WO2021123548A1 - Coupelle de rotor exterieur pour un moteur de ventilateur d'un vehicule automobile - Google Patents

Coupelle de rotor exterieur pour un moteur de ventilateur d'un vehicule automobile Download PDF

Info

Publication number
WO2021123548A1
WO2021123548A1 PCT/FR2020/052294 FR2020052294W WO2021123548A1 WO 2021123548 A1 WO2021123548 A1 WO 2021123548A1 FR 2020052294 W FR2020052294 W FR 2020052294W WO 2021123548 A1 WO2021123548 A1 WO 2021123548A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor cup
rotor
cup
cylindrical portion
motor
Prior art date
Application number
PCT/FR2020/052294
Other languages
English (en)
Inventor
Sophie BEDE
Maurad Berkouk
Laurent Legot
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to CN202080088895.2A priority Critical patent/CN114830495A/zh
Priority to EP20841983.8A priority patent/EP4078773A1/fr
Priority to US17/786,866 priority patent/US20230023583A1/en
Publication of WO2021123548A1 publication Critical patent/WO2021123548A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00457Ventilation unit, e.g. combined with a radiator
    • B60H1/00471The ventilator being of the radial type, i.e. with radial expulsion of the air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Definitions

  • This description relates to an outer rotor cup for a fan motor of a motor vehicle heating, ventilation and / or air conditioning installation.
  • the present description also relates to a motor comprising such a cup and to a fan comprising such a motor.
  • a heating, ventilation and / or air conditioning installation which makes it possible to generate an air flow.
  • Such an installation makes it possible to manage the temperature and the distribution within the passenger compartment of the vehicles of the air flow created.
  • a heating, ventilation and / or air conditioning installation comprises, inter alia, a fan comprising a fan wheel driven in rotation by an electric motor.
  • the electric motor is in particular electronically commutated, driven by a power supply module.
  • An electronically commutated electric motor, or brushless direct current motor (also known by the English name of "brushless”), comprises a rotor and stator assembly, each of these components carrying electromagnetic elements including the interaction generates the displacement of the rotor relative to the stator, and further the displacement of the fan wheel.
  • the electric motor conventionally comprises an external rotor, an internal stator, fixed to a support of the electric motor.
  • the outer rotor comprises in particular a metal cup (or carcass, from the English “yoke”), with a cylindrical outer edge inside which magnets are fixed, so as to surround the rotor winding.
  • the dish conventionally has a portion cylindrical, radially internal, receiving the output shaft of the rotor. Between the radially inner cylindrical portion and the radially outer cylindrical portion, the cup conventionally forms a generally planar portion.
  • An object of the present description is to provide a rotor cup not having at least some of the aforementioned drawbacks.
  • a rotor cup for an external rotor motor in particular for a motor-fan unit intended to equip a heating, ventilation or air conditioning installation of a motor vehicle, the rotor cup being at symmetry of revolution about an axis of symmetry, the rotor cup comprising:
  • the third portion extends between a first radially inner point and a second radially outer point, the straight line connecting the first and second points forming with the axis of symmetry of the rotor cup, an angle between 65 ° and 80 °, the ratio between the distance between the first point and the axis of symmetry of the rotor cup, of a on the one hand, and the radius of the second cylindrical portion, on the other hand, being between 0.04 and 0.32, the ratio between the distance between the second point and the axis of symmetry of the rotor cup, d ' on the one hand, and the radius of the second cylindrical portion, on the other hand, being between 0.65 and 1.0.
  • the rotor cup has a majority portion of generally frustoconical shape, which improves the rigidity of the cup. rotor.
  • the angle at the top of the frustoconical portion is however chosen to limit the axial size of the rotor cup.
  • the rotor cup has one or more of the following characteristics, taken alone or in combination:
  • the rotor cup comprises a fourth, annular portion, between the first portion and the third portion, substantially normal to the axis of symmetry of the rotor cup, the ratio between the internal radius of the fourth portion and the radius of the second cylindrical portion preferably being between 0.05 and 0.24 and / or the ratio between the outer radius of the fourth portion and the radius of the second cylindrical portion preferably being between 0.15 and 0.30;
  • the fourth portion forms a recess relative to the third portion
  • the third portion is tapered or flared
  • the rotor cup preferably comprising a prime number of arms, greater than or equal to seven;
  • the openings are trapezoidal or bullet-shaped
  • the arms are "Y" shaped
  • the rotor cup is made of metal, the rotor cup preferably having a thickness less than or equal to 3 mm, more preferably less than or equal to 2 mm, even more preferably of thickness equal to 1, 6 mm;
  • the rotor cup comprises, in sectional view, an elbow between the first portion, on the one hand, and the third portion or the fourth portion, where appropriate, on the other hand, the thickness of the elbow being greater than l 'thickness of the first portion, the ratio between the thickness of the bend and the thickness of the first portion preferably being greater than or equal to 1, 3 and / or less than or equal to 1, 6;
  • the first cylindrical portion extends over a height, measured along the direction of the axis of symmetry of the cup, such that the ratio between the height of the first cylindrical portion and the diameter of the first cylindrical portion is between 0 , 80 and 0.98;
  • the second cylindrical portion extends over a height, measured in the direction of the axis of symmetry of the cup, the ratio between the height of the second cylindrical portion and the radius of the second cylindrical portion being between 0.30 and 0.60.
  • an external rotor motor for a motor vehicle heating, ventilation or air conditioning installation comprising a stator with a winding, a rotor comprising a rotor cup as described above, in all its combinations, magnets being fixed on the second cylindrical portion of the rotor cup, the magnets being disposed radially on the outside with respect to the stator winding.
  • a fan for a motor vehicle heating, ventilation or air conditioning installation comprising a motor as described above, in all its combinations, a shaft integral with the rotor cup , and a fan wheel attached to the shaft to be rotated.
  • FIG. 1 shows schematically in perspective a fan device
  • FIG. 2 is a schematic perspective view of an example of a motor which can be implemented in the fan device of FIG. 1;
  • FIG. 3 is a schematic view from a different perspective, of the example engine of Figure 2;
  • FIG. 4 is a perspective view of a rotor support implemented in the engine of Figures 2 and 3;
  • FIG. 5 is a perspective view from below of the engine of Figures 2 and 3, in which the engine cover has been removed;
  • FIG. 6 is a perspective view from below of the fan device of FIG. 1; [0019] [Fig. 7] schematically illustrates the outer face of the engine cover of Figures 2 and 3; and
  • FIG. 8 schematically shows in perspective a first example of a rotor cup which can be used in the motor of FIGS. 2 and 3;
  • FIG. 9 shows schematically in section the first example of the rotor cup of Figure 8 attached to the motor rotor shaft
  • FIG. 10 schematically shows in perspective a variant of the first example of a rotor cup which can be used in the engine of FIGS. 2 and 3;
  • FIG. 11 schematically shows in section a second example of a rotor cup which can be used in the motor of FIGS. 2 and 3.
  • Figure 1 illustrates a fan device 10 for a vehicle ventilation installation.
  • the fan device 10 essentially comprises, as illustrated, a fan wheel 12, an electric motor 14, and a support 16 for the electric motor 14.
  • the fan wheel 12 rotates about an axis of rotation A
  • the electric motor 14 is intended to drive in rotation around its axis A, the fan wheel 12.
