記電気信号発生部の出力を前記位置検出部へ出力する回路部とを備えるエンコーダ装置が提供される。被検物の回転速度が速い場合でも、消費電力を抑制して検出結果の信頼性を向上できる。

Description

エンコーダ装置及びその使用方法、駆動装置、ステージ装置、並びにロボット装置
 本発明は、エンコーダ装置、エンコーダ装置の使用方法、駆動装置、ステージ装置、及びロボット装置に関する。
 従来のエンコーダ装置として、ウィーガントワイヤまたはその他の磁気発電素子を用いた自己発電手段によって無電源多回転検出回路を駆動することにより、無電源でも多回転を検出するものが知られている(例えば、特許文献1参照)。
特開2017-26397号公報
 第1の態様によれば、移動部の位置情報を検出する位置検出部と、その移動部の移動によって移動する磁石と、その磁石の移動による磁界の変化によって電気信号を発生する電気信号発生部と、その位置検出部からの制御信号によって変化するその電気信号発生部の出力をその位置検出部へ出力する回路部とを備えるエンコーダ装置が提供される。
 第2の態様によれば、電源から電力が供給されて移動部の位置情報を検出する位置検出部と、その移動部の移動によって移動する磁石と、その磁石の移動による磁界の変化によって電気信号を発生する電気信号発生部と、その電気信号によりその位置検出部に電力を供給する電力供給部と、を備え、その位置検出部は、その電源からの電力の供給が断たれると、その電気信号によるその電力供給部からの電力が供給されるまでにその位置情報の検出を行うエンコーダ装置が提供される。
 第3の態様によれば、第1又は第2の態様のエンコーダ装置と、その移動部に動力を供給する動力供給部と、を備える駆動装置が提供される。
 第4の態様によれば、移動物体と、その移動物体を移動させる第3の態様の駆動装置と、を備えるステージ装置が提供される。
 第5の態様によれば、第3の態様の駆動装置と、その駆動装置によって相対移動するアームと、を備えるロボット装置が提供される。
 第6の態様によれば、電源から電力が供給されて移動部の位置情報を検出する位置検出部と、その移動部の移動によって移動する磁石と、その磁石の移動による磁界の変化によって電気信号を発生する電気信号発生部と、その電気信号によりその位置検出部に電力を供給する電力供給部と、を備えるエンコーダ装置の使用方法であって、その位置検出部は、前記電源からの電力の供給が断たれると、その電気信号によるその電力供給部からの電力が供給されるまでにその位置情報の検出を行うことを含む使用方法が提供される。
第1の実施形態に係るエンコーダ装置を示す図である。 (A)は図1中の磁石、電気信号発生ユニット、及び磁気センサを示す斜視図、(B)は図2(A)の磁石等を示す平面図、(C)は図2(A)の磁気センサを示す回路図である。 (A)は図2(A)の磁石及び電気信号発生ユニットを示す平面図、(B)及び(C)はそれぞれ図3(A)の断面図、(D)は変形例を示す平面図、(E)は図3(D)の側面図である。 図1のエンコーダ装置の電力供給系及び多回転情報検出部の構成を示す図である。 図1のエンコーダ装置の順回転時の動作を示す図である。 高速回転時の動作の一例を示すフローチャートである。 (A)、(B)、(C)、(D)、及び(E)は、それぞれ図6の動作に対応する所定の信号を示す図である。 第2の実施形態に係るエンコーダ装置の電力供給系及び多回転情報検出部の構成を示す図である。 第2の実施形態に係る電源オフ時の動作の一例を示すフローチャートである。 (A)、(B)、(C)、(D)、及び(E)は、それぞれ図9の動作に対応する所定の信号を示す図である。 駆動装置の一例を示す図である。 ステージ装置の一例を示す図である。 ロボット装置の一例を示す図である。
 [第1の実施形態]
 第1の実施形態につき図1から図7を参照して説明する。図1は、本実施形態に係るエンコーダ装置ECを示す。図1において、エンコーダ装置ECは、モータM(動力供給部)の回転軸SF(移動部)の回転位置情報を検出する。回転軸SFは、例えばモータMのシャフト(回転子)であるが、モータMのシャフトに変速機などの動力伝達部を介して接続されるとともに負荷に接続される作用軸(出力軸)であってもよい。エンコーダ装置ECが検出した回転位置情報は、モータ制御部MCに供給される。モータ制御部MCは、エンコーダ装置ECから供給された回転位置情報を使って、モータMの回転(例えば、回転位置、回転速度など)を制御する。モータ制御部MCは、回転軸SFの回転を制御する。
 エンコーダ装置ECは、位置検出系(位置検出ユニット)1及び電力供給系(電力供給ユニット)2を備える。位置検出系1は、回転軸SFの回転位置情報を検出する。エンコーダ装置ECは、いわゆる多回転アブソリュートエンコーダであり、回転軸SFの回転の数を示す多回転情報、及び1回転未満の角度位置(回転角)を示す角度位置情報を含む回転位置情報を検出する。エンコーダ装置ECは、回転軸SFの多回転情報を検出する多回転情報検出部3、及び回転軸SFの角度位置を検出する角度検出部4を備える。
 位置検出系1の少なくとも一部(例えば角度検出部4)は、例えば、エンコーダ装置ECが搭載される装置(例えば駆動装置、ステージ装置、ロボット装置)の電源(例えば、主電源)が投入されている状態(通常状態)で、この装置から電力の供給を受けて動作する。また、位置検出系1の少なくとも一部(例えば多回転情報検出部3)は、例えば、エンコーダ装置ECが搭載される装置の電源(例えば、主電源)が投入されていない状態(非常時状態、バックアップ状態等)で、電力供給系2から電力の供給を受けて動作する。例えば、エンコーダ装置ECが搭載される装置からの電力の供給が断たれた状態において、電力供給系2は位置検出系1の少なくとも一部(例えば多回転情報検出部3)に対して断続的(間欠的)に電力を供給し、位置検出系1は、電力供給系2から電力が供給された際に回転軸SFの回転位置情報の少なくとも一部(例えば多回転情報)を検出する。
 多回転情報検出部3は、例えば、磁気によって多回転情報を検出する。多回転情報検出部3は、例えば、磁石11、磁気検出部12、検出部13、及び記憶部14を備える。磁石11は、回転軸SFに固定された円板15に設けられる。円板15は回転軸SFとともに回転するため、磁石11は回転軸SFと連動して回転する。磁石11は回転軸SFの外側に固定され、磁石11及び磁気検出部12は、回転軸SFの回転によって互いの相対位置が変化する。磁石11が形成する磁気検出部12上の磁界の強さ及び向きは、回転軸SFの回転によって変化する。磁気検出部12は、磁石11が形成する磁界を検出し、検出部13は、磁石が形成する磁界を磁気検出部12が検出した結果に基づいて、回転軸SFの位置情報を検出する。記憶部14は、検出部13が検出した位置情報を記憶する。
 角度検出部4は、光学式または磁気式のエンコーダであり、スケールの一回転内の位置情報(角度位置情報)を検出する。例えば光学式エンコーダであるとき、例えばスケールのパターンニング情報を受光素子で読み取ることにより、回転軸SFの1回転以内の角度位置を検出する。スケールのパターンニング情報とは、例えばスケール上の明暗のスリットである。角度検出部4は、多回転情報検出部3の検出対象と同じ回転軸SFの角度位置情報を検出する。角度検出部4は、発光素子21、スケールS、受光センサ22、及び検出部23を備える。
 スケールSは、例えば回転軸SFに固定された円板5に設けられている。スケールSは、インクリメンタルスケール及びアブソリュートスケールを含む。スケールSは、円板15に設けられてもよいし、円板15と一体化された部材であってもよい。例えば、スケールSは、円板15において磁石11と反対側の面に設けられていてもよい。スケールSは、磁石11の内側と外側の少なくとも一方に設けられていてもよい。
 発光素子21(照射部、発光部)は、スケールSに光を照射する。受光センサ22(光検出部)は、発光素子21から照射されスケールSを経由した光を検出する。図1において、角度検出部4は透過型であり、受光センサ22は、スケールSを透過した光を検出する。なお、角度検出部4は反射型であってもよい。そして、受光センサ22は、検出結果を示す信号を検出部23へ供給する。検出部23は、受光センサ22の検出結果を使って、回転軸SFの角度位置を検出する。例えば、検出部23は、アブソリュートスケールからの光を検出した結果を使って第1分解能の角度位置を検出する。また、検出部23は、インクリメンタルスケールからの光を検出した結果を使って、第1分解能の角度位置に内挿演算を行うことにより、第1分解能よりも高い第2分解能の角度位置を検出する。
 本実施形態において、エンコーダ装置ECは、信号処理部25を備える。信号処理部25は、位置検出系1による検出結果を演算して処理する。信号処理部25は、合成部26及び外部通信部27を備える。合成部26は、検出部23が検出した第2分解能の角度位置情報を取得する。また、合成部26は、多回転情報検出部3の記憶部14から回転軸SFの多回転情報を取得する。合成部26は、検出部23からの角度位置情報、及び多回転情報検出部3からの多回転情報を合成し、回転位置情報を算出する。例えば、検出部23の検出結果がθ(rad)であり、多回転情報検出部3の検出結果がn回転である場合に、合成部26は、回転位置情報として(2π×n+θ)(rad)を算出する。回転位置情報は、多回転情報と、1回転未満の角度位置情報とを組にした情報でもよい。
 合成部26は、回転位置情報を外部通信部27に供給する。外部通信部27は、有線または無線によって、モータ制御部MCの通信部MCCと通信可能に接続されている。外部通信部27は、デジタル形式の回転位置情報を、モータ制御部MCの通信部MCCに供給する。モータ制御部MCは、角度検出部4の外部通信部27からの回転位置情報を適宜復号する。モータ制御部MCは、回転位置情報を使ってモータMへ供給される電力(駆動電力)を制御することにより、モータMの回転を制御する。
電力供給系2は、第1及び第2の電気信号発生ユニット31A,31B、バッテリ(電池)32、及び切替部33を備える。電気信号発生ユニット31A,31Bは、それぞれ回転軸SFの回転によって電気信号を発生する。この電気信号は、例えば、電力(電流、電圧)が時間変化する波形を含む。電気信号発生ユニット31A,31Bは、それぞれ例えば、回転軸SFの回転に基づいて変化する磁界によって、電気信号として電力を発生する。例えば、電気信号発生ユニット31A,31Bは、多回転情報検出部3が回転軸SFの多回転位置の検出に用いる磁石11が形成する磁界の変化によって、電力を発生する。電気信号発生ユニット31A,31Bは、それぞれ回転軸SFの回転によって、磁石11との相対的な角度位置が変化するように配置される。電気信号発生ユニット31A,31Bは、例えば、電気信号発生ユニット31A,31Bと磁石11との相対位置がそれぞれ所定の位置になった際に、パルス状の電気信号を発生する。
バッテリ32は、電気信号発生ユニット31A,31Bで発生する電気信号に基づいて、位置検出系1で消費される電力の少なくとも一部を供給する。バッテリ32は、例えばボタン型電池、乾電池などの一次電池36及び充電可能な二次電池37(図4参照)を含む。バッテリ32の二次電池は、例えば電気信号発生ユニット31A,31Bで発生する電気信号(例えば電流)によって充電可能である。バッテリ32は、保持部35に保持される。保持部35は、例えば、位置検出系1の少なくとも一部が設けられる回路基板などである。保持部35は、例えば、検出部13、切替部33、及び記憶部14を保持する。保持部35には、例えば、バッテリ32を収容可能な複数の電池ケース、及びバッテリ32と接続される電極、配線などが設けられる。
 切替部33は、電気信号発生ユニット31A,31Bで発生する電気信号に基づいて、バッテリ32から位置検出系1への電力の供給の有無を切り替える。例えば、切替部33は、電気信号発生ユニット31A,31Bで発生する電気信号のレベルが閾値以上になることでバッテリ32から位置検出系1への電力の供給を開始させる。例えば、切替部33は、電気信号発生ユニット31A,31Bで闇値以上の電力が発生することでバッテリ32から位置検出系1への電力の供給を開始させる。また、切替部33は、電気信号発生ユニット31A,31Bで発生する電気信号のレベルが閾値未満になることでバッテリ32から位置検出系1への電力の供給を停止させる。例えば、切替部33は、電気信号発生ユニット31A,31Bで発生する電力が閾値未満になることでバッテリ32から位置検出系1への電力の供給を停止させる。例えば、電気信号発生ユニット31A,31Bにパルス状の電気信号が発生する場合、切替部33は、この電気信号のレベル(電力)がローレベル(以下、Lレベルという。)からハイレベル(以下、Hレベルという。)に立ち上がった際に、バッテリ32から位置検出系1への電力の供給を開始させ、この電気信号のレベル(電力)がLレベルヘ変化してから所定の時間経過後に、バッテリ32から位置検出系1への電力の供給を停止させる。また、エンコーダ装置ECは、電気信号発生ユニット31A,31Bで発生した電気信号(パルス信号)を、バッテリ32から位置検出系1への電力の供給におけるスイッチング信号(トリガー信号)として用いる構成である。
 図2(A)は、図1中の磁石11、電気信号発生ユニット31A,31B、及び磁気検出部12である2つの磁気センサ51,52を示す斜視図、図2(B)は図2(A)の磁石11等を回転軸SFに平行な方向から見た平面図、図2(C)は磁気センサ51の回路図である。なお、図2(A)等において、図1の回転軸SFを直線で表している。
