WO2021121399A1 - 燃料电池车的储氢系统和燃料电池车 - Google Patents

燃料电池车的储氢系统和燃料电池车 Download PDF

Info

Publication number
WO2021121399A1
WO2021121399A1 PCT/CN2020/137687 CN2020137687W WO2021121399A1 WO 2021121399 A1 WO2021121399 A1 WO 2021121399A1 CN 2020137687 W CN2020137687 W CN 2020137687W WO 2021121399 A1 WO2021121399 A1 WO 2021121399A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
sensor
valve
storage tank
storage system
Prior art date
Application number
PCT/CN2020/137687
Other languages
English (en)
French (fr)
Inventor
A·齐格尔
Original Assignee
未势能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201922356736.3U external-priority patent/CN210926170U/zh
Priority claimed from CN201911330247.9A external-priority patent/CN113013443B/zh
Application filed by 未势能源科技有限公司 filed Critical 未势能源科技有限公司
Publication of WO2021121399A1 publication Critical patent/WO2021121399A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This application relates to the technical field of fuel cell vehicle manufacturing, in particular to a hydrogen storage system of a fuel cell vehicle and a fuel cell vehicle with the hydrogen storage system.
  • the hydrogen storage system of a fuel cell vehicle should include a main shutoff valve, a check valve, a pressure regulator, and a restrictor valve.
  • the main shut-off valve is usually an electric solenoid valve whose main function is to shut off the hydrogen supplied to the downstream of the valve body from the hydrogen storage tank.
  • the check valve is used to prevent the hydrogen storage tank from flowing back to the hydrogen supply pipeline.
  • the restrictor valve is used to cut off the hydrogen supply when the hydrogen supply pipeline is broken.
  • the valve body can be a mechanical restrictor valve or an electronically controlled solenoid valve. However, the cost of a separate restrictor valve is higher, and it needs to be added separately. The space required to install the restrictor valve is not conducive to the overall layout, and there is room for improvement.
  • this application aims to propose a hydrogen storage system for a fuel cell vehicle.
  • a hydrogen storage system for a fuel cell vehicle comprising: at least one hydrogen storage tank; a main shut-off valve and a pressure reducing valve, the main shut-off valve being installed at the outlet of the hydrogen storage tank; a first sensor and a second Sensor, the first sensor and the second sensor are used to detect the air pressure at the upstream end and the downstream end of the pressure reducing valve, respectively; a control device, the first sensor, the second sensor and the main shutoff The valves are all connected to the control device, and the control device is configured to detect when the detection value of the first sensor is less than the first set value and/or when the detection value of the second sensor is less than the second set value , Control the main shut-off valve to close.
  • the pressure at the outlet of the hydrogen storage tank can be sustained. It can be tested to ensure that the control device can control the main shut-off valve in time, with better flexibility and applicability, and multiple hydrogen storage tanks share a pressure reducing valve for pressure relief, with simple structure and low installation cost.
  • the pressure reducing valve is installed in the hydrogen storage tank.
  • the pressure reducing valve is located outside the hydrogen storage tank.
  • the first setting value is greater than the second setting value.
  • the first sensor is installed in the hydrogen storage tank.
  • the first sensor is installed inside the hydrogen storage tank.
  • the first sensor is installed outside the hydrogen storage tank.
  • the second sensor is connected in series with the hydrogen supply branch of the hydrogen storage tank.
  • the second sensor is located at a part of the hydrogen supply branch outside the hydrogen storage tank.
  • the second sensor is located in the part of the hydrogen supply branch in the hydrogen storage tank.
  • control device is configured to receive the detection value of the second sensor after the detection value of the first sensor is less than the first set value, and the detection value of the second sensor is less than the first setting value. After the second setting value, the control device controls the main shut-off valve to close.
  • control device is configured to control the main shut-off valve to close when the detection value of the third sensor is less than a third set value, and the second set value is greater than The third setting value.
  • main shut-off valve is a solenoid valve.
  • main shut-off valve is set to be unidirectionally communicated along the outlet direction of the hydrogen storage tank when it is opened.
  • the hydrogen supply branch includes a first branch and a second branch, both the first branch and the second branch are connected to the outlet of the hydrogen storage tank, and the first sensor is provided with In the first branch, the second sensor and the main shut-off valve are both provided in the second branch.
  • Another objective of the present application is to provide a fuel cell vehicle equipped with the hydrogen storage system described in any of the above embodiments.
  • the fuel cell vehicle has the same advantages as the above-mentioned hydrogen storage system over the prior art, which will not be repeated here.
  • Fig. 1 is a schematic structural diagram of a hydrogen storage system according to an embodiment of the utility model.
  • FIG. 2 is a control flow chart of the main shut-off valve of the hydrogen storage system according to some embodiments of the application;
  • FIG. 3 is a control flow chart of the main shut-off valve of the hydrogen storage system according to some other embodiments of the application;
  • FIG. 4 is a control flow chart of the main shut-off valve of the hydrogen storage system according to other embodiments of the application.
  • Fig. 5 is a control flow chart of the main shut-off valve of the hydrogen storage system according to some other embodiments of the application.
  • Fig. 6 is a schematic diagram of the connection of the main shut-off valve of the hydrogen storage system according to an embodiment of the application.
  • Main shut-off valve 1 control device 2, first sensor 3, second sensor 4, third sensor 5, first check valve 6, first filter 7, manual shut-off valve 8, first branch 10, second Second branch 11, third branch 12, temperature sensor 13, pressure reducing valve 14, second filter 15, safety valve 16, pressure relief valve 17, hydrogen storage tank 18, second check valve 19, third filter ⁇ 20,
  • a hydrogen storage system 100 has a plurality of hydrogen storage tanks 18, and the outlets of the plurality of hydrogen storage tanks 18 are all connected to a main shut-off valve 1, and the main shut-off valve 1
  • the outlet flow of multiple hydrogen storage tanks 18 can be controlled at the same time, and when the outlet flow of the hydrogen storage tank 18 is abnormal, the main shutoff valve 1 can be automatically closed to improve the safety of hydrogen storage in the hydrogen storage system 100.
  • the hydrogen storage system 100 includes: a plurality of hydrogen storage tanks 18, a plurality of main shut-off valves 1, a pressure detector, a pressure reducing valve 14 and a control device.
  • the inlets of a plurality of hydrogen storage tanks 18 are all connected to the hydrogenation port 101.
  • the hydrogen storage tank 18 can be directly supplemented through the hydrogenation port 101, and multiple hydrogen storage tanks 18 share a hydrogenation port 101, which is beneficial to reduce the hydrogenation port 101 Setup cost.
  • a second check valve 19 may be provided between the hydrogenation port 101 and the inlet of the hydrogen storage tank 18.
  • the second check valve 19 is configured as a single inlet from the hydrogenation port 101 to the hydrogen storage tank 18. Guided, so that the hydrogen injected from the hydrogenation port 101 can smoothly enter the hydrogen storage tank 18, and can prevent the hydrogen in the hydrogen storage tank 18 from flowing backward from the hydrogenation port 101, improving the structural design of the hydrogen storage system 100 Reasonableness.
  • a third filter 20 is provided between the second check valve 19 and the hydrogenation port 101 to filter the hydrogen injected into the hydrogenation port 101.
