WO2021121048A1 - 化学机械抛光液 - Google Patents

化学机械抛光液 Download PDF

Info

Publication number
WO2021121048A1
WO2021121048A1 PCT/CN2020/133611 CN2020133611W WO2021121048A1 WO 2021121048 A1 WO2021121048 A1 WO 2021121048A1 CN 2020133611 W CN2020133611 W CN 2020133611W WO 2021121048 A1 WO2021121048 A1 WO 2021121048A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
polyvinylamine
polishing
polishing liquid
Prior art date
Application number
PCT/CN2020/133611
Other languages
English (en)
French (fr)
Inventor
任晓明
贾长征
李守田
Original Assignee
安集微电子科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子科技(上海)股份有限公司 filed Critical 安集微电子科技(上海)股份有限公司
Priority to US17/783,559 priority Critical patent/US20230027829A1/en
Publication of WO2021121048A1 publication Critical patent/WO2021121048A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the invention relates to the field of chemical mechanical polishing liquids, in particular to a chemical mechanical polishing liquid.
  • CMP chemical mechanical polishing
  • STI Shallow Trench Isolation
  • the polishing liquid In the shallow groove isolation polishing process, the polishing liquid generally has a higher selection ratio for the polishing speed of silicon oxide and silicon nitride.
  • silicon nitride acts as a barrier layer to allow polishing under ideal conditions. Stop. If the silicon oxide layer is over-polished, the silicon oxide layer will be recessed, forming a so-called "butterfly" (Dishing), resulting in reduced planarization efficiency. Therefore, it is necessary to find a chemical mechanical polishing solution that can improve the planarization efficiency.
  • the present invention provides a chemical mechanical polishing liquid, which contains cerium oxide, polyacrylic acid, polyvinylamine, and water.
  • the chemical mechanical polishing liquid provided by the present application can not only maintain a high silicon dioxide polishing rate, but also can reduce the amount of butterfly shape of the negatively charged cerium oxide on the patterned wafer.
  • the content of the polyvinylamine is 1-80 ppm.
  • the molecular weight of the polyvinylamine is 1300-750,000.
  • the content of the cerium oxide is 0.1 wt% to 1.5 wt%, preferably 0.4 wt%.
  • the content of polyacrylic acid is 500-1500 ppm. Preferably it is 900 ppm.
  • the chemical mechanical polishing liquid further contains a pH adjusting agent.
  • the pH adjusting agent is ammonia water, potassium hydroxide or nitric acid, acetic acid, hydrochloric acid, or sulfuric acid.
  • the pH of the chemical mechanical polishing liquid is 4-8. If it is less than 4, the particle size becomes larger; if it is greater than 8, the chemical mechanical polishing effect of the shallow trench isolation process is not good.
  • the ppm in the present invention refers to the mass concentration expressed in parts per million of the mass of the solute in the mass of the total solution, called parts per million concentration; the wt% and the percentage of each component are all mass percentage concentrations.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the present invention discloses a chemical mechanical polishing liquid with polyvinylamine as an additive, which can not only maintain a high silica polishing rate, but also reduce the negatively charged cerium oxide The amount of butterfly on the patterned wafer, thereby improving the planarization efficiency.
  • the molecular weight of the polyvinylamine is from 1300 to 750,000, and the content is 65 ppm or less, the effect of reducing the amount of butterfly is better.
  • FIG. 1 is a schematic structural diagram of a longitudinal section of a patterned wafer.
  • Figure 2 shows the relationship between the polishing rate of silica under a pressure of 4 psi and the concentration of polyvinylamine (molecular weight 1300).
  • the chemical mechanical polishing liquid prepared by mixing polyvinylamine and acrylic acid-treated cerium oxide can effectively control butterflying after polishing the dielectric layer substrate.
  • the method is simple to operate and has a relatively low cost. low.
  • the reference example contains 0.4wt% cerium oxide and the acrylic acid content is 900ppm.
  • Other examples and comparative examples add polyvinylamine with different molecular weights and contents on the basis of the reference example, and use ammonia (NH 4 OH) or nitric acid (HNO 3 ) adjust the pH to 4.5, and make up the mass percentage to 100% with water. See Table 1 for detailed components.