 図2(A)、(B)において、磁石11は、回転によって、回転軸SFの中心を通る直線(対称軸)に平行な方向である軸方向(又はアキシャル方向ともいう。)における磁界の向き及び強さが変化するように構成されている。磁石11は、例えば回転軸SFと同軸の円環状の部材である。一例として、磁石11は、回転軸SFを囲むように順に配置されたそれぞれ開き角が90°の扇型のN極16A、S極16B、N極16C、及びS極16Dよりなる第1の円環状磁石と、N極16A~S極16Dと同じ形状でN極16A~S極16Dの一面にそれぞれ貼り合わせて配置されたS極17A、N極17B、S極17C、及びN極17Dよりなる第2の円環状磁石とから構成されている。磁石11は、回転軸SFの回りの円周方向(又は周方向、回転方向ともいう。)に沿って4対の極性を持つように着磁されて磁力が発生する永久磁石である。磁石11の主たる面である表面(図1のモータMと反対側の面)及び裏面(モータMと同じ側の面)は、それぞれ、回転軸SFとほぼ垂直である。言い替えると、磁石11において、表面側のN極16A~S極16Dと、裏面側のS極17A~N極17Dとは角度(例、互いのN極とS極との位置)が90°(位相で180°)ずれており、N極16A~S極16DのN極とS極との境界と、S極17A~N極17DのS極とN極との境界とは、周方向の位置(角度位置)がほぼ一致している。なお、上記の第1の円環状磁石と第2の円環状磁石とは、移動方向(ここでは周方向、回転方向)又は軸方向に連続して一体化され複数の極性を有する1つの磁石であり、それら磁石の内側に空間を有する中空状の磁石であってもよい。
 ここでは説明の便宜上、回転軸SFの先端側(図1のモータMと反対側)から見た場合の、反時計回りの回転を順回転、時計回りの回転を逆回転という。また、順回転の角度を正の値で表し、逆回転の角度を負の値で表す。なお、回転軸SFの後端側(図1のモータM側)から見た場合の、反時計回りの回転を順回転、時計回りの回転を逆回転と定義してもよい。
 ここで、磁石11に固定した座標系において、周方向におけるS極16DとN極16Aとの境界の角度位置を位置11aで表し、位置11aから順次90°回転した角度位置(N極とS極との境界)をそれぞれ位置11b,11c,11dで表す。
 位置11aから反時計回りに90°の第1区間において、磁石11の表面側にN極が配置され、磁石11の裏面側にS極が配置されている。この第1区間において、磁石11の磁界の軸方向の向きは、概ね磁石11の表面側から裏面側へ向かう軸方向AD1(図3(C)参照)に平行である。第1区間において、磁界の強さは、位置11aと位置11bとの中間において最大となり、位置11a,11bの近傍で最小となる。
 位置11bから反時計回りに90°の第2区間(磁石11の表面側にS極が、磁石11の裏面側にN極が配置されている区間)において、磁石11の磁界の軸方向の向きは、概ね磁石11の裏面側から表面側へ向かう向き(例えば、軸方向AD1(図3(C)の向き)に対して逆向きである。第2区間において、磁界の強さは、位置11bと位置11cとの中間において最大となり、位置11b,11cの近傍で最小となる。同様に、位置11cから反時計回りに90°の第3区間、及び位置11dから反時計回りに90°の第4区間において、磁石11の磁界の軸方向の向きは、それぞれ概ね磁石11の表面側から裏面側へ向かう向き、及び裏面側から表面側へ向かう向きである。
 このように、磁石11が形成する磁界の軸方向の向きは、位置11a~11dにおいて順次反転する。磁石11は、磁石11の外部に固定された座標系に対し、磁石11の回転に伴って軸方向の磁界の向きが反転する交流磁界を形成する。電気信号発生ユニット31A,31Bは、磁石11の主たる面の法線方向と交差する方向における磁石11の外側面に配置されている。
 本実施形態において、電気信号発生ユニット31A,31Bは、それぞれ、回転軸SFに直交する磁石11の径方向(ラジアル方向とも称する。)又は該径方向に平行な方向に離れて、磁石11と非接触に設けられている。第1の電気信号発生ユニット31Aは、第1感磁性部41A、第1発電部42A、第1組の第1磁性体45A、及び第1組の第2磁性体46Aを備える。なお、第1磁性体45A及び第2磁性体46Aのうちの一方は省略可能である。第1感磁性部41A、第1発電部42A、第1磁性体45A、及び第2磁性体46Aは、磁石11の外部に固定されており、磁石11の回転に伴って磁石11上の各位置との相対位置が変化する。例えば、図2(B)では、第1電気信号発生ユニット31Aから反時計回りに45°の位置に、磁石11の位置11bが配置されており、この状態から磁石11が順方向(反時計回り)に1回転すると、電気信号発生ユニット31Aの近傍を位置11a,11d,11c,11bがこの順に通過する。
 第1感磁性部41Aは、ウィーガントワイヤなどの感磁性ワイヤである。第1感磁性部41Aには、磁石11の回転に伴う磁界の変化によって大バルクハウゼンジャンプ(ウィーガント効果)が生じる。第1感磁性部41Aは、射影像が長方形で円柱状の部材であり、その軸方向が磁石11の周方向に設定されている。以下では、第1感磁性部41Aの軸方向、すなわち第1感磁性部41Aの円形(又は多角形状等でもよい)の断面に垂直な方向を第1感磁性部41Aの長さ方向ともいう。また、例えば、感磁性部(例えば、第1感磁性部41A)の断面に垂直な方向(軸方向、長さ方向、長手方向)における感磁性部の長さは、感磁性部の断面に平行な方向(短手方向)における感磁性部の長さより長く構成されている。第1感磁性部41Aは、その軸方向(長さ方向)に交流磁界が印加され、その交流磁界が反転する際に、軸方向の一端から他端に向かう磁壁が発生する。このように、本実施形態における感磁性部(例えば、第1感磁性部41Aなど)の長さ方向(軸方向)は、磁化が向き易い方向である磁化容易方向ともいう。
 第1、第2磁性体45A,46Aは例えば鉄、コバルト、ニッケル等の強磁性材料から形成されている。第1、第2磁性体45A,46Aはヨークともいうことができる。第1磁性体45Aは、磁石11の表面と第1感磁性部41Aの一端との間に設けられ、第2磁性体46Aは、磁石11の裏面と第1感磁性部41Aの他端との間に設けられている。第1、第2磁性体45A,46Aの先端部は、磁石11の表面及び裏面において、周方向の同じ角度位置に配置されている。第1、第2磁性体45A,46Aの先端部における磁石11の極性は互いに常に逆であり、第1磁性体45Aの先端部がN極16A(又はS極16B)の近傍にあるときは、第2磁性体46Aの先端部はS極17A(又はN極17B)の近傍にある。このため、第1、第2磁性体45A,46Aは、磁石11の周方向において同じ位置にある磁石11の互いに異なる極性の2つの部分(例えばN極16A及びS極17A)からの磁力線を第1感磁性部41Aの長さ方向に導いている。そして、磁石11、第1磁性体45A、第1感磁性部41A、及び第2磁性体46Aによって、第1感磁性部41Aの長さ方向に向かう磁力線を含む磁気回路MC1(図3(A)参照)が形成される。なお、図1の円板15の周縁部には段差(不図示)が設けられ、円板15の周縁部と磁石11の裏面との間には、第2磁性体46Aを差し込むことができるスペースが確保されている。
 第1発電部42Aは、第1感磁性部41Aに巻き付けられて配置される高密度コイルなどである。第1発電部42Aには、第1感磁性部41Aにおける磁壁の発生に伴って電磁誘導が生じ、誘導電流が流れる。図2(B)に示した磁石11の位置11a~11dが電気信号発生ユニット31A(磁性体45A,46Aの先端部)の近傍を通過する際に、第1発電部42Aにパルス状の電流(電気信号、電力)が発生する。
 第1発電部42Aに発生する電流の向きは、磁界の反転前後の向きに応じて変化する。例えば、磁石11の表面側を向く磁界から裏面側を向く磁界への反転時に発生する電流の向きは、磁石11の裏面側を向く磁界から表面側を向く磁界への反転時に発生する電流の向きの反対になる。第1発電部42Aに発生する電力(誘導電流)は、例えば高密度コイルの巻き数により設定できる。
 図2(A)に示すように、第1感磁性部41A、第1発電部42A、及び第1、第2磁性体45A,46Aの第1感磁性部41A側の部分は、ケース43Aに収納されている。ケース43Aには端子42Aa,42Abが設けられている。第1発電部42Aの高密度コイルは、その一端及び他端がそれぞれ端子42Aa,42Abと電気的に接続されている。第1発電部42Aで発生した電力は、端子42Aa,42Abを介して、第1電気信号発生ユニット31Aの外部へ取り出し可能である。
 第2電気信号発生ユニット31Bは、第1電気信号発生ユニット31Aが配置される角度位置から0゜より大きく180°よりも小さい角度をなす角度位置に配置される。電気信号発生ユニット31A,31Bの間の角度は、例えば22.5°以上67.5°以下の範囲から選択され、図2(B)では約45°である。第2電気信号発生ユニット31Bは、第1電気信号発生ユニット31Aと同様の構成である。第2電気信号発生ユニット31Bは、第2感磁性部41B、第2発電部42B、第2組の第1磁性体45B、及び第2組の第2磁性体46Bを備える。第2感磁性部41B、第2発電部42B、及び第2組の第1、第2磁性体45B,46Bは、それぞれ第1感磁性部41A、第1発電部42A、及び第1組の第1、第2磁性体45A,46Aと同様であり、その説明を省略する。第2感磁性部41B、第2発電部42B、及び第1、第2磁性体45B,46Bの第2感磁性部41B側の部分は、ケース43Bに収納されている。ケース43Bには端子42Ba,42Bbが設けられている。第2発電部42Bで発生した電力は、端子42Ba,42Bbを介して、第2電気信号発生ユニット31Bの外部へ取り出し可能である。なお、感磁性部(例えば、第1感磁性部41A、第2感磁性部41B)の少なくとも一部は、磁石11の径方向又はその平行方向における磁石11の外側に離間して配置される。例えば、該感磁性部は、回転軸SFに直交する磁石11の面(すなわち、磁石の複数の極性が配列された面)をそれぞれ一面、他面とした場合、磁石11の一面又は他面に直交し、磁石の移動方向に沿った磁石11の側面(又は回転軸SFの軸方向に平行な側面)に対して外側に離間して配置されている。
 磁気検出部12は、磁気センサ51,52を含む。磁気センサ51は、回転軸SFの回転方向において、第2感磁性部41B(第2電気信号発生ユニット31B)に対して0°より大きく180°未満の角度位置で配置される。磁気センサ52は、回転軸SFの回転方向において、磁気センサ51に対して22.5°より大きく67.5°未満の角度位置(図2(B)では約45°)で配置される。
 図2(C)に示すように、磁気センサ51は、磁気抵抗素子56と、磁気抵抗素子56に一定の強さの磁界を与えるバイアス磁石(図示せず)と、磁気抵抗素子56からの波形を整形する波形整形回路(図示せず)とを備える。磁気抵抗素子56は、エレメント56a,56b,56c、及び56dを直列に結線したフルブリッジ形状である。エレメント56a,56cの間の信号線は、電源端子51pに接続され、エレメント56b,56dの間の信号線は、接地端子51gに接続されている。エレメント56a,56bの間の信号線は、第1出力端子51aに接続され、エレメント56c,56dの間の信号線は、第2出力端子51bに接続されている。磁気センサ52は、磁気センサ51と同様の構成であり、その説明を省略する。
 次に、本実施形態の第1電気信号発生ユニット31Aの動作につき説明する。以下では、図2(B)の第1電気信号発生ユニット31Aの第1感磁性部41A及び第1発電部42Aを一体的に感磁性部材47として説明する。感磁性部材47の長さ方向は第1感磁性部41Aの長さ方向と同じであり、感磁性部材47の長さ方向の中心は第1感磁性部41Aの長さ方向の中心と同じである。なお、第2電気信号発生ユニット31Bの動作は第1電気信号発生ユニット31Aと同様であるため、その説明を省略する。
 図3(A)は図2(A)の磁石11及び電気信号発生ユニット31Aを示す平面図、図3(B)及び(C)は図3(A)の磁石11を断面で表した図である。図3(A)、(B)において、磁石11は回転軸SFの回りの回転方向(以下、θ方向ともいう)に沿って平板状で、θ方向に互いに異なる複数の極性(N極16A~S極16D)を有し、θ方向に直交する厚さ方向(本実施形態では回転軸SFの軸方向AD1(アキシャル方向)でもある)にも互いに異なる2つの極性(N極16A及びS極17A等)を有する。このため、軸方向AD1を磁石11の互いに異なる極性の部分(N極16A及びS極17A等)の配向方向(着磁方向)ということもできる。磁石11は、θ方向への回転によって、軸方向又は配向方向AD1における磁界の向き及び強さが変化する。
 また、感磁性部材47(又は感磁性部)は、その長さ方向が平板状の磁石11の表面(一面、又は裏面)に平行になるように、磁石11の外側面の近傍に配置されている。図3(A)において、感磁性部材47の長さ方向を方向LD1とすると、長さ方向LD1は磁石11の表面に平行である。本実施形態では、感磁性部材47の長さ方向LD1は、θ方向(周方向)に略平行であるとともに、磁石11の着磁方向(例えば、磁極の向きが固定された特定の方向)である軸方向(アキシャル方向)AD1に略直交している。さらに、図3(C)に示すように、磁石11の磁力線のうち、感磁性部材47の長さ方向の略中心(例えば、感磁性部材47又は感磁性部41A,41Bの長さ方向の長さの半分の位置)を通過する磁力線MF1の接線方向(ここでは軸方向AD1に平行な方向)に対して略直交するように、感磁性部材47の長さ方向が配置されている。なお、感磁性部材47の長さ方向LD1は、θ方向に直交する厚さ方向に略直交するように配置されている。また、第1、第2磁性体45A及び46Aは、θ方向において同じ角度位置にある磁石11の互いに異なる極性の2つの部分(例えばN極16A及びS極17A)からの磁力線を感磁性部材47の一端47a及び他端47bを介して感磁性部材47の長さ方向LD1に導いている。