  • the support 16 of the motor 14 is intended to allow the fixing of the fan device 10 in a motor vehicle, by limiting the transmission of vibrations generated by the electric motor 14 and / or the fan wheel 12 in the motor vehicle and / or external stresses towards the electric motor 14 and / or the fan wheel 12.
  • the support 16 of the motor 14 can in particular comprise two rings coaxial, with an axis the axis A of rotation of the fan wheel 12, interconnected by the elastomeric material.
  • the elastomeric material can form a decoupling ring between the inner ring and the outer ring.
  • the inner ring may be intended to be fixed to the motor 14.
  • the outer ring may be intended to be fixed to a structural element, in particular of a vehicle ventilation installation.
  • the elastomeric material is, for example, polystyrene-b-poly (ethylene-butylene) -b-polystyrene or SEBS.
  • the electric motor 14 here forms a mechanical assembly comprising a rotating element 18, in this case the rotor 18 of the motor 14, a support 20 of the rotor 18 and a cover 22, fixed on the support 20 of the rotor 18.
  • the cover 22 is fixed on the support 20 of the rotor 18 by means of screws 24.
  • other fixing means can be implemented to fix the cover 22 on the support 20 of the rotor 18.
  • the rotor 18 is here an external rotor.
  • the stator 26 associated with the rotor 18 is disposed radially inside the rotor 18. More precisely, the magnets 27 of the rotor 18 are radially outward with respect to the winding of the stator 26.
  • the rotor 18 has the shape of a perforated cup 28, fixed to a shaft 30.
  • the fan wheel 12 is here fixed directly to the shaft 30.
  • the magnets 27 of the rotor 18 are here fixed to the internal face of the cup 28, on a cylindrical strip 32 formed by cup 28.
  • the support 20 is for example made of an aluminum alloy or a plastic material loaded with metal particles.
  • the support 20 of the rotor 18 here has a base 34.
  • the base 34 here extends generally in a plane normal to the axis A of rotation of the motor 14.
  • a substantially cylindrical relief 36 extends from the base 34.
  • the relief 36 extends substantially in the direction of the axis A of rotation of the motor 14.
  • the relief 36 is hollow.
  • the relief 36 may in particular form one or two housings 38 each receiving a rolling ring, in particular a ball bearing, intended to guide the rotation of the shaft 30 relative to the support 20.
  • a first housing is formed at the level of the free end of the relief 36 and a second housing is formed in the relief 36, substantially at the level of the base 34. A ball bearing is received in each of these housings.
  • the base 34 forms on its surface opposite the cylindrical relief 36, a recess 40 receiving a printed circuit board 42 (or electronic card) for controlling the motor 14.
  • the recess 40 may be surrounded by a protruding rim 41.
  • Various mechatronic components 44, 46 are fixed to the printed circuit board 42.
  • mechanical devices 44 make it possible to connect tabs integral with the coils of the stator 26 to the printed circuit board 42. The power supply of these coils via these tabs , can then allow the control of the electric motor 14.
  • the larger components 46, in particular the capacitors can also be fixed on the printed circuit board 42, preferably in the vicinity of the edges of the printed circuit board 42.
  • a connector 48 is also connected to the printed circuit board 42.
  • the connector 48 provides power to the printed circuit board 42 and, therefore, to the motor 14.
  • the cover 22 is fixed on the base 34 of the support 20.
  • the cover 22 defines here, with the recess 40 in the base 34, a housing for receiving the printed circuit board 42.
  • the cover 22 here comprises an edge 50, substantially plane, extending along a plane normal to the axis A of rotation of the motor 14.
  • the edge 50 has holes 51 allowing the cover 22 to be attached to the base 34 of the support 20, at the screw means 24.
  • the cover 22 also comprises a bottom 52, distant from the edge 50, in the direction of the axis A of rotation of the motor 14.
  • the bottom 52 is here substantially flat.
  • the bottom 52 extends substantially along a plane, normal to the axis A of rotation of the motor 14.
  • the bottom 52 of the cover 22 is here substantially parallel to the base 34 of the support 20.
  • the bottom 52 of the cover 22 is also substantially parallel to the printed circuit board 42.
  • the cover 22 is for example made of aluminum alloy or plastic loaded with conductive particles, in particular plastic loaded with metal particles.
  • the cover 22 illustrated comprises bosses 54, 56 peripheral. These bosses 54, 56 allow the reception of the electronic devices 46, the largest, in particular the highest in the direction of the axis A of rotation of the motor 14.
  • the cover 22 also has a flat surface 53, closer to the edge 50 than the bottom 52, in the direction of the axis A of rotation of the motor 14 .
  • the cover 22 and the printed circuit board 42 may each have a through opening 60, 62 facing the shaft 30 of the rotor 18. These openings 60, 62 can allow passage a counter-bearing for the shaft 30, allowing the wheel 12 to be fitted onto the shaft 30.
  • the opening 60 in the cover can then be closed, in particular by means of a sticker. This protects the printed circuit board 42 from humidity in the ambient air.
  • a first example of cup 28 is illustrated in Figures 8 and 9.
  • the cup 28 is of rotational symmetry, around an axis A of symmetry corresponding to the axis of rotation of the cup 28 and of the motor 14.
  • the cup 28 essentially comprises a first cylindrical portion 68, radially inner and a second cylindrical portion 32, radially outer.
  • the second cylindrical portion 32 corresponds to the cylindrical strip 32 described above, on which the magnets 27 of the rotor 18 are fixed.
  • the magnets 27 are fixed on the radially inner face of the second cylindrical portion 32.
  • the first cylindrical portion 68 extends over a height h68, measured in the direction of the axis A of symmetry of the cup 28.
  • the height h68 of the first portion 68 may be such that the ratio between the height h68 of the first cylindrical portion 68 and the radius R32 of the second cylindrical portion 32 is between 0.8 and 0.98.
  • Such a range is particularly advantageous in the case where the shaft 30 is force-fitted into the first portion 68.
  • the shaft 30 can be fixed to the cup 28 by welding.
  • the height h68 of the first portion can be significantly reduced, in particular close to 0.
  • the first cylindrical portion 68 receives the shaft 30 of the motor 14.
  • the shaft 30 is for example force-fitted into this first cylindrical portion 68.
  • the shaft 30 can be welded to the first cylindrical portion 68.
  • the second cylindrical portion 32 extends over a height h32, measured in the direction of the axis A of symmetry of the cup 28, such that the ratio between the height h32 of the second cylindrical portion 32 and the radius R32 of the second cylindrical portion 32 is between 0.30 and 0.60.
  • the cup 28 comprises a third portion 70 such that, seen in section, the third portion 70 extends between a first point P1, radially inside, and a second point P2, radially outside, the straight line connecting the first and second points P1, P2 forming with the axis A of symmetry of the cup 28, an angle a between 65 ° and 80 °.
  • the third portion 70 of the cup 28 is generally frustoconical in shape, which helps to stiffen the cup 28.
  • the angle at the center of this third portion 70 is however limited, in order to limit the axial bulk of the cup 28.
  • the third portion 70 is frustoconical, the third portion 70 extending, in section, substantially along the straight line connecting the first and second points P1, P2.
  • the ratio between the distance RPI between the first point P1 and the axis A of symmetry of the cup 28, on the one hand, and the radius R32 of the second cylindrical portion 32, of on the other hand is between 0.04 and 0.32. Furthermore, the ratio between the distance RP2 between the second point P2 and the axis A of symmetry of the cup 28, on the one hand, and the radius R32 of the second cylindrical portion 32, on the other hand, being between 0.65 and 1.0.
