WO2021120785A1 - 以压缩空气为动力源的个人飞行器及其运行方法 - Google Patents

以压缩空气为动力源的个人飞行器及其运行方法 Download PDF

Info

Publication number
WO2021120785A1
WO2021120785A1 PCT/CN2020/119567 CN2020119567W WO2021120785A1 WO 2021120785 A1 WO2021120785 A1 WO 2021120785A1 CN 2020119567 W CN2020119567 W CN 2020119567W WO 2021120785 A1 WO2021120785 A1 WO 2021120785A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
air
parachute
cyclone
duct
Prior art date
Application number
PCT/CN2020/119567
Other languages
English (en)
French (fr)
Inventor
王力丰
Original Assignee
王力丰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王力丰 filed Critical 王力丰
Priority to US17/757,397 priority Critical patent/US20230011026A1/en
Publication of WO2021120785A1 publication Critical patent/WO2021120785A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/026Aircraft not otherwise provided for characterised by special use for use as personal propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • B64C11/04Blade mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • B64C25/60Oleo legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/62Deployment
    • B64D17/72Deployment by explosive or inflatable means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/16Aircraft characterised by the type or position of power plant of jet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/001Devices not provided for in the groups B64C25/02 - B64C25/68
    • B64C2025/008Comprising means for modifying their length, e.g. for kneeling, for jumping, or for leveling the aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2201/00Airbags mounted in aircraft for any use

Definitions

  • This application relates to the technical fields of compressed air and aviation flight, and in particular provides a personal aircraft using compressed air as a power source and an operating method thereof.
  • One of the characteristics of the personal aircraft is to tie, carry and wear equipment with a certain propulsion force and lift force on the human body, so as to propel and drive the human body into the air and fly in the atmosphere.
  • Jet engines such as rocket engines
  • Jetpack International Some of the personal aircrafts are equipped with jet engines (such as rocket engines) in the equipment tied to the back of the human body. They are some kind of internal combustion engines that can output thrust.
  • the fuel burns to produce high-temperature and high-pressure gas which is ejected from the nozzles.
  • the jet creates thrust, pushing the human body and the equipment (engine and its fuel) into the air. It is called jet pack, rocket belt or rocket pack, as it appeared in 1984.
  • the rocket belt Rocket Belt
  • the rocket belt Rocket Belt
  • Jetpack GoFast developed by Jetpack International, which decited in China on July 11, 2015.
  • jet engines and structures similar to the wing of an aircraft which are called jet-winged backpacks, jet-auxiliary wing outfits, etc., such as Yves, which flew many times after 2004.
  • Rossi s Yves Rossy’s jet wingpack
  • Visa Parviainen’ s jet-assisted wingsuit
  • Fritz Unger is designing and developing a jetpack with rigid wings (Fritz Unger: jetpack with rigid wings), etc.
  • the equipment tied to and carried on the human body includes a fuel engine and the rotor/propeller driven by it.
  • the engine is an internal combustion engine that outputs torque. It uses high-temperature and high-pressure gas produced by burning fuel as a working medium to drive the rotor.
  • the propeller rotates in the air to generate lift, which drives the human body to fly into the air. It is called a backpack helicopter, flying pack, and sometimes it is also habitually called a jet pack, such as the US military in the 1950s.
  • the "single-man helicopter" XNH-1 developed is another example of the Martin Jetpack developed by New Zealand's Martin Aircraft Company in recent years.
  • the engine relies on burning fuel to produce high-temperature and high-pressure gas to do work, facing energy depletion and environmental pollution problems
  • the internal combustion engine on a personal aircraft in the prior art uses the high-temperature and high-pressure gas produced by the combustion of fuel to do work.
  • the amount of work done is directly related to the level of gas pressure, but not directly related to the level of temperature.
  • the high-pressure gas used for work is produced by burning fuel and must be high temperature. But the high temperature of gas has its disadvantages.
  • the gas is hot, and the exhaust gas is still hot, taking away a lot of heat energy, and the fuel energy is not fully utilized
  • the high-temperature exhaust gas emitted from the nozzle of the rocket engine can reach thousands of degrees Celsius, and the energy utilization rate is not high; the general gasoline engine (efficiency 30 ⁇ %) and diesel engine (efficiency 40 ⁇ %) are low in efficiency, and they also produce high temperature and high pressure gas with fuel deflagration. At the same time, a large amount of waste heat is emitted.
  • the high temperature of the gas limits the engine's ability to generate and use high-pressure gas to do work
  • the performance of an internal combustion engine is directly related to the level of gas pressure.
  • the high temperature of the gas will increase the temperature of the combustion chamber, exhaust pipe and other related parts that generate, contain and discharge gas; common sense of material mechanics tells us that the temperature of the materials that make up these parts increases, especially the ability to withstand pressure at high temperatures.
  • the high temperature of the gas will limit the design of the engine working pressure, and limit the improvement of engine performance and power.
  • the combustion temperature of conventional jet engine fuel in the combustion chamber can reach about 3500K ( ⁇ 5800°F), which often exceeds the melting point of the nozzle and combustion chamber materials (except graphite and tungsten). It must be ensured that these materials will not burn, melt or Boiling; the combustion chamber is under a certain circumferential stress. Due to the high temperature working environment, the tensile strength of its structural materials is significantly reduced, and the design pressure that it may bear is also limited to a certain extent.
  • the engine body heated by the high temperature of the gas can burn the human body.
  • the JB-10 Jetpacks (JB-10 Jetpacks) launched by JetPack Aviation in recent years require pilots to wear specific Fire-resistant clothing, including fire-resistant underwear, flame-retardant pants, etc.; high-temperature gas damage to the surrounding people and the environment should also be prevented.
  • the high temperature of the gas is related to the increase in the cost of the engine
  • C y lift coefficient (lift coefficient, note: related to airfoil, angle of attack, etc.)
  • v air velocity (air velocity, note: the relative movement speed of air and wing, the square of which is proportional to lift)
  • the air velocity (the speed at which the air moves relative to the wing) becomes a key factor in determining the wing lift, and the air velocity reaches a certain level.
  • the value is high, it generates lift that can overcome its own gravity.
  • the thrust formed by the high temperature and high pressure gas produced by the combustion fuel injected by an internal combustion engine with equal output thrust can not get the corresponding aerodynamic force corresponding to the wings to overcome its own gravity when flying in the atmosphere.
  • the dead time is extremely short, and it is often calculated in seconds.
  • This type of personal aircraft has a jet engine (an internal combustion engine that outputs thrust) and a structure similar to the wing of an airplane.
  • a jet engine an internal combustion engine that outputs thrust
  • a structure similar to the wing of an airplane such as:
  • Yves Rossy a former Swiss military and commercial pilot, wore a heat-resistant suit that included four small kerosene-burning jet engines and rigid aircraft-type carbon fiber folding wings (with a wingspan of about 2.4 meters) (to protect him from Burned by jetting high-temperature gas), he jumped from a high-flying aircraft, and after being accelerated by a free fall, he could fly horizontally for several minutes and land with the help of a parachute. He made his maiden flight in Geneva, Switzerland on June 24, 2004. After that, he has made many free fall test flights and performances in Switzerland, Spain, France, the United Kingdom, and the United Arab Emirates.
  • German Fritz Unger is developing a jetpack, also known as Skyflash, which has rigid wings with a wingspan of about 3.4 meters and is mounted on the chest and abdomen.
  • the four chassis wheels are designed to use two diesel-fueled turbojet engines to boost takeoff from the ground.
  • the aircraft carrier aircraft is ejected from the smooth flight deck by steam/electromagnetic ejection or with the help of The ship’s bow sliding over the deck also has to accelerate and roll more than 100 meters (only a few countries in the world can still do it).
  • this personal aircraft uses the above-mentioned rigid wings with a wingspan of 3.4 meters and four on the chest and abdomen. Two chassis wheels are assisted by two jet engines to take off from the ground. It is a question of how long the runway needs to be run, what kind of runway, what assist facilities, and whether it can reach a safe ground clearance speed.
  • the equipment attached to the human body includes engines and rotors/propellers.
  • the engine uses high-temperature and high-pressure gas produced by burning fuel as a working medium. It is an internal combustion engine that can output torque and is used to drive the rotor/propeller to rotate in the air.
  • Rotor-wing aircraft has features that fixed-wing aircraft can’t match, such as low-altitude flight, hovering, flying left and right, etc. From the principle of generating power, both the rotor and the propeller generate power through rotation. Both the rotor and the propeller have multiple blades. Composition, the number is generally less than 8 (single row), in essence, each blade is a rotating wing, which generates lift by the airfoil and the angle of attack).
  • Rotor is the main rotating component that generates lift for rotorcraft such as helicopters and rotorcraft. It consists of a hub and several blades.
  • the propeller hub is a component that connects the propeller blade and the rotor shaft.
  • the propeller blade is shaped like a slender wing with a certain airfoil and angle of attack, which is a key component for generating lift.
  • the engine drives the rotor blade to rotate by driving the rotor shaft-propeller hub.
  • the rotation of the blades accelerates, the air velocity (the speed at which the air moves relative to the blade like a rotating wing) increases, and the lift increases (the square of the air velocity is proportional to the lift); when the speed of the blade reaches a certain value, the lift increases enough Overcoming its own gravity, the personal aircraft with rotors took off.
  • the "single helicopter" XNH-1 developed by the US military in the 1950s, belongs to this type of personal aircraft.
  • Propellers can be divided into marine propellers and air propellers. All propellers mentioned in this article refer to air propellers. The names of rotors and propellers are different, and the principles of the two are almost the same.
  • the propeller is also composed of a central hub and multiple blades around it. Its blades also have airfoil (wing profile) and angle of attack, which can be regarded as multiple twisted slender "wings" mounted on the hub; the hub is connected to the engine shaft and can be driven by the engine to rotate, thereby driving A plurality of blades mounted on the hub rotates in the air.
  • Ducted fans can generate lift more effectively, because the shroud or duct surrounds the outer circumference to reduce the air flow loss from the tip of the rotating blade; and the design of the blades in the surrounding structure reduces the impact of the blades in flight. The danger of ground personnel is shielded from blade noise.
  • the Martin jetpack has two symmetrical ducted fans.
  • a personal aircraft with rotor/propeller lifts off from the ground, without taxiing on a long runway or jumping from a high altitude, it can take off and land vertically and hover in the air, especially the use of ducted fans can generate lift more effectively and stay in the air The time is extended (some reach about half an hour).
  • they require an internal combustion engine with torque output to drive the blades to rotate through a transmission mechanism, which produces more work, high energy consumption, environmental pollution, and limited energy efficiency related to high gas temperature, safety hazards, increased weight and complexity of the structure, and high cost.
  • Engine namely engine, has successively experienced the development stages of external combustion engine and internal combustion engine.
  • Engine has been from Watt’s invention of the steam engine (external combustion engine) in 1776 that set off the industrial revolution, to modern internal combustion engines (such as gasoline engines and diesel engines) that output torque widely used in aerospace, land and sea, and internal combustion engines that output thrust (such as rocket engines, aviation jet engines), They all rely on the high-temperature and high-pressure gas produced by combustion to do work (fossil fuels deposited underground for tens of thousands of years, and burned instantly into high-temperature and high-pressure gas).
  • Air cars such as MDI (Motor Development International) in France, Tata Motors in India, etc., use compressed air pressurized into the on-board compressed air tank from an electric air compressor outside the car as an energy source.
  • the prior art compressed air vehicle can carry a compressed air tank of about 300 liters, which is filled with compressed air at a pressure of 30 megapascals (MPa), which has an energy equivalent to 51 megajoules (MJ) (the feasible driving distance is about 300 kilometers, and the maximum The speed can reach 105 km/h).
  • MPa megapascals
  • MJ megajoules
  • the safety codes limit that the legal working pressure is less than 40% of the rupture pressure of the gas storage device, and the safety factor is at least It is 2.5 (that is, the ratio of the ultimate stress to the allowable stress ⁇ 2.5); for example, the safety factor of the 138MPa piston accumulator of TOBUL in the United States is 4.
  • the carbon fiber of the compressed air storage device itself is brittle and can be split under a large enough pressure, but it will not cause any shrapnel, and there will be no dangerous situation of fragments and high-pressure gas splashing, and the safety is relatively good.
  • valve sealing technology is also more reliable.
  • the compressed air storage device leaks at a faster rate than when the battery is not used.
  • the battery will automatically drain its power slowly over time. The rate is still low.
  • the patent also discloses an innovative compressed air engine with output torque for use in compressed air vehicles.
  • the inventor obtained another authorized invention patent "System and method using compressed air as a force source, aircraft", patent number: ZL201610125197.0 (A System of Using Compressed Air as a Force Source and Method Thereof; Airplane ,International Application No.PCT/SE2017/000005)
  • the "compressed air production and supply device” disclosed in the previous patent has improved and expanded the "compressed air production, storage and supply mechanism” in the previous patent, and can also use the night trough and difficult to store electrical energy
  • the production and storage of high-pressure/ultra-high-pressure compressed air, while using the associated heat for central heating also solves the problem of high cost of compressed air production, clean heating and economical use of electricity.
  • the patent also discloses another type of compressed air jet engine that outputs thrust for use in airplanes, rockets, trains, submarines, etc.; it is necessary to mention here that the first and third jet engines are arranged in front of the nose of the aircraft. And the front of the wing respectively have the functions of reducing air resistance and increasing the lift of the wing.