 磁石11の側面に発生する磁力線を含む電気信号発生ユニット31Aにおけるパルス生成に不要な磁場成分は、感磁性部材47の長さ方向に直交しており、その不要な磁場成分は、磁石11の回転による交流磁界の反転によって生じる感磁性部材47の長さ方向の大バルクハウゼンジャンプ(ウィーガント効果)による感磁性部材47の一端から他端に向かう磁壁の発生には悪影響を与えない。このため、感磁性部材47を磁石11の近傍に配置して、電気信号発生ユニット31Aを小型化しても、その不要な磁場成分に影響されることなく、磁石11の回転による軸方向の交流磁界の反転によって、電気信号発生ユニット31Aを用いて効率的に安定した高出力のパルスを発生することができる。
 図4は、本実施形態に係るエンコーダ装置ECの電力供給系2及び多回転情報検出部3の回路構成を示す。図4において、電力供給系2は、第1電気信号発生ユニット31A、整流スタック61、第2電気信号発生ユニット31B、整流スタック62、及びバッテリ32を備える。また、電力供給系2は、図1に示した切替部33として、レギュレータ(平滑部)63を備える。
 整流スタック61は、第1電気信号発生ユニット31Aから流れる電流を整流する整流器である。整流スタック61の第1入力端子61aは、第1電気信号発生ユニット31Aの端子42Aaと接続されている。整流スタック61の第2入力端子61bは、第1電気信号発生ユニット31Aの端子42Abと接続されている。整流スタック61の接地端子61gは、シグナルグランドSGと同電位が供給される接地線GLに接続されている。多回転情報検出部3の動作時に、接地線GLの電位は、回路の基準電位になる。整流スタック61の出力端子61cは、バッファ回路74の入力部に接続され、バッファ回路74の出力部は、レギュレータ63の制御端子63a及びアンド回路72の第1入力部に接続されている。
 整流スタック62は、第2電気信号発生ユニット31Bから流れる電流を整流する整流器である。整流スタック62の第1入力端子62aは、第2電気信号発生ユニット31Bの端子42Baと接続されている。整流スタック62の第2入力端子62bは、第2電気信号発生ユニット31Bの端子42Bbと接続されている。整流スタック62の接地端子62gは、接地線GLに接続されている。整流スタック62の出力端子62cは、バッファ回路74の入力部に接続されている。バッファ回路74の出力信号(以下、イネーブル信号という。)7Bは、入力部の信号が所定の閾値以下でLレベルとなり、その信号がその閾値より大きくなるとHレベルになる信号である。整流スタック61,62の出力端子61c,62cと接地線GLとの間に、出力端子61c,62cに生じるパルス信号(パルス電流)を一時的に蓄積するためのコンデンサ69Aが接続されている。以下では、出力端子61c,62cに生じるパルス信号をWW出力7A(ウィーガントワイヤの出力の意味)と称する。さらに、出力端子61c,62cと接地線GLとの間に、放電用のスイッチング素子70が接続され、計数器67からスイッチング素子70の制御端子に放電信号7Dが供給されている。スイッチング素子70が例えばMOS型FETである場合、出力端子61c,62cはドレイン電極Dに接続され、ソース電極Sが接地線GLに接続され、その制御端子はゲート電極Gになる。放電信号7Dがハイレベルになると、スイッチング素子70が導通して、出力端子61c,62cに生じるWW出力7A(コンデンサ69Aの電位)が急速に低下して基準電位になる。このようにスイッチング素子70を導通させてWW出力7Aを基準電位にすることを、以下では電気信号発生ユニット31A,31Bを放電させる、又はWW出力7Aを放電させるともいう。
 レギュレータ63は、バッテリ32から位置検出系1へ供給される電力を調整(平滑化)する。レギュレータ63は、バッテリ32と位置検出系1との間の電力の供給経路に設けられるスイッチ64を含んでもよい。レギュレータ63は、電気信号発生ユニット31A,31Bで発生する電気信号をもとにスイッチ64の動作を制御する。
 レギュレータ63の入力端子63bは、電源切替器38を介してバッテリ32に接続されている。レギュレータ63の出力端子63cは、電源線PL及びアンド回路72の第2入力部に接続されている。レギュレータ63の接地端子63gは、接地線GLに接続されている。レギュレータ63の入力端子63bと接地線GLとの間に入力側のコンデンサ69B(第2コンデンサ)が接続され、出力端子63cと接地線GLとの間に出力側のコンデンサ69C(第1コンデンサ)が接続されている。レギュレータ63の制御端子63aはイネーブル端子であり、レギュレータ63は、制御端子63aにバッファ回路74から閾値以上のイネーブル信号7B(電圧)が供給された状態で、出力端子63cの電位(電源線PLの電位)を所定電圧に維持する。レギュレータ63の出力電圧(上記の所定電圧)は、計数器67がCMOSなどで構成される場合に例えば3Vである。記憶部14の不揮発性メモリ68の動作電圧は、例えば、所定電圧と同じ電圧に設定される。なお、所定電圧は、電力供給に必要な電圧であり、一定の電圧値のことだけでなく、段階的に変化する電圧であってもよい。
 スイッチ64は、第1端子64aが入力端子63bと接続され、第2端子64bが出力端子63cと接続される。レギュレータ63は、バッファ回路74(電気信号発生ユニット31A,31B)から制御端子63aに供給されるイネーブル信号7Bを制御信号として用いて、スイッチ64の第1端子64aと第2端子64bとの間の導通状態と絶縁状態とを切り替える。例えば、スイッチ64は、MOS,TFT,FETなどのスイッチング素子を含み、第1端子64aと第2端子64bとはソース電極とドレイン電極であり、ゲート電極が制御端子63aと接続される。スイッチ64は、電気信号発生ユニット31A,31Bで発生する電気信号(電力)によってゲート電極が充電され、ゲート電極の電位が閾値以上になると、ソース電極とドレイン電極との間が導通可能な状態(オン状態)になる。なお、スイッチ64はレギュレータ63の外部に設けられてもよく、例えばリレー等の外付けであってもよい。
 また、アンド回路72は、イネーブル信号7BがHレベルで、かつレギュレータ63の出力信号が所定の閾値以上(Hレベル)のときにHレベルになる信号7E(第2信号)を遅延回路73に出力する。遅延回路73は、信号7Eを用いて生成したリセット信号7Rを計数器67及び不揮発性メモリ68に供給する。リセット信号7Rは、入力する信号7EがHレベルになってから所定の遅延時間をおいてHレベルになり、その後で信号7EがLレベルになるとLレベルになる信号である。リセット信号7Rは、信号7Eと同等に第2信号とみなすこともできる。計数器67及び不揮発性メモリ68は、リセット信号7RがLレベルの期間では、計数動作を停止する。計数器67及び不揮発性メモリ68が計数動作を停止することを以下では計数器67及び不揮発性メモリ68を初期化する、又はリセットするともいう。バッファ回路74、アンド回路72、及び遅延回路73から信号リレー回路75が構成されている。
 多回転情報検出部3は、磁気検出部12として、磁気センサ51,52、及びアナログコンパレータ65,66を含む。磁気検出部12は、磁石11が形成する磁界を、バッテリ32から供給される電力を用いて検出する。また、多回転情報検出部3は、図1に示した検出部13として計数器67を含み、記憶部14として不揮発性メモリ68を含む。
 磁気センサ51の電源端子51pは、電源線PLに接続されている。磁気センサ51の接地端子51gは、接地線GLに接続されている。磁気センサ51の出力端子51cは、アナログコンパレータ65の入力端子65aに接続されている。本実施形態において、磁気センサ51の出力端子51cは、図2(C)に示した第2出力端子51bの電位と基準電位との差に相当する電圧を出力する。アナログコンパレータ65は、磁気センサ51から出力される電圧を所定電圧と比較する比較器である。アナログコンパレータ65の電源端子65pは、電源線PLに接続されている。アナログコンパレータ65の接地端子65gは、接地線GLに接続されている。アナログコンパレータ65の出力端子65bは、計数器67の第1入力端子67aに接続されている。アナログコンパレータ65は、磁気センサ51の出力電圧が閾値以上である場合にHレベルとなりその出力電圧が閾値未満である場合にLレベルとなる信号を、出力端子65bから出力する。なお、アナログコンパレータ65を2つの入力端子を持つように構成し、その2つの入力端子に図2(C)の磁気センサ51の出力端子51a及び51bを接続し、アナログコンパレータ65では出力端子51a及び51bの電圧を比較してもよい。
 磁気センサ52及びアナログコンパレータ66は、磁気センサ51及びアナログコンパレータ65と同様の構成である。磁気センサ52の電源端子52p及び接地端子52gは、それぞれ電源線PL及び接地線GLに接続されている。磁気センサ52の出力端子52cは、アナログコンパレータ66の入力端子66aに接続されている。アナログコンパレータ66の電源端子66p及び接地端子66gは、それぞれ電源線PL及び接地線GLに接続されている。アナログコンパレータ66の出力端子66bは、計数器67の第2入力端子67bに接続されている。アナログコンパレータ66は、磁気センサ52の出力電圧が閾値以上である場合にHレベルとなりその出力電圧が閾値未満である場合にLレベルとなる信号を、出力端子66bから出力する。
 計数器67は、回転軸SFの多回転情報を、バッテリ32から供給される電力を用いて計数する。計数器67は、例えばCMOS論理回路などを含む。計数器67は、電源線PLに接続された電源端子67p、及び接地線GLに接続された接地端子67gを介して供給される電力を用いて動作する。計数器67は、第1入力端子67aを介して供給される電圧及び第2入力端子67bを介して供給される電圧を検出信号として、計数処理を行う。さらに、計数器67は、計数処理及び不揮発性メモリ68への書き込み処理が完了した後、放電信号7DをHレベルに設定してスイッチング素子70を導通させて、コンデンサ69Aに蓄積された電荷を放電することにより電気信号発生ユニット31A,31Bを放電させる(WW出力7Aのレベルを低下させる)。これによって、イネーブル信号7BがLレベルになり、レギュレータ63がオフになる。なお、以下では、電気信号発生ユニット31A,31Bを放電させることを、WW出力7Aをリセットするとも称する。
 不揮発性メモリ68は、検出部13が検出した回転位置情報の少なくとも一部(例えば多回転情報)を、バッテリ32から供給される電力を用いて記憶する(書き込み動作を行う)。不揮発性メモリ68は、検出部13が検出した回転位置情報として、計数器67による計数の結果(多回転情報)を記憶する。不揮発性メモリ68の電源端子68p及び接地端子68gは、それぞれ電源線PL及び接地線GLに接続されている。計数器67及び不揮発性メモリ68は、遅延回路73から出力されるリセット信号7RがLレベルの期間では、計数動作及び記憶部への書き込み動作を停止する。さらに、計数器67及び不揮発性メモリ68は、電源線PLの電圧が所定の閾値以上で、かつリセット信号7RがHレベルの期間に、計数動作及び記憶部への書き込み又は記憶部からの読み込みを行う。リセット信号7Rの遅延時間(アンド回路72の出力信号7Eが立ち上がってからリセット信号7Rが立ち上がるまでの時間)は、電源線PLの電圧がその所定の閾値以上となって、磁気検出部12及び計数器67が正確に動作するまでの時間をわずかに超える時間に設定されている。図1の記憶部14は、不揮発性メモリ68を含み、電力が供給されている間に書き込まれた情報を、電力が供給されない状態においても保持可能である。
 本実施形態において、整流スタック61,62と接地線GLとの間には、コンデンサ69Aが設けられている。コンデンサ69Aは、いわゆる平滑コンデンサであり、バッファ回路74への入力信号の脈動を低減する。また、レギュレータ63の入力端子63bと接地線GLとの間に入力コンデンサ69Bが接続され、レギュレータ63の出力端子63cと接地線GLとの間に出力コンデンサ69Cが接続されている。入力コンデンサ69B及び出力コンデンサ69Cはそれぞれレギュレータ63の動作の安定化(負荷応答性の改善、脈動(リッップル)の改善、及び発振防止等)を行うための平滑コンデンサである。コンデンサ69B,69Cの定数は、例えば、磁気検出部12により回転位置情報を検出して不揮発性メモリ68に回転位置情報を書き込むまでの期間に、バッテリ32から磁気検出部12及び不揮発性メモリ68への電力供給が維持されるように設定されてもよい。なお、入力コンデンサ69Bは省略可能である。また、出力コンデンサ69Cの電荷は、微少なリーク電流によって徐々に放電される。