  • the third portion 70 of generally frustoconical shape, extends over the majority of the surface of the cup 28, ensuring the rigidity of this cup 28. It should be noted here that the radius R32 of the second portion 32 is the outer radius of the rotor cup 28.
  • the third portion 70 has, in the example illustrated in Figures 8 and 9, openings 72 separated by arms 74.
  • the cup 28 comprises seven arms 74, separating seven openings 72. More generally, for limit the risks of the appearance of eigen modes of the cup 28 at relatively low frequencies, the cup 28 advantageously comprises a prime number of arms 74. This number of arms is preferably greater than or equal to seven.
  • the openings 72 make it possible to reduce again the weight of the cup 28.
  • the openings 72 also make it possible to facilitate the cooling of the coils of the stator received inside the cup 28.
  • the arms 74 may be of substantially trapezoidal shape.
  • the arms 74 define openings 72 which are also trapezoidal.
  • each arm 74 has a minimum width I74, measured in an orthoradial direction with respect to the axis A of symmetry of the cup 28, such that the ratio of this minimum width I74 to the radius R32 of the second cylindrical portion 32 is between 0.08 and 0.30.
  • Each arm 74 also has a maximum width L74, measured in an orthoradial direction with respect to the axis A of symmetry of the cup 28, such that the ratio of this maximum width L74 to the radius R32 of the second cylindrical portion 32 is included between 0.08 and 0.45.
  • the maximum width L74 of an arm 74 is measured at the radially outside end of the arm 74 considered, while the minimum width I74 is measured at the radially inside end of the arm 74 considered.
  • the cup 28 further comprises a fourth portion 76, annular.
  • the fourth portion 76 here forms a recess relative to the end, radially internal, of the third portion 70 and to the first cylindrical portion 68.
  • the fourth portion 76 is located radially between the first portion 68 and the third portion 70.
  • the fourth portion 76 is here normal to the axis A of symmetry of cup 28.
  • the ratio between the internal radius R76i of the fourth portion 76 and the radius R32 of the second portion 32 is for example between 0.05 and 0, 24.
  • the relationship between the outer radius R76e of the fourth portion 76 and the radius R32 of the second portion 32 is for example between 0.15 and 0.30.
  • this fourth annular portion 76 is of reduced area.
  • This fourth portion 76 forming a recess, makes it possible to further stiffen the cup 28.
  • the fourth portion 76 is for example connected to the first cylindrical portion 68 by an elbow.
  • the fourth portion 76 is here adjacent to the third frustoconical portion 70.
  • the cup 28 of Figures 8 and 9 further comprises a fifth portion 78, flared, between the second portion 32 and the third portion 70. More specifically, in section, the fifth portion 78 forms an elbow.
  • the fifth portion 78 is here adjacent to the third frustoconical portion 70, on the one hand, and to the second cylindrical portion 32, on the other hand. This fifth portion 78, forming an elbow, also makes it possible to stiffen the cup 28.
  • the cup 28 is formed by the first, second, third, fourth and fifth portions 68, 32, 70, 76, 78 and, optionally, the elbow connecting the first portion 68 to the fourth portion 76.
  • the cup 28 is here made of metal.
  • the cup 28 preferably has a thickness less than or equal to 3 mm, more preferably less than or equal to 2 mm, more preferably a thickness equal to 1.6 mm. This limits the weight of the cup 28.
  • the cup Between the first portion 68 and the fourth portion 76, the cup here forms an elbow.
  • the bend may be of thickness e2, greater than the thickness e1 of the first portion 68.
  • the ratio between the thickness e2 and the thickness e1 may in particular be greater than or equal to 1, 3 and / or less than or equal to 1, 6.
  • a thicker bend strengthens the cup 28.
  • the thickness e1 is equal to 1.8 mm.
  • the maximum thickness e2 of the bend can be equal to 2.8 mm.
  • Figure 10 illustrates a variant of the cup 28 of Figures 8 and 9.
  • This variant differs from the cup 28 of Figures 8 and 9 firstly by the shape of the arms 74 in "Y" comprising a trunk 74i dividing into two branches 742, 743, here identical, in the vicinity of its radially inner end.
  • the trunk of each arm 74 has a width 174i, measured in an orthoradial direction with respect to the axis A of symmetry of the cup 28, such that the ratio of this width I74i on the radius R32 of the second cylindrical portion 32 is between 0.08 and 0.22.
  • Each branch 742, 743 also has a width 1742, measured in an orthoradial direction with respect to the axis A of symmetry of the cup 28, such that the ratio of this width 1742 to the radius R32 of the second cylindrical portion 32 is included between 0.04 and 0.12.
  • the openings 72 here have the shape of an ogive, with a rounded radially inner end.
  • the width L72 of the openings 72, at their radially outer end, measured in an orthoradial direction, is such that the ratio between this width L72 over the radius R32 of the second cylindrical portion 32 is between 0.4 and 0.9.
  • each day 80 is of significantly reduced area compared to the openings 72.
  • the days 80 also have the shape of an ogive, oriented in a direction opposite to the openings 72. In other words, the rounded end of the openings 80 is here oriented radially outwards.
  • FIG. 11 illustrates a second example of a cup 28.
  • This second example of a cup preferably comprises a first cylindrical portion 68, a second cylindrical portion 32 32, a third portion 70, extending between the first 68 and the second portion 32, and, here , a bend between the first portion 68 and the third portion 70.
  • the third portion 70 is adjacent to the second portion 32.
  • the third portion 70 is such that, seen in cross section, the third portion 70 extends between a first point P1, radially inside, and a second point P2, radially outside, the line connecting the first and second points P1, P2 forming with the axis A of symmetry of the cup 28, an angle a between 65 ° and 80 °.
  • the third portion 70 of the cup 28 is generally frustoconical, which helps to stiffen the cup 28.
  • the angle at the center of this third portion 70 is however limited, to limit the axial bulk of the cup 28.
  • the third portion 70 is here flared towards the second cylindrical portion 32. More particularly, the third portion 70 appears concave. In other words, the third portion 70 is, seen in section, located under the straight line connecting the end points P1, P2 of the third portion 70. In other words, the segment connecting the end points P1, P2 of the third portion 70 is not included in the cup 28.
  • the third portion 70 of the second example of cup 28 of Figure 11 has arms 74 in the shape of "Y", like those described above with reference to Figure 10.
  • the second example of cup 28 may have trapezoidal arms 74, as described with reference to FIG. 8. Only the shape, seen in section, of the arms 74 differs in the second example of cup 28 of FIG. 11.
  • the cup 28 has an elbow between the first portion 68 and the third portion 70.
  • the elbow may be of thickness e2, greater than the thickness e1 of the first portion 68.
  • the ratio between the thickness e2 and thickness e1 may in particular be greater than or equal to 1, 3 and / or less than or equal to 1, 6.
  • a thicker bend strengthens the cup 28.
  • the thickness e1 is equal to 1.8 mm.
  • the maximum thickness e2 of the bend can be equal to 2.8 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Coupelle (28) d'un rotor extérieur à symétrie de révolution autour de l'axe comprend : une première portion (68) cylindrique, radialement intérieure, une deuxième portion (32) cylindrique, radialement extérieure et entre les deux portions cylindrique (32, 68) une troisième portion (70). Vue en coupe transversale, la troisième portion (70) s'étend entre deux points (PI, P2) définissant une droite formant avec l'axe de la coupelle (28) du rotor, un angle (a) compris entre 65° et 80°. Le rapport entre la distance (R-Pl, R-p2) entre le premier point (PI, P2) radialement interne, respectivement externe, et l'axe de symétrie la coupelle de rotor (28), d'une part, et le rayon (R32) de la deuxième portion (32) cylindrique, d'autre part, étant compris entre 0,04 et 0,32, respectivement entre 0,65 et 1,0.