  • Polishing method The TEOS blank and patterned wafers were polished with the Mirra polishing machine. The polishing rate of the polishing liquid of this application on the silicon dioxide was tested on the TEOS blank wafer. The polishing liquid of this application inhibited the increase in the amount of butterfly Tested on patterned wafers.
  • the corresponding polishing conditions include: IC1010 polishing pad, polishing disk (Platten) and polishing head (Carrier) at 93 rpm and 87 rpm, pressure 4 psi, and polishing fluid flow rate at 150 mL/min.
  • TEOS film thickness is measured with NanoSpec non-metal film thickness measuring instrument (NanoSpec6100-300).
  • Fig. 1 is a schematic diagram of the structure of a patterned wafer 1 in the prior art.
  • the patterned wafer has bumps 1 and 2 with the bump line width H1 and the pit width H2.
  • the measurement is made at the bump line width H1/
  • the groove width H2 is 500um/500um, 100um/100um, 50um/50um.
  • Table 1 shows that when the content of PEI-1.3k is 65ppm or less, as the content of PEI-1.3k increases, the polishing rate of silica will hardly be affected.
  • the polishing rate of silica is 611, 605, 639, 624, and 548 respectively; under the polishing pressure of 2 psi, with PEI-1.3
  • the polishing rate of silica is 1047, 1007, 1046, 985, 844 respectively; under the polishing pressure of 3psi, with the content of PEI-1.3k respectively
  • the polishing rate of silica is 1770, 1718, 1809, 1687, 1533 respectively; under the polishing pressure of 4 psi, with the content of PEI-1.3k being 0, 2, 10 , 50, 65, the polishing rate of silica is 2168
  • the polishing rate of silica corresponding to different polishing pressures is far from the foregoing polishing rate. More specifically, the polishing rate of silica is significant. reduce. Convert the experimental data under 4psi polishing pressure in Table 1 to Figure 2. It can be seen intuitively from Figure 2 that as the content of PEI-1.3k increases from 0 to 65ppm, the polishing rate of silica stabilizes at 2168- 2376A, but when the content of PEI-1.3k reaches 80ppm and above, the polishing rate of silica has dropped. In other words, for the impact of the polishing speed of silica, the critical point of the PEI-1.3k content is between 65-80 ppm.
  • Table 2 shows that as the molecular weight of polyvinylamine increases, the critical point of the content of polyvinylamine decreases to the polishing rate of silica. For example, compared to Comparative Example 2A, when the same degree of polishing rate is reached, As the molecular weight of polyvinylamine increases, the concentration of polyvinylamine required decreases.
  • the polishing rate is compared with that of Comparative Example 2A, and the rate of decrease does not exceed
  • the molecular weight is 2500, 65ppm
  • the polishing rate is reduced by more than
  • the rate and the 2A ratio of Comparative Example did not decrease.
  • Table 3 shows that compared with the polishing liquid without polyvinylamine, polyvinylamine with a molecular weight of 1300 (content of 65ppm) can be effective at different measurement points (500/500um, 100/100um, 50/50um) Reduce butterflying.
  • Example 4C shows that for polyvinylamine with a molecular weight of 1300, as the concentration increases from 50 ppm to 65 ppm, Example 4C is more effective than Example 4B for butterflying reduction.
  • concentration of PEI is kept constant, as the molecular weight of polyvinylamine is smaller, the butterflying reduction is more effective.
  • the concentration of PEI is all 40 ppm
  • the molecular weight of PEI in Example 4D is 2500
  • the molecular weight of PEI in Example 4F is 750,000
  • Example 4D is more effective than 4F butterflying reduction.
  • the chemical mechanical polishing liquid containing polyvinylamine and acrylic acid-treated cerium oxide can effectively reduce the butterfly formation in the shallow groove isolation polishing process.
  • the molecular weight of the polyvinylamine is from 1300 to 750,000, and the content is 65 ppm or less, the effect of reducing the amount of butterfly is better.
  • the various components of the chemical mechanical polishing liquid of the present application only need to be simply mixed, and the operation is simple and the cost is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

