WO2021120798A1 - 氢燃料电池与动力电池混合动力客车的能量控制方法 - Google Patents

氢燃料电池与动力电池混合动力客车的能量控制方法 Download PDF

Info

Publication number
WO2021120798A1
WO2021120798A1 PCT/CN2020/120518 CN2020120518W WO2021120798A1 WO 2021120798 A1 WO2021120798 A1 WO 2021120798A1 CN 2020120518 W CN2020120518 W CN 2020120518W WO 2021120798 A1 WO2021120798 A1 WO 2021120798A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
stack
battery
soc
energy control
Prior art date
Application number
PCT/CN2020/120518
Other languages
English (en)
French (fr)
Inventor
杨琨
徐彬
董德宝
樊海梅
熊金峰
李春
Original Assignee
金龙联合汽车工业(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金龙联合汽车工业(苏州)有限公司 filed Critical 金龙联合汽车工业(苏州)有限公司
Priority to US17/622,342 priority Critical patent/US20220250509A1/en
Publication of WO2021120798A1 publication Critical patent/WO2021120798A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation

Definitions

  • the invention relates to the field of new energy passenger cars, in particular to an energy control method for a hydrogen fuel cell and a power battery hybrid power passenger car.
  • Hydrogen fuel cell is a device that uses hydrogen and oxygen/air as reaction gases and catalyzes chemical reactions to reduce the energy barrier of oxygen reduction reaction, so that the reaction generates electrons, thereby forming current and providing electrical energy for the load.
  • the device uses the Carnot thermal cycle, has a very high thermoelectric conversion efficiency, only produces water with zero pollution to the environment, and is absolutely environmentally friendly. It has been widely used in portable power supplies, fixed power supplies/stations, road transportation, shipping and military fields.
  • the fuel cell electrochemical reaction has a time window, that is, power response takes time, so it needs to cooperate with other types of energy storage mechanisms to complete stable energy output and supply. It is common to coordinate the power battery to balance the load demand, and to cut the peak and reduce the valley of the power of the stack.
  • the patent with the patent number CN110329109A discloses a control method of a fuel cell hydrogen vehicle energy management system.
  • the system includes fuel cell, starter motor, drive motor, vacuum flywheel energy storage device, VCU, FCU, first and second MEU and BMS.
  • FCU collects SOC, vehicle speed, accelerator pedal, and brake pedal information, and judges the vehicle status and energy management status through VCU, thereby triggering the corresponding energy control strategy.
  • the patent number CN110040038A discloses a hydrogen-electric hybrid fuel cell bus energy management control method. By collecting data, calculating the required power of the vehicle's drive motor, according to the calculation results and the collected SOC signal, etc., under the premise of ensuring the SOC, provide the best target power output and lock the energy control strategy. Ensure that the power battery SOC is within the equilibrium range. On the basis of meeting the power performance of the whole vehicle, the service life of the fuel cell is prolonged.
  • the purpose of the present invention is to provide an energy control method for a hydrogen fuel cell and power battery hybrid bus, which locks the first version of the energy control strategy on the premise of ensuring the energy margin of the SOC on the basis of the power output data of the drive motor of the whole vehicle; According to the actual implementation situation, combined with the stack variable load frequency data, make strategic adjustments; increase the parking judgment to reduce the impact of the fuel cell system switch on the stack system, while ensuring that the stack runs at acceptable low power and maintains the power battery SOC Stable and improve battery life.
  • the energy control method of a hydrogen fuel cell and a power battery hybrid bus includes the steps:
  • step S1 for the target vehicle type, perform pure electric mode operation under specific working conditions to collect data on motor current, voltage, output power, auxiliary system power, battery voltage, battery current, battery output power, and battery SOC. Information, the average power of the motor required by the vehicle in the running state can be obtained through calculation.
  • step S2 the principle of interpolating the power range of the stack is as follows: 1.
  • the target power of the stack system is equal to the average power of the motor; 2.
  • the maximum power of the stack system is the maximum output power Pmax of the stack; 3.
  • the minimum power of the stack system is The minimum power allowed by the stack system is Pmin; 4.
  • Perform equal interpolation on the stack power within the SOC range of 5-20%, namely (Pmax-Pmin)/n, n 5-20.
  • step S4 according to the fuel cell polarization and LSV curve, lock the battery variable load frequency f that meets the requirements of the stack life, and perform the operating condition test or simulation analysis on the actual vehicle according to the lock energy control strategy of step S2 to evaluate the stack variable load frequency Whether it meets the requirements and make adjustments.
  • step S5 after step S4 is completed and the strategy meets the requirements, the battery SOC state is evaluated, including evaluating the SOC floating range and power throughput, and evaluating the battery SOH state. If the SOC floating range exceeds the healthy range, the corresponding interpolation target power should be adjusted up or down appropriately.