  • a plurality of main shut-off valves 1 are installed at the outlets of the plurality of hydrogen storage tanks 18 in one-to-one correspondence and are located in the corresponding hydrogen storage tanks 18, and the main shut-off valves 1 are used to control the hydrogen storage tank 18
  • the main shut-off valve 1 can be used to selectively control the hydrogen discharge in the corresponding hydrogen storage tank 18. Therefore, when the main shut-off valve 1 is opened, the hydrogen gas flowing out of the hydrogen storage tank 18 can enter the main shut-off valve 1 to be discharged through the main shut-off valve 1, and when the main shut-off valve 1 is closed , The hydrogen is kept in the hydrogen storage tank 18. In this way, the working position of the main shut-off valve 1 can be switched to make the hydrogen in the hydrogen storage tank 18 flow out or remain in the hydrogen storage tank 18.
  • the hydrogen storage tank 18 may be a hydrogen storage container installed in a fuel cell vehicle.
  • the pressure detector is suitable to be installed downstream of the outlets of a plurality of hydrogen storage tanks 18.
  • the pressure detector is used to detect the pressure value at the outlet of the hydrogen storage tank 18, which can be passed through the pressure detector.
  • the hydrogen discharge amount at the outlet of the hydrogen storage tank 18 is detected. For example, when the discharge amount of hydrogen at the outlet is large, the detection value of the pressure detector is smaller, and when the discharge amount of hydrogen at the outlet is small, the detection value of the pressure detector is larger.
  • the main shut-off valve 11 and the pressure detector are electrically connected to the control device.
  • the pressure value detected by the pressure detector can be sent to the control device, and the control device can analyze and judge the pressure value, and send a control command to the main shut-off valve 1 according to the analysis result to switch the work of the main shut-off valve 1 status.
  • the main shut-off valves 11 of multiple hydrogen storage tanks 18 are detected and controlled by the same set of pressure detectors, and there is no need to separately set pressure detectors for the main shut-off valves 11 of each hydrogen storage tank 18, which is beneficial to reduce costs.
  • the pressure reducing valve 14 is adapted to be installed downstream of the outlets of the plurality of hydrogen storage tanks 18 together with the pressure detector, and the pressure reducing valve 14 is used to reduce the pressure of hydrogen before the fuel cell stack is supplied.
  • the control device is set to control the main shut-off valve 1 to close when the detection value detected by the pressure detector is less than the set value of the pressure detector, that is, when the hydrogen discharge volume in the hydrogen storage tank 18 is greater than the set discharge volume, the control device
  • the main shut-off valve 1 is controlled to close, so that the hydrogen in the hydrogen storage tank 18 stops discharging.
  • the pressure detector and the main shut-off valve 1 at the outlet of the hydrogen storage tank 18, when an abnormally large flow (such as a pipe rupture) occurs in the hydrogen storage tank 18, the outlet of the hydrogen storage tank 18 can be timely It is closed to ensure the normal discharge of the medium in the hydrogen storage tank 18, and the hydrogen storage system 100 has a simple structure and low cost, and the pressure detector can detect the pressure at the outlet in real time, so that the control device controls the main shut-off valve 1 The adjustment is continuous activation, which is more flexible and practical, and then detects the safety status of the hydrogen storage system 100 in real time. Moreover, the main shut-off valves 1 of multiple hydrogen storage tanks 18 are detected and controlled by a set of control devices and pressure detectors, and multiple hydrogen storage tanks 18 are used for hydrogen pressure control through the same pressure reducing valve 14, which greatly reduces the cost. .
  • the general function of the main shut-off valve 1 is to close the hydrogen supply from the hydrogen storage tank 18 to the downstream of the valve body, and a separate flow limiting valve needs to be set to achieve the flow limiting function, such as setting a mechanical flow limiting valve or electrical Control restrictor valve.
  • a control strategy is used in conjunction with a pressure detector, so that the main shut-off valve 1 has an additional flow limiting function, thereby reducing the use of flow limiting valves and reducing costs.
  • the hydrogen storage system 100 of the present application by connecting the outlets of a plurality of hydrogen storage tanks 18 to the main shut-off valve 1, and the main shut-off valve 1 is used in conjunction with a pressure detector, the outlet of the hydrogen storage tank 18 The pressure can be continuously detected to ensure that the control device can control the main shut-off valve 1 in time, which has better flexibility and applicability, and multiple hydrogen storage tanks 18 share a pressure reducing valve 14 for pressure relief. Simple and low installation cost.
  • the pressure detector includes a first sensor 3 and a second sensor 4.
  • the control device is configured to control the main shut-off valve 1 to close the outlet of the hydrogen storage tank 18 when the detection value of at least one of the first sensor 3 and the second sensor 4 is less than the corresponding set value. That is, the control device can control the main shut-off valve 1 by the detection result of the first sensor 3 alone, or control the main shut-off valve 1 by the detection result of the second sensor 4, or control the main shut-off valve 1 according to the detection result of the first sensor 3 and the second sensor 3.
  • the detection result of the sensor 4 controls the main shut-off valve 1.
  • the set value of the first sensor 3 is greater than the set value of the second sensor 4, that is, the pressure value at which the control device performs the closing operation of the main shut-off valve 1 through the detection result of the first sensor 3 is higher than that of the control device to the main shut-off valve.
  • the control device can flexibly select the control mode of the main shut-off valve 1 under different operating conditions to ensure that the main shut-off valve can be controlled under different operating conditions.
  • the shutoff valve 1 is accurately controlled to improve the safety of the hydrogen storage system 100.
  • the pressure reducing valve 14 is provided between the first sensor 3 and the second sensor 4. As shown in FIG. 1, the first sensor 3 is located at the upstream end of the pressure reducing valve 14, and the second sensor 4 is located downstream of the pressure reducing valve 14. In order to make the structural arrangement of the hydrogen storage system 100 more compact.
  • the control device is configured to control the main shut-off valve 1 to close the outlet of the hydrogen storage tank 18 when the detection value of the first sensor 3 is less than the first set value.
  • the control device is adapted to control the main shut-off valve 1 according to the detection result of the first sensor 3, and the control device is configured to control when the pressure value detected by the first sensor 3 is less than the first set value.
  • the main shut-off valve 1 is closed, so as to ensure that the outlet is closed when the medium pressure at the outlet of the hydrogen storage tank 18 is less than the first set value, so as to prevent the hydrogen storage tank 18 from flowing out abnormally.
  • control device is configured to control the main shut-off valve 1 to close the outlet of the hydrogen storage tank 18 when the detection value of the second sensor 4 is less than the second set value.
  • control device is adapted to control the main shutoff valve 1 according to the detection result of the second sensor 4, and the control device is set to control when the pressure value detected by the second sensor 4 is less than the second set value.
  • the main shut-off valve 1 is closed, so as to ensure that the outlet is closed when the medium pressure at the outlet of the hydrogen storage tank 18 is less than the second set value, so as to prevent the hydrogen storage tank 18 from flowing out abnormally.