 出力コンデンサ69Cの電荷が空の状態の場合、電気信号発生ユニット31A,31Bによる間欠動作中のレギュレータ63のオン時には、出力コンデンサ69Cに充電を行う必要があり、そのためにバッテリ32の電圧が瞬間的に降下する。出力コンデンサ69Cが充電された後はバッテリ32の電圧は復帰し、レギュレータ63は安定に動作する。これに関して、例えば計数器67での計数動作が完了した後、出力コンデンサ69Cの出力を放電してリセット信号7Rをローレベルにする構成を採用することも可能である。しかしながら、この構成では、回転軸SFが高速回転してレギュレータ63がオンになる間隔が短くなった場合に、バッテリ32の電圧が十分に復帰する前に、次のWW出力7Aが立ち上がってレギュレータ63がオンになるようになり、徐々にバッテリ32の電圧が降下して、電源線PLの電圧が閾値より常時小さくなり、磁気検出部12等が正確に動作できなくなる恐れがある。また、バッテリ32の電圧が復帰する時間は、バッテリ32の内部抵抗が大きくなった場合にはさらに顕著になる。これに対して、本実施形態では、計数器67での計数動作が完了した後、スイッチング素子70によって電気信号発生ユニット31A,31BのWW出力7Aを放電しているため、回転軸SFが高速回転しても電源線PLの電圧が確実にHレベルになる(詳細後述)。
 また、バッテリ32は例えばボタン型電池等の一次電池36及び充電可能な二次電池37を備える。二次電池37は、モータ制御部MCの電源部MCEと電気的に接続されている。電源部MCEは、例えば交流電源(不図示)から得られる電力で図1のモータMを駆動するとともに、その電力から得られる直流電圧をバッテリ32の二次電池37に供給可能である。モー夕制御部MCの電源部MCEが電力を供給可能な期間(例えば主電源がオン状態の期間)の少なくとも一部において、電源部MCEから二次電池37へ電力が供給され、この電力によって二次電池37が充電される。モータ制御部MCの電源部MCEが電力を供給不能な期間(例えば主電源がオフ状態の期間)において、電源部MCEから二次電池37への電力の供給は絶たれる。
 また、二次電池37は、電気信号発生ユニット31A,31Bからの電気信号の伝達経路にも電気的に接続されてもよい。この場合、二次電池37は、電気信号発生ユニット31A,31Bからの電気信号の電力により充電可能である。例えば、二次電池37は、整流スタック61とレギュレータ63との間の回路と電気的に接続される。二次電池37は、電源部MCEからの電力の供給が絶たれた状態において、回転軸SFの回転により電気信号発生ユニット31A,31Bで発生する電気信号の電力によって、充電することが可能となる。なお、二次電池37は、モータMに駆動されて回転軸SFが回転することにより不図示の発電機で発生する電力によって充電されてもよい。
 本実施形態に係るエンコーダ装置ECは、外部からの電力の供給が絶たれた状態において、一次電池36と二次電池37とのいずれから位置検出系1へ電力を供給するかを選択する。電力供給系2は、電源切替器(電源選択部、選択部)38を備え、電源切替器38は、位置検出系1に対して一次電池36と二次電池37とのいずれから電力を供給するかを切り替える(選択する)。電源切替器38の第1入力端子は、一次電池36の正極と電気的に接続され、電源切替器38の第2入力端子は、二次電池37と電気的に接続される。電源切替器38の出力端子は、レギュレータ63の入力端子63bと電気的に接続される。
 電源切替器38は、例えば、二次電池37の残量に基づいて、位置検出系1に対して電力を供給する電池を、一次電池36または二次電池37に選択する。例えば、二次電池37の残量が閾値以上である場合、電源切替器38は、二次電池37から電力を供給させ、一次電池36から電力を供給させない。この閾値は、位置検出系1で消費される電力に基づいて設定され、例えば位置検出系1へ対して供給すべき電力以上に設定される。例えば、電源切替器38は、位置検出系1で消費される電力を二次電池37からの電力でまかなうことが可能な場合、二次電池37から電力を供給させ、一次電池36から電力を供給させない。また、二次電池37の残量が閾値未満である場合、電源切替器38は、二次電池37から電力を供給させず、一次電池36から電力を供給させる。電源切替器38は、例えば、二次電池37の充電を制御する充電器を兼ねていてもよく、充電の制御に使われる二次電池37の残量の情報を用いて、二次電池37の残量が閾値以上であるか否かを判定してもよい。
 このように二次電池37を併用することで、一次電池36の消耗を遅らせることができる。したがって、エンコーダ装置ECは、バッテリ32のメンテナンス(例、交換)がない、あるいはメンテナンスの頻度が低い。
 なお、バッテリ32は、一次電池36と二次電池37の少なくとも一方を備えればよい。また、上述の実施形態においては、一次電池36または二次電池37から択一的に電力を供給するが、一次電池36及び二次電池37から並行して電力を供給してもよい。例えば、位置検出系1の各処理部(例えば磁気センサ51、計数器67、不揮発性メモリ68)の消費電力に応じて、一次電池36が電力を供給する処理部と、二次電池37が電力を供給する処理部とが定められてもよい。なお、二次電池37は、電源部MECから供給される電力と、電気信号発生ユニット31A,31Bで発生する電気信号の電力との少なくとも一方を用いて、充電されればよい。
 次に、電力供給系2及び多回転情報検出部3の通常の基本的な動作について説明する。図5は、回転軸SFが反時計回りに回転(順回転)するときの多回転情報検出部3の動作を示すタイミングチャートである。回転軸SFが反時計回りに回転(逆回転)するときの多回転情報検出部3の動作を示すタイミングチャートは、図4のチャートを時間に沿って反転したものとなるため、その説明を省略する。
 図5の「磁界」において、実線は第1電気信号発生ユニット31Aの位置での磁界を示し、破線は第2電気信号発生ユニット31Bの位置での磁界を示す。「第1電気信号発生ユニット」、「第2電気信号発生ユニット」は、それぞれ、第1電気信号発生ユニット31Aの出力、第2電気信号発生ユニット31Bの出力を示し、一方向に流れる電流の出力を正(+)とし、その逆方向に流れる電流の出力を負(-)とした。「イネーブル信号」は、電気信号発生ユニット31A,31Bで発生する電気信号によりレギュレータ63の制御端子63aに印加されるイネーブル信号7B(電位)を示し、Hレベルを「H」で表し、Lレベルを「L」で表した。「レギュレータ出力」は、レギュレータ63の出力(電源線PLの電位)を示し、Hレベルを「H」で表し、Lレベルを「L」で表した。
 図5の「第1磁気センサ上の磁界」、「第2磁気センサ上の磁界」は、磁気センサ51及び52上に形成される磁界である。磁石11が形成する磁界を長破線で示し、バイアス磁石が形成する磁界を短破線で示し、これらの合成磁界を実線で示した。「第1磁気センサ」、「第2磁気センサ」は、それぞれ、磁気センサ51及び52を常時駆動したときの出力を示し、第1出力端子からの出力を破線で表し、第2出力端子からの出力を実線で表した。「第1アナログコンパレータ」、「第2アナログコンパレータ」は、それぞれ、アナログコンパレータ65及び66からの出力を示す。磁気センサ及びアナログコンパレータが常時駆動された場合の出力を「常時駆動」に示し、磁気センサ及びアナログコンパレータが間欠駆動された場合の出力を「間欠駆動」に示した。
 回転軸SFが反時計回りに回転する場合、第1電気信号発生ユニット31Aは、角度位置45°及び225°において、順方向に流れる電流パルス(「第1電気信号発生ユニット」の+)を出力する。また、第1電気信号発生ユニット31Aは、角度位置135°及び315°において、逆方向に流れる電流パルス(「第1電気信号発生ユニット」の-)を出力する。第2電気信号発生ユニット31Bは、角度位置90°及び270°において、逆方向に流れる電流パルス(「第2電気信号発生ユニット」の-)を出力する。また、第2電気信号発生ユニット31Bは、角度位置180°及び0°(360°)において、順方向に流れる電流パルス(「第2電気信号発生ユニット」の-)を出力する。そのため、イネーブル信号は、角度位置45°、90°、135°、180°、225°、270°、315°、及び0°のそれぞれにおいて、Hレベルに切り替わる。また、レギュレータ63は、イネーブル信号がHレベルに維持された状態に対応して、角度位置45°、90°、135°、180°、225°、270°、315°、及び0°のそれぞれにおいて、電源線PLに所定電圧を供給する。
 本実施形態において、磁気センサ51の出力と磁気センサ52の出力は、90°の位相差を有しており、検出部13は、この位相差を利用して回転位置情報を検出する。磁気センサ51の出力は、角度位置22.5°から角度位置112.5°の範囲において、正のサイン波状である。この角度範囲において、レギュレータ63は角度位置45°、90°において電力を出力する。磁気センサ51及びアナログコンパレータ65は、角度位置45°,90°のそれぞれにおいて供給される電力により駆動される。アナログコンパレータ65から出力される信号(以下、A相信号という)は、電力供給を受けていない状態でLレベルに維持されており、角度位置45°,90°のそれぞれにおいてHレベルになる。
 また、磁気センサ52の出力は、角度位置157.5から247.5°の範囲において、正のサイン波状である。この角度範囲において、レギュレータ63は、角度位置180°,225°において電力を出力する。磁気センサ52及びアナログコンパレータ66は、角度位置180°,225°のそれぞれにおいて供給される電力により駆動される。アナログコンパレータ66から出力される信号(以下、B相信号という)は、電力供給を受けていない状態でLレベルに維持されており、角度位置180°,225°のそれぞれにおいてHレベルになる。
 ここで、計数器67に供給されるA相信号がHレベル(H)であり、計数器67に供給されるB相信号がLレベルである場合に、これら信号レベルの組を(H、L)のように表す。図5では、角度位置180°において信号レベルの組が(L、H)であり、角度位置225°において信号レベルの組が(H、H)、角度位置270°において信号レベルの組が(H、L)である。
 計数器67は、検出したA相信号とB相信号の一方または双方がHレベルである場合に、不揮発性メモリ68に信号レベルの組を記憶させる。計数器67は、次に検出したA相信号とB相信号の一方または双方がHレベルである場合に、前回のレベルの組を不揮発性メモリ68から読み出し、前回のレベルの組と今回のレベルの組と比較して回転軸SFの回転方向を判定する。
 例えば、前回の信号レベルの組が(H、H)であって、今回の信号レベルが(H、L)である場合には、前回の検出において角度位置225°であり、今回の検出において角度位置270°であるので、反時計回り(順回転)であることがわかる。計数器67は、今回のレベルの組が(H、L)であって、かつ前回のレベルの組が(H、H)である場合、カウンタをアップすることを示すアップ信号を不揮発性メモリ68に供給する。不揮発性メモリ68は、計数器67からのアップ信号を検出した場合に、記憶している多回転情報を1増加した値に更新する。また、逆回転の場合には、計数器67は、カウンタをダウンすることを示すダウン信号を不揮発性メモリ68に供給する。この歳に、不揮発性メモリ68は記憶した多回転情報を1減少させた値に更新する。このように、本実施形態に係る多回転情報検出部3は、回転軸SFの回転方向を判定しながら、多回転情報を検出できる。
 次に、本実施形態のエンコーダ装置ECにおいて、回転軸SFを高速回転した場合の動作(間欠動作シーケンス)の一例につき図6のフローチャート及び図7の波形図を参照して説明する。回転軸SFを高速回転した場合には、図5のイネーブル信号の周期TE等が短くなる。
 まず、図6のステップ102において、図4の電気信号発生ユニット31A又は31BのWW出力7Aが発生し、バッファ回路74のイネーブル信号7B(図7(C)参照)がHレベルになる。WW出力7Aは、図7(A)に示すように間欠的に短周期で発生するが、以下では図7(B)~(E)に示すように、WW出力7Aの1周期内での動作につき説明する。また、電気信号発生ユニット31A,31Bで発生する信号は図5に示すようにパルス状であるが、出力端子61c,62cと接地線GLとの間にコンデンサ69Aが設けられているため、WW出力7Aは比較的緩やかに基準電位に低下する。そして、ステップ104において、イネーブル信号7Bに応じてレギュレータ63がオン(作動)になり、レギュレータ63の出力端子63cに接続された電源線PLの電位が点線の波形で示すように上昇する(図7(B)参照)。このときにアンド回路72の信号7EがHレベルになる。
 さらに、ステップ106において、所定時間δtの経過後に遅延回路73のリセット信号7RがHレベルになり(図7(B)参照)、ステップ108において計数器67及び不揮発性メモリ68が作動を開始し、ステップ110において、計数器67が回転情報(上述のアップ信号又はダウン信号)を不揮発性メモリ68に書き込む。図7(B)のデータ7RDは、計数器67と不揮発性メモリ68との間で交換される信号の一例を示す。そして、ステップ112において、計数器67は放電信号7DをHレベルに設定し(図7(E)参照)、これに応じてスイッチング素子70が導通してWW出力7Aが低下し(放電され)、ステップ114において、バッファ回路74のイネーブル信号7BがLレベルとなり、ステップ116において、アンド回路72の出力7EがLレベルになり(図7(D)参照)、レギュレータ63がオフ(作動停止)になり、電源線PLの電位が低下する。そして、ステップ118において、リセット信号7RがLレベルになり(図7(B)参照)、計数器67及び不揮発性メモリ68が作動停止になる。その後、WW出力7Aが立ち上がると、動作はステップ102に戻り、ステップ104~118の動作が繰り返される。