  • the air velocity (the speed of the relative movement of the air and the wing) becomes a key factor in determining the lift of the wing.
  • aerodynamics there is a very important concept in aerodynamics: "The wing is stationary, the air is moving" and “the air is stationary, the wing is moving” are essentially the same. The real key lies in the relative speed of the two. value.
  • the above-mentioned air flow rate (the speed of the relative movement of the air and the wings) is generated by "the air is stationary and the wings are moving", that is, the similar
  • the wing of an airplane moves in a straight line at high speed in the air, or the blades of a rotor/propeller like a wing (with airfoil and angle of attack) rotate at a high speed relative to the stationary air, so it may need to roll on a long runway or from high altitude
  • the internal combustion engine that jumps down, or needs to output torque, drives the blades to rotate through the transmission mechanism, the transmission does more work, the energy consumption is large, and the environment pollution.
  • the third jet engine in the compressed air jet engine disclosed in the above-mentioned invention patent "System and Method Using Compressed Air as Force Source, and Aircraft", which the inventor has been authorized, is symmetrically arranged in front of the upper surfaces of the wings on both sides, Jet high-speed airflow backwards (the same direction as the airflow relative to the wing when the plane takes off and taxi), accelerate the air velocity (accelerate the relative movement speed of the air and the wing), according to the lift formula, Bernoulli principle, Newton's third The law and the Coanda Effect (Coanda Effect) have the effect of improving the lift of the wing.
  • the ⁇ patented-72 technology is compared with the third jet engine in the above-mentioned authorized invention patents. Now, some of the different technical features of the two are transferred as follows:
  • the ⁇ patented-72 engine is powered by gas produced by fuel combustion (belonging to internal combustion engines), and the third jet engine is powered by compressed air (belonging to "non-combustion engines");
  • the high-temperature gas injected by the ⁇ patented-72 engine can cause a certain degree of ablation on the surface of the wing and thermal fatigue of the structure (requirements for wing materials and extremely high costs).
  • the third jet engine jets airflow at room temperature. Will cause ablation and damage to the wings;
  • the ⁇ ntended-72 engine is arranged above the wing, and the third jet engine is arranged in front of the leading edge of the wing;
  • the effect of the ⁇ patented-72 engine on the wing lift is mainly produced on the upper surface of the wing.
  • the effect of the third jet engine on the wing lift is not only on the upper surface of the wing but also on the lower surface of the wing with a certain angle of attack. ,higher efficiency.
  • the above-mentioned patent of the present inventor has also disclosed a type of compressed air jet engine, the temperature of the gas ejected from its nozzle is normal temperature or even slightly lower than normal temperature (because the volume of compressed air expands after being ejected, it can be accompanied by a slight drop in temperature. Will rise), and will not ablate or damage the surface of the corresponding moving carrier like the high-temperature gas ejected from the nozzle of a traditional jet engine.
  • they are designed as a compressed air jet engine with thrust output as the main purpose, and eject from its nozzle. There is still a gap between the high-speed airflow and the concept of "artificial wind" in the control of flow direction, flow, and velocity.
  • the purpose of this application is to provide a personal aircraft using compressed air as a power source and an operating method thereof, so as to solve the problems related to the efficiency of personal aircraft burning fossil fuels to generate high-temperature and high-pressure gas to perform work in the prior art.
  • a personal aircraft using compressed air as a power source including a stationary rotor lift device in a cyclone duct, a seat frame, and compressed air supply equipment.
  • the compressed air supply equipment is respectively installed on the seat frame; wherein the stationary rotor lift device in the cyclone duct includes a cyclone duct, a stationary rotor in the duct, and a compressed air artificial air blowing port in the duct, and the duct is stationary
  • the rotor and the air outlet of the compressed air in the duct are fixedly installed in the cyclone duct at the same working level section, and the stationary rotor in the duct includes a stationary propeller hub and is fixedly connected around the stationary propeller hub.
  • a plurality of stationary blades arranged radially, the stationary blades are in the same shape as the wing and have airfoil, angle of attack, leading edge and trailing edge, and the trailing edge of each stationary blade is connected to the other stationary blade.
  • the leading edges of the blades are opposite; wherein, the stationary rotor lift device in the cyclone duct is fixedly installed on both sides of the seat frame in a symmetrical and torque-balanced manner, and the compressed air supply device blows the compressed air into the duct by artificial wind
  • the port supplies compressed air, so that the compressed air artificial wind blowing port in the duct sprays air flow toward the front edge of the stationary blade.
  • the cyclone duct is a gas channel composed of a cyclone cylinder and a gradual lower opening, which is vertically arranged on both sides of the seat frame; wherein, in the cyclone cylinder, the The outer peripheral end of the stationary blade is fixedly connected to the inner wall of the cyclone cylinder; a lift increasing device is also provided in the cyclone cylinder, and the lift increasing device includes an additional stationary rotor and a ducted fixed wing, the additional stationary rotor And the fixed wing in the duct are respectively fixedly arranged on the inner wall of the cyclone cylinder between the stationary rotor in the duct and the gradual lower opening.
  • the seat frame includes a back board, a sitting board, an armrest, and supporting legs; the back of the back board is provided with a buckle mechanism for installing the compressed air supply equipment, and the front of the back board
  • the armrest has two left and right sides, and the rear end of the armrest is connected to the back
  • the two sides of the board or the sitting board are rotatably connected; there are several supporting legs, and the supporting legs respectively extend downward and outward from the lower part of the back board or the sitting board.
  • each of the supporting legs is composed of a piston rod type cylinder and a cylinder type sleeve sleeved outside; the upper end of the piston rod type cylinder is a piston, and the piston can
  • the cylinder sleeve slides in, the lower end of the piston rod type cylinder is the ground contact end of the support leg, and the upper end of the cylinder wall of the cylinder sleeve is connected to the back plate or the seat plate through a movable joint.
  • the lower part; the upper end of the inner cavity of the cylinder sleeve is provided with an inflation valve and an exhaust valve, and the lower end of the inner cavity of the cylinder sleeve is provided with a port for allowing the piston rod cylinder to follow the piston in place
  • the cylinder-type sleeve moves up and down, the cylinder-type sleeve is smoothly extended into or out of the cylinder-type sleeve and the piston is restrained from sliding downward; wherein the supporting leg extending forward and downward is the cylinder type of the front supporting leg
  • the left and right sides of the lower end of the sleeve are respectively provided with a left foot pedal bracket and a right foot pedal bracket;
  • the compressed air supply device is connected with the inflation valve to supply compressed air to the cylinder sleeve.
  • the compressed air supply device includes a compressed air storage device;
  • the compressed air storage device includes a plurality of gas storage pipes and headers located at both ends of the gas storage pipe, each One end of the gas storage discharge pipe is provided with a discharge pipe inlet and a discharge pipe inlet valve, and the other end is provided with a discharge pipe outlet and a discharge pipe outlet valve; wherein, the gas storage discharge pipes are connected to the discharge pipe inlets of the multiple gas storage discharge pipes.
  • the header is an inlet header, and the header that communicates with the outlets of a plurality of the gas storage pipes is an outlet header; the inlet header is provided with a header air inlet and a header.
  • the outlet header is provided with a plurality of header air outlets and header air outlet valves.
  • the compressed air supply device further includes a compressed air transmission path communicating with the compressed air storage device, and a compressed air exhaust device communicating with the compressed air transmission path;
  • the air transmission path includes a decompression chamber, a connecting pipe, and a one-way valve.
  • the connecting pipe and the one-way valve are arranged between the compressed air storage device and the decompression chamber and adjacent to the decompression chamber. Between the decompression chamber and the compressed air exhaust device, and between the decompression chamber and the cylinder sleeve for unidirectional transmission of compressed air.
  • the compressed air exhaust device includes a compressed air artificial wind exhaust device; the compressed air artificial wind exhaust device is sequentially arranged with an expansion chamber, a tapered divergent pipe, and a blower from top to bottom.
  • the inner diameter of the expansion chamber is larger than the diameter of the connecting pipe connected to it, and the inner wall of the expansion chamber is provided with a gas injection regulator, and the gas injection regulator is used to regulate the connection between the connecting pipe and the connecting pipe.
  • the air supply cylinder is divided into multiple branch cylinders and surrounds the periphery of the cyclone cylinder to deliver the airflow to the compressed air in the duct
  • the artificial air blowing port wherein each of the compressed air artificial air blowing ports in the duct includes a set of multiple compressed air artificial air nozzle holes that are horizontally expanded, and the airflow is sprayed horizontally toward the leading edge of the corresponding stationary blade .
  • the compressed air exhaust device further includes a plurality of compressed air jet engines; each of the compressed air jet engines is composed of a compressed air expansion chamber and a jet engine Laval nozzle, and the compressed air
  • the expansion chamber receives the compressed air transmitted from the connecting pipe and the one-way valve, and generates thrust by injecting the reaction force of the high-speed airflow through the nozzle of the Laval nozzle of the jet engine, which includes being arranged on the left and right sides of the seat frame
  • the left-rear jet engine, the left-front jet engine, the right-rear jet engine, and the right-front jet engine that jet backward and forward respectively on both sides, and several downward jet engines arranged under the seat frame to jet downwards .
  • the safety equipment includes a compressed air airbag system and an emergency rescue parachute system
  • the compressed air airbag system includes a sensor, an electronic controller unit, and an airbag
  • the sensor includes an accelerometer and an impact sensor, the accelerometer is used to detect the speed change of the personal aircraft powered by compressed air, and the impact sensor is used to detect the type, angle, and severity of a collision.
  • the accelerometer and the impact sensor are signally connected to the electronic controller unit to feed the detected information to the electronic controller unit; the electronic controller unit analyzes and judges the information to determine whether to deploy
  • the airbag is inflated; the airbag includes a compressed air tank, an intake valve, an airbag and a vent hole, the compressed air tank stores compressed air, the airbag is arranged on the seat frame and passes through the
  • the intake valve is connected to the compressed air storage tank, and the vent is the vent between the airbag and the atmosphere.
  • the compressed air stored in the compressed air storage tank can be controlled to pass through the opened
  • the air intake valve is filled into the airbag;
  • the emergency rescue parachute system includes a parachute, a parachute opening rope, a compressed air parachute expansion jet engine, and a compressed air accelerated parachute expansion balloon;
  • the parachute canopy and parachute rope are folded in In the umbrella sealing bag with velcro, the umbrella sealing bag is arranged on the upper end of the back plate, and the upper end of the back plate is provided with a hanging point, and the hanging point is connected with the one passing through the umbrella sealing bag
  • the ends of the parachute rope are connected, and the Velcro can be opened when the compressed air expansion jet engine is launched; one end of the parachute opening rope is connected to the parachute, and the other end is connected to the compressed air
  • the parachute jet engine is connected;
  • the compressed air parachute jet engine includes a compressed air storage pipe, an intake pipe with a controllable valve, an expansion chamber and a
  • the The compressed air in the compressed air storage pipe enters the expansion chamber through the intake pipe and is ejected downward from the Laval nozzle, driving the compressed air parachute jet engine to shoot upwards and guide the parachute to open
  • the parachute pull rope is lifted into the air, and the parachute opener pull rope pulls the parachute out of the parachute sealing bag that opens the velcro and lifts into the air;
  • the number of compressed air accelerated parachute expansion balloons is more And are respectively arranged on the inner side of the bottom edge of the canopy and are provided with a parachute balloon valve in the direction toward the inner side of the canopy, and the parachute balloon valve is lifted off when the parachute is pulled out of the parachute sealing bag
  • the compressed air accelerates the parachute expansion balloon and sprays the compressed air into the canopy to accelerate the parachute expansion.
  • the control system further includes a control system for controlling the operation of the safety equipment and includes a manual driving operation device and an automatic control system; wherein the manual driving operation device includes a raising pedal and a lower pedal , Start-accelerator pedal, deceleration-brake pedal, left turn button and right turn button; the raising pedal and the lowering pedal are arranged on the left foot pedal bracket; the starting-accelerator pedal and the deceleration- The brake pedal is arranged on the right foot pedal bracket; the left turn button and the right turn button are respectively arranged below the front end of the armrest on the left and right sides; the automatic control system includes attitude balance feedback control The system and the automatic driving system, wherein the attitude balance feedback control system is composed of a coordinated attitude balance sensor, a computer center and an attitude control compressed air jet engine; the automatic driving system includes a sensing device, a connection network and an actuator; Sensing equipment includes sensors, global positioning systems, and inertial measurement units, which are used to collect and process the environmental information, as
  • an operating method of a personal aircraft using compressed air as a power source including: charging compressed air into the compressed air supply device; and under control, the compressed air supply
  • the equipment supplies compressed air to the compressed air artificial air blowing port in the duct, so that the compressed air artificial air blowing port in the duct sprays air flow toward the front edge of the stationary blade, forming a cyclone in the cyclone cylinder, so
  • the stationary rotor lift device in the cyclone duct generates lift to drive the personal aircraft that uses compressed air as a power source to take off; at the same time, the compressed air enters the upper part of the inner cavity of the cylinder sleeve, and pushes the piston down to make the piston
  • a rod-type cylinder extends downward from the cylinder-type sleeve to help lift the personal aircraft using compressed air as a power source; under control, the personal aircraft using compressed air as a power source is driven to maintain a balanced attitude , Fly to the destination and/or hover over the destination
  • the static rotor lift device in the cyclone duct of the present application uses compressed air as the power source to overcome some of the problems and shortcomings of the prior art personal aircraft engines, such as:
  • this application uses a static rotor lift device in a cyclone duct to generate lift, which is energy-saving and environmentally friendly.