  • the control device is configured to receive the detection value of the second sensor 4 after the detection value of the first sensor 3 is less than the first set value, and when the detection value of the second sensor 4 is less than At the second setting value, the main shut-off valve 1 is controlled to close the outlet of the hydrogen storage tank 18. In this way, after the detection result of the first sensor 3 determines that the actual pressure value is less than the first set value, a further judgment is made, and the detection result of the second sensor 4 determines a more specific actual pressure value, thereby ensuring that the detection result is more accurate , To improve the reliability and accuracy of the hydrogen storage system 100.
  • the control device is configured to receive the detection value of the first sensor 3 after the detection value of the second sensor 4 is less than the second set value, and when the detection value of the first sensor 3 is less than At the first set value, the main shut-off valve 1 is controlled to close the outlet of the hydrogen storage tank 18.
  • the control device makes a joint judgment based on the results of the first sensor 3 and the second sensor 4, and then performs corresponding control on the main shut-off valve 1 for secondary detection, which can improve the accuracy of the detection results and ensure that the control device
  • the control operation of the main shut-off valve 1 meets the requirements of the current working conditions and enhances the practicability.
  • the first sensor 3 and the second sensor 4 are arranged in order along the outlet direction of the hydrogen storage tank 18.
  • the hydrogen gas flowing out of the hydrogen storage tank 18 can pass through the first sensor 3 and the second sensor 4 in sequence, so that both the first sensor 3 and the second sensor 4 can detect the outlet pressure of the hydrogen storage tank 18 and arrange them in sequence.
  • This facilitates reasonable and effective use of the layout space, prevents the first sensor 3 and the second sensor 4 from being installed too tightly to cause inaccurate detection results, and improves the reliability of the hydrogen storage system 100.
  • the hydrogen storage system 100 further includes: a pressure relief valve 17 installed downstream of the outlet of the hydrogen storage tank 18, and the pressure relief valve 17 is used to stabilize the output pressure under any pressure change, and can pass through the pressure relief valve 17 Active adjustment makes the pressure adjustment mode of the hydrogen storage tank 18 flexible and optional, and it is more convenient to use.
  • the hydrogen storage system 100 includes: a main shut-off valve 1, at least one pressure detector, and a control device 2.
  • the main shut-off valve 1 is suitable to be installed at the outlet of the hydrogen storage tank 18, and the main shut-off valve 1 is used to selectively discharge the medium in the hydrogen storage tank 18.
  • the medium flowing out of the hydrogen storage tank 18 can enter the main shut-off valve 1 to be discharged through the main shut-off valve 1. Therefore, the working position of the main shut-off valve 1 can be switched, In order to make the medium in the hydrogen storage tank 18 flow out or remain in the hydrogen storage tank 18.
  • the hydrogen storage tank 18 may be a hydrogen storage container installed in a fuel cell vehicle. In this way, the main shut-off valve 1 can control the air discharge in the hydrogen storage container.
  • the pressure detector is suitable to be installed at the outlet of the hydrogen storage tank 18.
  • the pressure detector is used to detect the pressure value at the outlet of the hydrogen storage tank 18, that is, the pressure detector can be used to detect the medium discharge at the outlet of the hydrogen storage tank 18 .
  • the detection value of the pressure detector is small, and when the discharge volume at the outlet is small, the detection value of the pressure detector is large.
  • the main shut-off valve 1 and the pressure detector are electrically connected to the control device 2, so that the pressure value detected by the pressure detector can be sent to the control device 2, and the control device 2 can analyze the pressure value Judge, and send a control command to the main shut-off valve 1 according to the analysis result to switch the working state of the main shut-off valve 1.
  • the control device 2 is set to control the main shut-off valve 1 to close when the pressure value detected by at least one pressure detector is less than the set value of the pressure detector, that is, the medium discharge volume in the hydrogen storage tank 18 is greater than the set discharge volume At this time, the control device 2 controls the main shut-off valve 1 to close, so that the medium in the hydrogen storage tank 18 stops discharging.
  • the main shutoff valve 1 and other valve structures at the outlet of the hydrogen storage tank 18, when an abnormally large flow (such as a pipe rupture) occurs in the hydrogen storage tank 18, the outlet of the hydrogen storage tank 18 can be timely Closed to ensure the normal discharge of the medium in the hydrogen storage tank 18, and the main shut-off valve 1 and other valves are simple in structure, low in installation cost, and the pressure detector can detect the pressure at the outlet in real time, so that the control device 2 The adjustment of the main shut-off valve 1 is continuously activated, which is more flexible and practical.
  • the main shut-off valve 1 in conjunction with a pressure detector, the pressure at the outlet of the hydrogen storage tank 18 can be continuously detected, ensuring that the control device 2 can promptly communicate with the main
  • the shut-off valve 1 is controlled, which has better flexibility and applicability, and the hydrogen storage system 100 has a simple structure and low cost.
  • the pressure detector includes a first sensor 3.
  • the control device 2 is adapted to control the main shut-off valve 1 according to the detection result of the first sensor 3, and the control device 2 is set to When the pressure value detected by the first sensor 3 is less than the first set value, the main shutoff valve 1 is controlled to close, so as to ensure that the outlet is closed when the medium pressure at the outlet of the hydrogen storage tank 18 is less than the first set value to prevent hydrogen storage The tank 18 flows out abnormally.
  • the pressure detector includes a second sensor 4.
  • the control device 2 is adapted to control the main shut-off valve 1 according to the detection result of the second sensor 4, and the control device 2 is set to When the pressure value detected by the second sensor 4 is less than the second set value, the main shut-off valve 1 is controlled to close, so as to ensure that the outlet is closed when the medium pressure at the outlet of the hydrogen storage tank 18 is less than the second set value to prevent hydrogen storage The tank 18 flows out abnormally.
  • the first set value is greater than the second set value, that is, the pressure value at which the control device 2 performs the closing operation of the main shut-off valve 1 through the detection result of the first sensor 3 is higher than the control device 2 passes the main shut-off valve 1
  • the detection result of the second sensor 4 is the pressure value at which the closing operation is performed. Therefore, under different operating conditions, different sensors can be set to enable the pressure detector to adapt to the current control requirements of the main shut-off valve 1, thereby improving the rationality and flexibility of the hydrogen storage system 100 design.
  • the pressure detector includes a first sensor 3 and a second sensor 4, wherein the first setting value of the first sensor 3 is greater than the second setting value of the second sensor 4.
  • the control device 2 can be configured to receive the detection value of the second sensor 4 after the pressure value detected by the first sensor 3 is less than the first set value, and when the detection value of the second sensor 4 is less than The second setting value controls the main shut-off valve 1 to close.
  • the second setting value controls the main shut-off valve 1 to close.
