WO2010012159A1 - 一种化学机械抛光液 - Google Patents

一种化学机械抛光液 Download PDF

Info

Publication number
WO2010012159A1
WO2010012159A1 PCT/CN2009/000863 CN2009000863W WO2010012159A1 WO 2010012159 A1 WO2010012159 A1 WO 2010012159A1 CN 2009000863 W CN2009000863 W CN 2009000863W WO 2010012159 A1 WO2010012159 A1 WO 2010012159A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing liquid
mechanical polishing
chemical mechanical
liquid according
percentage
Prior art date
Application number
PCT/CN2009/000863
Other languages
English (en)
French (fr)
Inventor
姚颖
宋伟红
荆建芬
Original Assignee
安集微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子(上海)有限公司 filed Critical 安集微电子(上海)有限公司
Priority to CN200980131111.3A priority Critical patent/CN102112566B/zh
Publication of WO2010012159A1 publication Critical patent/WO2010012159A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a chemical mechanical polishing liquid.
  • interlayer dielectric ILD
  • CMP chemical mechanical polishing
  • the CMP process uses an abrasive-containing mixture and a polishing pad to polish the surface of the integrated circuit.
  • the substrate is placed in direct contact with a rotating polishing pad and a load is applied to the back side of the substrate with a load.
  • the gasket and the table rotate while maintaining a downward force on the back of the substrate, applying abrasive and chemically active solutions (often referred to as polishing fluids or polishing slurries) to the gasket.
  • polishing fluids or polishing slurries abrasive and chemically active solutions
  • the polishing slurry is mainly used to remove the oxide dielectric.
  • the polishing fluid is primarily used to remove and planarize oxide dielectrics and silicon nitride. Higher oxide dielectric removal rates and lower surface defects are required in both oxide and shallow trench isolation polishing processes.
  • polishing an oxide dielectric it is always desirable to have a higher silica removal rate while other materials have a lower polishing rate.
  • the oxide dielectric includes thin thermal oxide, high density plasma oxide ⁇ borophosphosilicate glass. tetraethoxy silica (PETEOS) And carbon doped oxide or the like.
  • the polishing abrasives used for oxide dielectric polishing paddles are mainly fumed silica, ceria and sol-type silica, but the first two abrasives tend to scratch the surface during polishing. Compared with the first two kinds of abrasives, the sol-type silica produces less surface defects during polishing, but the removal rate of the oxide dielectric is lower, and the amount of abrasive in the polishing liquid tends to be higher, pH value. Also higher.
  • the technical problem to be solved by the present invention is to overcome the defects of high polishing abrasive content and high polishing surface defects in the chemical mechanical polishing liquid for polishing an oxide dielectric, and to provide a silica sol particle.
  • a chemical mechanical polishing solution containing a carboxyl group-increasing rate aid and a surfactant to provide a chemical machine having a low polishing abrasive content, a high silica removal rate, and a low polishing rate of silicon nitride (Si 3 N 4 ). Polishing solution.
  • the chemical mechanical polishing liquid of the present invention contains a sol type silica, a rate increasing aid, a surfactant, and water.
  • the sol-type silica described in the present invention is a water-soluble solution of monodisperse silica colloidal particles.
  • the liquid system preferably has a particle diameter of 30 to 120 nm.
  • the amount of the sol type silica is preferably from 10 to 20%, more preferably from 15 to 20%.
  • the concentration of the silica colloidal particles in the sol-type silica is preferably from 20 to 50%, more preferably 30%; and the percentage is percentage by mass.
  • the rate increasing aid refers to a substance capable of increasing the polishing rate of silica, preferably an organic carboxylic acid and a salt thereof, and one or more of an organic phosphonic acid and a salt thereof; more preferably, the number of carbon atoms is 2 ⁇ 8 of a polycarboxylic acid and a salt thereof and one or more of a monosubstituted organic phosphonic acid and a salt thereof; most preferred are potassium tartrate, ethylenediaminetetraacetic acid, ammoniatriacetic acid, iminodiacetic acid and 2 One or more of -hydroxyphosphonoacetic acid (HPAA).
  • the rate increasing agent is preferably used in an amount of from 0.05 to 4%; more preferably from 0.5 to 2%; and the percentage is percentage by mass.
  • the surfactant is preferably a nonionic and/or amphoteric surfactant, more preferably lauroyl propyl amine oxide, dodecyl dimethyl amine oxide (OA-12), cocamido propyl Betaine (CAB-30), Tween 20, Twelfyldimethylbetaine (BS-12), Cocamidopropyl Betaine (CAB-35) and Coconut Fatty Acid Diethanol One or more of the amides (6501).
  • the surfactant is preferably used in an amount of 0.2% or less, but does not include 0%, more preferably 0.005 to 0.05%; and the percentage is percentage by mass.
  • a nonionic or amphoteric surfactant when used, by adjusting the kind of the surfactant, different polysilicon removal rates can be obtained, thereby achieving the purpose of adjusting the polysilicon removal rate.
  • dodecyl dimethyl betaine has a high removal rate of polysilicon
  • cocamidopropyl betaine has a low polysilicon removal rate
  • the polysilicon removal rate is different. Between the removal rates when used.
  • the water is preferably deionized water, and the balance is made up with water.
  • the conventionally added auxiliary in the field can be added to the polishing liquid of the present invention.
  • Reagents such as viscosity modifiers, alcohol or ether reagents, sol type silica stabilizers, fungicides, and the like.
  • the pH of the polishing liquid of the present invention is preferably from 9 to 12, more preferably from 10.5 to 12.