  • This application overcomes the limitations of the prior art personal aircraft engine on the one hand due to the high temperature of the gas in its ability to generate and utilize high-pressure gas for work (high temperature resistant materials are expensive, and the high temperature also limits the pressure), and at the same time it loses a lot of heat energy when exhausting high temperature exhaust gas.
  • the present application overcomes the potential safety hazards of the prior art personal aircraft engine due to the high temperature of the gas, and does not need to be equipped with a cooling system, which is beneficial to the lightweight of the aircraft, simplified structure and reduced cost.
  • the lift formula when flying in the atmosphere, the lift formula can be expressed as:
  • C y lift coefficient (lift coefficient, note: related to airfoil, angle of attack, etc.)
  • v air velocity (air velocity, note: the relative movement speed of air and wing, the square of which is proportional to lift)
  • the air velocity (the speed at which the air moves relative to the wing) becomes a key factor in determining the lift of the wing.
  • aerodynamics there is a very important concept in aerodynamics: "The wing is stationary, the air is moving" and “the air is stationary, the wing is moving” are essentially the same. The real key lies in the relative speed of the two. value. When the air velocity reaches a certain value, it produces lift that can overcome its own gravity.
  • the static rotor lift device in the cyclone duct of the present application generates lift by the compressed air artificial wind relative to the static blade with a certain airfoil and angle of attack at high speed.
  • This "wing is stationary and the air is moving" method generates air and wing relative to each other.
  • the speed of movement which in turn generates lift, eliminates the need for pilots to carry the wing to roll or jump off the air. It overcomes the high-speed rotation of the rotor/propeller driven by the internal combustion engine.
  • the transmission does more work, energy consumption, environmental pollution, etc., and it is compressed by compression.
  • the air flow velocity (v) of the artificial air forming a cyclone in the cyclone cylinder is very high, and the air density ( ⁇ ) of the compressed air is also quite high, and the generated lift force is large and controllable; in addition, the cyclone cylinder is There are also lift-increasing devices such as the additional stationary rotors and ducted fixed wings, so that the high-speed airflow of the cyclone can be further used to increase the lift; among them, there are some unexpected beneficial effects related to the "cyclone", which are shown in: 1
  • the low air pressure (lower than the atmospheric pressure of the external environment) caused by the high wind speed in the high-speed rotating air column in the cyclone cylinder is beneficial to increase the lift of the cyclone cylinder.
  • Fig. 1 is a three-dimensional schematic diagram of a stationary rotor lift device in a cyclone duct according to an embodiment of the present application
  • Fig. 2 is a schematic top view of a working horizontal section of a cyclone duct according to an embodiment of the present application
  • Fig. 3 is a schematic diagram showing the partial enlargement of the cross section at I in Fig. 2 and the generation of lift in the front view;
  • FIG. 4 is a schematic top view of a personal aircraft using compressed air as a power source according to an embodiment of the present application
  • FIG. 5 is a schematic side view of a personal aircraft using compressed air as a power source according to an embodiment of the present application
  • Fig. 6 is a schematic diagram of a compressed air supply device according to an embodiment of the present application.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above terms in this application can be understood under specific circumstances.
  • multiple means two or more than two
  • severe means one or more than one
  • FIGS. 1 to 6 an embodiment of the personal aircraft using compressed air as a power source and its operating method will be described. It should be understood that the following are only exemplary implementations of the application, and do not constitute any particular limitation on the application.
  • the personal aircraft using compressed air as a power source includes a stationary rotor lift device 1, a seat frame 2, a compressed air supply device 3, safety equipment and controls in a cyclone duct system.
  • the stationary rotor lift device 1 and the compressed air supply equipment 3 in the cyclone duct are respectively installed on the seat frame 2.
  • the static rotor lift device 1 in the cyclone duct includes a cyclone duct 4, a stationary rotor 5 in the duct, and a compressed air artificial air blowing port 6 in the duct.
  • the cyclone duct 4 is a gas channel composed of a cyclone cylinder 7 and a gradual lower opening 8 arranged vertically on both sides of the seat frame 2.
  • the inner wall 9 of the cyclone cylinder is a cylindrical surface.
  • the cylindrical surface is formed by a line segment on the inner wall of the cyclone cylinder 7 parallel to the axis 10 of the cyclone cylinder.
  • the curved surface is formed, and its surface is smooth.
  • the upper part of the cyclone cylinder 7 is open to communicate with the atmosphere, and the lower part of the cyclone cylinder 7 continues with the gradually widening lower port 8.
  • the lower opening 8 is formed by a symmetrical extension of the lower end of the cyclone cylinder for a certain distance.
  • each segment of the lower opening 8 is circular, and the circle shown in each cross section gradually increases in diameter from top to bottom. increase.
  • a horizontal section located in the middle and upper part of the cyclone cylinder 7 is called the working horizontal section 11.
  • the working horizontal section 11 On the working horizontal section 11, the static rotor 5 in the duct and the air blowing port 6 of the compressed air in the duct are distributed.
  • the static rotor 5 in the duct includes a disk-shaped static hub 12 in the center and a plurality of static blades 13 fixedly connected around the static hub 12 and arranged radially and symmetrically.
  • the main difference between the stationary hub 12 and stationary blade 13 of the stationary rotor 5 in the duct and the hub and blades of the real rotor is: the stationary hub 12 and stationary blade 13 are "stationary" and do not rotate, and the stationary hub 12 And the stationary blade 13 is horizontally stationary in the cyclone cylinder 7.
  • the center of the stationary propeller hub 12 is located on the axis 10 of the cyclone cylinder but is not connected to any engine shaft.
  • the stationary propeller hub 12 itself is stationary and will not drive the stationary propellers 13 fixedly connected around it to rotate.
  • the outer peripheral end of the stationary blade 13 is fixedly connected to the inner wall 9 of the cyclone cylinder.
  • the stationary blade 13 is shaped like a wing with an airfoil 14 and an angle of attack 15, a leading edge 16 and a trailing edge 17, and each stationary blade 13
  • the trailing edge 17 is adjacent to the leading edge 16 of another stationary blade 13 with a fan-shaped space 18, so that a plurality of stationary blades 13 arranged radially around a stationary hub 12 are arranged in sequence from the leading edge 16 to the trailing edge 17.
  • the order is clockwise order 19 or counterclockwise order 20 (see Figure 4), which are called clockwise or counterclockwise ordering stationary blades, respectively.
  • a stationary rotor in a duct with a clockwise or counterclockwise order of stationary blades is called a clockwise or counterclockwise stationary rotor in a duct
  • a cyclone cylinder with a stationary rotor in a clockwise or counterclockwise duct is called a clockwise or counterclockwise cyclone circle cylinder.
  • the compressed air artificial air blowing port 6 in each duct corresponds to a stationary blade 13 in the working horizontal section 11 and is set in the cyclone.
  • the compressed air artificial air blowing port 6 in each duct is composed of a group of several compressed air artificial air nozzles 21 horizontally expanded, and each group of compressed air artificial air nozzles 21 is horizontally oriented toward the corresponding piece of stationary The leading edge 16 of the blade 13 sprays a high-speed airflow 22.
  • the angle between the direction 23 of the high-speed airflow and the front-rear edge 24 of the stationary blade is equivalent to the chord of the wing and the direction of the relative airflow (Relative Airflow).
  • the included angle is the angle of attack 15, that is, the relative movement between the high-speed airflow 22 and the stationary blade 13 is equivalent to the relative movement between the high-speed rotating blade of the rotorcraft and the stationary air.
  • the high-speed airflow 22 sprayed from the compressed air artificial air blowing port 6 in the duct increases the pressure difference between the upper surface 25 and the lower surface 26 of the stationary blade with a certain airfoil 14 (the upper surface has high airflow velocity and low pressure).
  • the high-speed airflow 22 ejected from the compressed air artificial air blowing port 6 in the duct also impacts the lower surface 26 of the stationary blade with a certain angle of attack 15, and the airflow ejected from the compressed air artificial air blowing port 6 in the duct is close to
  • the upper surface 25 of the protruding stationary blade flows at a high speed until the airflow leaving the trailing edge 17 of the stationary blade slopes downward 27. Therefore, according to Bernoulli's principle, Newton's third law, and the Coanda Effect, jetting the high-speed airflow 22 from the compressed air artificial air blowing port 6 in the duct has the effect of increasing the lift 28 of the stationary blade 13.
  • the compressed air artificial air blowing port that blows the stationary blades in a clockwise or counterclockwise order is called a clockwise or counterclockwise artificial air blowing port.
  • the cyclone cylinder adjacent to the trailing edge of the propeller blade guides the airflow to rotate clockwise or counterclockwise along the cylindrical curved surface of the inner wall 9 of the cyclone cylinder.
  • a cyclone that rotates clockwise or counterclockwise along the cylindrical surface of the inner wall 9 of the cyclone cylinder around the axis 10 of the cyclone cylinder maintains a certain angular momentum and is continuously artificially produced by multiple clockwise or counterclockwise in the same cyclone cylinder 7
  • the high-speed airflow 22 of artificial wind blown out by the air blower and the cyclone that continues to rotate clockwise or counterclockwise along the cylindrical surface of the inner wall 9 of the cyclone cylinder around the axis 10 of the cyclone cylinder is supplemented and superimposed to form in the cyclone cylinder Air column rotating clockwise or counterclockwise at high speed.
  • part of the high-speed rotating airflow moves relative to the stationary blade 13 with a certain airfoil 14 and angle of attack 15 for many times, which is conducive to the compressed air artificial wind to improve the lift utilization rate, and the high speed in the cyclone cylinder 7
  • the low air pressure (lower than the atmospheric pressure of the external environment) caused by the high wind speed in the rotating air column is also beneficial to increase the lift of the cyclone cylinder 7.
  • the artificial wind blown from the compressed air artificial wind blowing port 6 in the duct and the high-speed airflow of the cyclone in the high-speed rotating air column in the cyclone cylinder 7 is aerodynamically effected in the high-speed relative motion with the stationary blade 13 so that the flow has a certain wing.
  • the airflow of the stationary blade 13 of the type 14 and the angle of attack 15 is inclined downward 27.
  • This downward velocity component causes the high-speed clockwise or counterclockwise rotation of the air column cyclone to have a certain downward trend in the rotation, while in the cyclone circle
  • the high-speed rotating air column in the cylinder forms a high-speed clockwise or counterclockwise spiral descending cyclone until the spiral descending cyclone rotates and descends from the cyclone cylinder 7 into the gradual lower opening 8.
  • the spiral descending cyclone rotates and descends from the cyclone cylinder 7 into the gradual lower port 8 and then continues to descend.
  • the diameter of the lower mouth 8 gradually widens, the diameter of the cyclone that rotates clockwise or counterclockwise under the lower mouth gradually increases. Due to conservation of angular momentum, the diameter of the cyclone in the lower vent 8 gradually widens while the wind speed of the cyclone gradually decreases, and the wind speed of the cyclone in the lower vent 8 gradually decreases while the air pressure rises and rises. Because of the air pressure in the cyclone cylinder 7 above it, the gradual widening of the lower port 8 also has a certain lifting effect on the cyclone cylinder 7.
  • the air pressure in the waning mouth 8 is still significantly lower than the outside atmospheric pressure, so that the waning mouth is subjected to a certain degree of lift force given by the atmosphere.
  • the spiral descending cyclone clockwise or counterclockwise in the gradual lower port 8 continues to rotate and descend until it discharges downward in a clockwise or counterclockwise manner from the gradual lower port 8 in a clockwise or counterclockwise manner.
  • the counter-force of the downwardly venting airflow from the waning mouth 8 clockwise or counterclockwise in a cyclonic manner also gives the waning mouth 8 a certain lift force to the reaction force of the waning mouth 8.
  • the cyclone duct has stationary blades in a clockwise order, clockwise artificial wind blowing ports to generate a high-speed clockwise rotating air column, a high-speed clockwise spiral descending cyclone, and a clockwise cyclone type downward discharge of the stationary rotor lift in the cyclone duct
  • the device is called a stationary rotor lift device 29 in a clockwise cyclone duct (see Figure 4).
  • the cyclone duct is equipped with counterclockwise sorting stationary blades, counterclockwise artificial wind blowing ports to generate high-speed counterclockwise rotating air columns, high-speed counterclockwise spiral descending cyclones, and counterclockwise cyclone type downward discharge of stationary rotor lift devices in the cyclone duct It is called a static rotor lift device 30 in a counterclockwise cyclone duct (see FIG. 4).
  • a static rotor lift device 30 in a counterclockwise cyclone duct see FIG. 4
  • the stationary rotor lift device 29 in the clockwise cyclone duct and the stationary rotor lift device 30 in the counterclockwise cyclone duct are symmetrically installed on the left and right sides of the seat frame 2 through the connecting structure 93, respectively, in a torque balance.
  • the compressed air supply equipment 3, safety equipment and control system are also installed on the seat frame 2 respectively.
  • the cyclone cylinder 7 is also provided with an increasing lift device 31 below the static rotor 5 in the inner duct.
  • the increasing lift device 31 includes an additional stationary rotor 32 and a ducted fixed wing 33.