 この動作によれば、図7(A)に示すように、WW出力7Aの各パルス信号が短い周期で間欠的に発生していても、計数器67の処理が終了する毎にWW出力7Aをリセットしてレギュレータ63をオフにすることによって、レギュレータ63の出力端子に接続されている電源線PLの電位(点線の曲線)はほとんど低下しない。このため、WW出力7Aのパルス信号が発生してレギュレータ63がオンになったときのバッテリ32の電圧低下を抑制でき、バッテリ32の電圧は確実に元の電圧に復帰できる。したがって、回転軸SFが高速回転していても、バッテリ32から位置検出系1(多回転情報検出部3)への電力の供給及び遮断を正確に行うことができ、バッテリ32の電力消費を小さくして、回転軸SFの回転情報を高精度に求めることができる。これによって、バッテリ32のメンテナンス(例えば交換)をなくすか、あるいはバッテリ32のメンテナンスの頻度を低くできる。
 上述のように、本実施形態に係るエンコーダ装置ECは、回転軸SF(移動部)の回転位置情報を検出する位置検出系1(位置検出部)と、回転軸SFの回転(移動)によって回転する磁石11と、磁石11の回転による磁界の変化によってWW出力7A(電気信号)を発生する電気信号発生ユニット31A(電気信号発生部)と、位置検出系1からの放電信号7D(制御信号)によってコンデンサ69Aに蓄積された電荷を放電させたことによって電気信号発生ユニット31Aから出力されるWW出力7A又はイネーブル信号7B(第1信号)を位置検出系1へ出力する信号リレー回路5(回路部)と、を備えている。
 本実施形態によれば、例えば位置検出系1での位置検出処理が終了した後、放電信号7Dによって電気信号発生ユニット31Aを放電させて(WW出力7Aを低下させて)、レギュレータ63をオフにすることによって、それ以降のバッテリ32の電力消費を防止できる。また、レギュレータ63の出力ではなく、電気信号発生ユニット31Aの出力を放電しているため、レギュレータ63の出力(位置検出系1の電源の電位)の低下を抑制できる。このため、回転軸SFが高速回転するときに、各WW出力7A(パルス信号)が発生する毎のレギュレータ63から位置検出系1への充電量を少なくすることができ、バッテリ32の電圧の落ち込み量を小さくして、バッテリ32の電圧の復帰時間を短縮できる。このため、回転軸SFが高速回転している場合でも、バッテリ32の電力消費を小さくして、位置検出系1に対する電力の供給を行うことができ、回転軸SFの回転情報を高精度に求めることができる。
 また、本実施形態においては、出力コンデンサ69Cを備えている。このコンデンサ69Aによって、レギュレータ63の動作が安定化(負荷応答性の改善等)される。さらに、出力コンデンサ69Cは放電されないため、回転軸SFが高速回転するときに、各WW出力7Aが発生する毎のレギュレータ63から出力コンデンサ69Cへの充電量を少なくすることができ、バッテリ32の電圧の落ち込み量を小さくして、バッテリ32の電圧の復帰時間を短縮できる。
 また、信号リレー回路75は、位置検出系1の電源線PLの電位が低下した後のWW出力7Aによるリセット信号7R(信号7Eと同等の第2信号)を位置検出系1の計数器67及び不揮発性メモリ68に出力し、計数器67及び不揮発性メモリ68はリセット信号7Rにより初期化される(計数動作を停止する)。これによって、電位の低下による不安定な信号による誤動作が防止される。
 また、本実施形態によれば、磁石11の側面に発生する磁力線を含む電気信号発生ユニット31Aにおけるパルス生成に不要な磁場成分は、感磁性部材47の長さ方向に直交しており、その不要な磁場成分は、磁石11の回転による交流磁界の反転による感磁性部材47の長さ方向の一端から他端に向かう磁壁の発生には悪影響を与えない。このため、感磁性部材47を磁石11の近傍に配置して、電気信号発生ユニット31Aを小型化しても、その不要な磁場成分に影響されることなく、磁石11の回転による軸方向の交流磁界の反転によって、電気信号発生ユニット31Aを用いて効率的に高い信頼性(安定した出力)で高出力のWW出力7A(パルス信号)を発生することができる。
 また、エンコーダ装置ECは、電気信号発生ユニット31Aに電気信号が発生してから短時間のうちに、バッテリ32から多回転情報検出部3に電力が供給され、多回転情報検出部3がダイナミック駆動(間欠駆動)する。多回転情報の検出及び書き込みの終了後は、多回転情報検出部3への電源供給は絶たれるが、計数値は、記憶部14に格納されているので保持される。このようなシーケンスは、外部からの電力供給が絶たれた状態においても、磁石11上の所定位置が電気信号発生ユニット31Aの近傍を通過するたびに繰り返される。また、記憶部14に記憶されている多回転情報は、次にモータMが起動される際にモータ制御部MCなどに読み出され、回転軸SFの初期位置などの算出に利用される。このようなエンコーダ装置ECは、電気信号発生ユニット31Aで発生する電気信号に応じて、位置検出系1で消費される電力の少なくとも一部をバッテリ32が供給するので、バッテリ32を長寿命にすることができる。このため、バッテリ32のメンテナンス(例えば交換)をなくしたり、メンテナンスの頻度を減らしたりすることができる。例えば、バッテリ32の寿命がエンコーダ装置ECの他の部分の寿命よりも長い場合、バッテリ32の交換を不要にすることもできる。
 ところで、ウィーガントワイヤ等の感磁性ワイヤを利用すると、磁石11の回転が極めて低速であっても、電気信号発生ユニット31Aからパルス電流(電気信号)の出力が得られる。そのため、例えばモータMへ電力供給がなされていない状態などにおいて、回転軸SF(磁石11)の回転が極めて低速な場合にも、電気信号発生ユニット31Aの出力を電気信号として利用できる。なお、感磁性ワイヤ(第1感磁性部41A)としては、アモルファス磁歪線なども使用可能である。この場合、例えば、エンコーダ装置ECは、上記した電気信号発生ユニット(例、31A、31B)から発生した電気信号(電流)を上記した整流スタック(例、整流器)を用いて全波整流し、整流された電力を多回転情報検出部3などに供給するように構成してもよい。
 [第2の実施形態]
 第2の実施形態につき図8から図10を参照して説明する。なお、図8、図9、図10において図4、図6、図7に対応する部分には同一の符号を付してその詳細な説明を省略する。図8は、本実施形態に係るエンコーダ装置ECAを示す。図8において、図4のバッファ回路74の代わりに3個の入力部を有するオア回路71が設けられている。そして、電気信号発生ユニット31A,31Bに接続された整流スタック61,62の出力端子61c,62cに生じるWW出力7Aがオア回路71の第1入力部に供給されている。また、モータ制御部MCの電源部MCEから、通常動作とバックアップ動作との切り替えを示す切り替え信号7NDがオア回路71の第2入力部及び計数器67の切り替え信号入力部に供給されている。さらに、計数器67から計数動作が終了したことを示すための処理完了信号7TCがオア回路71の第3入力部に供給されている。WW出力7A、切り替え信号7ND、及び処理完了信号7TCの少なくとも一つがHレベル(ハイレベル)になると、オア回路71の出力はHレベルになり、WW出力7A、切り替え信号7ND、及び処理完了信号7TCの全部がLレベル(ローレベル)になると、オア回路71の出力はLレベルになる。オア回路71の出力はイネーブル信号7Bとしてアンド回路72の第1入力部及びレギュレータ63の制御端子63aに供給されている。アンド回路72の出力信号7Eは遅延回路73を介してリセット信号7Rとして計数器67及び不揮発性メモリ68に供給される。オア回路71、アンド回路72、及び遅延回路73から信号リレー回路75Aが構成されている。
 電源部MCEは、基本的には第1の実施形態と同様に、例えば交流電源(不図示)から得られる電力で図1のモータMを駆動するとともに、その電力から得られる直流電圧をバッテリ32の二次電池37に供給する。さらに、本実施形態では一例として、電源部MCEは、通常動作では、切り替え信号7NDをHレベルに設定し、直流電圧をバッテリ32の二次電池37に供給し、二次電池37の電力が電源切替器38を介してレギュレータ63の入力端子63bに供給される。この際に、オア回路71のイネーブル信号7BがHレベルになっているため、レギュレータ63は連続的にオン状態となり、電源線PLの電位は連続的にHレベルになる。このため、磁気検出部12、計数器67、及び不揮発性メモリ68は連続的に作動している。また、切り替え信号7NDは計数器67にも供給されているため、計数器67では、切り替え信号7NDがHレベルであることから、現在の状態が通常動作であることを認識できる。この場合、計数器67では、一例として所定のサンプリングレートでアナログコンパレータ65,66の出力を取り込んで回転軸SFの多回転の回転情報を求め、求めた情報を不揮発性メモリ68に書き込む。
 バックアップ動作では、一例として電源部MCE(主電源)がオフとなり、図1のモータM(回転軸SF)の駆動が停止され、電源部MCEからバッテリ32に対する電力の供給が停止される。この際に、電源部MCEでは切り替え信号7NDをLレベルに設定する。これによって、計数器67では通常動作からバックアップ動作に切り替わったことを認識できる。バックアップ動作では、バッテリ32の電力の消費量を抑制するため、電気信号発生ユニット31A,31BのWW出力7Aが所定の閾値以上になっている期間でレギュレータ63をオンにして、その期間内で磁気検出部12、計数器67、及び不揮発性メモリ68に電力を供給して回転軸SFの回転情報を求める。
 ただし、通常動作からバックアップ動作に移行する際に、最初にWW出力7Aが立ち上がったタイミングで磁気検出部12等に電力を供給できない恐れがある。そこで、本実施形態では、切り替え信号7NDがLレベルに設定されたときに、計数器67では処理完了信号7TCをHレベルに設定して、レギュレータ63をオンにして、磁気検出部12等に電力を供給させる。なお、通常動作時には、一例として処理完了信号7TCは常にHレベルであってもよい。その後、回転情報が求められた後、計数器67では切り替え信号7NDをLレベルに設定する。この後は上述のバックアップ動作に円滑に移行できる。これ以外の本実施形態の構成は第1の実施形態と同様であるため、その説明を省略する。
 次に、本実施形態のエンコーダ装置ECAにおいて、例えば回転軸SFを高速回転している状態から電源部MCE(主電源)をオフにして、通常動作からバックアップ動作に移行する場合の動作の一例につき、図9のフローチャート及び図10の波形図を参照して説明する。この動作は、例えば電源部MCEがオンで回転軸SFが高速回転している状態で、非常停止等で電源部MCEがオフになり、その状態から回転軸SFが慣性で高速回転から停止状態に移行するような場合に発生する。
 まず、図9のステップ120において、電源部MCE(主電源)がオフになり、切り替え信号7NDがLレベルになる(図10(A)参照)。これに応じてステップ122で、計数器67は処理完了信号7TCをHレベルに設定する(図10(B)参照)。この後、ステップ104で、オア回路71のイネーブル信号7BがHレベルになり、レギュレータ63が作動し、電源線PLの電位がHレベルになり、アンド回路72の信号7EがHレベルになる。そして、ステップ106で、所定時間経過後にリセット信号7RがHレベルになり(図10(C)参照)、ステップ108において計数器67及び不揮発性メモリ68が作動を開始し、ステップ110において、計数器67が回転情報(上述のアップ信号又はダウン信号)を不揮発性メモリ68に書き込む。これによって電源オフ時の回転情報のバックアップが完了する。
 その後、ステップ124で、計数器67は処理完了信号7TCをLレベルに設定し(図10(B)参照)、ステップ112において、計数器67は放電信号7DをHレベルに設定し(図10(E)参照)、これに応じてスイッチング素子70が導通してWW出力7Aが低下する(電気信号発生ユニット31A,31Bが放電される)。そして、オア回路71のイネーブル信号7BがLレベルになり、ステップ116において、レギュレータ63がオフ(作動停止)になり、アンド回路72の出力7EがLレベルになる。そして、ステップ118において、リセット信号7RがLレベルになり(図10(C)参照)、計数器67及び不揮発性メモリ68が作動停止になる。その後、動作は図6のステップ102に移行する。そして、WW出力7Aが立ち上がると、図6のステップ104~118の動作が繰り返される。
 この動作によれば、回転軸SFが高速回転中に電源部MCE(主電源)がオフになった時点の直前又は直後等に、WW出力7Aが立ち上がったような場合でも、計数器67の処理完了信号7TCによってオア回路71のイネーブル信号7Bが確実にHレベルになり、レギュレータ63がオンになって磁気検出部12等に電力が供給され、回転軸SFの回転情報が求められて不揮発性メモリ68に書き込まれる。そして、この後でWW出力7Aが立ち上がると、第1の実施形態の間欠動作シーケンスと同様にバッテリ32の電力を効率的に使用して回転軸SFの回転情報が求められる。そのため、回転軸SFが高速回転していても、通常動作から間欠動作シーケンスに円滑に移行できる。