  • the polishing liquid of the present invention can be obtained by simply and uniformly mixing the above components, followed by adjustment to a suitable pH with a pH adjuster.
  • the pH adjusting agent may be selected from conventional pH adjusting agents in the art, such as potassium hydroxide and aqueous ammonia.
  • the reagents used in the present invention are all commercially available.
  • the polishing liquid of the present invention has a higher polishing rate for an oxide dielectric and a lower polishing rate for other materials such as polysilicon and silicon nitride, so that the polishing liquid of the present invention has a good selection ratio, and is selected.
  • the ratio is 2: 1-10: 1.
  • the rate increasing aid is introduced in the present invention to obtain a higher silica removal rate, thereby reducing the amount of abrasive used in the polishing liquid, thereby reducing the cost.
  • nonionic and amphoteric surfactants are used to obtain different polysilicon removal rates, thereby achieving the purpose of adjusting the polysilicon removal rate.
  • Figure 1 shows the TEOS removal rate for different TEOS rate enhancers.
  • Figure 2 is a graph showing the TEOS removal rate for different amounts of TEOS rate enhancers.
  • Figure 3 is a graph of TEOS and Ploy removal rates for silicas of different particle sizes.
  • Figure 4 is a graph of TEOS removal rates for different amounts of silica.
  • Figure 5 is a graph showing the polishing rate of a polishing solution of different pH values.
  • Figure 6 is a graph showing the removal rates of TEOS, Si 3 N 4 and Poly for different surfactants.
  • Figure 7 is a graph showing the removal rates of TEOS and Poly for different amounts of surfactant.
  • Example 1 Effect of Addition Rate Additive on TEOS Removal Rate
  • the silica removal rate was measured by polishing the slurry 1 to 5 and the comparative polishing liquid 1 as shown in Fig. 1. It can be seen from the figure that the polishing rate of the polishing solution to the TEOS is significantly increased after the introduction of the rate increasing agent compared to the comparison 1 without the addition of the rate increasing agent.
  • the formulation of the polishing solution is shown in Table 1. The pH is adjusted with KOH, and the remaining amount is made by deionized water. Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • Example 2 Effect of the amount of TEOS rate enhancer on the removal rate of TEOS
  • the silica removal rate was measured by polishing the liquids 1, 6 to 9 and the comparative polishing liquid 1, as shown in Fig. 2. It can be seen from the figure that the polishing rate of the polishing liquid increases with the increase of the amount of the additive, and reaches saturation at about 3%.
  • the formulation of the polishing solution is shown in Table 2. The pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • the polishing conditions were: lower pressure 5.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing liquid flow rate 100 ml/min, polishing machine Logitec PM5.
  • the removal rates of silicon dioxide and polysilicon (Poly) were measured by polishing the silica and Poly with a polishing solution 10 to 12, as shown in Fig. 3. As can be seen from the figure, the silica particle size does not have much influence on the polishing rate, and a wide range of silica particle sizes can be selected.
  • polishing solution The formulation of the polishing solution is shown in Table 3.
  • the pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • the silica removal rate was measured by polishing the liquid 13 ⁇ ; L5 and the comparative polishing liquid 2 to 4, as shown in Fig. 4. As can be seen from the figure, the removal rate increases as the amount of silica increases.
  • the formulation of the polishing solution is shown in Table 4. The pH is adjusted with KOH, and the remaining amount is made by deionized water. The polishing conditions were: lower pressure 5.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing liquid flow rate 100 ml/min, polishing machine Logitec PM5.
  • the silica and Poly were polished with a polishing solution 16 to 18, and the removal rates of silica and Poly were measured as shown in Fig. 5.
  • polishing solution The formulation of the polishing solution is shown in Table 5.
  • the pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • Example 6 Effect of surfactant type on TEOS, Si and Poly removal rate
  • the silica, Si 3 N 4 and Poly were polished with a polishing solution of 19 to 25 to determine the removal of silicon dioxide, Si 3 N 4 and Poly. Rate, as shown in Figure 6.
  • the removal rates of TEOS and Si 3 N 4 did not change much, but the polishing rate of poly decreased significantly.
  • polishing solution The formulation of the polishing solution is shown in Table 6.
  • the pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • the silica and Poly were polished with a polishing solution 26 to 29 to determine the removal rate of silica and Poly, as shown in Fig. 7. It can be seen from the figure that after the surfactant is added to the surfactant, the TEOS removal rate is slightly decreased, but the poly removal rate is remarkably lowered, but when the amount is higher than 500 ppm, the removal rate does not change significantly.
  • polishing solution The formulation of the polishing solution is shown in Table 7.
  • the pH is adjusted with KOH, and the remaining amount is made by deionized water.
  • Polishing conditions are: downforce 4.0 psi, polishing pad IC1000, polishing disk speed 70 rpm, polishing fluid flow rate 100 ml/min, polishing machine Logitec PM5.
  • the silica was polished with a polishing liquid 30 to determine its removal rate of silica.
  • the polishing solution formulation and removal rate are shown in Table 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