  • the control device 2 is set to receive the detection value of the first sensor 3 after the pressure value detected by the second sensor 4 is less than the second set value, and when the detection value of the first sensor 3 is less than the first set value When the value is set, the main shut-off valve 1 is controlled to close. In this way, the control device 2 makes a joint judgment based on the results of the first sensor 3 and the second sensor 4, and then performs corresponding control on the main shut-off valve 1 for secondary detection, which can improve the accuracy of the detection results and ensure that the control device 2
  • the control operation of the main shut-off valve 1 meets the needs of current working conditions and enhances practicability.
  • the hydrogen storage system 100 further includes: a third sensor 5, and the control device 2 is configured to control the main shutdown when the pressure value detected by the third sensor 5 is less than the third set value.
  • Valve 1 is closed, and the second set value is greater than the third set value.
  • the first sensor 3, the second sensor 4, and the third sensor 5 are a high-pressure sensor, a medium-pressure sensor, and a low-pressure sensor in sequence, and when the detection results of the high-pressure sensor and the medium-pressure sensor are all less than the corresponding set value, the The actual pressure value is further determined by the third sensor 5 so that when the pressure in the hydrogen storage tank 18 reaches the set lower limit, the control device 2 can close the main shut-off valve 1 in time.
  • the pressure detector is located downstream of the main shut-off valve 1, so that the pressure of the medium flowing from the hydrogen storage tank 18 and the main shut-off valve 1 can be accurately detected, and the main shut-off valve can be determined more accurately.
  • the medium discharge amount at the valve 1 is in an abnormal state, so that the control device 2 controls the main shut-off valve 1 more accurately.
  • the main shut-off valve 1 is a solenoid valve.
  • the solenoid valve includes: a valve body for opening and closing a flow path, a positioner assembly for generating offset force and electromagnetic force, and can be generated by energizing the solenoid valve The magnetic force acts on the positioner assembly to keep the valve body in an open state.
  • the control method of the positioner is that the flow channel of the valve body is in a closed state.
  • a spring-guided solenoid valve body with flow restriction can also be used to generate pressure loss and close the valve body as a restrictive valve.
  • the main shut-off valve 1 is set to enable unidirectional conduction in the direction of the outlet of the hydrogen storage tank 18 when it is opened, so that the medium can pass from the main shut-off valve 1 when the hydrogen storage tank 18 is normally discharged. It flows out from one direction, and there will be no backflow, which improves the rationality of the structural design of the hydrogen storage system 100.
  • the hydrogen supply branch of the hydrogen storage tank 18 includes a first branch 10 and a second branch 11, and the pressure detector includes a first sensor 3 and a second sensor 4.
  • the first branch 10 and the second branch 11 are both connected to the outlet of the hydrogen storage tank 18.
  • the first sensor 3 is provided in the first branch 10
  • the second sensor 4 and the main shut-off valve 1 are both provided in the second branch.
  • Branch road 11 In this way, the pressures of the first branch 10 and the second branch 11 can be detected by the first sensor 3 and the second sensor 4 respectively, so as to determine the hydrogen storage tank 18 according to the pressure values of the first branch 10 and the second branch 11 The pressure value.
  • the first branch 10 also includes a first one-way valve 6, a first filter 7, and a manual shut-off valve 8.
  • the manual shut-off valve 8 is used by the operator to manually control the medium discharge of the first branch 10. .
  • the first filter 7, the manual shut-off valve 8, the first one-way valve 6 and the first sensor 3 are arranged in order along the outlet direction of the hydrogen storage tank 18.
  • the second branch 11 also includes a pressure reducing valve 14 and a second filter 15.
  • the pressure reducing valve 14 is used for the operator to manually control the medium pressure of the first branch 10.
  • the second sensor 4 the pressure reducing valve 14, the main shutoff valve 1 and the second filter 15 are arranged in order along the outlet direction of the hydrogen storage tank 18.
  • a safety valve 16 is also provided in the second branch 11, and the safety valve 16 is located upstream of the second sensor 4.
  • the hydrogen storage system 100 further includes: a third branch 12 and a temperature sensor 13.
  • the third branch 12 is provided with a pressure relief valve 17, a pressure relief valve 17 and a temperature sensor. 13 are electrically connected to the control device 2, and the control device 2 is adapted to control the pressure relief valve 17 to open according to the detection value of the temperature sensor 13.
  • This application also proposes a hydrogen storage system 100.
  • the hydrogen storage system 100 includes a hydrogen storage tank 18, a hydrogenation port 101, and the above valve structure.
  • the hydrogenation port 101 is connected to the inlet of the hydrogen storage tank 18 to inject hydrogen into the hydrogen storage tank 18 through the hydrogenation port 101.
  • the main shut-off valve 1 is installed at the outlet of the hydrogen storage tank 18 and is located in the hydrogen storage tank 18, the pressure detectors are all installed at the outlet of the hydrogen storage tank 18 and located outside the hydrogen storage tank 18, and the control device is suitable for the pressure sensor The detected pressure value controls the main shut-off valve.
  • the pressure detector can detect the pressure at the outlet of the hydrogen storage tank 18, so that when the control device detects that the pressure at the outlet of the hydrogen storage tank 18 is less than the set value, it controls the main shut-off valve 1 to store hydrogen.
  • the outlet of the tank 18 is closed, thereby preventing an abnormally large flow of hydrogen in the hydrogen storage tank 18 and improving the safety of the hydrogen storage system 100.
  • This application also proposes another hydrogen storage system 100.
  • the hydrogen storage system 100 includes a plurality of hydrogen storage tanks 18, a hydrogenation port 101, and the above-mentioned valve structure.
  • the hydrogenation port 101 is connected to the inlet of the hydrogen storage tank 18 to inject into the hydrogen storage tank 18 through the hydrogenation port 101.
  • the multiple main shut-off valves 1 are installed at the outlets of multiple hydrogen storage tanks 18 in a one-to-one correspondence, and the main shut-off valves are located in the corresponding hydrogen storage tanks 18.
  • the control device Located downstream of the outlets of the plurality of hydrogen storage tanks 18, the control device is adapted to control the main shutoff valves in the plurality of hydrogen storage tanks 18 according to the pressure value detected by the pressure sensor.
  • the pressure detector can detect the pressure at the outlet of the hydrogen storage tank 18, so that when the control device detects that the pressure at the outlet of the hydrogen storage tank 18 is less than the set value, it controls the main shut-off valve 1 to store hydrogen.
  • the outlet of the tank 18 is closed, thereby preventing an abnormally large flow of hydrogen in the hydrogen storage tank 18 and improving the safety of the hydrogen storage system 100.
  • the main shut-off valves 1 of multiple hydrogen storage tanks 18 are controlled by the same set of pressure detectors and control devices, which is beneficial to reduce the overall installation cost.
  • This application also proposes a fuel cell vehicle.
  • the hydrogen storage system 100 of the above embodiment is provided, wherein the relevant valve structure in the hydrogen storage system 100 can be installed on the hydrogen storage container, which can be used when the hydrogen storage container has an abnormally large flow rate. , To ensure that the hydrogen storage container can be closed in time, with better flexibility and applicability, and the hydrogen storage system 100 has a simple structure and low cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