  • step S6 during the operation of the dual power system, the BMS tracks the battery SOC change.
  • the hybrid start button state is ignored, and the stack is forced to start at the specified target power to complete the battery charging to ensure the battery's SOH.
  • the invention is based on the stack system controller, the BMS and the vehicle controller system, and can complete the energy control strategy specification and optimization through real-time data. And through the VCU to judge the power state of the whole vehicle, increase the low-power power supply of the parking stack and the forced start-up operation with low SOC, which further ensures the healthy working state of the stack and the battery.
  • the power output of the stack is as low as possible on the basis of meeting the power demand of the vehicle as much as possible, so as to ensure the life of the stack and reduce the hydrogen consumption.
  • the battery can be operated in a relatively high and stable SOC range, and the battery life can be prolonged.
  • Figure 1 is a schematic diagram of the structure of a hybrid power system of a hydrogen fuel cell and a power battery
  • Figure 3 is a graph of energy control strategy
  • Figure 4 is the power variable load curve diagram of the stack system
  • Figure 5 shows the battery SOC change curve of the stack system.
  • the hydrogen fuel cell and power battery hybrid power system involves vehicle controllers, fuel cell system controllers, BMS, etc.
  • the vehicle controller mainly performs statistics on the operation and power output of the motor, including voltage, current, output power, and so on. Complete monitoring and calculation of related operating status, including motor operating status, motor output power calculation, and check the table in the pre-set rules, complete the stack power target power lock, and input the instructions to the FCU and BMS to control the entire vehicle Energy state.
  • the fuel cell system controller mainly accepts instructions issued by the vehicle controller, and converts the target power into actual power by adjusting hydrogen and air back pressure, stack temperature, etc., and outputs it.
  • the BMS mainly performs data statistics on battery operation and voltage, current, and power output conditions. Realize the target power command of the vehicle controller and complete the output. At the same time, it alarms the state that is not conducive to the battery SOH, and at the same time sends the warning information to the vehicle controller, and after making relevant judgments, the vehicle energy control is performed.
  • the energy control method of the hydrogen fuel cell and power battery hybrid bus of this embodiment includes:
  • Step S1 For the target vehicle type, perform pure electric mode operation under specific working conditions to collect data information such as motor current, voltage, output power, auxiliary system power, battery voltage, battery current, battery output power, and battery SOC. Through calculation, the average power of the motor required by the whole vehicle in the running state is 25kW;
  • Step S2 Lock the minimum power, rated power and maximum power of the stack system.
  • a stack has a minimum power of 5kW, a rated power of 35kW, and a maximum power of 95kW.
  • the 25kW obtained in step 1 is used as the stable output power of the fuel cell, and the equivalent interpolation on both sides of the 25kW is: 5-15-25-30-45-55-65-75-85-95.
  • the SOC change interval in the battery SOH as 30%-75%, and compare the number of equivalent interpolation groups of stack power to determine the SOC change interval as: 30-35-40-45-50-55-60-65-70-75;
  • the locking energy control strategy after one-to-one correspondence is shown in Figure 3.
  • Step S3 For stopping for more than 10 minutes, execute the stack power of 5kW; otherwise, execute the control strategy obtained in step S2;
  • Step S4 Perform simulation or actual vehicle test according to the strategy obtained in Step S2, and obtain the power variable load and SOC change curve of the stack system, as shown in Figure 4, the stack variable load demand: ⁇ 10min/time. It can be seen from the variable load frequency curve that the variable load frequency meets the requirements. If it does not meet the requirements, the target power value of the stack on the SOC point should be appropriately reduced, and it can be combined with adjacent power points in a timely manner. As shown in Figure 5, the SOC requires 30-75%, and it can be seen from the SOC change curve that the SOC meets the requirements. If the requirements are not met: 1) lower than Smin, increase the target power value in the SOC area; 2) higher than Smax, lower the target power value in the SOC area.
  • Step S5 Determine whether there is a time when the SOC is lower than 30%. If it exists, and the stack system is off, the VCU is required to issue a command to force the power on, and the stack power that can meet the SOC to quickly return to the healthy range is locked through calculation value.
  • the present invention invents an energy control strategy design method based on the vehicle control system, the fuel cell system control system, and the BMS control system. It can be used in the design and formulation of energy control strategies for electric-electric hybrid buses. While meeting the power requirements of vehicles, it ensures that batteries and fuel cells work in a healthy and low-energy state, ensuring low energy consumption and long life of the energy system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