提供化学机械抛光液,包含氧化铈、聚丙烯酸、聚乙烯胺、以及水。聚乙烯胺作为添加剂能够降低带负电荷的氧化铈对图案晶圆的蝶形量,提高平坦化效率。

Description

[根据细则37.2由ISA制定的发明名称] 化学机械抛光液 技术领域
本发明涉及化学机械抛光液领域,尤其涉及一种化学机械抛光液。
背景技术
目前,化学机械抛光(chemical mechanical polishing,CMP)在微纳米器件制造过程中已经成为最有效,最成熟的平坦化技术。在微纳米器件制造过程中,浅槽隔离(Shallow Trench Isolation,STI)工艺以突出的隔离性能,平坦的表面形貌以及良好的锁定性能,成为近年来主流隔离技术。
在浅槽隔离抛光工艺中,抛光液对氧化硅和氮化硅的抛光速度一般具有较高的选择比,当氮化硅层暴露时,氮化硅作为阻挡层在理想的情况下可以让抛光停止。如果氧化硅层过度抛光,氧化硅层会凹进去,形成所谓的“蝶形化”(Dishing),导致平坦化效率降低。因此,需要寻找一种提高平坦化效率的化学机械抛光液。
发明内容
为解决现有技术中经丙烯酸处理的带负电荷的氧化铈容易因为过度抛光而存在的蝶形化问题,本发明提供一种化学机械抛光液,包含氧化铈、聚丙烯酸、聚乙烯胺、以及水。本申请提供的化学机械抛光液不仅能够保持高的二氧化硅抛光速率,同时能够降低带负电荷的氧化铈对图案晶圆的蝶形量。
进一步地,所述聚乙烯胺的含量为1-80ppm。
进一步地,所述聚乙烯胺的分子量为1300-750000。
进一步地,所述氧化铈的含量为0.1wt%-1.5wt%,优选为0.4wt%。
进一步地,聚丙烯酸的含量为500-1500ppm。优选为900ppm。
进一步地,所述化学机械抛光液还包含pH调节剂。
进一步地,所述pH调节剂为氨水、氢氧化钾或硝酸、醋酸、盐酸、硫酸。
进一步地,所述化学机械抛光液的pH为4-8。小于4,则颗粒尺寸变大;大于8,则浅槽隔离工艺的化学机械抛光效果不好。
本发明中所述ppm是指用溶质质量占全部溶液质量的百万分比来表示的质量浓度, 称百万分比浓度;所述wt%、以及各成分百分比均为质量百分比浓度。
本发明的所用试剂及原料均市售可得。
与现有技术相比较,本发明的优势在于:本发明公开了一种聚乙烯胺作为添加剂的化学机械抛光液,不仅能够保持高的二氧化硅抛光速率,同时能够降低待负电荷的氧化铈对图案晶圆的蝶形量,从而提高平坦化效率。优选地,当所述聚乙烯胺的分子量从1300至750000,含量在65ppm或65ppm以下时的降低蝶形量的效果更好。
附图说明
图1为图案晶圆的纵剖面的结构示意图。
图2为压力4psi下二氧化硅的抛光速率和聚乙烯胺(分子量1300)浓度的关系。
附图标记:
1-凸点、2-凹点、H1-凸点线宽、H2-凹点宽度。
具体实施方式
下面结合附图及具体实施例,详细阐述本发明的优势。
本发明中利用聚乙烯胺与丙烯酸处理的氧化铈进行混合制备而成的化学机械抛光液,对介电层基片进行抛光后,可以有效地控制蝶形化,同时该方法操作简便,成本较低。
实施例
制备方法:本实施例中,基准例是含有0.4wt%的氧化铈,丙烯酸含量为900ppm,其他实施例及对比例则在基准例的基础上添加不同分子量和含量的聚乙烯胺,并以氨水(NH 4OH)或硝酸(HNO 3)调节pH至4.5,用水补足质量百分比至100%。详细组份请见表1。
抛光方法:采用Mirra抛光机台对TEOS空白和图案晶圆进行抛光测试,本申请抛光液对二氧化硅的抛光速率是在TEOS空白片上测试的,本申请抛光液抑制蝶形量的增加是在图案晶圆上测试的。对应抛光条件包括:IC1010抛光垫,抛光盘(Platten)和抛光头(Carrier)转速分别为93rpm和87rpm,压力4psi,抛光液流速为150mL/min。TEOS膜厚是用NanoSpec非金属膜厚测量仪(NanoSpec6100-300)测出的。空白片膜厚,从晶圆边缘3mm开始,在直径线上以同等间距测49个点。抛光速率是49点的平均值。图案 晶圆(patterned wafer)的台阶高度是用探针式轮廓仪(Bruker Nano’s DETKAK XTL)测量的。图1为现有技术中的图案晶圆1的结构示意图,图案晶圆具有凸点1和凹点2,凸点线宽为H1、凹点宽度为H2,测量是在凸点线宽H1/沟槽宽度H2为500um/500um,100um/100um,50um/50um。