一种燃料电池车的储氢系统(100),包括:至少一个储氢罐(18);主关断阀(1)和减压阀(14),所述主关断阀(1)安装于所述储氢罐(18)的出口处;第一传感器(3)和第二传感器(4),所述第一传感器(3)和所述第二传感器(4)用于分别检测所述减压阀(14)的上游端和下游端的气压;控制装置(2),所述第一传感器(3)、所述第二传感器(4)和所述主关断阀(5)均与所述控制装置(2)相连,且所述控制装置(2)设置为在所述第一传感器(3)的检测值小于第一设定值时和/或所述第二传感器(4)的检测值小于第二设定值时,控制所述主关断阀(1)关闭。上述储氢系统(100),灵活性和适用性更佳,且储氢系统(100)的结构简单。

Description

燃料电池车的储氢系统和燃料电池车
相关申请的交叉引用
本申请要求未势能源科技有限公司、于2019年12月20日提交的发明名称为“溢流阀组件、储氢系统和燃料电池车”的中国专利申请号“201911330247.9”以及发明名称为“储氢系统和燃料电池车”的中国专利申请号“201922356736.3”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种燃料电池车制造技术领域,尤其是涉及一种燃料电池车的储氢系统和具有该储氢系统的燃料电池车。
背景技术
燃料电池车的储氢系统应该包含一个主关断阀、一个止回阀、一个压力调节器以及一个限流阀。主关断阀通常是一个电动电磁阀,其主要功能是关闭储氢罐供应至阀体下游的氢气。止回阀用于阻止氢气储氢罐回流至氢气供应管路。限流阀用于在诸如氢气供应管路断裂的情况下切断氢气供应,该阀体可以是一个机械限流阀或电控电磁阀,但单独设置限流阀的成本较高,且需要增加单独安装限流阀所需的空间,不利于整体布局,存在改进的空间。
发明内容
有鉴于此,本申请旨在提出一种燃料电池车的储氢系统。
为达到上述目的,本申请的技术方案是这样实现的:
一种燃料电池车的储氢系统,包括:至少一个储氢罐;主关断阀和减压阀,所述主关断阀安装于所述储氢罐的出口处;第一传感器和第二传感器,所述第一传感器和所述第二传感器用于分别检测所述减压阀的上游端和下游端的气压;控制装置,所述第一传感器、所述第二传感器和所述主关断阀均与所述控制装置相连,且所述控制装置设置为在所述第一传感器的检测值小于第一设定值时和/或所述第二传感器的检测值小于第二设定值时,控制所述主关断阀关闭。
根据本申请的储氢系统,通过将多个储氢罐的出口均与主关断阀相连,且主关断阀与压力检测器配合使用,可使得储氢罐的出口处的压力可得到持续性地检测,保证控制装置能够及时地对主关断阀进行控制,灵活性和适用性更佳,且多个储氢罐共用一个减压阀进 行释压,结构简单,安装成本低。
进一步地,所述减压阀安装于所述储氢罐。
进一步地,所述减压阀位于所述储氢罐的外部。
进一步地,所述第一设定值大于所述第二设定值。
进一步地,所述第一传感器安装于所述储氢罐。
进一步地,所述第一传感器安装于所述储氢罐的内部。
进一步地,所述第一传感器安装于所述储氢罐的外部。
进一步地,所述第二传感器串联于所述储氢罐的供氢支路上。
进一步地,所述第二传感器位于所述供氢支路在所述储氢罐外的部分。
进一步地,所述第二传感器位于所述供氢支路在所述储氢罐内的部分。
进一步地,所述控制装置设置为在所述第一传感器的检测值小于所述第一设定值后,接收所述第二传感器的检测值,在所述第二传感器的检测小于所述第二设置值后,所述控制装置控制所述主关断阀关闭。
进一步地,还包括:第三传感器,所述控制装置设置为在所述第三传感器的检测值小于第三设定值时控制所述主关断阀关闭,且所述第二设定值大于所述第三设定值。
进一步地,所述主关断阀为电磁阀。
进一步地,所述主关断阀设置为在开启时沿所述储氢罐的出口方向单向导通。
进一步地,所述供氢支路包括第一支路、第二支路,所述第一支路和所述第二支路均与所述储氢罐的出口相连,所述第一传感器设于所述第一支路,所述第二传感器和所述主关断阀均设于所述第二支路。
本申请的又一目的在于提出一种燃料电池车,设置有上述任一种实施例所述的储氢系统。
所述燃料电池车与上述的所述储氢系统相对于现有技术所具有的优势相同,在此不再赘述。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本实用新型实施例所述的储氢系统的结构示意图。
图2为本申请一些实施例所述的储氢系统的主关断阀的控制流程图;
图3为本申请另一些实施例所述的储氢系统的主关断阀的控制流程图;
图4为本申请又一些实施例所述的储氢系统的主关断阀的控制流程图;
图5为本申请再一些实施例所述的储氢系统的主关断阀的控制流程图;
图6为本申请实施例所述的储氢系统的主关断阀的连接示意图。
附图标记说明:
储氢系统100,
主关断阀1,控制装置2,第一传感器3,第二传感器4,第三传感器5,第一单向阀6,第一过滤器7,手动截止阀8,第一支路10,第二支路11,第三支路12,温度传感器13,减压阀14,第二过滤器15,安全阀16,泄压阀17,储氢罐18,第二单向阀19,第三过滤器20,
加氢口101。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本申请。
如图1所示,一种储氢系统100,该储氢系统100具有多个储氢罐18,且多个储氢罐18的出口处均与主关断阀1相连,主关断阀1可同时控制多个储氢罐18的出口流量,且在储氢罐18的出口流量出现异常时,主关断阀1能够自动关闭,以提高储氢系统100中储氢的安全性。
如图1所示,根据本申请实施例的储氢系统100,包括:多个储氢罐18、多个主关断阀1、压力检测器、减压阀14和控制装置。
其中,如图1所示,多个储氢罐18的入口均与加氢口101相连。这样,在需要向储氢罐18中补充氢气时,可通过加氢口101直接向储氢罐18中补充,且多个储氢罐18共用一个加氢口101,利于降低加氢口101的设置成本。
如图1所示,在通过加氢口101向储氢罐18内注入氢气时,加氢口101到储氢罐18的入口单向导通。如图1所示,可在加氢口101与储氢罐18的入口之间设置第二单向阀19,第二单向阀19构造为从加氢口101到储氢罐18的入口单向导通,以使从加氢口101中注入的氢气能够顺利地进入到储氢罐18中,且可防止储氢罐18内的氢气由加氢口101逆向流出,提高储氢系统100结构设计的合理性。如图1所示,第二单向阀19与加氢口101之间设有第三过滤器20,以对加氢口101注入的氢气进行过滤。
多个主关断阀1一一对应地安装于多个储氢罐18的出口且位于主关断阀位于对应的储氢罐18内,且主关断阀1用于控制储氢罐18的出口开启或关闭,即可通过主关断阀1选择性地控制对应的储氢罐18中的氢气排放。由此,在主关断阀1开启时,储氢罐18中流 出的氢气可进入到主关断阀1中,以通过主关断阀1向外排放,且在主关断阀1关闭时,氢气保持在储氢罐18中。这样,可通过切换主关断阀1的工作位置,以使储氢罐18中的氢气流出或保持在储氢罐18内。其中,储氢罐18可为安装于燃料电池车的储氢容器。
如图1所示,压力检测器适于安装于多个储氢罐18的出口外的下游处,压力检测器用于对储氢罐18的出口处的压力值进行检测,即可通过压力检测器对储氢罐18的出口处的氢气排放量进行检测。如出口处的氢气排放量较大时,压力检测器的检测值较小,出口处的氢气排放量较小时,压力检测器的检测值较大。
其中,主关断阀11和压力检测器均与控制装置电连接。这样,压力检测器检测到的压力值可发送给控制装置,且控制装置可对压力值进行分析判断,并根据分析结果向主关断阀1发出控制指令,以切换主关断阀1的工作状态。且多个储氢罐18的主关断阀11通过同一组压力检测器进行检测控制,无需对每个储氢罐18的主关断阀11单独设置压力检测器,利于降低成本。
如图1所示,减压阀14适于与压力检测器共同安装于多个储氢罐18的出口外的下游处,减压阀14用于降低供应燃料电池堆之前的氢气压力。
控制装置设置为在压力检测器检的检测值小于压力检测器的设定值时控制主关断阀1关闭,即在储氢罐18中的氢气排放量大于设定的排放量时,控制装置控制主关断阀1关闭,以使储氢罐18中的氢气停止排放。其中,压力检测器可为一个,也可为多个,以使压力检测器对储氢罐18的出口流量检测的更加准确。