一种氢燃料电池与动力电池混合动力客车的能量控制方法,包括步骤:采集电机功率数据;在电机平均功率值左右一定范围内选取SOC值,对电堆功率范围进行插值分配;增加车辆停车判断;锁定电堆变载频率标准,并评估是否满足要求;判断电池SOH情况;增加低SOC强行启堆动作。基于电堆系统控制器、BMS和整车控制器系统,可通过即时数据完成能量控制策略指定和优化,并通过VCU对整车动力状态进行判断,增加停车电堆低功率供电和低SOC强制启堆操作,使电堆在尽可能满足整车功率需求的基础上尽量低功率输出,保证电堆寿命同时降低氢耗,还可使电池在相对较高且稳定的SOC区间工作,延长电池寿命。

Description

氢燃料电池与动力电池混合动力客车的能量控制方法 技术领域
本发明涉及新能源客车领域,特别涉及一种氢燃料电池与动力电池混合动力客车的能量控制方法。
背景技术
氢燃料电池是利用氢气和氧气/空气作为反应气体,利用催化化学反应,降低氧还原反应能量势垒,使反应生成电子,从而形成电流,为负载提供电能的装置。该装置利用了脱离卡诺热循环,具有非常高的热电转化效率,只产生对环境零污染的水,具有绝对的环境友好型。目前已经广泛应用于便携式电源、固定电源/站、公路交通、海运及军事领域。但是燃料电池电化学反应存在时间窗口,即功率响应需要时间,所以需要配合其他类型储能机构完成能量稳定输出和供给。常见的是配合动力电池,使其平衡负载需求,对电堆功率起到削峰减谷的作用。
专利号为CN110329109A的专利公开了一种燃料电池氢能汽车能量管理系统的控制方法。系统包括燃料电池、启动电机、驱动电机、真空飞轮储能装置、VCU、FCU、第一第二MEU及BMS。FCU利用采集SOC、车速、油门踏板、制动踏板信息,通过VCU对整车状态及能量管理状态进行判断,从而触发相应的能量控制策略。
专利号为CN110040038A的专利公开了一种氢-电混合燃料电池客车能量管理控制方法。通过采集数据,计算整车驱动电机的需求功率,根据计算结果及所采集的SOC信号等,在保证SOC前提下,提供最佳目标功率输出,锁定能量控制策略。保证动力电池SOC在均衡区间内。在满足整车动力性能基础上,延长燃料电池的使用寿命。
现有技术从电池及燃料电池效率和寿命角度考虑,均存在高效与长寿命工作区间。因此,如何进行能量输出控制是提高能量供给效率和延长寿命的重要方法之一。
发明内容
本发明目的是:提供一种氢燃料电池与动力电池混合动力客车的能量控制方法,在整车驱动电机功率输出数据基础上,保证SOC的能量裕度前提下,锁定第一版能量控制策略;根据实际实施情况,结合电堆变载频率数据,进行策略调整;增加停车判断,减少燃料电池系统的开关机对电堆系统的影响,同时保证电堆在可接受低功率运行,维持动力电池SOC稳定,提高电池寿命。
本发明的技术方案是:
氢燃料电池与动力电池混合动力客车的能量控制方法,包括步骤:
S1、采集电机功率数据;
S2、在电机平均功率值左右一定范围内选取SOC值,对电堆功率范围进行插值分配;
S3、增加车辆停车判断;
S4、锁定电堆变载频率标准,并评估是否满足要求;
S5、判断电池SOH情况;
S6、增加低SOC强行启堆动作。
具体的,步骤S1中,针对目标车型,在特定工况下进行纯电模式运行,以采集电机电流、电压、输出功率、辅助系统功率、电池电压、电池电流、电池输出功率、电池SOC的数据信息,通过计算得到运行状态下整车需求的电机平均功率。
步骤S2中,对电堆功率范围进行插值分配原则为:1、电堆系统目标功率等于电机平均功率;2、电堆系统最大功率为电堆最大输出功率Pmax;3、电堆系统最小功率为电堆系统允许最小功率Pmin;4、以5-20%的SOC范围对电堆功率进行等额插值,即(Pmax-Pmin)/n,n=5-20。
步骤S3中,对10min前停车Pmotor1和10min后停车Pmotor2电机功率数值进行对比,若Pmotor2=Pmotor1=0,则整车控制器VCU向燃料电池系统控制器FCU输入目标功率为Pmin;同时对电机功率开始执行判断,若Pmotor≥0,则执行功率查表,通过锁定电池SOC值,锁定目标功率,输出给燃料电池系统控制器FCU。
步骤S4中,根据燃料电池极化和LSV曲线,锁定满足电堆寿命要求的电池变载频率f,将实车按照步骤S2锁定能量控制策略进行工况试验或仿真分析,评估电堆变载频率是否满足要求,并进行调整。