一种化学机械抛光液 技术领域
本发明涉及一种化学机械抛光液。 技术背景
在集成电路的制造过程中,硅晶圆基片上往往构建了成千上万的结构单 元, 这些结构单元通过多层金属互连进一步形成功能性电路和元器件。在多 层金属互连结构中,金属导线之间填充二氧化硅或惨杂其他元素的二氧化硅 作为层间介电质 (ILD)。 随着集成电路金属互连技术的发展和布线层数的增 加, 化学机械抛光 (CMP)已经广泛应用于芯片制造过程中的表面平坦化。 这 些平坦化的芯片表面有助于多层集成电路的生产,且防止将电介层涂覆在不 平表面上引起的畸变。
CMP工艺就是使用一种含磨料的混合物和抛光垫抛光集成电路表面。 在典型的化学机械抛光方法中, 将衬底直接与旋转抛光垫接触, 用一载重物 在衬底背面施加压力。 在抛光期间, 垫片和操作台旋转, 同时在衬底背面保 持向下的力, 将磨料和化学活性溶液(通常称为抛光液或抛光浆料)涂于垫 片上, 该抛光液与正在抛光的薄膜发生化学反应开始进行抛光过程。
在氧化物抛光过程中, 抛光浆料主要用于去除氧化物介电质。在浅沟槽 隔离层抛光时, 抛光液主要用于去除以及平坦化氧化物介电质和氮化硅。在 氧化物和浅沟槽隔离层抛光工艺中,都要求较高的氧化物介电质去除速率和 较低的表面缺陷。对氧化物介电质进行抛光时, 总是期望二氧化硅去除速率 较高, 而其他材料的抛光速率较低。 确认本 氧化物介电质包括薄膜热氧化二氧化硅 (thin thermal oxide),高密度等离 子二氧化娃 (high density plasma oxide) ^ 硼憐化娃玻璃 (borophosphosilicate glass). 四乙氧基二氧化硅 (PETEOS)和掺碳二氧化硅 (carbon doped oxide)等。
用于氧化物介电质抛光桨料的抛光磨料主要为气相二氧化硅、二氧化铈 和溶胶型二氧化硅, 但前两种磨料在抛光过程中容易划伤表面。与前两种磨 料相比, 溶胶型二氧化硅在拋光过程中产生的表面缺陷较少, 但对氧化物介 电质的去除速率较低, 其抛光液中磨料的用量往往较高, pH值也较高。
美国专利 US5,891,205描述了一种含有二氧化铈和二氧化硅混合磨料的 氧化物拋光液。 专利 US6,964,600中揭示了一种二氧化硅与氮化硅高选择比 的胶体二氧化硅抛光液, 由 5〜50%的二氧化硅胶体颗粒和 0.001〜2.0的磺酸 盐或磺酸酯构成。 专利 US7,351,662采用重碳酸盐促进氧化物介电质 (二氧 化硅或惨碳二氧化硅) 的去除速率, 从而获得较低的表面缺陷。 发明概要
本发明所要解决的技术问题是克服现有的用于抛光氧化物介电质的化 学机械抛光液中抛光液磨料含量高、抛光表面缺陷高的缺陷, 提供了一种含 有二氧化硅溶胶颗粒、含有羧基的速率增助剂和表面活性剂的化学机械抛光 液,从而提供了一种拋光液磨料含量低、二氧化硅去除速率高、氮化硅 ( Si3N4 ) 抛光速率低的化学机械抛光液。
本发明所述的化学机械抛光液含有溶胶型二氧化硅、速率增助剂、表面 活性剂和水。
本发明中所述的溶胶型二氧化硅为单分散的二氧化硅胶体颗粒的水溶 液体系, 其粒径较佳的为 30〜120nm。 溶胶型二氧化硅的用量较佳的为 10〜 20%, 更佳的为 15~20%。 所述的溶胶型二氧化硅中二氧化硅胶体颗粒的浓 度较佳的为 20〜50%, 更佳的为 30%; 百分比为质量百分比。
速率增助剂指能够增加二氧化硅抛光速率的物质,较佳的为有机羧酸及 其盐, 以及有机膦酸及其盐中的一种或多种; 更佳的为碳原子数目为 2~8的 多元羧酸及其盐和一取代的有机膦酸及其盐中的一种或多种;最佳的为酒石 酸钾、 乙二胺四乙酸、氨三乙酸、亚氨基二乙酸和 2-羟基膦酰基乙酸 (HPAA) 中的一种或多种。 所述的速率增助剂用量较佳的为 0.05〜4%; 更佳的为 0.5-2%; 百分比为质量百分比。