由此,通过在储氢罐18的出口处设置压力检测器和主关断阀1,以在储氢罐18发生异常大流量(如管道破裂)时,能够使储氢罐18的出口处及时关闭,保证储氢罐18中的介质正常排放,且储氢系统100的结构简单,成本较低,且压力检测器可对出口处的压力进行实时地检测,使得控制装置对主关断阀1的调整为持续激活,灵活性和实用性更佳,进而实时检测储氢系统100的安全状态。且多个储氢罐18的主关断阀1均通过一组控制装置及压力检测器进行检测控制,且多个储氢罐18通过同一减压阀14进行氢气压力控制,极大地降低了成本。
需要说明的是,主关断阀1的通常功能是关闭储氢罐18到阀体下游的氢气供应,且需要设置一个单独的限流阀实现限流功能,如设置一个机械限流阀或电控限流阀。而在本申请中通过使用控制策略并辅以压力检测器,使得主关断阀1具有额外的限流的功能,进而减少限流阀的使用,降低成本。
根据本申请的储氢系统100,通过将多个储氢罐18的出口均与主关断阀1相连,且主关断阀1与压力检测器配合使用,可使得储氢罐18的出口处的压力可得到持续性地检测,保证控制装置能够及时地对主关断阀1进行控制,灵活性和适用性更佳,且多个储氢罐18 共用一个减压阀14进行释压,结构简单,安装成本低。
在一些实施例中,如图1所示,压力检测器包括第一传感器3和第二传感器4。
控制装置设置为在第一传感器3和第二传感器4中的至少一个的检测值小于对应的设定值时控制主关断阀1关闭储氢罐18的出口。即控制装置可单独通过第一传感器3的检测结果对主关断阀1进行控制,也可通过第二传感器4的检测结果对主关断阀1进行控制,或者根据第一传感器3及第二传感器4的检测结果对主关断阀1进行控制,
且第一传感器3的设定值大于第二传感器4的设定值,即控制装置对主关断阀1通过第一传感器3的检测结果进行关闭操作的压力值高于控制装置对主关断阀1通过第二传感器4的检测结果进行关闭操作的压力值。
由此,通过设置第一传感器3和第二传感器4,在不同的运行工况下,控制装置可灵活选择对主关断阀1的控制方式,以保证不同的使用状态下均可对主关断阀1进行准确地控制,提高储氢系统100的安全性。
其中,减压阀14设于第一传感器3和第二传感器4之间,如图1所示,第一传感器3位于减压阀14的上游端,第二传感器4位于减压阀14的下游端,以使储氢系统100的结构布置更加紧凑。
在一些实施例中,控制装置设置为在第一传感器3的检测值小于第一设定值时控制主关断阀1关闭储氢罐18的出口。如图3所示,控制装置适于根据第一传感器3的检测结果对主关断阀1进行控制,且控制装置设置为在第一传感器3检测到的压力值小于第一设定值时控制主关断阀1关闭,从而保证储氢罐18的出口处的介质压力小于第一设定值时使出口关闭,防止储氢罐18异常流出。
在一些实施例中,控制装置设置为在第二传感器4的检测值小于第二设定值时控制主关断阀1关闭储氢罐18的出口。如图2所示,控制装置适于根据第二传感器4的检测结果对主关断阀1进行控制,且控制装置设置为在第二传感器4检测到的压力值小于第二设定值时控制主关断阀1关闭,从而保证储氢罐18的出口处的介质压力小于第二设定值时使出口关闭,防止储氢罐18异常流出。
在一些实施例中,如图5所示,控制装置设置为在第一传感器3的检测值小于第一设定值后接收第二传感器4的检测值,且在第二传感器4的检测值小于第二设定值时控制主关断阀1关闭储氢罐18的出口。这样,在通过第一传感器3的检测结果确定实际压力值小于第一设定值后进行进一步地判断,并通过第二传感器4的检测结果确定更具体地实际压力值,从而保证检测结果更加精确,提升储氢系统100工作的可靠性和准确性。
在一些实施例中,如图4所示,控制装置设置为在第二传感器4的检测值小于第二设定值后接收第一传感器3的检测值,且在第一传感器3的检测值小于第一设定值时控制主 关断阀1关闭储氢罐18的出口。这样,控制装置为通过第一传感器3和第二传感器4的结果共同进行判断,进而对主关断阀1进行相应的控制,进行二次检测,可提高检测结果的准确性,保证控制装置对主关断阀1的控制操作符合当前的工况需要,增强实用性。
在一些实施例中,如图1所示,第一传感器3和第二传感器4沿储氢罐18的出口方向依次布置。这样,储氢罐18中流出的氢气可依次经过第一传感器3和第二传感器4,以使第一传感器3和第二传感器4均能够对储氢罐18的出口压力进行检测,且依次布置利于合理有效地利用布置空间,避免第一传感器3和第二传感器4安装过于紧凑致检测结果不准,提高储氢系统100的可靠性。
其中,储氢系统100还包括:泄压阀17安装于储氢罐18的出口外的下游处,且泄压阀17用于在任何压力变化情况下稳定输出压力,且可通过泄压阀17进行主动调节,使得储氢罐18的压力调节方式灵活可选,使用更加方便。
在另一些实施例中,如图6所示,根据本申请实施例的储氢系统100,包括:主关断阀1、至少一个压力检测器和控制装置2。
如图6所示,主关断阀1适于安装于储氢罐18的出口处,且主关断阀1用于选择性地排放储氢罐18中的介质。如图6所示,储氢罐18中流出的介质可进入到主关断阀1中,以通过主关断阀1向外排放,由此,可通过切换主关断阀1的工作位置,以使储氢罐18中的介质流出或保持在储氢罐18内。其中,储氢罐18可为安装于燃料电池车的储氢容器,这样,可通过主关断阀1控制储氢容器内的气流排放。
压力检测器适于安装于储氢罐18的出口,压力检测器用于对储氢罐18出口处的压力值进行检测,即可通过压力检测器对储氢罐18出口处的介质排放量进行检测。如出口处的排放量较大时,压力检测器的检测值较小,出口处的排放量较小时,压力检测器的检测值较大。
如图6所示,主关断阀1、压力检测器均与控制装置2电连接,这样,压力检测器检测到的压力值可发送给控制装置2,且控制装置2可对压力值进行分析判断,并根据分析结果向主关断阀1发出控制指令,以切换主关断阀1的工作状态。
控制装置2设置为在至少一个压力检测器检测到的压力值小于压力检测器的设定值时控制主关断阀1关闭,即在储氢罐18中的介质排放量大于设定的排放量时,控制装置2控制主关断阀1关闭,以使储氢罐18中的介质停止排放。其中,压力检测器可为一个,也可为多个,以使压力检测器对储氢罐18的出口流量检测的更加准确。
由此,通过在储氢罐18的出口处设置主关断阀1以及其他阀结构,以在储氢罐18发生异常大流量(如管道破裂)时,能够使储氢罐18的出口处及时关闭,保证储氢罐18中的介质正常排放,且主关断阀1以及其他阀的结构简单,安装成本较低,且压力检测器可 对出口处的压力进行实时地检测,使得控制装置2对主关断阀1的调整为持续激活,灵活性和实用性更佳。
根据本申请的储氢系统100,通过将主关断阀1与压力检测器配合使用,可使得储氢罐18的出口处的压力可得到持续性地检测,保证控制装置2能够及时地对主关断阀1进行控制,灵活性和适用性更佳,且储氢系统100的结构简单,成本低。
在一些实施例中,压力检测器包括第一传感器3,如图3所示,控制装置2适于根据第一传感器3的检测结果对主关断阀1进行控制,且控制装置2设置为在第一传感器3检测到的压力值小于第一设定值时控制主关断阀1关闭,从而保证储氢罐18的出口处的介质压力小于第一设定值时使出口关闭,防止储氢罐18异常流出。
在一些实施例中,压力检测器包括第二传感器4,如图2所示,控制装置2适于根据第二传感器4的检测结果对主关断阀1进行控制,且控制装置2设置为在第二传感器4检测到的压力值小于第二设定值时控制主关断阀1关闭,从而保证储氢罐18的出口处的介质压力小于第二设定值时使出口关闭,防止储氢罐18异常流出。
其中,第一设定值大于第二设定值,即控制装置2对主关断阀1通过第一传感器3的检测结果进行关闭操作的压力值高于控制装置2对主关断阀1通过第二传感器4的检测结果进行关闭操作的压力值。由此,在不同的运行工况下,可通过设置不同的传感器以使压力检测器能够适应当前的主关断阀1的控制需求,提升储氢系统100设计的合理性和灵活性。
在一些实施例中,压力检测器包括第一传感器3和第二传感器4,其中,第一传感器3的第一设定值大于第二传感器4的第二设定值。
其中,如图5所示,控制装置2可设置为在第一传感器3检测到的压力值小于第一设定值后接收第二传感器4的检测值,且在第二传感器4的检测值小于第二设定值时控制主关断阀1关闭。这样,在通过第一传感器3的检测结果确定实际压力值小于第一设定值后进行进一步地判断,并通过第二传感器4的检测结果确定更具体的实际压力值,从而保证检测结果更加精确,提升储氢系统100工作的可靠性和准确性。
或者如图4所示,控制装置2设置在第二传感器4检测到的压力值小于第二设定值后接收第一传感器3的检测值,且在第一传感器3的检测值小于第一设定值时控制主关断阀1关闭。这样,控制装置2为通过第一传感器3和第二传感器4的结果共同进行判断,进而对主关断阀1进行相应的控制,进行二次检测,可提高检测结果的准确性,保证控制装置2对主关断阀1的控制操作符合当前的工况需要,增强实用性。