步骤S5中,在完成步骤S4,策略达到要求后,评估电池SOC状态,包括评估SOC浮动范围及电量吞吐,并评估电池SOH状态。若SOC浮动范围超出健康范围,则应适当上调或下调对应插值目标功率。
步骤S6中,在双电系统运行期间,BMS跟踪电池SOC变化情况,当低于某一值S0时,忽略混动启动按键状态,强迫电堆按照指定目标功率启动,完成电池充电,保证电池的SOH。
与现有技术相比,本发明的优点是:
本发明基于电堆系统控制器、BMS和整车控制器系统,可通过即时数据完成能量控制策略指定和优化。并通过VCU对整车动力状态进行判断,增加停车电堆低功率供电和低SOC强制启堆操作,进一步保证了电堆和电池的健康工作状态。使电堆在尽可能满足整车功率需求的基础上尽量低功率输出,保证电堆寿命同时降低氢耗。同时可使电池在相对较高且稳定的SOC区间工作,延长电池寿命。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为氢燃料电池与动力电池混合动力系统的结构原理图;
图2为本发明氢燃料电池与动力电池混合客车的能量控制方法的流程图;
图3为能量控制策略曲线图;
图4为电堆系统功率变载曲线图;
图5为电堆系统电池SOC变化曲线图。
具体实施方式
如图1所示,氢燃料电池与动力电池混合动力系统,涉及整车控制器、燃料电池系统控制器、BMS等。
所述整车控制器主要是对电机运行及功率输出情况进行相关数据统计,包括电压、电流、输出功率等。完成相关运行状态监控和计算,包括电机运行状态、电机输出功率计算,并在预先设定的规则中进行查表,完成电堆功率目标功率锁定,并将指令输入给FCU及BMS,控制整车能量状态。
所述燃料电池系统控制器主要是接受整车控制器所发出的指令,通过调整 氢气及空气背压、电堆温度等,将目标功率转化为实际功率,并输出。
所述BMS主要是对电池运行及电压、电流、功率输出情况进行数据统计。实现整车控制器的目标功率指令,完成输出。同时对不利于电池SOH的状态进行报警,同时将警示信息发送给整车控制器,做出相关判断后,进行整车能量控制。
如图2所示,本实施例的氢燃料电池与动力电池混合客车的能量控制方法包括:
步骤S1:针对目标车型,在特定工况下进行纯电模式运行,以采集电机电流、电压、输出功率、辅助系统功率、电池电压、电池电流、电池输出功率、电池SOC等数据信息。通过计算得到运行状态下整车需求的电机平均功率为25kW;
步骤S2:锁定电堆系统的最小功率、额定功率和最大功率。例如:某电堆最小功率5kW、额定功率35kW、最大功率95kW。将步骤一所得25kW作为燃料电池的稳定输出功率,在25kW两侧等值插值为:5-15-25-30-45-55-65-75-85-95。定义电池SOH中SOC变化区间为30%-75%,对照电堆功率等值插值组数,确定SOC变化区间为:30-35-40-45-50-55-60-65-70-75;一一对应后锁定能量控制策略如图3所示.
步骤S3:针对停车超过10min以上,执行电堆功率5kW;否则执行步骤S2所得控制策略;
步骤S4:根据步骤S2所得策略进行仿真或实车试验,获取电堆系统功率变载及SOC变化曲线,如图4所示,电堆变载需求:≥10min/次。通过变载频率曲线可以看出,变载频率满足要求。若不满足要求,应适当降低该SOC点上电堆目标功率值,并可适时的与相邻功率点合并。如图5所示,SOC要求30-75%,通过SOC变化曲线可以看出,SOC满足要求。若不满足要求:1)低于Smin,则提高在该SOC区域内的目标功率值;2)高于Smax,则降低该SOC区域内的目标功率值。
步骤S5:判断是否存在SOC低于30%的时间,若存在,且电堆系统是关机状态,则需要VCU发出指令,强制开机,并通过计算锁定能满足SOC迅速回到健康区间的电堆功率值。
综上所述:本发明基于整车控制系统、燃料电池系统控制系统、BMS控 制系统,发明了一种能量控制策略设计方法。可用于电电混合动力客车的能量控制策略的设计与制定。在满足车辆动力需求的同时,保证电池及燃料电池在健康及低能耗状态工作,保证能量系统的低能耗和长寿命。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