  • the additional stationary rotor 32 may have one or more parts, which are fixedly arranged on one or several horizontal sections below the stationary rotor 5 in the inner duct of the cyclone cylinder 7. Its morphological structure and fixing method are the same as those of the stationary rotor 5 in the duct. More specifically, in a clockwise cyclone cylinder there can be one at most additional stationary rotors arranged in a clockwise direction, and in a counterclockwise cyclone cylinder there may be one at most additional stationary rotors arranged in a counterclockwise direction. Stationary rotors; the airfoil 14 and angle of attack 15 of the stationary blades they have are adapted to the direction of the cyclone flow in the cyclone cylinder 7.
  • the ducted internal fixed wing 33 can be provided with one to multiple layers in each cyclone cylinder 7, wherein each ducted internal fixed wing 33 is composed of several wings symmetrically distributed on a horizontal stage.
  • the wing root 34 is fixedly connected to the inner wall 9 of the cyclone cylinder, and its wing end 35 extends to the center of the cyclone cylinder 7 but does not exceed the axis 10 of the center of the cyclone cylinder.
  • the airfoil 14, the angle of attack 15, and the front of the wing are fixed in the duct.
  • the edge 16 and the trailing edge 17 are adapted to the cyclone flow at their positions in the cyclone cylinder 7.
  • the seat frame 2 is a frame structure made of high-strength and light-weight materials, and includes a back plate 36, a seat plate 37, an armrest 38 and a supporting leg 39.
  • the back plate 36 is a chair-back-shaped structure, and a buckle mechanism 40 is provided on the back of the back plate 36 for installing and fixing the compressed air supply device 3.
  • a pair of shoulder straps and an abdominal strap are arranged in front of the back plate 36, which are used to tie the pilot to the back plate 36 from the shoulders and abdomen of the human body, respectively, and the lower part of the back plate 36 is connected to the seat plate 37.
  • the sitting board 37 is a plate-like structure equivalent to a sitting surface, and a pair of hip-leg straps are provided on the sitting board 37 to tie the hips and legs of the pilot to the sitting board 37 from the left and right groin of the human body respectively.
  • the armrest 38 has two left and right armrests, and its shape and position are like the armrest of an armchair.
  • the rear ends of the two armrests 38 and the two sides of the back plate 36 or the seat plate 37 form a rotating connection 41, and the front ends of the two armrests 38 can move up and down, left and right, under control, with the rear end rotating connection 41 as an axis.
  • Each support leg 39 may be composed of a piston rod type cylinder 45 and a cylinder type sleeve 46 sleeved outside it.
  • the upper end of the piston rod type cylinder 45 is a piston 47, which can slide up and down in the cylinder sleeve 46
  • the lower end of the piston rod type cylinder 45 is the ground contact end 48 of the support leg
  • the ground time is distributed on the horizontal ground 49.
  • the upper end of the cylinder wall of the cylinder sleeve 46 is connected to the lower part of the back plate 36 or the seat plate 37 through a movable joint 50.
  • the inner cavity wall of the cylinder sleeve 46 is smooth and in sealing contact with the piston 47 and the piston 47 can slide up and down in the inner cavity of the cylinder sleeve 46.
  • the upper end of the inner cavity of the cylinder-type sleeve 46 is provided with an inflation valve 51 and an exhaust valve 52; the lower end of the inner cavity of the cylinder-type sleeve 46 is provided with a port 53.
  • the diameter of the port 53 is adapted to the diameter of the piston rod cylinder 45 to make the piston rod type.
  • the cylinder 45 moves smoothly up and down in the cylinder sleeve 46 with the piston 47, and can restrain the piston 47 from sliding down.
  • the left and right sides of the lower end of the cylinder sleeve 46 of the front support leg 42 are respectively provided with short plates perpendicular to the sleeve, which are called the left foot pedal bracket 54 and the right foot pedal bracket 55.
  • the overall length of the support leg 39 is adjustable, which can be adjusted by adjusting the degree of overlap between the piston rod cylinder 45 and the cylinder sleeve 46, that is, the piston rod cylinder 45 and the cylinder sleeve 46 overlap more. Or when it is less, the total length of the support leg 39 is shorter or longer.
  • the overlapped portion of the piston rod cylinder 45 and the cylinder sleeve 46 is the shortest in the total length of the support leg, it is the base landing length of the support leg. If the personal aircraft stops on the ground 49 with the base landing length, the support leg , The height from the seat 37 to the ground 49 is equivalent to the length of the human calf; when the piston rod type cylinder 45 and the cylinder type sleeve 46 overlap the least, the total length of the support leg is the longest, and the length of the longest support leg is reached.
  • the height from the seat 37 to the ground 49 is greater than the length of the entire lower limbs of the human body; because the upper end of the cylinder wall of the cylinder-type sleeve 46 can be adapted to the supporting leg.
  • the angle of intersection between 39 and the plane where the seat board 37 is located changes to a certain extent, so when the personal aircraft stops on the ground 49, the support leg 39 can change from the length of the base landing to the length of the longest support leg, or from the length of the longest support leg to the length of the base landing.
  • the exhaust valve 52 is closed under control, and compressed air can enter the upper part of the inner cavity of the cylinder sleeve 46 through the opened inflation valve 51, so that the gas pressure in the upper part of the inner cavity of the cylinder sleeve 46 above the piston 47 rises sharply.
  • the inner cavity space of the existing cylinder sleeve 46 above the piston 47 continues to shrink and the gas pressure continues to increase
  • the exhaust valve 52 is opened so that the pressure in the inner cavity of the cylinder sleeve 46 will not suddenly become too high, but it forms a buffer resistance to the downward movement of the main body of the cylinder sleeve 46 and above of the personal aircraft.
  • the descent speed of the touchdown is somewhat buffered, which is beneficial to the personal aircraft landing and damping.
  • the above-mentioned increased relative movement of the overlapped portion of the cylinder sleeve 46 and the piston rod cylinder 45 is referred to herein as the "landing buffer".
  • the compressed air supply device 3 may include a compressed air storage device 56, a compressed air transmission passage 57 and a compressed air exhaust device 58.
  • the air storage device 56 has a tubular structure, which is made of a light-weight and high-pressure resistant material, and stores high-pressure/ultra-high-pressure compressed air inside.
  • the gas storage device includes a plurality of gas storage pipes 59 and headers 60 located at both ends of the gas storage pipe 59.
  • each gas storage discharge pipe 59 is provided with a discharge pipe inlet 61 and a discharge pipe inlet valve 62, and the other end is provided with a discharge pipe outlet 63 and a discharge pipe outlet valve 64.
  • the header communicating with the inlet ends of the plurality of gas storage pipes 59 is called the inlet header 65
  • the header communicating with the outlet ends of the plurality of gas storage pipes 59 is called the outlet header 66.
  • the inlet header 65 is provided with a header air inlet 67 and a header air inlet valve 68, the header air inlet 67 and the header air inlet valve 68, that is, the air inlet and the air inlet valve of the compressed air storage device 56.
  • the outlet header 66 is provided with a plurality of header air outlets 69 and header air outlet valves 70, which are the air outlets and air outlet valves of the compressed air storage device 56.
  • the compressed air storage device 56 can be pressurized and charged through the header inlet 67.
  • the “compressed air production, storage and supply mechanism” disclosed by the inventor’s 2015 authorized invention patent “System and Method for Economical Utilization of Compressed Air as Vehicle Power Source” (Patent No.: ZL 201510289802.3) or another authorized invention patent of the present inventor in 2016, "System and method using compressed air as a force source, aircraft” (Patent No.: ZL201610125197.0) disclosed "compressed air production and supply device” to compressed air storage
  • the air device 56 is pressurized and filled with high pressure/ultra-high pressure compressed air.
  • the header inlet valve 68 When the header inlet valve 68 is closed and the header outlet valve 70 is opened at the same time all the valves on the gas storage discharge pipe 59 are closed, only when the discharge pipe outlet valve 64 of the gas storage discharge pipe 59 that needs to output compressed air is opened, The compressed air in the air storage pipe can output compressed air from the compressed air storage device 56 through the outlet 63 of the air storage pipe.
  • the compressed air transmission passage 57 is a passage through which high-pressure/ultra-high-pressure compressed air in the compressed air storage device 56 is transmitted to the compressed air exhaust device 58, and includes a decompression chamber 71, a connecting pipe 72 and a check valve 73.
  • decompression chambers 71 there can be one or several decompression chambers 71.
  • decompression chambers 71 When there are several decompression chambers 71, they are connected in series or several series in the order of decreasing pressure. Among them, several decompression chambers 71 with the same design pressure can be mutually connected. In parallel connection, the pressure in the decompression chamber is lower than the pressure in the compressed air storage device 56 or the previous decompression chamber 71 according to the design requirements.
  • the connecting pipe 72 and the one-way valve 73 are provided between the compressed air storage device 56 and the decompression chamber 71, between the decompression chamber 71, between the decompression chamber 71 and the compressed air exhaust device 58, and the decompression chamber 71 It is used for unidirectional transmission of compressed air between the cylinder sleeve 46 or other air-using equipment.
  • the compressed air exhaust device 58 is used to exhaust the compressed air with a certain design pressure transmitted from the compressed air transmission passage 57.
  • the compressed air exhaust device 58 includes a compressed air artificial wind exhaust device 74 and a compressed air jet engine 75.
  • each compressed air artificial wind exhaust device 74 there are two compressed air artificial wind exhaust devices 74, which are respectively erected on the left and right sides of the seat frame 2.
  • Each compressed air artificial air exhaust device 74 is sequentially arranged with an expansion chamber 76, a tapered widening tube 77 and a blower 78 from top to bottom.
  • the inner diameter of the expansion chamber 76 is larger than the diameter of the connecting pipe 72 connected to it.
  • the inner wall of the expansion chamber 76 is provided with a gas injection regulator, which is used to regulate the injection from the connecting pipe 72 and the one-way valve 73. The pressure and flow rate of the compressed air into the expansion chamber 76.
  • the compressed air entering the expansion chamber 76 When the compressed air entering the expansion chamber 76 is discharged to the tapered divergent tube 77 below it at a certain pressure, it gives the wall of the expansion chamber 76 a certain upward reaction force, and because the tapered divergent tube 77 has a "flow rate amplifier" This function accelerates the airflow flowing through it into the continuous air supply tube 78, and then the air supply tube 78 is divided into several sub-tubes to surround the periphery of the cyclone cylinder 7 and send the artificial wind to the working horizontal section 11 respectively.
  • the compressed air artificial air blowing ports 6 are distributed in the duct on the inner wall 9 of the cyclone cylinder. In each duct, the compressed air artificial wind blowing port 6 is sprayed with a high-speed airflow 22 horizontally toward the leading edge 16 of a corresponding stationary blade 13 by a group of several compressed air artificial wind nozzles 21 spread horizontally.
  • the compressed air jet engine 75 is a jet engine using compressed air as the jet working medium, and there are a plurality of parts, each of which is composed of a compressed air expansion chamber 79 and a jet engine Laval nozzle 80.
  • its compressed air expansion chamber 79 receives compressed air with a certain pressure transmitted from the connecting pipe 72 and the one-way valve 73, and generates thrust through the reaction force of the jet engine Laval nozzle 80 jetting high-speed airflow.
  • the temperature of the airflow emitted by the compressed air jet engine 75 is much lower than that of the hot gas emitted by the traditional technology jet engine, and will not cause ablation damage to the personal aircraft, its surrounding environment, and personnel. Therefore, the compressed air jet engine 75 can be installed on the seat frame. Almost any part on the peripheral side of 2 needs to be connected to the connecting pipe 72 and the one-way valve 73 that transmit a certain pressure of compressed air to this position.
  • the four front jets are called a left-rear jet engine 81, a left-front jet jet engine 82, a right-rear jet jet engine 83, and a right front jet jet engine 84.
  • a number of compressed air downward jet engines 92 respectively arranged below the seat frame 2 and jet downwards when working alone or in coordination, generate corresponding partial or coordinated upward thrust or combined force on the personal aircraft to improve take-off lift, buffer landing speed, Adjust the balance of the seat frame 2.
  • the compressed air jet engine 75 provides the required thrust and torque for personal aircraft attitude control, heading maintenance and course change.
  • the safety equipment of the embodiment of the present application includes a compressed air airbag system and an emergency rescue parachute system.
  • the compressed air airbag system includes sensors, electronic controller units and airbags.
  • the sensors include accelerometers and impact sensors.
  • the accelerometers are used to detect the speed changes of personal aircraft.
  • the impact sensors are used to detect the type, angle and severity of collisions.
  • the accelerometers and impact sensors detect them.
  • the information is fed to the electronic controller unit; the electronic controller unit analyzes and judges the information from these sensors, and immediately determines whether the airbag circuit is triggered and the airbag in the relevant part is properly inflated.
  • the airbag includes a compressed air tank, an intake valve, an airbag, and a vent.
  • the compressed air storage tank stores an appropriate amount of compressed air at a certain pressure.
  • the airbag is installed in the appropriate part of the seat frame and connected to the compressed air storage tank through the intake valve.
  • the vent is the vent between the airbag and the atmosphere, and the compressed air is stored
  • the compressed air stored in the tank can be inflated into the airbag in a timely and appropriate amount through the opened intake valve under control.