Description

COUPELLE DE ROTOR EXTERIEUR POUR UN MOTEUR DE VENTILATEUR D'UN VEHICULE AUTOMOBILE Domaine technique
[0001] La présente description se rapporte à une coupelle de rotor extérieur pour moteur de ventilateur d’une installation de de chauffage, ventilation et/ou climatisation de véhicule automobile. La présente description se rapporte également à un moteur comprenant une telle coupelle et à un ventilateur comprenant un tel moteur.
Technique antérieure
[0002] Les véhicules automobiles sont couramment équipés d’une installation de de chauffage, ventilation et/ou climatisation, qui permet de générer un flux d'air. Une telle installation permet de gérer la température et la distribution au sein de l'habitacle des véhicules du flux d’air créé. Une telle installation de chauffage, ventilation et/ou climatisation comporte, entre autres, un ventilateur comprenant une roue de ventilateur entraînée en rotation par un moteur électrique. Le moteur électrique est notamment à commutation électronique, piloté par un module d'alimentation. [0003] Un moteur électrique à commutation électronique, ou moteur à courant continu sans balai (connu également sous la dénomination anglaise de « brushless »), comporte un ensemble rotor et stator, chacun de ces composants étant porteur d'éléments électromagnétiques dont l'interaction génère le déplacement du rotor relativement au stator, et plus loin le déplacement de la roue de ventilateur.
[0004] Le moteur électrique comprend classiquement un rotor externe, un stator interne, fixé à un support du moteur électrique. Le rotor externe comprend notamment une coupelle (ou carcasse, de l’anglais « yoke ») métallique, avec un bord extérieur cylindrique à l’intérieur duquel sont fixés des aimants, de manière à entourer le bobinage du rotor. La coupelle présente classiquement une portion cylindrique, radialement interne, recevant l’arbre de sortie du rotor. Entre la portion cylindrique radialement interne et la portion cylindrique radialement externe, la coupelle forme classiquement une portion globalement plane.
[0005] Afin de diminuer le poids du ventilateur, il a été suggéré de réduire l’épaisseur de la coupelle. Cependant, il a été constaté que la réduction de l’épaisseur de la coupelle tend à réduire la fréquence du premier mode propre de la coupelle, de telle sorte que ce premier mode propre induit un bruit grave, qui n’est pas acceptable, dans le véhicule automobile, dans certains cas d’utilisation du ventilateur.
[0006] Un but de la présente description est de proposer une coupelle de rotor ne présentant pas au moins certains des inconvénients susmentionnés.
Exposé de l’invention
[0007] À cette fin, il est décrit une coupelle de rotor de moteur à rotor extérieur, en particulier pour groupe moto-ventilateur destiné à équiper une installation de chauffage, ventilation ou climatisation d’un véhicule automobile, la coupelle de rotor étant à symétrie de révolution autour d’un axe de symétrie, la coupelle de rotor comprenant :
- une première portion cylindrique, radialement intérieure,
- une deuxième portion cylindrique, radialement extérieure, et
- entre la première portion cylindrique et la deuxième portion cylindrique, au moins une troisième portion telle que, vue en coupe transversale, la troisième portion s’étend entre un premier point radialement intérieur et un deuxième point, radialement extérieur, la droite reliant les premier et deuxième points formant avec l’axe de symétrie de la coupelle de rotor, un angle compris entre 65° et 80°, le rapport entre la distance entre le premier point et l’axe de symétrie de la coupelle de rotor, d’une part, et le rayon de la deuxième portion cylindrique, d’autre part, étant compris entre 0,04 et 0,32, le rapport entre la distance entre le deuxième point et l’axe de symétrie de la coupelle de rotor, d’une part, et le rayon de la deuxième portion cylindrique, d’autre part, étant compris entre 0,65 et 1 ,0.
[0008] Ainsi, avantageusement, la coupelle de rotor présente une portion majoritaire de forme générale tronconique, ce qui améliore la rigidité de la coupelle de rotor. L’angle au sommet de la portion tronconique est cependant choisi pour limiter l’encombrement axial de la coupelle de rotor.
[0009] De préférence, la coupelle de rotor comporte une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison :
- la coupelle de rotor comprend une quatrième portion, annulaire, entre la première portion et la troisième portion, sensiblement normale à l’axe de symétrie de la coupelle de rotor, le rapport entre le rayon intérieur de la quatrième portion et le rayon de la deuxième portion cylindrique étant de préférence compris entre 0,05 et 0,24 et/ou le rapport entre le rayon extérieur de la quatrième portion et le rayon de la deuxième portion cylindrique étant de préférence compris entre 0,15 et 0,30 ;
- la quatrième portion forme un renfoncement par rapport à la troisième portion ;
- la troisième portion est tronconique ou évasée ;
- laquelle la troisième portion présente des ouvertures séparées par des bras, la coupelle de rotor comprenant de préférence un nombre premier de bras, supérieur ou égal à sept ;
- les ouvertures sont trapézoïdales ou en forme d’ogive ;
- les bras sont en forme de « Y » ;
- la coupelle de rotor est réalisée en métal, la coupelle de rotor étant de préférence d’épaisseur inférieure ou égale à 3 mm, de préférence encore inférieure ou égale à 2 mm, de manière encore plus préférée d’épaisseur égale à 1 ,6 mm ;
- la coupelle de rotor comprend, vue en coupe, un coude entre la première portion, d’une part, et la troisième portion ou la quatrième portion, le cas échéant, d’autre part, l’épaisseur du coude étant supérieure à l’épaisseur de la première portion, le rapport entre l’épaisseur du coude et l’épaisseur de la première portion étant de préférence supérieur ou égal à 1 ,3 et/ou inférieur ou égal à 1 ,6 ;
- la première portion cylindrique s’étend sur une hauteur, mesurée selon la direction de l’axe de symétrie de la coupelle, telle que le rapport entre la hauteur de la première portion cylindrique et le diamètre de la première portion cylindrique est compris entre 0,80 et 0,98 ; et
- la deuxième portion cylindrique s’étend sur une hauteur, mesurée selon la direction de l’axe de symétrie de la coupelle, le rapport entre la hauteur de la deuxième portion cylindrique et le rayon de la deuxième portion cylindrique étant compris entre 0,30 et 0,60.
[0010] Selon un autre aspect, il est décrit un moteur à rotor extérieur pour installation de chauffage, ventilation ou climatisation de véhicule automobile, comprenant un stator avec un bobinage, un rotor comprenant une coupelle de rotor telle que décrite ci-avant, dans toutes ses combinaisons, des aimants étant fixés sur la deuxième portion cylindrique de la coupelle de rotor, les aimants étant disposés radialement à l’extérieur par rapport au bobinage du stator.
[0011] Selon un encore un autre aspect, il est décrit un ventilateur pour installation de chauffage, ventilation ou climatisation de véhicule automobile, comprenant un moteur tel que décrit ci-avant, dans toutes ses combinaisons, un arbre solidaire de la coupelle de rotor, et une roue de ventilateur fixée à l’arbre pour être entraînée en rotation.
Brève description des dessins [0012] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
[0013] [Fig. 1] représente schématiquement en perspective un dispositif de ventilateur ; [0014] [Fig. 2] est une vue schématique en perspective d’un exemple de moteur pouvant être mis en oeuvre dans le dispositif de ventilateur de la figure 1 ;
[0015] [Fig. 3] est une vue schématique selon une perspective différente, de l’exemple de moteur de la figure 2 ;
[0016] [Fig. 4] est une vue en perspective d’un support de rotor mis en oeuvre dans le moteur des figures 2 et 3 ;
[0017] [Fig. 5] est une vue selon une perspective de dessous du moteur des figures 2 et 3, dans lequel le capot du moteur a été retiré ;
[0018] [Fig. 6] est une vue selon une perspective de dessous du dispositif de ventilateur de la figure 1 ; [0019] [Fig. 7] illustre schématiquement la face externe du capot du moteur des figures 2 et 3 ; et
[0020] [Fig. 8] représente schématiquement en perspective un premier exemple de coupelle de rotor pouvant être mis en oeuvre dans le moteur des figures 2 et 3 ;
[0021] [Fig. 9] représente schématiquement en coupe le premier exemple de coupelle de rotor de la figure 8 fixé à l’arbre du rotor du moteur ;
[0022] [Fig. 10] représente schématiquement en perspective une variante du premier exemple de coupelle de rotor pouvant être mis en oeuvre dans le moteur des figures 2 et 3 ;
[0023] [Fig. 11] représente schématiquement en coupe un deuxième exemple de coupelle de rotor pouvant être mise en oeuvre dans le moteur des figures 2 et 3.
Description de modes de réalisation
[0024] Dans la suite de la description, les éléments identiques ou de fonction identique portent le même signe de référence. À fin de concision de la présente description, ces éléments ne sont pas décrits en détails dans chaque mode de réalisation. Au contraire, seules les différences entre les variantes de réalisation sont décrites en détails.
[0025] La figure 1 illustre un dispositif de ventilateur 10 pour une installation de ventilation pour véhicule.