表1.分子量为1300的聚乙烯胺(PEI-1.3k)含量与二氧化硅(TEOS)空白片抛光速率(RR)的关系
Figure PCTCN2020133611-appb-000001
表1中显示,PEI-1.3k的含量在65ppm或65ppm以下时,随着PEI-1.3k的含量的增加,二氧化硅的抛光速率几乎不会受到影响,例如,在抛光压力1.5psi下,随着PEI-1.3k的含量分别为0、2、10、50、65时,二氧化硅的抛光速率分别为611、605、639、624、548;在抛光压力2psi下,随着PEI-1.3k的含量分别为0、2、10、50、65时,二氧化硅的抛光速率分别为1047、1007、1046、985、844;在抛光压力3psi下,随着PEI-1.3k的含量分别为0、2、10、50、65时,二氧化硅的抛光速率分别为1770、1718、1809、1687、1533;在抛光压力4psi下,随着PEI-1.3k的含量分别为0、2、10、50、65时,二氧化硅的抛光速率分别为2168、2308、2376、2241、2217。而当所述PEI-1.3k的含量为80ppm和100ppm时,在不同抛光压力对应的二氧化硅的抛光速率与前述的抛光速率的差距较大,更具体地说,二氧化硅的抛光速率显著降低。将表1中的4psi抛光压力下的实验数据转换为图2,由图2可以直观地看出,随着PEI-1.3k的含量从0增加至65ppm,二氧化硅的抛光速率稳定在2168-2376A,但是当PEI-1.3k的含量达到80ppm及其以上,二氧化硅的抛光速率已经下降。也就是说,对于二氧化硅的抛光速度的影响,PEI-1.3k含量的临界点在65-80ppm之间。
表2.二氧化硅的抛光速率与聚乙烯胺分子量、浓度的关系
Figure PCTCN2020133611-appb-000002
表2显示,随着聚乙烯胺分子量增加,对于二氧化硅的抛光速率影响,聚乙烯胺含量的临界点有所降低,例如,相对于对比例2A,在达到相同程度的抛光速率时,随着聚乙烯胺的分子量的增加,所需聚乙烯胺的浓度降低,具体地,比如,在表2中,在分子量等于1300时,65ppm时,抛光速率和对比例2A比,速率下降不超过
Figure PCTCN2020133611-appb-000003
在分子量2500,65ppm时,抛光速率减低超过
Figure PCTCN2020133611-appb-000004
但是,在分子量2500,45ppm,速率和对比例2A比没有减低。
表3 聚乙烯胺(分子量1300)作为添加剂对蝶形化的影响
Figure PCTCN2020133611-appb-000005
表3显示,与不含聚乙烯胺的抛光液相比,分子量为1300的聚乙烯胺(含量为65ppm)在不同的测量点(500/500um、100/100um、50/50um)均可以有效的降低蝶形化。
表4 不同分子量聚乙烯胺作为添加剂对蝶形化的影响
Figure PCTCN2020133611-appb-000006
Figure PCTCN2020133611-appb-000007
表4显示,对于分子量为1300的聚乙烯胺,随着浓度从50ppm增加至65ppm,实施例4C比实施例4B蝶形化降低更有效。而当PEI浓度保持一定时,随着聚乙烯胺的分子量越小,蝶形化降低越有效。例如,当PEI的浓度都是40ppm时,实施例4D中PEI的分子量为2500,实施例4F中PEI的分子量为750000,实施例4D比4F蝶形化降低更有效。
综上所述,含有聚乙烯胺和经丙烯酸处理的氧化铈的化学机械抛光液能有效地降低浅槽隔离抛光工艺中的蝶形化。当所述聚乙烯胺的分子量从1300至750000,含量在65ppm或65ppm以下时的降低蝶形量的效果更好。同时,本申请的化学机械抛光液的各个组分只需简单混合即可,操作简单,成本较低。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (10)