  • the airbags can be divided into front airbags, side airbags, upper backrest airbags, seat board airbags, and external airbags according to their placement positions.
  • the front airbags, side airbags, and upper backrest airbags are usually folded and installed on the front and sides of the two armrests 38 and the upper end of the back panel 36 (not shown in the figure), which can be quickly removed from the two under control.
  • the front end of the two armrests 38 is inward and from the sides of the two armrests 38 to both sides, and upward from the upper end of the back plate 36, inflated and expanded, popped and deployed, used to cushion the flight crew from the front, sides and above during the collision. And the head hit.
  • the seat airbag is arranged on the seat 37 (not shown in the figure), and can be inflated and expanded into an air cushion of a certain thickness under control to buffer the impact on the pelvis of the pilot.
  • the external airbag is installed on the exterior of the personal aircraft, and can be deployed under control to cover hard areas such as compressed air supply equipment, and is designed to cushion and reduce collision injuries between the personal aircraft and pedestrians.
  • the emergency rescue parachute system includes a parachute, a parachute opening rope, a compressed air parachute expansion jet engine, and a compressed air accelerated parachute expansion balloon.
  • the parachute canopy and the parachute line are folded and installed in the parachute sealing bag 85 with Velcro.
  • the umbrella sealing bag 85 is arranged on the upper end of the back plate 36 (as shown in Figures 4 and 5), and the upper end of the back plate 36 is provided with a suspension point (not shown in the figure), and the suspension point is connected with the umbrella rope passing through the umbrella sealing bag 85 The ends are permanently connected.
  • the Velcro is opened when the compressed air umbrella jet engine is launched. One end of the parachute opening rope is connected to the parachute, and the other end of the parachute opening rope is connected to the compressed air parachute jet engine.
  • the compressed air umbrella jet engine has a compact structure and includes a compressed air storage pipe, an intake pipe with controllable valves, an expansion chamber and a Laval nozzle. It is movably connected to the rear of the upper end of the back plate 36 (not shown in the figure) along the vertical direction, and a waste gas tube for containing the gas ejected from the Laval nozzle is vertically arranged directly below the Laval nozzle.
  • the compressed air in the compressed air storage pipe quickly enters the expansion chamber through the intake pipe and sprays downward from the Laval nozzle along the exhaust tube, driving the compressed air parachute jet engine to shoot upwards
  • the parachute is quickly lifted into the air with the parachute-opening rope.
  • the parachute is pulled out from the parachute sealed bag 85 with the velcro and then lifted into the air.
  • the parachute canopy expands under the action of air, and the canopy is inflated; there can be several balloons (not shown in the figure) to accelerate the expansion of the parachute.
  • They are small spherical containers with a light-weight and pressure-resistant material shell, which contain compressed air. air.
  • the parachute balloon valve opens when the parachute is pulled out of the parachute sealing bag 85 and is compressed in the parachute balloon. Air jets into the canopy to accelerate the canopy to inflate and complete the opening of the umbrella.
  • the rapidly opened canopy is an aerodynamic deceleration surface, and the air resistance on its descent is transmitted to the personal aircraft through the parachute rope and the permanent connection of the end and the suspension point to the personal aircraft to slow down and land safely.
  • control system of the embodiment of the present application includes a manual driving operation device and an automatic control system.
  • the manual driving operation device includes a raising pedal 86, a lowering pedal 87, a start-accelerator pedal 88, a deceleration-brake pedal 89, a left turn button 90 and a right turn button 91.
  • the raising pedal 86 and the lowering pedal 87 are provided on the left foot pedal bracket 54, wherein the raising pedal 86 is arranged on the right side of the lowering pedal 87.
  • a start-accelerator pedal 88 and a deceleration-brake pedal 89 are provided on the right foot pedal bracket 55, wherein the start-accelerator pedal 88 is arranged on the right side of the deceleration-brake pedal 89.
  • the left turn button 90 and the right turn button 91 are respectively arranged below the front end of the left and right armrests 38.
  • the left and right forearms of the human body are respectively placed on the left and right armrests 38, the left and right hands are naturally slightly bent at the front ends of the left and right armrests, and the left turn button 90 and the right turn button 91 provided under the front ends of the left and right armrests 38 can be easily touched.
  • the pilot's left finger presses the left turn button 90 below the front end of the left armrest the personal aircraft will turn left in the air; when the pilot's right finger presses the right turn button 91 below the front end of the right armrest , The personal aircraft turns right in the air.
  • the automatic control system of the embodiment of the present application includes an attitude balance feedback control system and an automatic driving system.
  • the attitude balance feedback control system consists of an attitude balance sensor, a computer center and an attitude control compressed air jet engine.
  • the attitude balance sensor transmits the information of the personal aircraft attitude imbalance it feels to the computer center
  • the computer center analyzes and processes the information from the attitude balance sensor about the personal aircraft attitude imbalance and issues corresponding instructions to correct the personal aircraft attitude imbalance in time to the settings
  • the compressed air jet engines 75 around the seat frame 2 are coordinated with each other to inject an appropriate amount of air at the right time, so as to maintain the balance of the personal aircraft in the air.
  • the autonomous driving system includes sensing devices, connection networks and actuators.
  • sensing equipment includes sensors, global positioning system (GPS or Beidou) and inertial measurement unit (IMU), used to collect and process personal aircraft environmental information, as well as positioning and heading information.
  • the connection network includes the personal aircraft Internet of Things connected by the sensing device.
  • the personal aircraft Internet of Things is the Internet of personal aircraft and the thing-to-thing connection in the personal aircraft and its ecosystem. It is used to analyze the data and information collected from the sensing device, design the route of the personal aircraft, and predict The situation in the future for a period of time and the development of corresponding safety measures, centralized management, control and corresponding instructions for personal aircraft flying in the air.
  • the actuator includes equipment that can receive and execute instructions to automatically control the height, speed and steering of the personal aircraft, and is used to make the personal aircraft automatically drive to take off, fly along the route and land safely at the destination in accordance with the instructions.
  • this application also provides a method for operating a personal aircraft using compressed air as a power source.
  • the method includes the following steps:
  • the header air outlet valve 70 When the header air outlet valve 70 is closed and the header inlet valve 68 is opened, and all the valves on the gas storage discharge pipe 59 are opened, the "compressed air production, storage and supply mechanism" or “compressed air production and supply device” passes through the header
  • the air inlet 67 pressurizes and fills the compressed air storage device 56 with a sufficient amount of high-pressure/ultra-high-pressure compressed air.
  • the support legs 39 of the seat frame 2 are at the base landing length and are supported on the ground 49 at the take-off location.
  • the flight crew sits on the seat board 37 with their backs to the back board 36.
  • the shoulders and abdomen of the pilot are tied to the back board 36 with a pair of shoulder straps and abdomen straps provided in front of the back board 36;
  • a pair of hip-leg straps tie the pilot's hips and legs to the seat plate 37 from the left and right groin of the pilot respectively.
  • the leading edge 16 jets high-speed airflow.
  • the high-speed compressed air flow 22 generates lift 28 in the relative motion of the stationary blade 13, and forms a high-speed cyclone, rotating air column in the cyclone cylinder 7, and it flows through a stationary blade with a certain airfoil 14 and angle of attack 15
  • the airflow at 13 is inclined downward 27, forming a high-speed spiral descending cyclone in the high-speed rotating air column.
  • the additional stationary rotor 32 in the cyclone cylinder 7 and the fixed wing 33 in the duct increase the lift in the relative movement with the high-speed airflow of the cyclone.
  • the low air pressure caused by the high wind speed in the high-speed rotating air column causes it to receive a certain degree of lifting force given by the atmosphere, and the reaction force of the airflow discharged downward from the gradual lower port 8 cyclone also gives the gradual lower port 8 A certain lift.
  • the compressed air can enter the upper part of the inner cavity of the cylinder sleeve 46 through the inflation valve 51, so that the gas pressure in the upper part of the cylinder sleeve 46 above the piston 47 rises sharply, so that the piston rod cylinder 45 and the cylinder
  • the overlapping part of the sleeve 46 decreases and the total length of the support leg 39 increases until the piston rod cylinder 45 and the cylinder sleeve 46 have the least overlap, and the support leg 39 reaches the longest total length, and the cylinder sleeve 46 is pushed up.
  • the main part of the personal aircraft above and above rises rapidly to play the role of the aforementioned "take-off assistance", assisting the lift generated by the stationary rotor lift device 1 in the cyclone duct, and pushing the personal aircraft to take off with the above-mentioned longest support leg.
  • the pilot alternately stepped on the rising pedal 86 or the descending pedal 87 with his left foot to control the stationary rotor lift device 1 in the cyclone duct from the compressed air artificial air blowing port 6 in the duct toward the corresponding one with a certain airfoil 14 and angle of attack 15 horizontally
  • the leading edge 16 of the stationary blade 13 jets a high-speed airflow 22 to maintain a relatively stable air volume, wind speed, and lift of the stationary rotor lift device 1 in the cyclone duct, so that the personal aircraft is relatively stable at an appropriate height.
  • the attitude balance sensor transmits the information of the personal aircraft attitude imbalance to the computer center in time, and the computer center issues corresponding instructions.
  • the compressed air jet engines 75 arranged around the seat frame 2 coordinate with each other to match the appropriate amount of air jets. Maintain the balance of the personal aircraft in the air, while the stationary rotor lift device 29 in the clockwise cyclone duct and the stationary rotor lift device 30 in the counterclockwise cyclone duct installed symmetrically on the left and right sides of the seat frame 2 are in torque balance, and the above attitude Balance and torque balance are maintained throughout the flight.
  • the pilot When the personal aircraft reaches a proper altitude, the pilot’s right foot steps on the start-accelerator pedal 88, and the left rear jet engine 81 and the right rear jet engine 83 are turned on under the control (the left front jet jet engine 82 and the right front jet jet engine 84 are off)
  • the resultant force that pushes the personal aircraft forward is generated, and the personal aircraft begins to accelerate in the air to fly forward.
  • the pilot operates the start-accelerator pedal 88, deceleration-brake pedal 89, raise pedal 86, lower pedal 87, left turn button 90 and right turn button 91 to make the personal aircraft accelerate, decelerate, raise, lower, Turn left and right, so that the left-rear jet engine 81, the left-front jet engine 82, the right-rear jet engine 83, the right-front jet engine 84, and several lower jet engines 92 arranged under the seat frame 2 are separated Or work together to generate a corresponding thrust or combined force on the individual aircraft and fly to the destination.
  • the pilot steps on the deceleration-brake pedal 89 with his right foot, the left rear jet engine 81 and the right rear jet engine 83 are turned off, and the left front jet engine 82 and the right front jet jet engine 84 are turned on.
  • the combined force of the personal aircraft pushing backwards buffers the inertia of the personal aircraft continuing to move forward, and acts as a deceleration and braking effect, thereby gradually decelerating the personal aircraft flying forward in the air until it hoveres over the destination.
  • the volume and speed of the artificial wind injected by the edge 16 are gradually reduced.
  • the lift 28 generated by the relative motion of the artificial wind flow and the stationary blade 13 gradually decreases.
  • the cyclone, the rotating air column and its spiral descending cyclone formed in the cyclone cylinder 7 gradually reduce the wind volume and wind speed, and a stationary rotor is added to the cyclone cylinder.
  • the air pressure in the cyclone cylinder 7 gradually rises so that the lifting force given by the atmosphere is gradually reduced, and the flow rate and velocity of the airflow discharged downward in a cyclonic manner from the gradual lower port 8 and the reaction force generated thereby give the gradual lower port 8
  • the lift of the aircraft gradually decreased, and the personal aircraft began to descend over the destination.
  • the cylinder sleeve 46 continues to move downward so that part of the piston rod type cylinder 45 outside the port 53 extends into the inner cavity of the cylinder sleeve 46 through the port 53 so that the piston rod type cylinder 45 and the cylinder sleeve 46 intersect
  • the stack portion increases again and the total length of the support leg 39 decreases, so that the existing cylinder sleeve 46 above the piston 47 is continuously reduced in space and the gas pressure continues to rise, the exhaust valve 52 opens to make the cylinder sleeve 46 open.
  • the cavity pressure is not suddenly too high, but it forms a buffering resistance to the downward movement of the main part of the personal aircraft with the cylinder sleeve 46 and above, and buffers the descent speed of the main part of the personal aircraft, which plays the role of the aforementioned "landing buffer". , Until the personal aircraft is supported on the destination ground 49 with the base landing length support legs.
  • steps S3 to S5 described above may also be executed by the automatic driving system described above.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.