表面活性剂较佳的为非离子型和 /或两性型表面活性剂,更佳的为月桂酰 基丙基氧化胺、 十二烷基二甲基氧化胺 (OA-12)、 椰油酰胺基丙基甜菜碱 (CAB-30), 吐温 20 (Tween 20)、 十二垸基二甲基甜菜碱 (BS-12)、 椰油 酰胺丙基甜菜碱 (CAB-35 ) 和椰油脂肪酸二乙醇酰胺 (6501 ) 中的一种或 多种。 所述的表面活性剂用量较佳的为小于等于 0.2%, 但不包括 0%, 更佳 的为 0.005〜0.05%; 百分比为质量百分比。
使用非离子型或两性型表面活性剂时, 通过调整表面活性剂的种类, 能 够得到不同的多晶硅去除速率, 从而实现调节多晶硅去除速率的目的。 如, 十二垸基二甲基甜菜碱对多晶硅的去除速率很大,而椰油酰胺丙基甜菜碱的 多晶硅去除速率低, 同时使用这两种表面活性剂, 得到的多晶硅去除速率介 于单独使用时的去除速率之间。
水较佳的为去离子水, 用水补足余量。
根据工艺实际需要,可向本发明的抛光液中添加本领域常规添加的辅助 性试剂, 如粘度调节剂、 醇类或醚类试剂、 溶胶型二氧化硅稳定剂、 杀菌剂 等。 ·
本发明的拋光液的 pH值较佳的为 9〜12, 更佳的为 10.5〜12。
本发明的抛光液由上述成分简单均匀混合, 之后采用 pH调节剂调节至 合适 pH值即可制得。 pH调节剂可选用本领域常规 pH调节剂, 如氢氧化钾 和氨水等。
本发明所用的试剂均市售可得。
本发明的积极进步效果在于:
1、本发明的抛光液对氧化物介电质有较高拋光速率,而对其他材料(如 多晶硅和氮化硅)具有较低抛光速率, 使得本发明的抛光液具有良好的选择 比, 选择比为 2: 1-10: 1。
2、 本发明中引入速率增助剂, 获得了较高的二氧化硅去除速率, 从而 降低抛光液中磨料的使用量, 从而降低成本。
3、 本发明优选的实施例中使用了非离子型和两性型表面活性剂, 能够 得到不同的多晶硅去除速率, 从而实现调节多晶硅去除速率的目的。 附图说明
图 1为不同 TEOS速率增助剂的 TEOS去除速率图。
图 2为不同用量的 TEOS速率增助剂的 TEOS去除速率图。
图 3为不同粒径的二氧化硅的 TEOS和 Ploy去除速率图。
图 4为不同用量的二氧化硅的 TEOS去除速率图。
图 5为不同 pH值的抛光液的抛光速率图。 图 6为不同表面活性剂的 TEOS、 Si3N4和 Poly的去除速率图。 图 7为不同用量的表面活性剂的 TEOS和 Poly的去除速率图。
发明内容
下面用实施例来进一步说明本发明, 但本发明并不受其限制。 百杀得上海三博生化有限公司
实施例 1 添加速率增助剂对 TEOS去除速率的影响 用抛光液 1〜5和对比抛光液 1抛光二氧化硅,测定二氧化硅的去除速 率, 如图 1。 由图可见, 与没有添加速率增助剂的对比 1相比, 引入速率增 助剂后抛光液对 TEOS的抛光速率明显增加。 抛光液配方见表 1,用 KOH调节 pH,去离子水补足余量。抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 1
Figure imgf000006_0001
实施例 2 TEOS速率增助剂的用量对 TEOS去除速率的影响 用抛光液 1、 6〜9和对比抛光液 1抛光二氧化硅, 测定二氧化硅的去除 速率, 如图 2。 由图可见, 抛光液抛光速率随增助剂用量的增加而增加, 在 3 %左右达到饱和。 拋光液配方见表 2,用 KOH调节 pH,去离子水补足余量。抛光条件为: 下压力 5.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 2