 上述のように、本実施形態に係るエンコーダ装置ECAは、電源部MCEから電力が供給されて回転軸SF(移動部)の回転位置情報を検出する位置検出系1(位置検出部)と、回転軸SFの回転によって回転する磁石11と、磁石11の回転に伴う磁界の変化によってWW出力7A(電気信号)を発生する電気信号発生ユニット31A(電気信号発生部)と、WW出力7Aによりバッテリ32(又は電源部MCE)からの電力を位置検出系1に供給するレギュレータ63(電力供給部)と、を備えている。さらに、エンコーダ装置ECAの位置検出系1は、電源部MCEからの電力の供給が絶たれると(その電力又は電源部MCEがオフになるときに)、WW出力7Aによるレギュレータ63からの電力が供給されるまでにその回転位置情報の検出を行うようにしている。
 また、本実施形態に係るエンコーダ装置ECAの使用方法は、位置検出系1が、電源部MCEからの電力の供給が絶たれると(その電力がオフになるときに)、WW出力7Aによるレギュレータ63からの電力が供給されるまでにその回転位置情報の検出を行うステップ122,108,110,124を含んでいる。
 本実施形態によれば、回転軸SFが高速回転中に電源部MCEがオフになった場合でも、例えば計数器67の処理完了信号7TCによってレギュレータ63がオンになって位置検出系1の磁気検出部12等に電力が供給され、回転軸SFの回転情報が求められて記憶される。そのため、電源部MCEがオフになっても、そのときの回転軸SFの回転情報を正確に求めて記憶した後、電気信号発生ユニット31AのWW出力7Aを用いてレギュレータ63の動作を制御する間欠動作シーケンスに円滑に移行できる。
 また、電気信号発生ユニット31Aは、磁石11の回転に伴う磁界の変化によって磁気特性が変化する感磁性部41Aを有し、感磁性部41Aの磁気特性に基づいてWW出力7Aを発生しており、信号リレー回路75A(信号出力部)を備え、電源部MCEがオフになったときに、レギュレータ63を作動させて、バッテリ32の出力を平滑化して位置検出系1に供給している(ステップ120,122,104)。その感磁性部41A及び信号リレー回路75Aによる効果等は第1の実施形態と同様である。
 なお、本実施形態において、計数器67がレギュレータ63を作動させるための処理完了信号7TCを出力しているため、円滑に電気信号発生ユニット31A,31Bの出力を利用できる。なお、処理完了信号7TCを出力する素子は必ずしも計数器67である必要はない。
 また、上述の各実施形態においては、図3(A)に示すように、電気信号発生ユニット31Aの第1、第2磁性体45A,46Aの先端部が、磁石11の表面(N極16A~S極16D)及び裏面(S極17A~N極17D)の同じ角度位置で互いに異なる極性の部分の近傍に配置されているため、電気信号発生ユニット31Aをさらに小型化できる。なお、図3(D)及び(E)に示す変形例の電気信号発生ユニット31Cのように、感磁性部材47の一端側の第1磁性体45Cの先端部を磁石11の表面のある極性の部分(例えばN極16A又はS極16B等)の近傍に配置し、感磁性部材47の他端側の第2磁性体46Cの先端部を磁石11の表面の異なる極性の部分(例えばS極16D又はN極16A等)の近傍に配置してもよい。この場合、第1、第2磁性体45C,46Cは、回転方向において異なる位置にある磁石11の互いに異なる極性の2つの部分(例えばN極16A及びS極16D)からの磁力線を感磁性部材47の長さ方向に導いている。電気信号発生ユニット31Cにおいても、磁石11から第1磁性体45C、感磁性部材47、及び第2磁性体46Cを通るように磁気回路MC2が形成されるため、磁石11の側面の不要な磁界に影響されることなく、磁石11の回転による交流磁界の反転によって、感磁性部材47が効率的に安定したパルスを出力できる。なお、磁石11の構成は任意であり、電気信号発生ユニット31A,31Bの構成も任意である。
 また、上述の実施形態では2つの電気信号発生ユニット31A,31Bが設けられているが、エンコーダ装置EC,ECAは1つの電気信号発生ユニット31Aを備えるのみでもよい。さらに、エンコーダ装置EC,ECAは、3つ以上の電気信号発生ユニットを備えてもよい。
 なお、上述の実施形態のように、複数の電気信号発生ユニットが設けられる場合に、電気信号発生ユニット31Aから出力される電力は、多回転情報を検出するための検出信号として利用されてもよいし、検出系などへの供給に利用されてもよい。
 なお、上述の第1実施形態において、磁石11は、周方向に4極と厚さ方向に2極とを有する8極の磁石であるが、このような構成に限定されず適宜変更できる。例えば、磁石11は、周方向の極数が2極又は4極以上であってもよい。
 なお、上述の実施形態において、位置検出系1は、位置情報として回転軸SF(移動部)の回転位置情報を検出するが、位置情報として所定方向の位置、速度、加速度の少なくとも一つを検出してもよい。エンコーダ装置EC,ECAは、ロータリーエンコーダを含んでもよいし、リニアエンコーダを含んでもよい。また、エンコーダ装置EC,ECAは、発電部及び検出部が回転軸SFに設けられ、磁石11が移動体(例えば回転軸SF)の外部に設けられることで、磁石と検出部との相対位置が移動部の移動に伴って変化するものでもよい。また、位置検出系1は回転軸SFの多回転情報を検出しなくてもよく位置検出系1の外部の処理部により多回転情報を検出してもよい。
 上述の実施形態において、電気信号発生ユニット31A,31Bは、磁石11と所定の位置関係となった際に電力(電気信号)を発生する。位置検出系1は電気信号発生ユニット31A,31Bに発生する電力(信号)の変化を検出信号に用いて、移動部(例、回転軸SF)の位置情報(例えば多回転情報又は角度位置情報を含む回転位置情報)を検出(計数)してもよい。例えば、電気信号発生ユニット31A,31Bをセンサ(位置センサ)として用いてもよく、位置検出系1は、電気信号発生ユニット31A,31B及び1つ以上のセンサ(例えば、磁気センサ、受光センサ)により、移動部の位置情報を検出してもよい。また、電気信号発生ユニットの数が2つ以上である場合、位置検出系1は、2つ以上の電気信号発生ユニットをセンサとして用いて位置情報を検出してもよい。例えば、位置検出系1は、2つ以上の電気信号発生ユニットをセンサとして用い、磁気センサを用いないで移動部の位置情報を検出してもよいし、受光センサを用いないで移動部の位置情報を検出してもよい。また、上記の磁気センサと同様に、位置検出系1は、2つ以上の電気信号発生ユニットをセンサとして用いて、2つ以上の電気信号に基づいて回転軸SFの回転方向を判別してもよい。
 また、電気信号発生ユニット31A,31Bは、位置検出系1で消費される電力の少なくとも一部を供給してもよい。例えば、電気信号発生ユニット31A,31Bは、位置検出系1のうち消費電力が相対的に小さい処理部に対して、電力を供給してもよい。また、電気供給系2は、位置検出系1の一部に対して電力を供給しなくてもよい。例えば、電力供給系2は、検出部13に間欠的に電力を供給し、記憶部14へ電力を供給しなくてもよい。この場合、電力供給系2の外部に設けられる電源、バッテリなどから記憶部14に対して、間欠的または連続的に電力が供給されてもよい。発電部は、大バルクハウゼンジャンプ以外の現象により電力が発生するものでもよく、例えば移動部(例えば回転軸SF)及び位置検出系1の一部に対して電力を供給しなくてもよい。例えば、電力供給系2は、検出部13に間欠的に電力を供給し、記憶部14へ電力を供給しなくてもよい。この場合、電力供給系2の外部に設けられる電源、バッテリなどから記憶部14に対して、間欠的または連続的に電力が供給されてもよい。発電部は、大バルクハウゼンジャンプ以外の現象により電力が発生するものでもよく、例えば移動部(例えば回転軸SF)の移動に伴う磁界の変化に伴う電磁誘導により、電力を発生するものでもよい。検出部の検出結果を記憶する記憶部は、位置検出系1の外部に設けられてもよく、エンコーダ装置EC,ECAの外部に設けられてもよい。
 [駆動装置]
 駆動装置の一例について説明する。図11は、駆動装置MTRの一例を示す図である。以下の説明において、上記した実施形態と同一または同等の構成部分については同一符号を付けて説明を省略または簡略化する。この駆動装置MTRは、電動モータを含むモータ装置である。駆動装置MTRは、回転軸SFと、回転軸SFを回転駆動する本体部(駆動部)BDと、回転軸SFの回転位置情報を検出するエンコーダ装置ECとを有している。なお、エンコーダ装置ECの代わりにエンコーダ装置ECAを備えていてもよい。
 回転軸SFは、負荷側端部SFaと、反負荷側端部SFbとを有している。負荷側端部SFaは、減速機など他の動力伝達機構に接続される。反負荷側端部SFbには、固定部を介してスケールSが固定される。このスケールSの固定とともに、エンコーダ装置ECが取り付けられている。エンコーダ装置ECは、上述した実施形態、変形例、あるいはその組み合わせに係るエンコーダ装置である。
 この駆動装置MTRは、エンコーダ装置ECの検出結果を使って、図1に示したモータ制御部MCが本体部BDを制御する。駆動装置MTRは、エンコーダ装置ECのバッテリ交換の必要性が無いもしくは低いので、メンテナンスコストを減らすことができる。なお、駆動装置MTRは、モータ装置に限定されず、油圧や空圧を利用して回転する軸部を有する他の駆動装置であってもよい。
 [ステージ装置]
 ステージ装置の一例について説明する。図12は、ステージ装置STGを示す。このステージ装置STGは、図11に示した駆動装置MTRの回転軸SFのうち負荷側端部SFaに、回転テーブル(移動物体)TBを取り付けた構成である。以下の説明において、上記した実施形態と同一または同等の構成部分については同一符号を付けて説明を省略または簡略化する。
 ステージ装置STGは、駆動装置MTRを駆動して回転軸SFを回転させると、この回転が回転テーブルTBに伝達される。その際、エンコーダ装置ECは、回転軸SFの角度位置等を検出する。従って、エンコーダ装置ECからの出力を用いることにより、回転テーブルTBの角度位置を検出することができる。なお、駆動装置MTRの負荷側端部SFaと回転テーブルTBとの間に減速機等が配置されてもよい。
 ステージ装置STGは、エンコーダ装置ECのバッテリ交換の必要性が低い又は無いので、メンテナンスコストを減らすことができる。なお、ステージ装置STGは、例えば、旋盤等の工作機械に備える回転テーブル等に適用できる。
 [ロボット装置]
 ロボット装置の一例について説明する。図13は、ロボット装置RBTを示す斜視図である。なお、図13には、ロボット装置RBTの一部(関節部分)を模式的に示した。以下の説明において、上記した実施形態と同一または同等の構成部分については同一符号を付けて説明を省略または簡略化する。このロボット装置RBTは、第1アームAR1と、第2アームAR2と、関節部JTとを有している。第1アームAR1は、関節部JTを介して、第2アームAR2と接続されている。
 第1アームAR1は、腕部101、軸受101a、及び軸受101bを備えている。第2アームAR2は、腕部102及び接続部102aを有する。接続部102aは、関節部JTにおいて、軸受101aと軸受101bの間に配置されている。接続部102aは、回転軸SF2と一体的に設けられている。回転軸SF2は、関節部JTにおいて 軸受101aと軸受101bの両方に挿入されている。回転軸SF2のうち軸受101bに挿入される側の端部は、軸受101bを貫通して減速機RGに接続されている。
 減速機RGは、駆動装置MTRに接続されており、駆動装置MTRの回転を例えば100分の1等に減速して回転軸SF2に伝達する。図13に図示しないが、駆動装置MTRの回転軸SFのうち負荷側端部SFaは、減速機RGに接続されている。また、駆動装置MTRの回転軸SFのうち反負荷側端部SFbには、エンコーダ装置ECのスケールSが取り付けられている。
 ロボット装置RBTは、駆動装置MTRを駆動して回転軸SFを回転させると、この回転が減速機RGを介して回転軸SF2に伝達される。回転軸SF2の回転により接続部102aが一体的に回転し、これにより第2アームAR2が、第1アームAR1に対して回転する。その際、エンコーダ装置ECは、回転軸SFの角度位置等を検出する。従って、エンコーダ装置ECからの出力により、第2アームAR2の角度位置を検出することができる。
 ロボット装置RBTは、エンコーダ装置ECのバッテリ交換の必要性が無いもしくは低いので、メンテナンスコストを減らすことができる。なお、ロボット装置RBTは、上記の構成に限定されず、駆動装置MTRは、関節を備える各種ロボット装置に適用できる。
 1…位置検出系、3…多回転情報検出部、4…角度検出部、11,11A…磁石、12…磁気検出部、13…検出部、14…記憶部、21…発光素子(照射部)、22…受光センサ(光検出部)、31A,31B…電気信号発生ユニット、32…バッテリ、33…切替部、36…一次電池、37…二次電池、41A,41B…感磁性部、42A,42B…発電部、43A,43B…ケース、45A…第1磁性体、46A…第2磁性体、47…感磁性部材、51,52…磁気センサ、63…レギュレータ、67…計数器、70…スイッチング素、71…オア回路、72…アンド回路、73…遅延回路、75,75A…信号リレー回路、EC,ECA…エンコーダ装置、SF…回転軸、AR1…第1アーム、AR2…第2アーム、MTR…駆動装置、RBT…ロボット装置、STG…ステージ装置