Abstract

以压缩空气为动力源的个人飞行器及其运行方法,包括气旋涵道内静止旋翼升力装置、坐架和压缩空气供气设备;气旋涵道内静止旋翼升力装置包括气旋涵道、涵道内静止旋翼和涵道内压缩空气人造风吹风口,涵道内静止旋翼包括静止桨毂和固定连接在静止桨毂周围呈放射状排布的多片静止桨叶,静止桨叶形同机翼并具有翼型、攻角、前缘和后缘;压缩空气供气设备向涵道内压缩空气人造风吹风口供给压缩空气,以使涵道内压缩空气人造风吹风口朝向静止桨叶的前缘喷射气流,形成气旋,产生升力;以解决与传统个人飞行器燃烧化石燃料做功相关的效率受限、成本高、结构重、能源-环境问题,和个人飞行器或无翼或以翼在相对静止空气中运动产生升力相关的缺点和问题。

Description

以压缩空气为动力源的个人飞行器及其运行方法
相关申请的交叉引用
本申请要求于2019年12月18日提交的申请号为201911311482.1,发明名称为“以压缩空气为动力源的个人飞行器及其运行方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及压缩空气及航空飞行技术领域,特别提供一种以压缩空气为动力源的个人飞行器及其运行方法。
背景技术
人类自古以来就梦想“个人在空中飞行”,可见于神话故事、历代壁画。但人类生理上体力有限,不具备足以克服体重腾跃升空的体力(即使世界冠军一跳不过两米许,随即落地),身体上生来也不具备可以利用空气动力产生升力的翅膀(不比鸟类展翅翱翔天空)。直到近几十年来,随着科学技术的进步,智慧的人类正在逐渐把这一梦想变为现实,突出体现在个人飞行器问世。
所述个人飞行器的特点之一是将具有一定推动力、升力的设备系缚、背负和穿着在人体上,用以推进、带动人体升空,在大气层内飞行。
其中一部分个人飞行器,其系缚背负在人体背部的设备中设有喷气发动机(如火箭发动机),系某种可以输出推力的内燃机,该发动机工作时燃料燃烧产生高温高压气体并从喷口喷出,气体喷射形成推力,推举人体和所述设备(发动机及其燃料)离地腾空飞起,被称为喷气背包(jet pack)、火箭带(rocket belt)或火箭背包(rocket pack),如出现在1984年洛杉矶奥运会的开幕式上空的火箭带(Rocket Belt),又如2015年7月11日在中国亮相首飞Jetpack International公司研发的喷气背包GoFast等。
另一部分个人飞行器,其背负、穿着在人体上的设备含有喷气发动机和类似飞机机翼的结构,被称为喷气有翼背包、喷气-辅助翼装等,如2004年以后多次试飞的伊夫·罗西的喷气有翼背包(Yves Rossy's jet wingpack)、2005年面世的维萨·帕维安的喷气辅助翼装(Visa Parviainen's jet-assisted  wingsuit),以及截至2013年弗里茨·昂格尔(Fritz Unger)正在设计开发的带有刚性机翼的喷气背包(Fritz Unger:jetpack with rigid wings)等。
还有一部分个人飞行器,其系缚、背负在人体上的设备包括燃油发动机及其带动的旋翼/螺旋桨,该发动机系一种输出扭矩的内燃机,以燃烧燃料产生的高温高压气体为工质,驱动旋翼/螺旋桨在空气中旋转产生升力,带动人体升空飞行,称为背包直升机(backpack helicopter),飞行背包(flying pack),有时亦习惯地称之为喷气背包(jet pack),如上世纪50年代美军研制的“单人直升机”XNH-1,又如近年来新西兰马丁飞机公司(Martin Aircraft Company)研发的马丁喷气背包(Martin Jetpack)。
本背景技术的讨论将主要涉及上述类型个人飞行器,下文简称现有技术个人飞行器。
一、现有技术个人飞行器发动机存在的问题和缺点
(一)发动机靠燃烧燃料产生高温高压气体做功面临能源耗竭和环境污染问题
现有技术个人飞行器所使用的为其提供动力的发动机,无论输出推力的内燃机(如火箭发动机、航空喷气发动机),或输出扭矩的内燃机(如汽油机、柴油机),均靠燃烧燃料产生高温高压气体作为动力,“燃烧燃料”存在人类共同面临的能源耗竭和环境污染问题。权威报道,大部分化石能源将在本世纪面临枯竭,燃烧化石燃料新增大量温室气体也威胁全球生态。如此方式获取动力仅限于初期少量试飞,些许能耗和排放似乎尚不足为虑;可是,如果考虑到,交通方面,大众期盼飞行上班,比如,前述1984年洛杉矶奥运会上空惊现吸引了20亿人目光的奇特个人飞行器后,社会上就曾流行一个闻名的问句“飞行背包:为什么我们不都飞行上班?”(“Jetpacks:why aren't we all flying to work?”)以及其他方面如军事和国防,警察和消防,搜索及救援,商业和工业,甚至运动和娱乐许多实际应用潜力,现有技术个人飞行器一旦广泛实用,靠燃烧燃料获取动力的发动机存在能源耗竭和环境污染问题将突显。故开发清洁能源今天就要考虑。
(二)发动机以燃烧燃料产生的高温高压气体做功存在与燃气高温有关的缺点
现有技术个人飞行器上的内燃机,利用燃料燃烧产生的高温高压燃气 做功,做功多少与燃气压力高低直接相关,而与温度高低不直接相关。但其用于做功的高压气体由燃烧燃料产生,必然是高温的。但燃气高温有其缺点。
1、燃气高温,排出的废气仍高温,带走大量热能,燃料能量没有被充分利用
其中火箭发动机喷口喷出的高温废气,可高达上千摄氏度,能量利用率不高;一般汽油机(效率30±%)、柴油机(效率40±%)效率低,也与燃油爆燃产生高温高压燃气做功同时散发掉大量废热有关。
2、燃气高温使发动机产生和利用高压气体做功的能力受到限制
内燃机做功能力与燃气压力高低直接相关。燃气高温将导致燃烧室、排气管等产生、容纳和排放燃气的相关部件温度升高;材料力学常识告诉我们,构成这些部件的材质温度升高特别是达到高温时承受压力的能力下降,显然,燃气高温将对发动机工作压力的设计有所限制,对发动机性能和功率的提升有所限制。
例如,传统技术喷气发动机燃料在燃烧室燃烧温度可达约3500K(≈5800°F),常超出喷管和燃烧室材料的熔点(石墨和钨除外),必须确保这些材料不会燃烧、熔化或沸腾;燃烧室处于某种圆周应力之下,由于高温工作环境,使其结构材料的抗张强度显著降低,也使其可能承受的设计压力受到一定限制。
3、燃气高温存在安全隐患
被燃气高温烤热的发动机机体尤其是喷出的高温燃气本身可以灼伤人体,如近几年喷气背包研发公司(JetPack Aviation)推出的JB-10喷气背包(JB-10 Jetpacks)就要求飞行员穿着特定的防火服,包括防火内衣、阻燃裤等;高温燃气对周围人群、环境的损伤也需防范。
4、被燃气高温烤热的发动机部件需要及时冷却,配备冷却系统使发动机结构加重
对于燃烧燃料产生高温燃气的发动机需要在其特定部位上专门设计冷却系统,对产生、容纳和排放高温燃气相关的炽热部件进行冷却,有效降温,以改善发动机的运转环境,保障其在各种工况下的可靠性;并对燃气高温存在安全隐患有所防范。可是,配备冷却系统使飞行器结构加重。 对传统个人飞行器来讲,需要克服人体和结构比较复杂的内燃机的重力,以及全部所需燃料(燃料本身的利用率不高)的重力,再加上冷却系统的重力,不利于飞行器轻量化,不利于优化飞行动力性能。
5、燃气高温与发动机造价提高有关
因为耐高温又耐高压的材质较为贵重,而且高温的安全防护以及必须的冷却设施等将增加资金投入。
二、现有技术个人飞行器在利用“翼”产生升力方面存在的问题和缺点
周知,重于空气的航空器,无论固定翼航空器(如飞机)或旋翼航空器(如直升机),均具有一定翼型(或称翼剖面)和攻角(Angle of attack)的翼,并通过空气与翼的相对运动产生升力,克服自身重力(本文所说自身重力含航空器本身及其乘员和所携燃料的重力,下同)升空,在大气层内飞行。升力公式可表述为:
Figure PCTCN2020119567-appb-000001
其中:
Y=lift(升力)
C y=lift coefficient(升力系数,注:与翼型、攻角等有关)
ρ=air density(空气密度)
v=air velocity(空气流速,注:空气与机翼相对运动的速度,其平方与升力成正比)
S=wing area(机翼面积)。
因此,当升力系数(翼型、攻角等)、空气密度和机翼面积相对固定时,空气流速(空气与机翼相对运动的速度)就成为决定机翼升力的关键因素,空气流速达到一定值时,产生可以克服自身重力的升力。
现有技术个人飞行器在利用“翼”产生升力方面存在的问题和缺点简述如下:
(一)部分个人飞行器无翼
如前述出现在1984年洛杉矶奥运会的开幕式上空的火箭带(Rocket Belt),又如2015年7月11日在中国亮相首飞Jetpack International公司研发的喷气背包GoFast等,就无翼;再如2015年11月3日,喷气背包 航空(Jetpack Aviation)在上纽约湾(Upper New York Bay)自由女神像前展示了JB-9无翼的喷气背包(Wingless Jetpack),属于这种无“翼”的现有技术个人飞行器的例子还很多,就不一一枚举。它们作为一类现有技术个人飞行器,并非为在大气层外微重力环境(microgravity environment)飞行而设计,系旨在大气层内进行可控飞行的重于空气的航空器;它们通过火箭发动机或其他喷气发动机等输出推力的内燃机喷射燃烧燃料产生的高温高压气体形成的推力升空,在大气层内飞行时得不到与翼相应的空气动力克服自身重力,滞空时间极短,常常用秒来计算。这一部分个人飞行器在利用“翼”产生升力方面存在的问题和缺点在于无翼。
(二)关于有翼个人飞行器
1、具有类似飞机机翼的个人飞行器
这一类个人飞行器,其背负、穿着在人体上的设备具有喷气发动机(某种输出推力的内燃机)以及类似飞机机翼的结构。如:
(1)伊夫·罗西的喷气有翼背包(Yves Rossy's jet wingpack)
瑞士前军事和商业飞行员伊夫·罗西(Yves Rossy)穿着包括有四个小的燃烧煤油的喷气发动机以及刚性飞机型碳纤维折叠翼(翼展约2.4米)的耐热套装(以保护他免受喷射高温燃气灼伤),从高空飞行的飞机上跳下,经自由落体加速后可以水平飞行数分钟,在降落伞的帮助下着陆。2004年6月24日他在瑞士日内瓦成功首飞,以后还曾多次在瑞士、西班牙、法国、英国、阿联酋做从飞机上自由落体跳下的试飞和表演。
(2)维萨·帕维安的喷气辅助翼装(Visa Parviainen's jet-assisted wingsuit)
2005年10月25日,维萨·帕维安(Visa Parviainen)在芬兰的拉提(Lahti),身着配备两个小涡轮喷气发动机的翼装(wingsuit)从高空热气球上自由落体球跳下,实现了大约30秒的水平飞行。
(3)弗里茨·昂格尔:带有刚性机翼的喷气背包(Fritz Unger:jetpack with rigid wings):
截至2013年,德国人弗里茨·昂格尔(Fritz Unger)正在开发一种又称天空闪光(Skyflash)的喷气背包,其具有约3.4米翼展的刚性机翼和装配在胸前和腹部的四个底盘轮,设计使用两个柴油燃料的涡轮喷气发动机 助推从地面起飞。考虑到通常飞机从机场跑道起飞要加速滑跑几千米,较短的也需滑跑一两千米(喷气式飞机),以及航母舰载机从光滑的飞行甲板上蒸汽/电磁弹射或借助舰艏滑跃甲板起飞也要加速滑跑一百多米(全世界仅个别国家尚能做到),可以设想,该个人飞行器使用上述3.4米翼展的刚性机翼以及胸前和腹部的四个底盘轮由两个喷气发动机助推从地面起飞,需要滑跑多长跑道,什么样的跑道,什么助力设施,能否达到安全离地速度等都是问题。
也正是由于背负机翼在地面直线滑跑达到足够快的速度确是难事,勉为其难才有了登上飞机或热气球从高空跳下自由落体加速的试飞。上述具有类似飞机机翼的个人飞行器,与人类所期望的个人飞行器方便使用、利于交通相距甚远。
2、具有旋翼/螺旋桨的个人飞行器
这一类个人飞行器,其系缚背负在人体上的设备包括发动机和旋翼/螺旋桨。
其中发动机以燃烧燃料产生的高温高压气体为工质,是一种可以输出扭矩的内燃机,用于驱动旋翼/螺旋桨在空气中旋转。(旋翼飞行器具有固定翼飞行器所不能比拟的特性,如低空飞行,悬停,左右侧飞等。从产生动力的原理上旋翼和螺旋桨都是通过旋转产生动力。旋翼和螺旋桨都有多个桨叶组成,数量一般少于8个(单排),本质上每个叶片都是一个转动的机翼,靠翼型和迎角产生升力)。
(1)具有旋翼的个人飞行器