[0026] Le dispositif de ventilateur 10 comprend essentiellement, tel qu’illustré, une roue de ventilateur 12, un moteur électrique 14, et un support 16 du moteur électrique 14. La roue de ventilateur 12 tourne autour d’un axe de rotation A. Le moteur électrique 14 est destiné à entraîner en rotation autour de son axe A, la roue de ventilateur 12. Le support 16 du moteur 14 est destiné à permettre la fixation du dispositif de ventilateur 10 dans un véhicule automobile, en limitant la transmission des vibrations générées par le moteur électrique 14 et/ou la roue de ventilateur 12 dans le véhicule automobile et/ou des contraintes extérieures vers le moteur électrique 14 et/ou la roue de ventilateur 12. Le support 16 du moteur 14 peut notamment comporter deux bagues coaxiales, d’axe l’axe A de rotation de la roue de ventilateur 12, reliées entre elles par du matériau élastomère. Notamment, le matériau élastomère peut former une bague de découplage entre la bague interne et la bague externe. La bague interne peut être destinée à être fixée au moteur 14. La bague externe peut être destinée à être fixée à un élément de structure, notamment d’une installation de ventilation de véhicule. Le matériau élastomère est par exemple du polystyrène-b-poly(éthylène-butylène)-b-polystyrène ou SEBS.
[0027] Le moteur électrique 14 forme ici un ensemble mécanique comprenant un élément tournant 18, en l’espèce le rotor 18 du moteur 14, un support 20 du rotor 18 et un capot 22, fixé sur le support 20 du rotor 18. Ici, le capot 22 est fixé sur le support 20 du rotor 18 au moyen de vis 24. Bien entendu d’autres moyens de fixation peuvent être mis en oeuvre pour fixer le capot 22 sur le support 20 du rotor 18.
[0028] Le rotor 18 est ici un rotor externe. Ainsi, le stator 26 associé au rotor 18 est disposé radialement à l’intérieur du rotor 18. Plus précisément, les aimants 27 du rotor 18 sont radialement à l’extérieur par rapport au bobinage du stator 26.
[0029] Le rotor 18 présente une forme de coupelle 28 ajourée, fixée à un arbre 30. La roue de ventilateur 12 est ici fixée directement sur l’arbre 30. Les aimants 27 du rotor 18 sont ici fixés sur la face interne de la coupelle 28, sur une bande cylindrique 32 formée par la coupelle 28.
[0030] Le support 20 est par exemple en alliage d’aluminium ou en matériau plastique chargé de particules métalliques.
[0031] Le support 20 du rotor 18 présente ici une embase 34. L’embase 34 s’étend ici globalement selon un plan normal à l’axe A de rotation du moteur 14. Un relief 36 sensiblement cylindrique s’étend depuis l’embase 34. Ici, le relief 36 s’étend sensiblement selon la direction de l’axe A de rotation du moteur 14. Le relief 36 est creux. Le relief 36 peut notamment former un ou deux logements 38 recevant chacun une bague de roulement, notamment un roulement à billes, destinée à guider la rotation de l’arbre 30 par rapport au support 20. Notamment, un premier logement est formé au niveau de l’extrémité libre du relief 36 et un deuxième logement est formé dans le relief 36, sensiblement au niveau de l’embase 34. Un roulement à billes est reçu dans chacun de ces logements. [0032] Comme cela est plus particulièrement visible sur la figure 5, l’embase 34 forme sur sa surface opposée au relief cylindrique 36, un renfoncement 40 recevant une carte à circuit imprimé 42 (ou carte électronique) de commande du moteur 14. Le renfoncement 40 peut être entouré d’un rebord 41 saillant. Différents composants mécatroniques 44, 46 sont fixés sur la carte à circuit imprimé 42. Notamment, des dispositifs mécaniques 44 permettent de relier des pattes solidaires des bobinages du stator 26 à la carte à circuit imprimé 42. L’alimentation de ces bobinages via ces pattes, peut alors permettre la commande du moteur électrique 14. Les composants 46 les plus volumineux, notamment les capacités, peuvent également être fixées sur la carte à circuit imprimé 42, de préférence au voisinage des bords de la carte à circuit imprimé 42.
[0033] Un connecteur 48 est également relié à la carte à circuit imprimé 42. Le connecteur 48 permet l’alimentation électrique de la carte à circuit imprimé 42 et, par conséquent, du moteur 14.
[0034] Enfin, le capot 22 est fixé sur l’embase 34 du support 20. Le capot 22 définit ici, avec le renfoncement 40 dans l’embase 34, un logement de réception de la carte à circuit imprimé 42. Le capot 22 comprend ici un bord 50, sensiblement plan, s’étendant selon un plan normal à l’axe A de rotation du moteur 14. Le bord 50 présente des trous 51 permettant la fixation du capot 22 sur l’embase 34 du support 20, au moyen de vis 24. Le capot 22 comprend également un fond 52, distant du bord 50, selon la direction de l’axe A de rotation du moteur 14. Le fond 52 est ici sensiblement plan. Le fond 52 s’étend sensiblement selon un plan, normal à l’axe A de rotation du moteur 14. Le fond 52 du capot 22 est ici sensiblement parallèle à l’embase 34 du support 20. Ici, le fond 52 du capot 22 est également sensiblement parallèle à la carte à circuit imprimé 42.
[0035] Le capot 22 est par exemple en alliage d’aluminium ou en plastique chargé de particules conductrices, notamment en plastique chargé de particules métalliques.
[0036] Il est à noter ici que le capot 22 illustré comprend des bossages 54, 56 périphériques. Ces bossages 54, 56 permettent la réception des dispositifs électroniques 46, les plus volumineux, notamment les plus hauts dans la direction de l’axe A de rotation du moteur 14. [0037] Dans l’exemple illustré sur les figures 6 et 7, notamment, le capot 22 présente également une surface plane 53, plus proche du bord 50 que le fond 52, dans la direction de l’axe A de rotation du moteur 14.
[0038] Enfin, comme visible sur les figures, le capot 22 et la carte à circuit imprimé 42 peuvent comporter chacun une ouverture traversante 60, 62 en regard de l’arbre 30 du rotor 18. Ces ouvertures 60, 62 peuvent permettre le passage d’un contre- appui pour l’arbre 30, permettant l’emmanchement de la roue 12 sur l’arbre 30. L’ouverture 60 dans le capot peut ensuite être refermée, notamment au moyen d’un autocollant. Ceci permet de protéger la carte à circuit imprimé 42 contre l’humidité de l’air ambiant.
[0039] Dans la suite, on décrit plus en détail des exemples de coupelle de rotor 28 de moteur à rotor extérieur, pouvant être mis en oeuvre dans le moteur 14 du dispositif de ventilation 10 décrit précédemment.
[0040] Un premier exemple de coupelle 28 est illustré sur les figures 8 et 9.
[0041] Comme cela est visible sur ces figures, la coupelle 28 est à symétrie de révolution, autour d’un axe A de symétrie correspondant à l’axe de rotation de la coupelle 28 et du moteur 14.
[0042] La coupelle 28 comporte essentiellement, une première portion cylindrique 68, radialement intérieure et une deuxième portion cylindrique 32, radialement extérieure. La deuxième portion cylindrique 32 correspond à la bande cylindrique 32 décrite ci-avant, sur laquelle sont fixés les aimants 27 du rotor 18. Les aimants 27 sont fixés sur la face radialement interne de la deuxième portion cylindrique 32.
[0043] La première portion cylindrique 68 s’étend sur une hauteur h68, mesurée selon la direction de l’axe A de symétrie de la coupelle 28. La hauteur h68 de la première portion 68 peut être telle que le rapport entre la hauteur h68 de la première portion cylindrique 68 et le rayon R32 de la deuxième portion 32 cylindrique est compris entre 0,8 et 0,98. Une telle plage est notamment avantageuse dans le cas où l’arbre 30 est emmanché à force dans la première portion 68. Alternativement, cependant, l’arbre 30 peut être fixé à la coupelle 28 par soudure. Dans ce cas, la hauteur h68 de la première portion peut être nettement réduire, notamment proche de 0. La première portion cylindrique 68 reçoit l’arbre 30 du moteur 14. L’arbre 30 est par exemple emmanché en force dans cette première portion cylindrique 68. Alternativement ou au surplus, l’arbre 30 peut être soudé à la première portion cylindrique 68.
[0044] Ainsi, l’arbre 30 étant soutenu par deux roulements à billes, on trouve dans l’ordre, le long de l’arbre 30 :
- la zone d’emmanchement de l’arbre 30 dans la première portion cylindrique 68 - et plus généralement, la première portion cylindrique 68 ;
- un premier roulement à billes,
- le stator, séparé de l’arbre par le relief cylindrique 36 du support 20 du rotor 18, et
- un deuxième roulement à billes.
[0045] La deuxième portion 32 cylindrique s’étend elle sur une hauteur h32, mesurée selon la direction de l’axe A de symétrie de la coupelle 28, telle que le rapport entre la hauteur h32 de la deuxième portion 32 cylindrique et le rayon R32 de la deuxième portion 32 cylindrique est compris entre 0,30 et 0,60.
[0046] Entre la première portion cylindrique 68 et la deuxième portion cylindrique 32, la coupelle 28 comporte une troisième portion 70 telle que, vue en coupe, la troisième portion 70 s’étend entre un premier point P1 , radialement intérieur, et un deuxième point P2, radialement extérieur, la droite reliant les premier et deuxième points P1 , P2 formant avec l’axe A de symétrie de la coupelle 28, un angle a compris entre 65° et 80°. Ainsi, la troisième portion 70 de la coupelle 28 est de forme générale tronconique, ce qui contribue à rigidifier la coupelle 28. L’angle au centre de cette troisième portion 70 est toutefois limité, pour limiter l’encombrement axial de la coupelle 28. Ici, la troisième portion 70 est tronconique, la troisième portion 70 s’étendant, en coupe, sensiblement selon la droite reliant les premier et deuxième points P1 , P2.