Figure imgf000007_0001
实施例 3二氧化硅的粒径对 TEOS和 Poly去除速率的影响
用抛光液 10〜12拋光二氧化硅和 Poly, 测定二氧化硅和多晶硅(Poly) 的去除速率, 如图 3。 由图可见, 二氧化硅粒径对抛光速率没有太大影响, 可以选择较宽的二氧化硅粒径范围。
抛光液配方见表 3,用 KOH调节 pH,去离子水补足余量。抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 3
Figure imgf000007_0002
实施例 4二氧化硅用量对 TEOS去除速率的影响
用抛光液 13〜; L5和对比抛光液 2〜4拋光二氧化硅,测定二氧化硅的去 除速率, 如图 4。 由图可见, 去除速率随二氧化硅用量的增加而增加。 抛光液配方见表 4,用 KOH调节 pH,去离子水补足余量。抛光条件为: 下压力 5.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 4
Figure imgf000008_0001
实施例 5 抛光液的 pH值对抛光速率的影响
用抛光液 16〜18抛光二氧化硅和 Poly, 测定其对二氧化硅和 Poly的去 除速率,如图 5。由图可见,高 pH值有利于得到高的抛光速率,但在 pH=11.0 后变化不大, 较佳的为 10.5〜12。
抛光液配方见表 5,用 KOH调节 pH, 去离子水补足余量。抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 5
Figure imgf000008_0002
实施例 6表面活性剂种类对 TEOS、 Si 和 Poly去除速率的影响 用抛光液 19〜25抛光二氧化硅、 Si3N4和 Poly,测定其对二氧化硅、 Si3N4 和 Poly 的去除速率, 如图 6。 由图可见, 与没有添加表面活性剂的抛光液 18相比, 引入非离子和两性离子表面活性剂后, TEOS和 Si3N4的去除速率 变化不大, 但 poly的抛光速率显著降低。
抛光液配方见表 6,用 KOH调节 pH, 去离子水补足余量。抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 6
Figure imgf000009_0001
实施例 7表面活性剂用量对 TEOS和 Poly去除速率的影响
用抛光液 26〜29抛光二氧化硅和 Poly, 测定其对二氧化硅和 Poly的去 除速率, 如图 7。 由图可见, 弓 I入表面活性剂后, TEOS去除速率略有降低, 但 poly的去除速率显著降低, 但当用量高于 500ppm后, 去除速率无明显变 化。
抛光液配方见表 7,用 KOH调节 pH, 去离子水补足余量。抛光条件为: 下压力 4.0psi, 抛光垫 IC1000, 抛光盘转速 70rpm, 抛光液流速 100ml/min, 抛光机台 Logitec PM5。
表 7
Figure imgf000009_0002
实施例 8
用抛光液 30抛光二氧化硅, 测定其对二氧化硅的去除速率。 抛光液配 方和去除速率见表 8。
表 8
抛 二氧化硅 TEOS速率增助剂 杀菌剂
去除速率 光 用量 pH
用量(%) 粒径 (nm) 种类 用量(%) 种类 (A/min) 液 (%)
酒石
30 15 120 1 百杀得 0.002 12 2800 酸钾