  1. 一种化学机械抛光液,包含氧化铈、聚丙烯酸、聚乙烯胺、以及水。
  2. 如权利要求1所述化学机械抛光液,其特征在于,所述聚乙烯胺的含量为1-80ppm。
  3. 如权利要求1所述化学机械抛光液,其特征在于,所述聚乙烯胺的分子量为1300-750000。
  4. 如权利要求1所述化学机械抛光液,其特征在于,所述氧化铈的含量为0.1wt%-1.5wt%。
  5. 如权利要求1所述化学机械抛光液,其特征在于,聚丙烯酸的含量为500-1500ppm。
  6. 如权利要求1所述化学机械抛光液,进一步包含pH调节剂。
  7. 如权利要求6所述化学机械抛光液,其特征在于,所述pH调节剂为氨水、氢氧化钾或硝酸、醋酸、盐酸、硫酸。
  8. 如权利要求1所述化学机械抛光液,其特征在于,pH为4-8。
  9. 如权利要求5所述化学机械抛光液,其特征在于,聚丙烯酸的含量为900ppm。
  10. 如权利要求4所述化学机械抛光液,其特征在于,所述氧化铈的含量为0.4wt%。
PCT/CN2020/133611 2019-12-19 2020-12-03 化学机械抛光液 WO2021121048A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/783,559 US20230027829A1 (en) 2019-12-19 2020-12-03 Chemical mechanical polishing solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911319077.4 2019-12-19
CN201911319077.4A CN113004796A (zh) 2019-12-19 2019-12-19 一种化学机械抛光液

Publications (1)

Publication Number Publication Date
WO2021121048A1 true WO2021121048A1 (zh) 2021-06-24

Family

ID=76381261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133611 WO2021121048A1 (zh) 2019-12-19 2020-12-03 化学机械抛光液

Country Status (4)

Country Link
US (1) US20230027829A1 (zh)
CN (1) CN113004796A (zh)
TW (1) TW202124615A (zh)
WO (1) WO2021121048A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200127A (zh) * 2021-11-30 2023-06-02 安集微电子(上海)有限公司 一种制备纳米复合颗粒分散液的方法及纳米复合颗粒分散液、化学机械抛光液

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065458A (zh) * 2004-11-05 2007-10-31 卡伯特微电子公司 用于高的氮化硅对氧化硅去除速率比率的抛光组合物及方法
US20080274618A1 (en) * 2007-05-04 2008-11-06 Ferro Corporation Polishing composition and method for high selectivity polysilicon cmp