[0047] Dans l’exemple illustré, le rapport entre la distance RPI entre le premier point P1 et l’axe A de symétrie de la coupelle 28, d’une part, et le rayon R32 de la deuxième portion cylindrique 32, d’autre part, est compris entre 0,04 et 0,32. Par ailleurs, le rapport entre la distance RP2 entre le deuxième point P2 et l’axe A de symétrie de la coupelle 28, d’une part, et le rayon R32 de la deuxième portion cylindrique 32, d’autre part, étant compris entre 0,65 et 1 ,0. Ainsi, la troisième portion 70, de forme générale tronconique, s’étend sur la majorité de la surface de la coupelle 28, assurant la rigidité de cette coupelle 28. Il est à noter ici que le rayon R32 de la deuxième portion 32 est le rayon extérieur de la coupelle de rotor 28.
[0048] La troisième portion 70 présente, dans l’exemple illustré aux figures 8 et 9, des ouvertures 72 séparées par des bras 74. Ici, la coupelle 28 comprend sept bras 74, séparant sept ouvertures 72. De manière plus générale, pour limiter les risques d’apparition de modes propres de la coupelle 28 à des fréquences relativement faibles, la coupelle 28 comprend avantageusement un nombre premier de bras 74. Ce nombre de bras est de préférence supérieur ou égal à sept. Les ouvertures 72 permettent de réduire encore le poids de la coupelle 28. Les ouvertures 72 permettent également de faciliter le refroidissement des bobinages du stator reçu à l’intérieur de la coupelle 28.
[0049] Pour maintenir une rigidité satisfaisante de la coupelle 28, les bras 74 peuvent être de forme sensiblement trapézoïdale. Ainsi, les bras 74 définissent des ouvertures 72 également trapézoïdales. Ici, chaque bras 74 a une largeur minimale I74, mesurée selon une direction orthoradiale par rapport à l’axe A de symétrie de la coupelle 28, telle que le rapport de cette largeur minimale I74 sur le rayon R32 de la deuxième portion cylindrique 32 est compris entre 0,08 et 0,30. Chaque bras 74 a également une largeur maximale L74, mesurée selon une direction orthoradiale par rapport à l’axe A de symétrie de la coupelle 28, telle que le rapport de cette largeur maximale L74 sur le rayon R32 de la deuxième portion cylindrique 32 est compris entre 0,08 et 0,45. Avantageusement, la largeur maximale L74 d’un bras 74 est mesurée à l’extrémité radialement à l’extérieur, du bras 74 considéré, tandis que la largeur minimale I74 est mesurée à l’extrémité radialement à l’intérieur, du bras 74 considéré.
[0050] Dans l’exemple des figures 8 et 9, la coupelle 28 comporte encore une quatrième portion 76, annulaire. La quatrième portion 76 forme ici un renfoncement par rapport à l’extrémité, radialement interne, de la troisième portion 70 et à la première portion cylindrique 68. La quatrième portion 76 est située radialement entre la première portion 68 et la troisième portion 70. La quatrième portion 76 est ici normale à l’axe A de symétrie de la coupelle 28. Le rapport entre le rayon intérieur R76i de la quatrième portion 76 et le rayon R32 de la deuxième portion 32 est par exemple compris entre 0,05 et 0,24. Alternativement ou au surplus, le rapport entre le rayon extérieur R76e de la quatrième portion 76 et le rayon R32 de la deuxième portion 32 est par exemple compris entre 0,15 et 0,30. Ainsi, avantageusement, cette quatrième portion 76, annulaire, est d’aire réduite. Cette quatrième portion 76, formant un renfoncement, permet de rigidifier encore la coupelle 28. La quatrième portion 76 est par exemple reliée à la première portion cylindrique 68 par un coude. La quatrième portion 76 est ici adjacente à la troisième portion 70 tronconique.
[0051] La coupelle 28 des figures 8 et 9 comprend encore une cinquième portion 78, évasée, entre la deuxième portion 32 et la troisième portion 70. Plus précisément, en section, la cinquième portion 78 forme un coude. La cinquième portion 78 est ici adjacente à la troisième portion 70 tronconique, d’une part, et à la deuxième portion cylindrique 32, d’autre part. Cette cinquième portion 78, formant un coude, permet également de rigidifier la coupelle 28.
[0052] Avantageusement, la coupelle 28 est constituée par les première, deuxième, troisième, quatrième et cinquième portions 68, 32, 70, 76, 78 et, éventuellement, le coude reliant la première portion 68 à la quatrième portion 76.
[0053] La coupelle 28 est ici réalisée en métal. La coupelle 28 présente de préférence une épaisseur inférieure ou égale à 3 mm, de préférence encore inférieure ou égale à 2 mm, de manière plus préférée une épaisseur égale à 1 ,6 mm. On limite ainsi le poids de la coupelle 28.
[0054] Entre la première portion 68 et la quatrième portion 76, la coupelle forme ici un coude. Le coude peut être d’épaisseur e2, supérieure à l’épaisseur e1 de la première portion 68. Le rapport entre l’épaisseur e2 et l’épaisseur e1 peut notamment être supérieur ou égal à 1 ,3 et/ou inférieur ou égal à 1 ,6. Un coude plus épais permet de renforce la coupelle 28. Par exemple, l’épaisseur e1 est égale à 1 ,8 mm. L’épaisseur e2, maximale, du coude, peut être égale à 2,8 mm.
[0055] La figure 10 illustre une variante de la coupelle 28 des figures 8 et 9. Cette variante se distingue de la coupelle 28 des figures 8 et 9 tout d’abord par la forme des bras 74 en « Y » comprenant un tronc 74i se divisant en deux branches 742, 743, ici identique, au voisinage de son extrémité radialement interne. Ici, le tronc de chaque bras 74 a une largeur I74i, mesurée selon une direction orthoradiale par rapport à l’axe A de symétrie de la coupelle 28, telle que le rapport de cette largeur I74i sur le rayon R32 de la deuxième portion cylindrique 32 est compris entre 0,08 et 0,22. Chaque branche 742, 743 a également une largeur 1742, mesurée selon une direction orthoradiale par rapport à l’axe A de symétrie de la coupelle 28, telle que le rapport de cette largeur 1742 sur le rayon R32 de la deuxième portion cylindrique 32 est compris entre 0,04 et 0,12.
[0056] Du fait de la forme des bras 74 dans cette variante, les ouvertures 72 ont ici une forme d’ogive, avec une extrémité radialement intérieure arrondie. La largeur L72 des ouvertures 72, à leur extrémité radialement extérieure, mesurée selon une direction orthoradiale, est telle que le rapport entre cette largeur L72 sur le rayon R32 de la deuxième portion cylindrique 32 est compris entre 0,4 et 0,9.
[0057] En outre, les deux branches 742, 743 de chaque bras 74 définissent un jour 80. Chaque jour 80 est d’aire nettement réduite par rapport aux ouvertures 72. Ici, les jours 80 ont également la forme d’une ogive, orientée selon une direction opposée aux ouvertures 72. En d’autres termes, l’extrémité arrondie des jours 80 est ici orientée radialement vers l’extérieur.
[0058] La figure 11 illustre un deuxième exemple de coupelle 28.
[0059] Ce deuxième exemple de coupelle, comprend, de préférence consiste, en une première portion 68 cylindrique, une deuxième portion 32 cylindrique 32, une troisième portion 70, s’étendant entre la première 68 et la deuxième portion 32, et, ici, un coude entre la première portion 68 et la troisième portion 70. Ici, la troisième portion 70 est adjacente à la deuxième portion 32.
[0060] Ici aussi, la troisième portion 70 est telle que, vue en coupe transversale, la troisième portion 70 s’étend entre un premier point P1 , radialement intérieur, et un deuxième point P2, radialement extérieur, la droite reliant les premier et deuxième points P1 , P2 formant avec l’axe A de symétrie de la coupelle 28, un angle a compris entre 65° et 80°. Ainsi, la troisième portion 70 de la coupelle 28 est de forme générale tronconique, ce qui contribue à rigidifier la coupelle 28. L’angle au centre de cette troisième portion 70 est toutefois limité, pour limiter l’encombrement axial de la coupelle 28.
[0061] Cependant, comme cela est visible sur la figure 11 , la troisième portion 70 est ici évasée en direction de la deuxième portion 32 cylindrique. Plus particulièrement, la troisième portion 70 apparait concave. En d’autres termes, la troisième portion 70 est, vue en coupe, située sous la droite reliant les points P1 , P2 extrémaux de la troisième portion 70. En d’autres termes encore, le segment reliant les points P1 , P2 extrémaux de la troisième portion 70, n’est pas inclus dans la coupelle 28.
[0062] La troisième portion 70 du deuxième exemple de coupelle 28 de la figure 11 , présente des bras 74 en forme de « Y », comme ceux décrits précédemment en regard de la figure 10. Alternativement, cependant, le deuxième exemple de coupelle 28 peut présenter des bras 74 trapézoïdaux, comme décrit en regard de la figure 8. Seule la forme, vue en coupe, des bras 74 diffère dans le deuxième exemple de coupelle 28 de la figure 11.
[0063] Dans cet exemple, la coupelle 28 présente un coude entre la première portion 68 et la troisième portion 70. Le coude peut être d’épaisseur e2, supérieure à l’épaisseur e1 de la première portion 68. Le rapport entre l’épaisseur e2 et l’épaisseur e1 peut notamment être supérieur ou égal à 1 ,3 et/ou inférieur ou égal à 1 ,6. Un coude plus épais permet de renforce la coupelle 28. Par exemple, l’épaisseur e1 est égale à 1 ,8 mm. L’épaisseur e2, maximale, du coude, peut être égale à 2,8 mm.
[0064] L'invention n'est pas limitée aux exemples de réalisation décrits en regard des figures et d'autres modes de réalisation apparaîtront clairement à l'homme du métier. Notamment, les différents exemples peuvent être combinés, tant qu’ils ne sont pas contradictoires.
[0065] Notamment, les différents exemples décrits précédemment peut être combinés.