  1. 氢燃料电池与动力电池混合动力客车的能量控制方法,其特征在于,包括步骤:
    S1、采集电机功率数据;
    S2、在电机平均功率值左右一定范围内选取SOC值,对电堆功率范围进行插值分配;
    S3、增加车辆停车判断;
    S4、锁定电堆变载频率标准,并评估是否满足要求;
    S5、判断电池SOH情况;
    S6、增加低SOC强行启堆动作。
  2. 根据权利要求1上述的能量控制方法,其特征在于,
    步骤S1中,针对目标车型,在特定工况下进行纯电模式运行,以采集电机电流、电压、输出功率、辅助系统功率、电池电压、电池电流、电池输出功率、电池SOC的数据信息,通过计算得到运行状态下整车需求的电机平均功率。
  3. 根据权利要求2上述的能量控制方法,其特征在于,
    步骤S2中,对电堆功率范围进行插值分配原则为:1、电堆系统目标功率等于电机平均功率;2、电堆系统最大功率为电堆最大输出功率Pmax;3、电堆系统最小功率为电堆系统允许最小功率Pmin;4、以5-20%的SOC范围对电堆功率进行等额插值,即(Pmax-Pmin)/n,n=5-20。
  4. 根据权利要求3上述的能量控制方法,其特征在于,
    步骤S3中,对10min前停车Pmotor1和10min后停车Pmotor2电机功率数值进行对比,若Pmotor2=Pmotor1=0,则整车控制器VCU向燃料电池系统控制器FCU输入目标功率为Pmin;同时对电机功率开始执行判断,若Pmotor≥0,则执行功率查表,通过锁定电池SOC值,锁定目标功率,输出给燃料电池系统控制器FCU。
  5. 根据权利要求4上述的能量控制方法,其特征在于,
    步骤S4中,根据燃料电池极化和LSV曲线,锁定满足电堆寿命要求的电池变载频率f,将实车按照步骤S2锁定能量控制策略进行工况试验或仿真分析,评估电堆变载频率是否满足要求,并进行调整。
  6. 根据权利要求5上述的能量控制方法,其特征在于,
    步骤S5中,在完成步骤S4,策略达到要求后,评估电池SOC状态,包括评估SOC浮动范围及电量吞吐,并评估电池SOH状态;若SOC浮动范围超出健康范围,则应适当上调或下调对应插值目标功率。
  7. 根据权利要求6上述的能量控制方法,其特征在于,
    步骤S6中,在双电系统运行期间,BMS跟踪电池SOC变化情况,当低于某一值S0时,忽略混动启动按键状态,强迫电堆按照指定目标功率启动,完成电池充电,保证电池的SOH。
PCT/CN2020/120518 2019-12-16 2020-10-13 氢燃料电池与动力电池混合动力客车的能量控制方法 WO2021120798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/622,342 US20220250509A1 (en) 2019-12-16 2020-10-13 Energy control method for hybrid bus using hydrogen fuel battery and power battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911292777.9 2019-12-16
CN201911292777.9A CN111055728B (zh) 2019-12-16 2019-12-16 氢燃料电池与动力电池混合动力客车的能量控制方法

Publications (1)

Publication Number Publication Date
WO2021120798A1 true WO2021120798A1 (zh) 2021-06-24

Family

ID=70300925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120518 WO2021120798A1 (zh) 2019-12-16 2020-10-13 氢燃料电池与动力电池混合动力客车的能量控制方法

Country Status (3)