旋翼(Rotor)是直升机和旋翼机等旋翼航空器产生升力的主要旋转组件,由桨毂和数片桨叶构成。桨毂是连接桨叶和旋翼轴的部件,桨叶形如细长机翼具有一定的翼型和攻角,是产生升力的关键部件;发动机通过驱动旋翼轴-桨毂带动桨叶旋转。桨叶旋转加速,空气流速(空气与有如旋转机翼的桨叶相对运动的速度)加快,升力加大(空气流速的平方与升力成正比);桨叶转速达到一定值时升力加大到足以克服自身重力,于是具有旋翼的个人飞行器升空飞行。上世纪50年代美军研制的“单人直升机”XNH-1,就属于这一类个人飞行器。
(2)具有螺旋桨的个人飞行器
螺旋桨(Propeller)可分为船用桨和空气桨,本文所说螺旋桨均指空气桨。旋翼与螺旋桨名称上有别,二者原理近乎相同。螺旋桨亦由位于中央的桨毂和周围的多个桨叶组成。其桨叶也有翼型(翼剖面)和攻角,可视为多个扭转的细长“机翼”安装在桨毂上;桨毂与发动机轴相连接并可在发动机驱动下旋转,进而带动安装在桨毂上的多个桨叶在空气中旋转。桨叶旋转加速,空气流速(空气与有如旋转机翼的桨叶相对运动的速度)加快,升力加大(空气流速的平方与升力成正比);桨叶转速达到一定值时升力加大到足以克服自身重力,具有螺旋桨的个人飞行器升空飞行。近年来新西兰马丁飞机公司(Martin Aircraft Company)研发的马丁喷气背包(Martin Jetpack)就属于这一类具有螺旋桨的个人飞行器。在此,需要补充说明一种称为涵道风扇(Ducted Fan)的现有技术。涵道风扇即螺旋桨(或旋翼)安装在某种圆筒形护罩或涵道内。涵道风扇可以更有效地产生升力,因为护罩或涵道围在外周减少了从旋转桨叶尖端向外空气流量损失;而且桨叶位于环绕结构内的设计减小了飞行中桨叶打到地面人员的危险性,对桨叶噪音有所屏蔽。马丁喷气背包设有两个左右对称的涵道风扇。
具有旋翼/螺旋桨的个人飞行器从原地升空,无需在长长的跑道滑跑或从高空跳下,可以垂直起降,空中悬停,尤其是应用涵道风扇可更有效地产生升力,滞空时间延长(有的达到半小时左右)。但它们需要输出扭矩的内燃机通过传动机械驱动桨叶旋转,做功较多,能耗大、环境污染,以及与燃气高温有关的能量效率受限、安全隐患、结构增重和复杂、造价高等。
发动机(Engine),即引擎,先后经历了外燃机和内燃机发展阶段。无论从1776年瓦特发明蒸汽机(外燃机)掀起工业革命,到现代广泛应用于空天陆海输出扭矩的内燃机(如汽油机、柴油机)和输出推力的内燃机(如火箭发动机、航空喷气发动机),它们都是靠燃烧产生的高温高压气体做功(沉积地下千万年形成的化石燃料,燃烧起来瞬间化为高温高压气体)。分析“高温”和“高压”的直接效果,业内人士知道,“高温”的效果主要在于根据热力学原理发动机内的气体压力升高,“高压”的效果则直接与做机械功相关,气体压力的高低决定其输出扭矩或推力的大小。而能源问题与环保问题又是长期以来困扰全球发动机行业的最严峻的两 大问题。为此,引发多国探讨、研发直接利用高压气体—压缩空气做功的发动机,如多年来一系列新闻发布和成果演示涉及压缩空气引擎(compressed air engine)及其输出扭矩驱动的压缩空气汽车(compressed-air cars),如法国MDI(Motor Development International)、印度Tata Motors等,就以从车外电动空气压缩机向车载压缩空气罐(compressed air tank)加压充入的压缩空气为能源。现有技术压缩空气汽车可车载一个300升左右的压缩空气罐,罐中充满30兆帕(MPa)压力的压缩空气,约具有相当于51兆焦(MJ)能量(可行车程约300公里,最高时速可达105公里/小时)。
上述压缩空气发动机及压缩空气汽车尚未广泛应用,其原因一般误以为有安全问题(比如爆炸危险)或密封问题(比如漏气),其实不是这样的。
压力容器作为一种成熟的产业已制定了安全规范(Safety codes),安全规范限定合法的工作压力(the legal working pressure)小于储气装置的破裂压力(the rupture pressure)的40%,安全系数至少为2.5(亦即极限应力与许用应力之比≥2.5);如美国TOBUL 138MPa活塞式蓄能器的安全系数为4。而且压缩空气蓄气装置自身的碳纤维是脆性的,在足够大的压力下可分裂,但不会造成任何弹片,就不会出现碎片和高压气体四溅的危险状况,安全性相对较好。
至于密封方面,随着气压传动技术进展阀门密封技术也更加可靠,业内有一个对比,压缩空气储气装置泄气的速率比在不用电的情况下蓄电池随着时间延长自动将其电量缓慢耗尽的速率还低。
固然压缩空气发动机像任何新生事物一样需要不断研发创新,但是,业内人士知道,影响压压缩空气发动机广泛应用的关键问题,是电动空气压缩机所消耗电能的90%转化为热,难以回收,整体效率(The overall efficiency)不高。而与此同时,世界范围内还存在另外两个棘手的能源问题:(1)夜间低谷电能(约占总电量的24%)难于利用、常被浪费,以及风电、太阳能等不易储藏的电源利用问题;(2)集中供暖需求量不断扩大,供暖消耗大量化石燃料,不利于全球能源安全和气候变化。
本发明人2015年一项已获授权的发明专利《经济利用压缩空气为汽 车动力源的系统及其方法》,专利号:ZL 201510289802.3(A System Economically Using Compressed Air as Automobile Power Source and Method Thereof,International application No.PCT/SE2016/000030)公开了一种“压缩空气产储供气机构”,可以利用夜间低谷及不易蓄存电能生产储存高压/超高压压缩空气,同时将伴发产生的热能(约占所消耗电能的90%)集中回收用于供暖,既利用夜间低谷电能又清洁供暖,同时解决了压缩空气生产成本高的问题。该专利还公开了一种有所创新的输出扭矩的压缩空气发动机,用于压缩空气汽车。本发明人2016年另一项获得授权的发明专利《以压缩空气为施力源的系统及其方法、飞机》,专利号:ZL201610125197.0(A System of Using Compressed Air as a Force Source and Method Thereof;Airplane,International Application No.PCT/SE2017/000005)公开的“压缩空气产供装置”对前专利中的“压缩空气产储供气机构”有所改进、扩容,同样可以利用夜间低谷及不易蓄存电能生产储存高压/超高压压缩空气,同时将伴发热量用于集中供暖,也在解决了压缩空气生产成本高的问题的同时,清洁供暖、经济用电。该专利还公开了另一类输出推力的压缩空气喷气引擎,用于飞机、火箭、列车、潜艇等;在此需要提及其中的第一和第三副喷气引擎,分别设置在飞机头部前方和机翼前方,分别具有降低空气阻力和提高机翼升力的作用。
这样,影响压压缩空气发动机广泛应用的关键问题——“电动空气压缩机所消耗电能的90%转化为热,整体效率不高”,可以经济地、环保地解决;同时,输出扭矩的压缩空气发动机有所创新,尤其是输出推力的压缩空气喷气引擎问世,使无需通过燃烧,直接以高压/超高压压缩空气做功,在空天陆海广泛应用输出扭矩或推力压缩空气发动机,发动机从传统技术外燃机、内燃机向“无燃机”过渡,成为可能。
根据升力公式,当升力系数(翼型、攻角等)、空气密度和机翼面积相对固定时,空气流速(空气与机翼相对运动的速度)就成为决定机翼升力的关键因素。对此,空气动力学中有一个很重要的概念:“机翼静止,空气运动”与“空气静止,机翼运动”这二者本质上是一样的,真正的关键在于二者相对运动的速度值。
对于现有技术具有类似飞机机翼的个人飞行器或具有旋翼/螺旋桨的 个人飞行器,上述空气流速(空气与机翼相对运动的速度)产生于“空气静止,机翼运动”,即背负着的类似飞机机翼在空气中高速直线运动,或旋翼/螺旋桨有如机翼(具有翼型、攻角)的桨叶相对于静止的空气高速旋转运动,因此或需要在很长的跑道滑跑或从高空跳下,或需要输出扭矩的内燃机通过传动机械驱动桨叶旋转,传动做功多,能耗大、环境污染等。在此,有理由设想,如果空气流速(空气与机翼相对运动的速度)产生于“机翼静止,空气运动”,前述各种与机翼运动相关的技术问题就可以避免。那么,将面临与空气运动相关的技术问题,其中最重要的就是高速气流如何产生,显然不能指望依靠自然风,需要“人造风”。
传统技术飞机喷气发动机通常位于机体后部、翼下等常规安装部位。上世纪70年代,美国和前苏联先后各推出一种具有翼上喷气发动机的飞机,分别是实验性的波音YC-14(试飞成功但由于种种原因被取消)和安-72(乌克兰语Антонов Ан-72),它们的翼上喷气发动机的喷流直接吹拂过机翼的上表面,加速机翼上表面气流,增加升力,以实现短距起落。这种技术以下统称Ан-72技术。本发明人已获授权的上述发明专利《以压缩空气为施力源的系统及其方法、飞机》公开的压缩空气喷气引擎中的第三副喷气引擎,对称设置在两侧机翼上表面的前方,向后喷射高速气流(与飞机起飞滑跑时相对于机翼的气流方向相同),加速空气流速(加速空气与机翼相对运动的速度),根据升力公式,以及伯努利原理、牛顿第三定律、以及康达效应(Coanda Effect),具有提高机翼升力的作用。并且在上述已获授权的发明专利中将Ан-72技术与所述第三副喷气引擎做了对比,现将其中两者的部分区别技术特征转摘如下:
(1)Ан-72发动机以燃料燃烧产生的燃气为动力(属于内燃机),所述第三副喷气引擎以压缩空气为动力(属于“无燃机”);
(2)Ан-72发动机喷射的高温燃气可造成机翼表面一定程度的烧蚀和结构的热疲劳(对机翼材料要求及其成本极高),所述第三副喷气引擎喷射常温气流不会造成机翼烧蚀损伤;
(3)Ан-72发动机设置在机翼上方,所述第三副喷气引擎设置在机翼前缘前方;
(4)Ан-72发动机对机翼升力的作用主要产生在机翼上表面,所述第 三副喷气引擎对机翼升力作用不仅在于机翼上表面也作用于具有一定迎角的机翼下表面,效率更高。
诚然,本发明人上述专利也已公开了一类压缩空气喷气引擎,从其喷口喷出的气体温度是常温甚或比常温略低(因为压缩空气喷射出后体积膨胀,可伴随气温略降,不会升高),不会像传统喷气发动机喷口喷出的高温燃气那样烧蚀、损伤相应运动载体表面,但是,它们设计作为一种以输出推力为主旨的压缩空气喷气引擎,从其喷口喷出的高速气流,在流向、流量、流速的控制方面与“人造风”的设想尚有差距。本发明人曾在2017年提出一项已获授权的专利《压缩空气人造风装置及消防设备》,专利号:ZL 201720324669.5(A Compressed Air Artificial Wind Device and Method Thereof;Fire-fighting Equipment,International Application No.PCT/SE2018/000002),公开了一种压缩空气人造风装置。在此可资借鉴,用于解决上文提出的“人造风”的需要,即如果作为升力的关键因素空气流速(空气与机翼相对运动的速度)产生于“机翼静止,空气运动”,将面临的需要解决的与空气运动相关的技术问题。
发明内容
针对现有技术中存在的缺陷,本申请的目的在于提供以压缩空气为动力源的个人飞行器及其运行方法,以解决现有技术中个人飞行器以燃烧化石燃料产生高温高压气体做功相关的效率受限、成本高、结构重、能源-环境问题,以及现有技术个人飞行器或无翼或以翼在相对静止空气中运动产生升力相关的缺点和问题。
根据本申请的实施例,提供了一种以压缩空气为动力源的个人飞行器,包括气旋涵道内静止旋翼升力装置、坐架以及压缩空气供气设备,所述气旋涵道内静止旋翼升力装置和所述压缩空气供气设备分别安装在所述坐架上;其中,所述气旋涵道内静止旋翼升力装置包括气旋涵道、涵道内静止旋翼和涵道内压缩空气人造风吹风口,所述涵道内静止旋翼和所述涵道内压缩空气人造风吹风口在同一个工作水平节段固定安装在所述气旋涵道中,所述涵道内静止旋翼包括静止桨毂和固定连接在所述静止桨毂周围且呈放射状排布的多片静止桨叶,所述静止桨叶形同机翼并具有翼型、攻角、前缘和后缘,且每片所述静止桨叶的后缘与另一片所述静止桨叶的前 缘相对;其中,所述气旋涵道内静止旋翼升力装置对称且扭矩平衡地固定安装在所述坐架两侧,所述压缩空气供气设备向所述涵道内压缩空气人造风吹风口供给压缩空气,以使所述涵道内压缩空气人造风吹风口朝向所述静止桨叶的前缘喷射气流。