Claims

Revendications
[Revendication 1] Coupelle de rotor (28) de moteur à rotor extérieur (14), en particulier pour groupe moto-ventilateur destiné à équiper une installation de chauffage, ventilation ou climatisation d’un véhicule automobile, la coupelle de rotor (28) étant à symétrie de révolution autour d’un axe (A) de symétrie, la coupelle de rotor (28) comprenant :
- une première portion (68) cylindrique, radialement intérieure,
- une deuxième portion (32) cylindrique, radialement extérieure, et
- entre la première portion (68) cylindrique et la deuxième portion (32) cylindrique, au moins une troisième portion (70) telle que, vue en coupe transversale, la troisième portion (70) s’étend entre un premier point (P1 ) radialement intérieur et un deuxième point (P2), radialement extérieur, la droite reliant les premier et deuxième points (P1 ; P2) formant avec l’axe (A) de symétrie de la coupelle de rotor (28), un angle (a) compris entre 65° et 80°, le rapport entre la distance (RPI) entre le premier point (P1 ) et l’axe (A) de symétrie de la coupelle de rotor (28), d’une part, et le rayon (R32) de la deuxième portion (32) cylindrique, d’autre part, étant compris entre 0,04 et 0,32, le rapport entre la distance (RP2) entre le deuxième point (P2) et l’axe (A) de symétrie de la coupelle de rotor (28), d’une part, et le rayon (R32) de la deuxième portion (32) cylindrique, d’autre part, étant compris entre 0,65 et 1 ,0.
[Revendication 2] Coupelle de rotor selon la revendication 1 , comprenant une quatrième portion (76), annulaire, entre la première portion (68) et la troisième portion (70), sensiblement normale à l’axe (A) de symétrie de la coupelle de rotor (28), le rapport entre le rayon intérieur (R76i) de la quatrième portion (72) et le rayon (R32) de la deuxième portion (32) cylindrique étant de préférence compris entre 0,05 et 0,24 et/ou le rapport entre le rayon extérieur (R76e) de la quatrième portion (76) et le rayon (R32) de la deuxième portion (32) cylindrique étant de préférence compris entre 0,15 et 0,30.
[Revendication 3] Coupelle de rotor la revendication 1 ou 2, dans laquelle la quatrième portion (76) forme un renfoncement par rapport à la troisième portion (70).
[Revendication 4] Coupelle de rotor selon l’une des revendications 1 à 3, dans laquelle la troisième portion (70) est tronconique ou évasée.
[Revendication 5] Coupelle de rotor selon l’une quelconque des revendications précédentes, dans laquelle la troisième portion (70) présente des ouvertures (72) séparées par des bras (74), la coupelle de rotor (28) comprenant de préférence un nombre premier de bras (74), supérieur ou égal à sept.
[Revendication 6] Coupelle de rotor selon la revendication 5, dans laquelle les ouvertures (72) sont trapézoïdales ou en forme d’ogive.
[Revendication 7] Coupelle de rotor selon la revendication 5 ou 6, dans laquelle les bras (74) sont en forme de « Y ».
[Revendication 8] Coupelle de rotor selon l’une quelconque des revendications précédentes, réalisée en métal, la coupelle de rotor (28) étant de préférence d’épaisseur inférieure ou égale à 3 mm, de préférence encore inférieure ou égale à 2 mm, de manière encore plus préférée d’épaisseur égale à 1 ,6 mm.
[Revendication 9] Coupelle de rotor selon l’une quelconque des revendications précédentes, comprenant, vue en coupe, un coude entre la première portion (68), d’une part, et la troisième portion (70) ou la quatrième portion (76), le cas échéant, d’autre part, l’épaisseur (e2) du coude étant supérieure à l’épaisseur (e1 ) de la première portion (68), le rapport entre l’épaisseur (e2) du coude et l’épaisseur (e1) de la première portion (68) étant de préférence supérieur ou égal à 1 ,3 et/ou inférieur ou égal à 1 ,6.
[Revendication 10] Moteur à rotor extérieur (14) pour installation de chauffage, ventilation ou climatisation de véhicule automobile, comprenant un stator (26) avec un bobinage, un rotor (18) comprenant une coupelle de rotor (18) selon l’une quelconque des revendications précédentes, des aimants (27) étant fixés sur la deuxième portion (32) cylindrique de la coupelle de rotor (28), les aimants (27) étant disposés radialement à l’extérieur par rapport au bobinage du stator (26).
[Revendication 11] Ventilateur (10) pour installation de chauffage, ventilation ou climatisation de véhicule automobile, comprenant un moteur (14) selon la revendication 10, un arbre (30) solidaire de la coupelle de rotor (28), et une roue de ventilateur (12) fixée à l’arbre (30) pour être entraînée en rotation.
PCT/FR2020/052294 2019-12-18 2020-12-07 Coupelle de rotor exterieur pour un moteur de ventilateur d'un vehicule automobile WO2021123548A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080088895.2A CN114830495A (zh) 2019-12-18 2020-12-07 用于机动车辆风扇电动机的外部转子杯
EP20841983.8A EP4078773A1 (fr) 2019-12-18 2020-12-07 Coupelle de rotor exterieur pour un moteur de ventilateur d'un vehicule automobile
US17/786,866 US20230023583A1 (en) 2019-12-18 2020-12-07 External rotor cup for a fan motor of a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1914932A FR3105635B1 (fr) 2019-12-18 2019-12-18 Coupelle de rotor extérieur pour moteur de ventilateur d’une installation de de chauffage, ventilation et/ou climatisation d’un véhicule automobile
FRFR1914932 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021123548A1 true WO2021123548A1 (fr) 2021-06-24