Country Link
US (1) US20220250509A1 (zh)
CN (1) CN111055728B (zh)
WO (1) WO2021120798A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114103669A (zh) * 2021-12-06 2022-03-01 安徽江淮汽车集团股份有限公司 一种汽车增程器的功率控制方法
CN114122475A (zh) * 2021-11-26 2022-03-01 广东电网有限责任公司广州供电局 一种燃料电池电堆的串并联方法
CN114161992A (zh) * 2021-12-29 2022-03-11 上海洛轲智能科技有限公司 动力驱动控制方法、装置、车辆和可读存储介质
CN114335632A (zh) * 2022-03-15 2022-04-12 青岛大学 一种重载燃料电池混合动力系统两层实时效率优化方法
CN114551943A (zh) * 2022-01-18 2022-05-27 东风汽车集团股份有限公司 燃料电池系统空气气量控制方法及系统
CN114670719A (zh) * 2022-04-02 2022-06-28 上海汽车集团股份有限公司 一种燃料电池的功率修正方法及相关装置
CN116022035A (zh) * 2023-01-17 2023-04-28 宇通客车股份有限公司 一种燃料电池重卡的动力系统、能量管理方法及装置
CN117034666A (zh) * 2023-10-10 2023-11-10 西北工业大学 燃料电池汽车能量管理方法、系统、介质、设备及终端
CN117799502A (zh) * 2024-03-01 2024-04-02 西北工业大学宁波研究院 一种uuv的混合动力系统的能源管理方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111055728B (zh) * 2019-12-16 2022-07-12 金龙联合汽车工业(苏州)有限公司 氢燃料电池与动力电池混合动力客车的能量控制方法
CN111731156B (zh) * 2020-06-12 2022-07-05 大运汽车股份有限公司 一种氢燃料电池汽车能量控制方法
CN111952638B (zh) * 2020-07-31 2023-09-26 同济大学 一种车用燃料电池的性能恢复系统及方法
CN114464849A (zh) * 2020-11-10 2022-05-10 北京亿华通科技股份有限公司 基于工况的分段设计燃料电池输出的变载斜率的方法
CN112977180B (zh) * 2021-04-13 2022-03-29 苏州市华昌能源科技有限公司 一种基于平均值的车载燃料电池能量管理方法
CN113314738B (zh) * 2021-04-30 2023-12-29 金龙联合汽车工业(苏州)有限公司 氢燃料电池发动机系统运行健康状态的评估方法
CN113246808B (zh) * 2021-05-12 2022-07-12 西华大学 一种氢燃料电池商用车双动力源系统参数配置优化方法
CN113525107B (zh) * 2021-05-25 2024-01-09 武汉客车制造股份有限公司 燃料电池客车的燃料电池系统工作功率的控制方法及系统
CN113991801A (zh) * 2021-11-19 2022-01-28 山东蓬翔汽车有限公司 一种agv用高压铅酸动力电池组充放电控制系统及方法
CN114103971B (zh) * 2021-11-23 2023-10-10 北京理工大学 一种燃料电池汽车节能驾驶优化方法及装置
CN114114028A (zh) * 2021-12-14 2022-03-01 上海神力科技有限公司 一种车用燃料电池耐久性加速测试方法
CN114290916B (zh) * 2022-01-05 2023-11-03 大运汽车股份有限公司 一种氢燃料混合动力重型卡车能量管理方法及系统
CN114523858B (zh) * 2022-02-22 2022-11-29 电子科技大学 一种氢电混合动力系统的功率分配方法
CN114583212B (zh) * 2022-03-21 2024-03-15 浙江高成绿能科技有限公司 一种模组式氢能电站热电联供控制方法
CN114824370B (zh) * 2022-04-08 2024-05-03 金龙联合汽车工业(苏州)有限公司 一种双堆燃料电池系统整车能量控制方法
CN114683969B (zh) * 2022-04-12 2024-04-16 潍柴动力股份有限公司 一种燃料电池发动机加载控制方法、装置及设备
CN115140288B (zh) * 2022-06-29 2024-04-26 上海海事大学 混合动力船舶的能量管理方法
CN115303088B (zh) * 2022-08-09 2024-05-17 中国第一汽车股份有限公司 燃料电池发动机起停的控制方法、装置、处理器及车辆
CN115140104B (zh) * 2022-08-12 2024-05-17 中车大同电力机车有限公司 氢燃料电池混合动力机车组
CN115649015B (zh) * 2022-10-19 2023-12-15 苏州市华昌能源科技有限公司 一种基于时段的车载燃料电池能量管理方法
CN115911466B (zh) * 2023-02-06 2023-06-13 山东国创燃料电池技术创新中心有限公司 一种燃料电池微网供能系统及其动态调度方法
CN116653707B (zh) * 2023-04-28 2024-02-27 武汉雄韬氢雄燃料电池科技有限公司 一种燃料电池动力系统功率自适应的控制方法及系统
CN116314972B (zh) * 2023-05-18 2023-08-04 北京新研创能科技有限公司 一种燃料电池的能量分配调度方法
CN116373695B (zh) * 2023-05-25 2023-08-04 北京新研创能科技有限公司 基于云的燃料电池的能量输出控制方法及装置
CN117747884A (zh) * 2024-02-02 2024-03-22 徐州徐工汽车制造有限公司 整车状态下氢燃料电池系统的测试方法、装置和系统
CN117698517A (zh) * 2024-02-04 2024-03-15 徐州徐工汽车制造有限公司 车辆能量管理方法、装置、vcu、车辆以及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110273131A1 (en) * 2010-05-04 2011-11-10 Samsung Sdi Co., Ltd. (Sdi) Fuel cell system and driving method thereof