Claims

权利要求
1、 一种化学机械抛光液, 其含有溶胶型二氧化硅、 速率增助剂、 表面 活性剂和水。
2、 如权利要求 1所述的化学机械抛光液, 其特征在于: 所述的溶胶型 二氧化硅粒径为 30〜120nm。
3、 如权利要求 1所述的化学机械抛光液, 其特征在于: 所述的速率增 助剂为有机羧酸及其盐, 以及有机膦酸及其盐中的一种或多种。
4、 如权利要求 3所述的化学机械抛光液, 其特征在于: 所述的速率增 助剂为碳原子数目为 2〜8的多元羧酸及其盐和一取代的有机膦酸及其盐中的 一种或多种。
5、 如权利要求 4所述的化学机械抛光液, 其特征在于: 所述的速率增 助剂为酒石酸钾、 乙二胺四乙酸、氨三乙酸、亚氨基二乙酸和 2-羟基膦酰基 乙酸中的一种或多种。 .
6、 如权利要求 1所述的化学机械抛光液, 其特征在于: 所述的表面活 性剂为非离子型和 /或两性型表面活性剂。
7、 如权利要求 6所述的化学机械抛光液, 其特征在于: 所述的表面活 性剂为月桂酰基丙基氧化胺、十二垸基二甲基氧化胺、椰油酰胺基丙基甜菜 碱、 吐温 20、十二垸基二甲基甜菜碱、椰油酰胺丙基甜菜碱和椰油脂肪酸二 乙醇酰胺中的一种或多种。
8、 如权利要求 1所述的化学机械抛光液, 其特征在于: 所述的溶胶型 二氧化硅的用量为 10〜20%; 百分比为质量百分比。
9、 如权利要求 8所述的化学机械抛光液, 其特征在于: 所述的溶胶型 二氧化硅的用量为 15〜20%; 百分比为质量百分比。
10、 如权利要求 1所述的化学机械抛光液, 其特征在于: 所述的溶胶型 二氧化硅中二氧化硅胶体颗粒的浓度为 20〜50%; 百分比为质量百分比。
11、 如权利要求 10所述的化学机械抛光液, 其特征在于: 所述的二氧 化硅胶体颗粒的浓度为 30%; 百分比为质量百分比。
12、 如权利要求 1所述的化学机械抛光液, 其特征在于: 所述的速率增 助剂的用量为 0.05〜4%; 百分比为质量百分比。
13、 如权利要求 12所述的化学机械抛光液, 其特征在于: 所述的速率 增助剂的用量为 0.5〜2%; 百分比为质量百分比。
14、 如权利要求 1所述的化学机械抛光液, 其特征在于: 所述的表面活 性剂的用量为小于等于 0.2%, 不包括 0%; 百分比为质量百分比。
15、 如权利要求 14所述的化学机械抛光液, 其特征在于: 所述的表面 活性剂的用量为 0.005〜0.05%; 百分比为质量百分比。
16、如权利要求 1所述的化学机械抛光液, 其特征在于: 所述的化学机 械抛光液的 pH值为 9〜12。
17、如权利要求 16所述的化学机械抛光液,其特征在于: 所述的 pH值 为 10.5〜12。
PCT/CN2009/000863 2008-08-01 2009-08-03 一种化学机械抛光液 WO2010012159A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980131111.3A CN102112566B (zh) 2008-08-01 2009-08-03 一种化学机械抛光液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810041287.7 2008-08-01
CN200810041287A CN101638557A (zh) 2008-08-01 2008-08-01 一种化学机械抛光液