Claims (21)

  1.  移動部の位置情報を検出する位置検出部と、
     前記移動部の移動によって移動する磁石と、
     前記磁石の移動による磁界の変化によって電気信号を発生する電気信号発生部と、
     前記位置検出部からの制御信号によって変化する前記電気信号発生部の出力を前記位置検出部へ出力する回路部と
    を備えるエンコーダ装置。
  2.  前記電気信号発生部から出力された電荷を蓄積する蓄積部を有し、
     前記電気信号発生部の出力は、前記制御信号によって前記蓄積部の電荷を放電すると変化する請求項1に記載のエンコーダ装置。
  3.  前記回路部は、前記電気信号発生部の出力によって前記位置検出部の電位が低下した後の前記電気信号を前記位置検出部へ出力し、
     前記位置検出部は、前記位置検出部の電位が低下した後の前記電気信号により初期化される請求項1または2に記載のエンコーダ装置。
  4.  前記電気信号により、前記位置検出部に電力を供給する電力供給部を備え、
     前記回路部は、前記電力供給部の電位が基準値以上であると、前記位置検出部の電位が低下した後の前記電気信号を前記位置検出部へ出力する請求項3に記載のエンコーダ装置。
  5.  前記回路部は、前記電力供給部の電位が上昇して所定時間経過すると前記位置検出部の電位が低下した後の前記電気信号を前記位置検出部に出力する遅延部を含む請求項4に記載のエンコーダ装置。
  6.  前記位置検出部は、前記移動部の位置情報の検出処理が終わると、前記制御信号を出力して前記電気信号発生部の出力を変化させる請求項1から4のいずれか一項に記載のエンコーダ装置。
  7.  前記電気信号は、前記移動部の移動によって間欠的に繰り返して出力される請求項1から6のいずれか一項に記載のエンコーダ装置。
  8.  電源から電力が供給されて移動部の位置情報を検出する位置検出部と、
     前記移動部の移動によって移動する磁石と、
     前記磁石の移動による磁界の変化によって電気信号を発生する電気信号発生部と、
     前記電気信号により前記位置検出部に電力を供給する電力供給部と、を備え、
     前記位置検出部は、前記電源からの電力の供給が断たれると、前記電気信号による前記電力供給部からの電力が供給されるまでに前記位置情報の検出を行うエンコーダ装置。
  9.  前記位置検出部によって前記位置情報が検出されると、前記位置検出部からの制御信号によって変化する前記電気信号発生部からの出力を前記位置検出部へ出力する回路部を備える請求項8に記載のエンコーダ装置。
  10.  前記回路部は、前記電気信号発生部からの出力によって前記位置検出部の電位が低下した後の前記電気信号を前記位置検出部へ出力し、
     前記位置検出部は、前記位置検出部の電位が低下した後の前記電気信号により初期化される請求項9に記載のエンコーダ装置。
  11.  前記回路部は、前記電力供給部の電位が上昇して所定時間経過すると前記位置検出部の電位が低下した後の前記電気信号を前記位置検出部に出力する遅延部を備える請求項10に記載のエンコーダ装置。
  12.  前記電気信号は、前記移動部の移動によって間欠的に繰り返して出力される請求項8から11のいずれか一項に記載のエンコーダ装置。
  13.  前記位置検出部は、前記移動部の移動によって互いの相対位置が変化する位置検出用磁石及び磁気検出部を含み、該位置検出用磁石が形成する磁界に基づいて前記位置情報を検出し、
     前記磁気検出部は、該位置検出用磁石が形成する磁界を前記電力供給部から供給される電力を用いて検出する、請求項4、5、7、及び請求項8から12のいずれか一項に記載のエンコーダ装置。
  14.  前記位置検出部は、
     前記移動部の移動によって移動するスケールと、
     前記スケールに光を照射する照射部と、
     前記スケールからの光を検出する光検出部と、を含む、請求項1から13のいずれか一項に記載のエンコーダ装置。
  15.  前記移動部は回転軸を含み、
     前記磁石は輪帯状又は扇形の部分を含み、
     前記電気信号発生部は、前記磁石に沿って複数個配置される請求項1から7のいずれか一項に記載のエンコーダ装置。
  16.  前記位置検出部は、前記回転軸の1回転以内の角度位置情報を検出する角度検出部と、
     前記位置情報として前記回転軸の多回転情報を検出する多回転情報検出部と、を備える請求項15に記載のエンコーダ装置。
  17.  請求項1から16のいずれか一項に記載のエンコーダ装置と、
     前記移動部に動力を供給する動力供給部と、を備える駆動装置。
  18.  移動物体と、
     前記移動物体を移動させる請求項17に記載の駆動装置と、を備えるステージ装置。
  19.  請求項17に記載の駆動装置と、
     前記駆動装置によって相対移動するアームと、を備えるロボット装置。
  20.  電源から電力が供給されて移動部の位置情報を検出する位置検出部と、
     前記移動部の移動によって移動する磁石と、
     前記磁石の移動による磁界の変化によって電気信号を発生する電気信号発生部と、
     前記電気信号により前記位置検出部に電力を供給する電力供給部と、を備えるエンコーダ装置の使用方法であって、
     前記位置検出部は、前記電源からの電力の供給が断たれると、前記電気信号による前記電力供給部からの電力が供給されるまでに前記位置情報の検出を行うことを含む使用方法。
  21.  前記電源からの電力の供給が絶たれると、前記位置検出部が、前記位置情報を求めて記憶部に記憶させ、
     前記電気信号を放電すること、を含む請求項20に記載の使用方法。
PCT/JP2019/049083 2019-12-16 2019-12-16 エンコーダ装置及びその使用方法、駆動装置、ステージ装置、並びにロボット装置 WO2021124377A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/049083 WO2021124377A1 (ja) 2019-12-16 2019-12-16 エンコーダ装置及びその使用方法、駆動装置、ステージ装置、並びにロボット装置
JP2021565151A JP7372604B2 (ja) 2019-12-16 2019-12-16 エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2023179875A JP2023181270A (ja) 2019-12-16 2023-10-18 エンコーダ装置及びその使用方法、駆動装置、ステージ装置、並びにロボット装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049083 WO2021124377A1 (ja) 2019-12-16 2019-12-16 エンコーダ装置及びその使用方法、駆動装置、ステージ装置、並びにロボット装置