JP2014056771A (ja) * 2012-09-13 2014-03-27 Honda Motor Co Ltd 燃料電池車両の外部給電制御装置
CN107901776A (zh) * 2017-11-15 2018-04-13 吉林大学 电动汽车复合电源燃料电池混合能量系统功率分流方法
CN109795374A (zh) * 2019-01-25 2019-05-24 汉腾汽车有限公司 一种混合动力汽车中氢燃料电池的控制方法及系统
CN110015211A (zh) * 2017-11-23 2019-07-16 郑州宇通客车股份有限公司 一种混合动力汽车燃料电池系统的控制方法
CN110271454A (zh) * 2019-06-27 2019-09-24 江铃汽车股份有限公司 一种燃料电池电动汽车功率优化方法
CN110549914A (zh) * 2019-09-05 2019-12-10 西南交通大学 一种燃料电池有轨电车日运行近似最优能量管理方法
CN111055728A (zh) * 2019-12-16 2020-04-24 金龙联合汽车工业(苏州)有限公司 氢燃料电池与动力电池混合动力客车的能量控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580977B2 (en) * 2001-01-16 2003-06-17 Ford Global Technologies, Llc High efficiency fuel cell and battery for a hybrid powertrain
CN104786862B (zh) * 2015-04-15 2017-03-01 西南交通大学 一种多套燃料电池、多套储能装置协调工作的混合动力系统
CN108944900B (zh) * 2018-08-28 2020-10-09 安徽江淮汽车集团股份有限公司 燃料电池汽车能量管理控制方法
CN110040038B (zh) * 2019-04-24 2020-03-17 中通客车控股股份有限公司 一种氢-电混合燃料电池客车能量管理控制方法及系统
CN110182071B (zh) * 2019-05-10 2022-09-13 中国第一汽车股份有限公司 一种功率跟随型燃料电池整车能量管理控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110273131A1 (en) * 2010-05-04 2011-11-10 Samsung Sdi Co., Ltd. (Sdi) Fuel cell system and driving method thereof
JP2014056771A (ja) * 2012-09-13 2014-03-27 Honda Motor Co Ltd 燃料電池車両の外部給電制御装置
CN107901776A (zh) * 2017-11-15 2018-04-13 吉林大学 电动汽车复合电源燃料电池混合能量系统功率分流方法
CN110015211A (zh) * 2017-11-23 2019-07-16 郑州宇通客车股份有限公司 一种混合动力汽车燃料电池系统的控制方法
CN109795374A (zh) * 2019-01-25 2019-05-24 汉腾汽车有限公司 一种混合动力汽车中氢燃料电池的控制方法及系统
CN110271454A (zh) * 2019-06-27 2019-09-24 江铃汽车股份有限公司 一种燃料电池电动汽车功率优化方法
CN110549914A (zh) * 2019-09-05 2019-12-10 西南交通大学 一种燃料电池有轨电车日运行近似最优能量管理方法
CN111055728A (zh) * 2019-12-16 2020-04-24 金龙联合汽车工业(苏州)有限公司 氢燃料电池与动力电池混合动力客车的能量控制方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122475A (zh) * 2021-11-26 2022-03-01 广东电网有限责任公司广州供电局 一种燃料电池电堆的串并联方法
CN114103669A (zh) * 2021-12-06 2022-03-01 安徽江淮汽车集团股份有限公司 一种汽车增程器的功率控制方法
CN114161992A (zh) * 2021-12-29 2022-03-11 上海洛轲智能科技有限公司 动力驱动控制方法、装置、车辆和可读存储介质
CN114551943B (zh) * 2022-01-18 2023-09-26 东风汽车集团股份有限公司 燃料电池系统空气气量控制方法及系统
CN114551943A (zh) * 2022-01-18 2022-05-27 东风汽车集团股份有限公司 燃料电池系统空气气量控制方法及系统
CN114335632A (zh) * 2022-03-15 2022-04-12 青岛大学 一种重载燃料电池混合动力系统两层实时效率优化方法
CN114670719B (zh) * 2022-04-02 2023-12-01 上海汽车集团股份有限公司 一种燃料电池的功率修正方法及相关装置
CN114670719A (zh) * 2022-04-02 2022-06-28 上海汽车集团股份有限公司 一种燃料电池的功率修正方法及相关装置
CN116022035A (zh) * 2023-01-17 2023-04-28 宇通客车股份有限公司 一种燃料电池重卡的动力系统、能量管理方法及装置
CN116022035B (zh) * 2023-01-17 2024-04-05 宇通客车股份有限公司 一种燃料电池重卡的动力系统、能量管理方法及装置
CN117034666A (zh) * 2023-10-10 2023-11-10 西北工业大学 燃料电池汽车能量管理方法、系统、介质、设备及终端
CN117034666B (zh) * 2023-10-10 2023-12-19 西北工业大学 燃料电池汽车能量管理方法、系统、介质、设备及终端
CN117799502A (zh) * 2024-03-01 2024-04-02 西北工业大学宁波研究院 一种uuv的混合动力系统的能源管理方法
CN117799502B (zh) * 2024-03-01 2024-05-14 西北工业大学宁波研究院 一种uuv的混合动力系统的能源管理方法