在一些实施例中,如图6所示,储氢系统100还包括:第三传感器5,控制装置2设置为在第三传感器5检测到的压力值小于第三设定值时控制主关断阀1关闭,且第二设定值 大于第三设定值。由此,第一传感器3、第二传感器4和第三传感器5依次为高压传感器、中压传感器和低压传感器,且在高压传感器、中压传感器的检测结果均小于对应的设定值时,可通过第三传感器5进一步地确定实际压力值,以使储氢罐18中的压力达到设定的下限时,控制装置2能够及时地对主关断阀1进行关闭操作。
在一些实施例中,压力检测器位于主关断阀1的下游,由此,可准确地检测从储氢罐18、主关断阀1流出的介质的压力,进而更加准确地确定主关断阀1处的介质排放量为异常状态,从而使得控制装置2对主关断阀1进行更加准确地控制。
其中,主关断阀1为电磁阀,电磁阀包括:提供打开和关闭流量路径的阀体、一个包括用于产生偏移力和电磁力的定位器组件,且可通过向电磁阀通电而产生的磁力作用在定位器组件上,将阀体保持在打开状态,当系统发生异常大流量时,定位器的控制方式是阀体流量通道处于关闭状态。当然,也可使用具有流量限制的弹簧导向的电磁阀阀体来产生压力损失并作为限流阀关闭阀体。
在一些实施例中,主关断阀1设置为在开启时也能储氢罐18的出口方向单向导通,由此,在储氢罐18进行正常排放时,介质可从主关断阀1从单向流出,不会出现逆流的情况,提高储氢系统100结构设计的合理性。
如图6所示,储氢罐18的供氢支路包括:第一支路10、第二支路11,压力检测器包括第一传感器3和第二传感器4。
其中,第一支路10和第二支路11均与储氢罐18的出口相连,第一传感器3设于第一支路10,第二传感器4和主关断阀1均设于第二支路11。这样,可通过第一传感器3和第二传感器4分别检测第一支路10、第二支路11的压力,从而根据第一支路10和第二支路11的压力值判断储氢罐18的压力值。
如图6所示,第一支路10中还包括第一单向阀6、第一过滤器7以及手动截止阀8,手动截止阀8用于操作人员手动控制第一支路10的介质排放。其中,如图6所示,第一过滤器7、手动截止阀8、第一单向阀6和第一传感器3沿储氢罐18的出口方向依次布置。
如图6所示,第二支路11中还包括减压阀14、第二过滤器15,减压阀14用于操作人员手动控制第一支路10的介质压力。其中,如图6所示,第二传感器4、减压阀14、主关断阀1和第二过滤器15沿储氢罐18的出口方向依次布置。且第二支路11中还设有安全阀16,安全阀16位于第二传感器4的上游。
在一些实施例中,如图6所示,储氢系统100还包括:第三支路12和温度传感器13,第三支路12设有压力泄压阀17,压力泄压阀17和温度传感器13均与控制装置2电连接,且控制装置2适于根据温度传感器13的检测值控制压力泄压阀17开启。
本申请还提出了一种储氢系统100。
其中,储氢系统100包括一个储氢罐18、加氢口101和上述的阀结构,加氢口101与储氢罐18的入口相连,以通过加氢口101向储氢罐18内注入氢气,主关断阀1安装于储氢罐18的出口处且位于储氢罐18内,压力检测器均安装于储氢罐18的出口且位于储氢罐18外,控制装置适于根据压力传感器检测到的压力值控制主关断阀。
这样,压力检测器可对储氢罐18的出口出的压力进行检测,以使控制装置在检测到储氢罐18的出口处的压力小于设定值时,控制主关断阀1将储氢罐18的出口关闭,从而防止储氢罐18内的氢气发生异常大流量,提高储氢系统100的安全性。
本申请还提出了另一种储氢系统100。
其中,储氢系统100包括多个储氢罐18、加氢口101和上述的阀结构,加氢口101与储氢罐18的入口相连,以通过加氢口101向储氢罐18内注入氢气,主关断阀1为多个,多个主关断阀1一一对应地安装于多个储氢罐18的出口,且主关断阀位于对应的储氢罐18内,压力检测器位于多个储氢罐18的出口外的下游处,控制装置适于根据压力传感器检测到的压力值控制多个储氢罐18内的主关断阀。
这样,压力检测器可对储氢罐18的出口出的压力进行检测,以使控制装置在检测到储氢罐18的出口处的压力小于设定值时,控制主关断阀1将储氢罐18的出口关闭,从而防止储氢罐18内的氢气发生异常大流量,提高储氢系统100的安全性。且多个储氢罐18的主关断阀1通过同一组压力检测器及控制装置进行控制,利于降低整体的安装成本。
本申请还提出了一种燃料电池车。
根据本申请实施例的燃料电池车,设置有上述实施例的储氢系统100,其中,可在储氢容器上安装储氢系统100中的相关阀结构,能够在储氢容器出现异常大流量时,保证储氢容器能够及时地关闭,灵活性和适用性更佳,且储氢系统100的结构简单,成本低。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种燃料电池车的储氢系统,其特征在于,包括:
    至少一个储氢罐;
    主关断阀和减压阀,所述主关断阀安装于所述储氢罐的出口处;
    第一传感器和第二传感器,所述第一传感器和所述第二传感器用于分别检测所述减压阀的上游端和下游端的气压;
    控制装置,所述第一传感器、所述第二传感器和所述主关断阀均与所述控制装置相连,且所述控制装置设置为在所述第一传感器的检测值小于第一设定值时和/或所述第二传感器的检测值小于第二设定值时,控制所述主关断阀关闭。
  2. 根据权利要求1所述的燃料电池车的储氢系统,其特征在于,所述减压阀安装于所述储氢罐。
  3. 根据权利要求2所述的燃料电池车的储氢系统,其特征在于,所述减压阀位于所述储氢罐的外部。
  4. 根据权利要求1所述的燃料电池车的储氢系统,其特征在于,所述第一设定值大于所述第二设定值。
  5. 根据权利要求1所述的燃料电池车的储氢系统,其特征在于,所述第一传感器安装于所述储氢罐。
  6. 根据权利要求5所述的燃料电池车的储氢系统,其特征在于,所述第一传感器安装于所述储氢罐的内部。
  7. 根据权利要求5所述的燃料电池车的储氢系统,其特征在于,所述第一传感器安装于所述储氢罐的外部。
  8. 根据权利要求1所述的燃料电池车的储氢系统,其特征在于,所述第二传感器串联于所述储氢罐的供氢支路上。
  9. 根据权利要求8所述的燃料电池车的储氢系统,其特征在于,所述第二传感器位于所述供氢支路在所述储氢罐外的部分。
  10. 根据权利要求8所述的燃料电池车的储氢系统,其特征在于,所述第二传感器位于所述供氢支路在所述储氢罐内的部分。
  11. 根据权利要求1所述的燃料电池车辆的储氢系统,其特征在于,所述控制装置设置为在所述第一传感器的检测值小于所述第一设定值后,接收所述第二传感器的检测值,在所述第二传感器的检测小于所述第二设置值后,所述控制装置控制所述主关断阀关闭。
  12. 根据权利要求1所述的燃料电池车辆的储氢系统,其特征在于,还包括:第三传 感器,所述控制装置设置为在所述第三传感器的检测值小于第三设定值时控制所述主关断阀关闭,且所述第二设定值大于所述第三设定值。
  13. 根据权利要求1所述的燃料电池车辆的储氢系统,其特征在于,所述主关断阀为电磁阀。
  14. 根据权利要求1所述的燃料电池车辆的储氢系统,其特征在于,所述主关断阀设置为在开启时沿所述储氢罐的出口方向单向导通。
  15. 根据权利要求1所述的燃料电池车辆的储氢系统,其特征在于,所述供氢支路包括第一支路、第二支路,所述第一支路和所述第二支路均与所述储氢罐的出口相连,所述第一传感器设于所述第一支路,所述第二传感器和所述主关断阀均设于所述第二支路。
  16. 一种燃料电池车,其特征在于,设置有权利要求1-15中任一项所述的储氢系统。
PCT/CN2020/137687 2019-12-20 2020-12-18 燃料电池车的储氢系统和燃料电池车 WO2021121399A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201922356736.3U CN210926170U (zh) 2019-12-20 2019-12-20 储氢系统和燃料电池车
CN201911330247.9 2019-12-20
CN201922356736.3 2019-12-20
CN201911330247.9A CN113013443B (zh) 2019-12-20 2019-12-20 溢流阀组件、储氢系统和燃料电池车