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048125A (ja) * 2003-07-31 2005-02-24 Hitachi Chem Co Ltd Cmp研磨剤、研磨方法及び半導体装置の製造方法
JP2005048122A (ja) * 2003-07-31 2005-02-24 Hitachi Chem Co Ltd Cmp研磨剤、研磨方法及び半導体装置の製造方法
EP1566420A1 (en) * 2004-01-23 2005-08-24 JSR Corporation Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
EP2061070A4 (en) * 2006-09-11 2010-06-02 Asahi Glass Co Ltd POLISHING AGENT FOR AN INTEGRATED SEMICONDUCTOR ELEMENTS, POLISHING METHOD AND METHOD FOR PRODUCING AN INTEGRATED SEMICONDUCTOR EQUIPMENT
JPWO2010052990A1 (ja) * 2008-11-07 2012-04-05 旭硝子株式会社 研磨剤、研磨方法および半導体集積回路装置の製造方法
CN102516878B (zh) * 2011-12-12 2016-08-03 上海新安纳电子科技有限公司 一种改善相变材料抛光后表面质量的抛光液
KR20170032335A (ko) * 2014-07-09 2017-03-22 히타치가세이가부시끼가이샤 Cmp용 연마액 및 연마 방법
JP2016154208A (ja) * 2015-02-12 2016-08-25 旭硝子株式会社 研磨剤、研磨方法および半導体集積回路装置の製造方法
CN109251671B (zh) * 2017-07-13 2021-09-17 安集微电子科技(上海)股份有限公司 一种化学机械抛光液
CN108048912A (zh) * 2017-12-14 2018-05-18 苏州中科纳福材料科技有限公司 球形胶体光子晶体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065458A (zh) * 2004-11-05 2007-10-31 卡伯特微电子公司 用于高的氮化硅对氧化硅去除速率比率的抛光组合物及方法
US20080274618A1 (en) * 2007-05-04 2008-11-06 Ferro Corporation Polishing composition and method for high selectivity polysilicon cmp

Also Published As

Publication number Publication date
TW202124615A (zh) 2021-07-01
CN113004796A (zh) 2021-06-22
US20230027829A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
TW201217504A (en) Polishing composition and polishing method using the same
WO2011079512A1 (zh) 一种化学机械抛光液
WO2015096629A1 (zh) 一种应用于sti领域的化学机械抛光液及其使用方法
WO2010012159A1 (zh) 一种化学机械抛光液
WO2016101332A1 (zh) 一种化学机械抛光液
WO2016107406A1 (zh) 一种化学机械抛光液及其应用
CN105802506B (zh) 一种化学机械抛光液
TWI488952B (zh) Cmp研磿液以及使用此cmp研磨液的研磨方法以及半導體基板的製造方法
WO2021121048A1 (zh) 化学机械抛光液
WO2021121043A1 (zh) 化学机械抛光液
WO2009070969A1 (fr) Liquide de polissage chimico-mécanique pour le polissage du polysilicium
WO2010034181A1 (zh) 胺类化合物的应用以及一种化学机械抛光液
WO2019011251A1 (zh) 化学机械抛光液
WO2019129107A1 (zh) 一种化学机械抛光液
WO2010025623A1 (zh) 一种化学机械抛光液
CN104726028A (zh) 一种化学机械抛光液及其使用方法
TWI662096B (zh) 具有改善之凹陷及圖案選擇性之對氧化物及氮化物有選擇性之cmp組成物
CN109251677B (zh) 一种化学机械抛光液
WO2021121044A1 (zh) 一种化学机械抛光液
CN108250975A (zh) 一种化学机械抛光液及其应用
WO2021121049A1 (zh) 一种化学机械抛光液
TW202223017A (zh) 化學機械拋光液及其使用方法
TW202223018A (zh) 化學機械拋光液及其使用方法
WO2015096627A1 (zh) 一种化学机械抛光液及使用方法
TWI428434B (zh) 化學機械拋光液在拋光多晶矽中的應用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901007

Country of ref document: EP

Kind code of ref document: A1