Also Published As

Publication number Publication date
CN111055728B (zh) 2022-07-12
CN111055728A (zh) 2020-04-24
US20220250509A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2021120798A1 (zh) 氢燃料电池与动力电池混合动力客车的能量控制方法
Changizian et al. Performance optimization of hybrid hydrogen fuel cell-electric vehicles in real driving cycles
Geng et al. Simulation research on a novel control strategy for fuel cell extended-range vehicles
US7807306B2 (en) Power system for a hybrid fuel cell vehicle that employs a floating base load strategy
Xu et al. Optimal vehicle control strategy of a fuel cell/battery hybrid city bus
Xing et al. Modeling and thermal management of proton exchange membrane fuel cell for fuel cell/battery hybrid automotive vehicle
US7831343B2 (en) Efficiency optimized hybrid operation strategy
CN112046486B (zh) 一种燃料电池汽车输出功率修正方法、系统及存储介质
CN110861538A (zh) 燃料电池汽车混合动力控制方法及系统
US20100092817A1 (en) Method for revising a polarization curve that defines the current/voltage relationship of a fuel cell stack
US8404392B2 (en) Method of entering and exiting a regenerative/stand-by mode on a fuel cell system where the fuel cell is separated from the regenerative source by a blocking power diode
KR101198667B1 (ko) 연료전지 하이브리드차의 전력분배 제어방법
CN102598380A (zh) 燃料电池系统及其控制方法
KR101876733B1 (ko) 연료 전지 차량용 고전압 배터리의 출력 제어 방법 및 장치
Bendjedia et al. Sizing and Energy Management Strategy for hybrid FC/Battery electric vehicle
Purnima et al. Fuel processor-battery-fuel cell hybrid drivetrain for extended range operation of passenger vehicles
CN113968170A (zh) 一种机车用燃料电池混合动力系统能量管理方法
US7028792B2 (en) Electric vehicle and performance setting method
US20170077533A1 (en) Control method and system of fuel cell system
US7829228B2 (en) Control strategy to prevent humidity cycling in a fuel cell
Andari et al. Modeling and Simulation of PEM Fuel Cell/Supercapacitor hybrid power sources for an electric vehicle
Bendjedia et al. Experimental energy management of hybrid fuel cell/battery system
JP2002141092A (ja) 燃料電池装置の制御方法
Deng et al. Study on Fuel Cell Vehicle Power System Selection and Simulation
Ahuja et al. Optimal Control Strategy for PEM Electric Vehicle using Matlab Simulink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903765

Country of ref document: EP

Kind code of ref document: A1