Publications (1)

Publication Number Publication Date
WO2010012159A1 true WO2010012159A1 (zh) 2010-02-04

Family

ID=41609928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000863 WO2010012159A1 (zh) 2008-08-01 2009-08-03 一种化学机械抛光液

Country Status (2)

Country Link
CN (2) CN101638557A (zh)
WO (1) WO2010012159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018193916A1 (ja) * 2017-04-17 2020-04-23 日産化学株式会社 両性界面活性剤を含む研磨用組成物

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241958B (zh) * 2011-04-21 2016-06-15 江苏锋泰工具有限公司 一种矿石助磨剂
CN104371550B (zh) * 2013-08-14 2018-02-09 安集微电子(上海)有限公司 一种用于抛光硅材料的化学机械抛光液
CN104233304B (zh) * 2014-09-22 2017-02-08 李璇捷 一种不锈钢化学抛光液及其制备方法
CN104559800A (zh) * 2014-12-30 2015-04-29 上海新安纳电子科技有限公司 一种化学机械抛光液
WO2016136342A1 (ja) * 2015-02-23 2016-09-01 株式会社フジミインコーポレーテッド 研磨用組成物
CN109216157A (zh) * 2017-07-04 2019-01-15 上海新昇半导体科技有限公司 晶片背面密封的方法
CN111378366B (zh) * 2018-12-27 2022-11-18 安集微电子(上海)有限公司 一种化学机械抛光液及其应用
CN113861848B (zh) * 2021-11-08 2022-07-12 万华化学集团电子材料有限公司 一种再生晶圆化学机械抛光液及其制备方法
CN115386302B (zh) * 2022-08-23 2023-06-02 常州时创能源股份有限公司 一种硅片背抛光用添加剂及其应用
CN117050661B (zh) * 2023-06-21 2024-05-17 湖北兴福电子材料股份有限公司 一种绿色单晶硅粗抛光液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244033A (zh) * 1998-07-31 2000-02-09 科莱恩(法国)公司 铜基材料表层的机械化学抛光方法
JP2003286477A (ja) * 2002-03-28 2003-10-10 Sumitomo Bakelite Co Ltd 研磨用組成物並びに研磨方法
CN1648190A (zh) * 2004-12-22 2005-08-03 中国科学院上海微系统与信息技术研究所 高介电材料钛酸锶钡化学机械抛光用的纳米抛光液
US20060196850A1 (en) * 2005-03-07 2006-09-07 Roh Hyun S Polishing slurry composition and method of using the same
CN101044600A (zh) * 2004-10-28 2007-09-26 卡伯特微电子公司 包含表面活性剂的化学机械抛光(cmp)组合物
CN101077961A (zh) * 2006-05-26 2007-11-28 安集微电子(上海)有限公司 用于精细表面平整处理的抛光液及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244033A (zh) * 1998-07-31 2000-02-09 科莱恩(法国)公司 铜基材料表层的机械化学抛光方法
JP2003286477A (ja) * 2002-03-28 2003-10-10 Sumitomo Bakelite Co Ltd 研磨用組成物並びに研磨方法
CN101044600A (zh) * 2004-10-28 2007-09-26 卡伯特微电子公司 包含表面活性剂的化学机械抛光(cmp)组合物
CN1648190A (zh) * 2004-12-22 2005-08-03 中国科学院上海微系统与信息技术研究所 高介电材料钛酸锶钡化学机械抛光用的纳米抛光液
US20060196850A1 (en) * 2005-03-07 2006-09-07 Roh Hyun S Polishing slurry composition and method of using the same
CN101077961A (zh) * 2006-05-26 2007-11-28 安集微电子(上海)有限公司 用于精细表面平整处理的抛光液及其使用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018193916A1 (ja) * 2017-04-17 2020-04-23 日産化学株式会社 両性界面活性剤を含む研磨用組成物
EP3613822A4 (en) * 2017-04-17 2020-12-23 Nissan Chemical Corporation POLISHING COMPOSITION WITH AMPHOTERIC SURFACTANT
US11459486B2 (en) 2017-04-17 2022-10-04 Nissan Chemical Corporation Polishing composition containing amphoteric surfactant
JP7148849B2 (ja) 2017-04-17 2022-10-06 日産化学株式会社 両性界面活性剤を含む研磨用組成物