Publications (1)

Publication Number Publication Date
WO2021121399A1 true WO2021121399A1 (zh) 2021-06-24

Family

ID=76477103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137687 WO2021121399A1 (zh) 2019-12-20 2020-12-18 燃料电池车的储氢系统和燃料电池车

Country Status (1)

Country Link
WO (1) WO2021121399A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113606495A (zh) * 2021-08-05 2021-11-05 上海氢枫能源技术有限公司 模块化智能阀门系统
CN114261471A (zh) * 2021-11-10 2022-04-01 安徽伯华氢能源科技有限公司 一种氢燃料与锂电池混合助力电动自行车
CN114413176A (zh) * 2022-02-24 2022-04-29 擎波探索(上海)能源科技有限公司 一种燃料电池动力船舶的紧急切断系统
GB2625061A (en) * 2022-12-01 2024-06-12 Bamford Excavators Ltd A storage system for a gaseous fuel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067832A (ja) * 2010-09-22 2012-04-05 Honda Motor Co Ltd 燃料供給システム
CN208630361U (zh) * 2018-04-18 2019-03-22 中车青岛四方机车车辆股份有限公司 一种储氢系统
CN109827068A (zh) * 2017-11-23 2019-05-31 郑州宇通客车股份有限公司 一种加氢速率控制方法及加氢机
CN208970648U (zh) * 2018-12-05 2019-06-11 江苏氢电新能源有限公司 一种燃料电池电动叉车供氢系统
CN209294791U (zh) * 2018-11-21 2019-08-23 上海齐耀重工有限公司 车载供氢系统
CN210926170U (zh) * 2019-12-20 2020-07-03 未势能源科技有限公司 储氢系统和燃料电池车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067832A (ja) * 2010-09-22 2012-04-05 Honda Motor Co Ltd 燃料供給システム
CN109827068A (zh) * 2017-11-23 2019-05-31 郑州宇通客车股份有限公司 一种加氢速率控制方法及加氢机
CN208630361U (zh) * 2018-04-18 2019-03-22 中车青岛四方机车车辆股份有限公司 一种储氢系统
CN209294791U (zh) * 2018-11-21 2019-08-23 上海齐耀重工有限公司 车载供氢系统
CN208970648U (zh) * 2018-12-05 2019-06-11 江苏氢电新能源有限公司 一种燃料电池电动叉车供氢系统
CN210926170U (zh) * 2019-12-20 2020-07-03 未势能源科技有限公司 储氢系统和燃料电池车

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113606495A (zh) * 2021-08-05 2021-11-05 上海氢枫能源技术有限公司 模块化智能阀门系统
CN114261471A (zh) * 2021-11-10 2022-04-01 安徽伯华氢能源科技有限公司 一种氢燃料与锂电池混合助力电动自行车
CN114413176A (zh) * 2022-02-24 2022-04-29 擎波探索(上海)能源科技有限公司 一种燃料电池动力船舶的紧急切断系统
GB2625061A (en) * 2022-12-01 2024-06-12 Bamford Excavators Ltd A storage system for a gaseous fuel

Similar Documents

Publication Publication Date Title
WO2021121399A1 (zh) 燃料电池车的储氢系统和燃料电池车
US7426935B2 (en) Method of discharging high pressure storage vessels
CA2617999C (en) Tank manifold assembly
US9279542B2 (en) Compressed hydrogen fueling control valve
BR102013009560B1 (pt) Válvula eletromagnética para uma válvula de reservatório de uma instalação de abastecimento de combustível, válvula de reservatório, alojamento estanque, instalação de abastecimento de combustível e limitador de fluxo de passagem
JPH1136989A (ja) ガス燃料用配管装置
US11372430B2 (en) Method for operating a valve of a pressure vessel system, and pressure vessel system
CN210926170U (zh) 储氢系统和燃料电池车
CN210424507U (zh) 燃气调压撬
US20080102336A1 (en) Fuel Cell System With a Metering Unit
JP2016161071A (ja) 水素充填システム
CN201212574Y (zh) 组合式限流阀
CN213401264U (zh) 一种双路可选的燃料电池测试台供氢装置
JP2013149601A (ja) 燃料利用システム
CN113013443B (zh) 溢流阀组件、储氢系统和燃料电池车
CN207702118U (zh) 一种液化天然气应急供气装置
JP5215125B2 (ja) 燃料電池システム及びそのシステムの制御方法
JP2017004629A (ja) 燃料電池発電装置
CN219800936U (zh) 输送管路、氢气存储系统以及燃料电池动力系统
KR102668280B1 (ko) 고압수소 밸브의 유로 구조
CN220086097U (zh) 一种燃料电池高位水箱加液系统
CN219453669U (zh) 一种高炉煤气供压系统
CN107894019B (zh) 一种降低一级网回水温度的供热系统及控制方法
CN217714561U (zh) 单计量35Mpa、70Mpa双枪加氢机
CN216339852U (zh) 基于压差控制的双水路供水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903397

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20903397

Country of ref document: EP

Kind code of ref document: A1