Family

ID=69811284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052294 WO2021123548A1 (fr) 2019-12-18 2020-12-07 Coupelle de rotor exterieur pour un moteur de ventilateur d'un vehicule automobile

Country Status (5)

Country Link
US (1) US20230023583A1 (fr)
EP (1) EP4078773A1 (fr)
CN (1) CN114830495A (fr)
FR (1) FR3105635B1 (fr)
WO (1) WO2021123548A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164689U (fr) * 1980-05-09 1981-12-07
EP1548171A2 (fr) * 2003-12-26 2005-06-29 LG Electronics Inc. Moteur pour machine à laver
EP3203608A1 (fr) * 2016-02-03 2017-08-09 Johnson Electric S.A. Ventilateur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010012392A1 (de) * 2010-03-22 2011-09-22 Ebm-Papst Mulfingen Gmbh & Co. Kg Ventilator
WO2016115921A1 (fr) * 2015-01-21 2016-07-28 中山大洋电机股份有限公司 Moteur à carter en plastique et à rotor externe et climatiseur l'utilisant
JP6260838B2 (ja) * 2016-02-29 2018-01-17 株式会社ケーヒン 空調用ブロアモータユニット
JP6560655B2 (ja) * 2016-11-07 2019-08-14 シナノケンシ株式会社 送風機
JP2018091269A (ja) * 2016-12-06 2018-06-14 シナノケンシ株式会社 送風機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164689U (fr) * 1980-05-09 1981-12-07
EP1548171A2 (fr) * 2003-12-26 2005-06-29 LG Electronics Inc. Moteur pour machine à laver
EP3203608A1 (fr) * 2016-02-03 2017-08-09 Johnson Electric S.A. Ventilateur

Also Published As

Publication number Publication date
FR3105635A1 (fr) 2021-06-25
FR3105635B1 (fr) 2023-01-13
EP4078773A1 (fr) 2022-10-26
CN114830495A (zh) 2022-07-29
US20230023583A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
FR3043150B1 (fr) Groupe moto-ventilateur et installation de chauffage , ventilation et / ou climatisation pour vehicule automobile correspondante
EP2586118B1 (fr) Dispositif de reception d'un moteur de pulseur d'une installation de ventilation d'un vehicule
EP3314735B1 (fr) Moteur electrique d'un dispositif de pulsion d'air et dispositif de pulsion d'air
WO2021123548A1 (fr) Coupelle de rotor exterieur pour un moteur de ventilateur d'un vehicule automobile
EP1611357B1 (fr) Dispositif de ventilation
FR3111486A1 (fr) Composant mécanique de contact pour lame de contact d’une carte à circuit imprimé avec un bobinage statorique d’un moteur de dispositif de ventilation pour installation de chauffage, ventilation et/ou climatisation d’un véhicule automobile et procédé de fabrication
WO2012084538A2 (fr) Support moteur a decouplage ameliore pour systeme de ventilation
WO2021170949A1 (fr) Groupe moto-ventilateur à élément de contact en contact avec une roue de ventilateur et une coupelle du rotor, pour installation de chauffage, ventilation et/ou climatisation de véhicule automobile
WO2021084178A1 (fr) Ensemble mécanique pour véhicule et dispositif de ventilateur pour véhicule comprenant un tel ensemble mécanique
WO2021123547A1 (fr) Moteur pour dispositif de ventilation d'une installation de chauffage, ventilation et/ou climatisation de vehicule automobile a rotor et stator decouples d'une embase de montage
EP0762615B1 (fr) Alternateur à moyens de ventilation interne perfectionnés, notamment pour véhicule automobile
FR3050490B1 (fr) Pulseur pour un systeme de chauffage, de ventilation et/ou de climatisation
FR3098047A1 (fr) Piece bobinee pour une machine electrique tournante destinee a un vehicule automobile
WO2021245079A1 (fr) Rotor de moteur, notamment pour moteur de ventilateur d'installation de chauffage, ventilation et/ou climatisation de vehicule automobile
WO2021249931A1 (fr) Moteur de ventilateur avec support de roulement élastique
WO2023110940A1 (fr) Groupe moto-ventilateur pour installation de chauffage, ventilation et/ou climatisation d'un véhicule automobile équipé d'un moyen de contact posé entre une coupelle et un moyeu
EP3453878B1 (fr) Compresseur électrique pour véhicule automobile
WO2021249864A1 (fr) Ensemble de stator pour moteur electrique a commutation electronique
WO2024046854A1 (fr) Support moteur et groupe moto-ventilateur d'une installation de chauffage, ventilation et/ou climatisation d'un vehicule notamment automobile correspondant
WO2021180489A1 (fr) Flasque plastique muni de murets de renfort pour une machine electrique tournante
FR3111488A1 (fr) Moteur électrique à bague de découplage du rotor, pour dispositif de ventilation d’une installation de ventilation, climatisation et/ou chauffage d’un véhicule automobile
WO2021249862A1 (fr) Support de moteur et ventilateur pour une installation de chauffage, ventilation et/ou climatisation pour un vehicule automobile
WO2020260794A1 (fr) Support de moteur pour dispositif de chauffage, de ventilation et/ou de climatisation pour vehicule automobile
EP3991278A1 (fr) Support de moteur pour dispositif de chauffage, de ventilation et/ou de climatisation pour vehicule automobile
FR3047123A1 (fr) Ensemble de support d'un moteur electrique, notamment dans un dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020841983

Country of ref document: EP

Effective date: 20220718