Also Published As

Publication number Publication date
CN102112566A (zh) 2011-06-29
CN101638557A (zh) 2010-02-03
CN102112566B (zh) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2010012159A1 (zh) 一种化学机械抛光液
JP6762390B2 (ja) 研磨用組成物、研磨方法および基板の製造方法
JP5915843B2 (ja) 化学機械研磨用水系分散体の製造方法
KR101109300B1 (ko) 계면활성제를 포함하는 cmp 조성물
US8262435B2 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion preparation kit
TWI462999B (zh) 用於介電薄膜之促進速率之化學機械拋光(cmp)組合物
JP5290769B2 (ja) Cmpスラリー及びこれを用いる半導体ウェハーの研磨方法
JP6790790B2 (ja) 研磨液、研磨液セット及び基体の研磨方法
TW201116614A (en) Abrasive agent, condensed one-liquid type abrasive agent, two-liquid type abrasive agent and polishing method of substrate
JP2006339594A (ja) 半導体用研磨剤
TW201412907A (zh) Cmp用研磨液、儲存液及研磨方法
WO2018120809A1 (zh) 一种用于阻挡层平坦化的化学机械抛光液
WO2017114309A1 (zh) 一种化学机械抛光液及其应用
JP2006120728A (ja) 窒化シリコン膜選択的研磨用組成物およびそれを用いる研磨方法
TWI812595B (zh) 用於阻擋層平坦化之化學機械研磨液
WO2010034181A1 (zh) 胺类化合物的应用以及一种化学机械抛光液
CN102115636A (zh) 一种化学机械抛光液
WO2010025623A1 (zh) 一种化学机械抛光液
TW200418967A (en) CMP slurry for nitride and CMP method using the same
TWI775908B (zh) 研磨用組合物的製造方法
TWI662096B (zh) 具有改善之凹陷及圖案選擇性之對氧化物及氮化物有選擇性之cmp組成物
JP7015663B2 (ja) 研磨用組成物及びその製造方法並びに研磨方法
WO2012071780A1 (zh) 一种化学机械抛光浆料
TWI625372B (zh) 低介電基板之研磨方法
TW202124615A (zh) 化學機械拋光液

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131111.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802352

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802352

Country of ref document: EP

Kind code of ref document: A1