Publications (1)

Publication Number Publication Date
WO2021124377A1 true WO2021124377A1 (ja) 2021-06-24

Family

ID=76478622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049083 WO2021124377A1 (ja) 2019-12-16 2019-12-16 エンコーダ装置及びその使用方法、駆動装置、ステージ装置、並びにロボット装置

Country Status (2)

Country Link
JP (2) JP7372604B2 (ja)
WO (1) WO2021124377A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103089A (ja) * 2010-11-10 2012-05-31 Nsk Ltd アングルセンサ及び電動パワーステアリング装置
JP2015049042A (ja) * 2013-08-29 2015-03-16 株式会社ジェイテクト 回転角検出装置、電動パワーステアリング装置
US20180145621A1 (en) * 2016-11-23 2018-05-24 Purdue Research Foundation Systems and methods for reducing dc-link oscillations
JP2018132432A (ja) * 2017-02-16 2018-08-23 株式会社ニコン エンコーダ装置、駆動装置、ステージ装置、及びロボット装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049621A (ja) * 2013-08-30 2015-03-16 キヤノンマーケティングジャパン株式会社 情報処理装置、情報処理システム、その制御方法及びプログラム
JP6772698B2 (ja) 2016-09-14 2020-10-21 株式会社ニコン エンコーダ装置、駆動装置、ステージ装置、及びロボット装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103089A (ja) * 2010-11-10 2012-05-31 Nsk Ltd アングルセンサ及び電動パワーステアリング装置
JP2015049042A (ja) * 2013-08-29 2015-03-16 株式会社ジェイテクト 回転角検出装置、電動パワーステアリング装置
US20180145621A1 (en) * 2016-11-23 2018-05-24 Purdue Research Foundation Systems and methods for reducing dc-link oscillations
JP2018132432A (ja) * 2017-02-16 2018-08-23 株式会社ニコン エンコーダ装置、駆動装置、ステージ装置、及びロボット装置

Also Published As

Publication number Publication date
JP7372604B2 (ja) 2023-11-01
JPWO2021124377A1 (ja) 2021-06-24
JP2023181270A (ja) 2023-12-21

Similar Documents

Publication Publication Date Title
JP6610697B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
CN108474673B (zh) 编码器装置、驱动装置、载物台装置及机器人装置
JP7401858B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6787345B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6959588B2 (ja) エンコーダ装置及びその製造方法、駆動装置、ステージ装置、並びにロボット装置
KR20140143404A (ko) 다회전 인코더
JP6772698B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6926434B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP5511748B2 (ja) 運動検出装置
JP2014112113A (ja) 運動検出装置
WO2021124377A1 (ja) エンコーダ装置及びその使用方法、駆動装置、ステージ装置、並びにロボット装置
JP2012198067A (ja) 回転運動または周回運動を検出する運動検出装置
JP2018059875A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2021001908A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2018036138A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2018054488A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956765

Country of ref document: EP

Kind code of ref document: A1