根据本申请的实施例,所述气旋涵道为由气旋圆筒和渐阔下口组成的竖直设置在所述坐架两侧的气体通道;其中,在所述气旋圆筒内,所述静止桨叶的外周端固定连接在气旋圆筒内壁上;在所述气旋圆筒内还设有增加升力装置,所述增加升力装置包括附加静止旋翼和涵道内固定机翼,所述附加静止旋翼和所述涵道内固定机翼分别固定设置在所述涵道内静止旋翼和所述渐阔下口之间的所述气旋圆筒内壁上。
根据本申请的实施例,所述坐架包括背板、坐板、扶手和支撑腿;所述背板的背面设有用于安装所述压缩空气供气设备的卡扣机构,所述背板前面设有用于系缚人体于所述背板上的肩背带和腹带,且所述背板的底部与所述坐板连接;所述扶手有左右两个,所述扶手的后端与所述背板或所述坐板的两侧转动连接;所述支撑腿有数根,所述支撑腿从所述背板或所述坐板的下部分别向下且向外伸出。
根据本申请的实施例,每根所述支撑腿由活塞杆式柱体及套设在其外的气缸式套筒构成;所述活塞杆式柱体的上端为活塞,所述活塞可在所述气缸式套筒内滑动,所述活塞杆式柱体的下端为支撑腿触地端,所述气缸式套筒的筒壁上端通过可动关节部连接在所述背板或所述坐板下部;所述气缸式套筒的内腔上端设有充气阀门和排气阀,所述气缸式套筒的内腔下端设有端口用于使所述活塞杆式柱体随所述活塞在所述气缸式套筒内上下运动时平稳伸入或伸出所述气缸式套筒并节制所述活塞向下滑出;其中向前下方伸出的所述支撑腿即前支撑腿的所述气缸式套筒下端外部左右两侧分别设有左足踏板支架和右足踏板支架;
其中所述压缩空气供气设备与所述充气阀门连接,以向所述气缸式套筒供给压缩空气。
根据本申请的实施例,所述压缩空气供气设备包括压缩空气储气装置;所述压缩空气储气装置包括多根储气排管和位于所述储气排管两端的集管,每根所述储气排管的一端设有排管入口和排管入口阀门,另一端设有 排管出口和排管出口阀门;其中,与多根所述储气排管的排管入口相连通的所述集管为入口集管,并且与多根所述储气排管的排管出口相连通的所述集管为出口集管;所述入口集管上设有集管进气口和集管进气阀,所述出口集管上设有多个集管出气口和集管出气阀。
根据本申请的实施例,所述压缩空气供气设备还包括与所述压缩空气储气装置连通的压缩空气传输通路、以及与所述压缩空气传输通路连通的压缩空气排气装置;所述压缩空气传输通路包括减压室、连接管和单向阀,所述连接管和所述单向阀设置在所述压缩空气储气装置和所述减压室之间、相邻所述减压室之间、所述减压室与所述压缩空气排气装置之间、以及所述减压室与所述气缸式套筒之间,以用于单向传输压缩空气。
根据本申请的实施例,所述压缩空气排气装置包括压缩空气人造风排气装置;所述压缩空气人造风排气装置从上到下依次排列有膨胀室、渐缩渐阔管和送风筒,所述膨胀室的内径大于与其相连的所述连接管的管径,所述膨胀室的内壁设有气体射入调节器,所述气体射入调节器用于调控从所述连接管和所述单向阀射入到所述膨胀室内的压缩空气的压力和流量,所述送风筒分为多支分筒并环绕所述气旋圆筒外围,以将气流送达所述涵道内压缩空气人造风吹风口,其中,每个所述涵道内压缩空气人造风吹风口均包括一组水平展开的多个压缩空气人造风喷孔,以水平朝向对应的所述静止桨叶的前缘喷射气流。
根据本申请的实施例,所述压缩空气排气装置还包括多个压缩空气喷气引擎;每部所述压缩空气喷气引擎均由压缩空气膨胀室和喷气引擎拉瓦尔喷管构成,所述压缩空气膨胀室接收从所述连接管和所述单向阀传输的压缩空气,并通过所述喷气引擎拉瓦尔喷管的喷口喷射高速气流的反作用力来产生推力,其中包括设置在所述坐架左右两侧分别向后和向前喷气的左后喷喷气引擎、左前喷喷气引擎、右后喷喷气引擎和右前喷喷气引擎,以及若干个设置在所述坐架下方向下喷气的下喷喷气引擎。
根据本申请的实施例,还包括安全设备,所述安全设备包括压缩空气安全气囊系统和紧急救援降落伞系统;其中,所述压缩空气安全气囊系统包括传感器、电子控制器单元和安全气囊;所述传感器包括加速度计和撞击感知器,所述加速度计用于检测所述以压缩空气为动力源的个人飞行器 的速度变化,所述撞击感知器用于检测发生碰撞的类型、角度和严重程度,所述加速度计和所述撞击感知器与所述电子控制器单元信号连接以将检测到的信息馈送至所述电子控制器单元;所述电子控制器单元对所述信息进行分析判断,以确定是否部署安全气囊充气;所述安全气囊包括压缩空气储气罐、进气阀、气囊和通气孔,所述压缩空气储气罐内储存压缩空气,所述气囊设置在所述坐架上并通过所述进气阀与所述压缩空气储气罐相连,所述通气孔为所述气囊与大气之间的通气孔,所述压缩空气储气罐内储存的压缩空气可受控地通过开启的所述进气阀充入所述气囊;所述紧急救援降落伞系统包括降落伞、降落伞开伞拉绳、压缩空气张伞喷气引擎和压缩空气加速张伞气球;所述降落伞的伞衣、伞绳折叠装在带有尼龙搭扣的装伞密封袋中,所述装伞密封袋设置在所述背板上端,所述背板上端设有悬挂点,所述悬挂点与穿过所述装伞密封袋的所述伞绳的端部连接,所述尼龙搭扣可在所述压缩空气张伞喷气引擎发射时打开;所述降落伞开伞拉绳的一端与所述降落伞相连,另一端与所述压缩空气张伞喷气引擎相连;所述压缩空气张伞喷气引擎包括压缩空气储气管、带有可控阀门的进气管、膨胀室和拉伐尔喷管,在所述可控阀门开启的状态下,所述压缩空气储气管中的压缩空气经所述进气管进入所述膨胀室并从所述拉伐尔喷管向下喷出,驱动所述压缩空气张伞喷气引擎向上射出并引导所述降落伞开伞拉绳升空,所述降落伞开伞拉绳将所述降落伞从打开所述尼龙搭扣的所述装伞密封袋中拉出并升空;所述压缩空气加速张伞气球的数量为多个,并且分别设置在伞衣的底边内侧且在朝向所述伞衣内侧方向设有张伞气球阀门,所述张伞气球阀门在所述降落伞从所述装伞密封袋中拉出升空的状态下开启,并且所述压缩空气加速张伞气球内的压缩空气向所述伞衣内喷射加速张伞。
根据本申请的实施例,还包括控制系统,所述控制系统用于控制所述安全设备工作并且包括人工驾驶操作装置和自动控制系统;其中,所述人工驾驶操作装置包括升高踏板、下降踏板、起动-加速踏板、减速-制动踏板、左转按钮和右转按钮;所述升高踏板和所述下降踏板设置在所述左足踏板支架上;所述起动-加速踏板和所述减速-制动踏板设置在所述右足踏板支架上;所述左转按钮和所述右转按钮分别设置在左右两侧的所述扶手 的前端端部的下方;所述自动控制系统包括姿态平衡反馈控制系统和自动驾驶系统,其中所述姿态平衡反馈控制系统由相互配合的姿态平衡传感器、计算机中心和姿态控制压缩空气喷气引擎组成;所述自动驾驶系统包括感知设备、连接网络和执行器;所述感知设备包括传感器、全球定位系统和惯性测量单元,用于采集和处理所述以压缩空气为动力源的个人飞行器的环境信息、以及定位和航向信息;所述连接网络包括所述感知设备接入的个人飞行器物联网;所述执行器包括能够接收和执行指令以对所述以压缩空气为动力源的个人飞行器进行高度、速度和转向自动控制的设备。
根据本申请的实施例,还提供了一种以压缩空气为动力源的个人飞行器的运行方法,包括:向所述压缩空气供气设备中充入压缩空气;在控制下所述压缩空气供气设备向所述涵道内压缩空气人造风吹风口供给压缩空气,使得所述涵道内压缩空气人造风吹风口朝向所述静止桨叶的前缘喷射气流,在所述气旋圆筒内形成气旋,所述气旋涵道内静止旋翼升力装置产生升力,驱动所述以压缩空气为动力源的个人飞行器起飞;同时压缩空气进入所述气缸式套筒的内腔上部,向下推动所述活塞使所述活塞杆式柱体从所述气缸式套筒向下伸出以助力推举所述以压缩空气为动力源的个人飞行器升空;在控制下驱动所述以压缩空气为动力源的个人飞行器保持姿态平衡、向目的地飞行和/或悬停在目的地上空;在控制下所述涵道内压缩空气人造风吹风口喷射人造风风量、风速渐减,所述气旋涵道内静止旋翼升力装置升力渐减,所述以压缩空气为动力源的个人飞行器开始下降;当所述支撑腿触地端触地后所述活塞杆式柱体上推所述活塞向所述气缸式套筒的内腔上方运动,所述排气阀开启以进行降落缓冲。
本申请的有益效果在于:
在本申请提供的以压缩空气为动力源的个人飞行器及其运行方法中:
一、本申请气旋涵道内静止旋翼升力装置以压缩空气为动力源克服了现有技术个人飞行器发动机存在的一些问题和缺点,比如:
克服了现有技术个人飞行器发动机靠燃烧化石燃料产生高温高压气体做功面临能源耗竭和环境污染的问题和缺点,本申请以气旋涵道内静止旋翼升力装置产生升力,节能环保。
本申请克服了现有技术个人飞行器发动机一方面因燃气高温使其产 生和利用高压气体做功的能力大受限制(耐高温材料贵,高温也使承受压力有限),同时排出高温废气损失大量热能,能量利用率低,效率不高的问题和缺点;本申请以所述气旋涵道内静止旋翼升力装置产生升力,利用高压/超高压压缩空气做功不受高温影响,排出废气几无热能损失。
本申请克服了现有技术个人飞行器发动机因燃气高温潜在的安全隐患,而且无需配备冷却系统而有利于飞行器轻量化,结构简化降低造价。
二、本申请克服了现有技术个人飞行器在利用“翼”产生升力方面存在的问题和缺点。
周知,在大气层内飞行,升力公式可表述为:
Figure PCTCN2020119567-appb-000002
其中:
Y=lift(升力)
C y=lift coefficient(升力系数,注:与翼型、攻角等有关)
ρ=air density(空气密度)
v=air velocity(空气流速,注:空气与机翼相对运动的速度,其平方与升力成正比)
S=wing area(机翼面积)。
因此,当升力系数(翼型、攻角等)、空气密度和机翼面积相对固定时,空气流速(空气与机翼相对运动的速度)就成为决定机翼升力的关键因素。对此,空气动力学中有一个很重要的概念:“机翼静止,空气运动”与“空气静止,机翼运动”这二者本质上是一样的,真正的关键在于二者相对运动的速度值。空气流速达到一定值时,产生可以克服自身重力的升力。
现有技术个人飞行器在利用“翼”产生升力方面存在的问题和缺点如:
一些最著名的个人飞行器“无翼”(参见背景技术)。个人飞行器在空中飞行得不到与翼相应的升力用以克服重力,滞空时间极短
部分现有技术个人飞行器虽然有翼,但依照传统“空气静止,机翼运动”的方式产生空气与机翼相对运动的速度进而产生升力,故如背景技术中所述需飞行人员背负机翼滑跑/高空跳下,或需内燃机驱动旋翼/螺旋桨的桨叶高速旋转,传动做功多,能耗大、环境污染等。
本申请气旋涵道内静止旋翼升力装置以压缩空气人造风相对于具有一定翼型和攻角的静止桨叶高速运动产生升力,这种“机翼静止,空气运动”的方式产生空气与机翼相对运动的速度,进而产生升力,无需飞行人员背负机翼滑跑/高空跳下,克服了由内燃机驱动旋翼/螺旋桨的桨叶高速旋转,传动做功多,能耗大、环境污染等,而且由压缩空气人造风在所述气旋圆筒内形成气旋气流速度(v)很高,加之压缩空气的空气密度(ρ)也相当高,产生的升力大,且可控;此外,所述气旋圆筒内还设有增加升力装置如所述附加静止旋翼和涵道内固定机翼,使气旋高速气流被进一步利用增加升力;其中有关“气旋”还有一些出乎意料的有益效果,表现在:①在所述气旋圆筒内由于高速旋转的空气柱中高风速引起的低气压(低于外界环境大气压)有利于增加所述气旋圆筒的升力,②在所述渐阔下口中气旋直径渐增的同时,由于角动量守恒(due to conservation of angular momentum)气旋风速渐减,气压有所回升,对所述气旋圆筒也有一定的托升作用,③所述渐阔下口中虽然气旋风速渐减,但该处气旋仍然保留有相当高的风速,以至气压仍然明显低于外界大气压力而受到大气给予的一定程度的托升力,④从所述渐阔下口气旋式向下泄出气流的反作用力,也赋予所述渐阔下口一定的升力。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图涉及本申请实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他图。
图1是本申请实施例气旋涵道内静止旋翼升力装置的立体示意图;
图2是本申请实施例气旋涵道工作水平节段俯视示意图;
图3是图2中Ⅰ处截面局部放大正视升力产生的示意图;
图4是本申请实施例以压缩空气为动力源的个人飞行器俯视示意图;
图5是本申请实施例以压缩空气为动力源的个人飞行器侧视示意图;
图6是本申请实施例压缩空气供气设备的示意图。
图中:1、气旋涵道内静止旋翼升力装置;2、坐架;3、压缩空气供 气设备;4、气旋涵道;5、涵道内静止旋翼;6、涵道内压缩空气人造风吹风口;7、气旋圆筒;8、渐阔下口;9、气旋圆筒内壁;10、轴线;11、工作水平节段;12、静止桨毂;13、静止桨叶;14、翼型;15、攻角;16、前缘;17、后缘;18、扇形空间;19、顺时针方向排序;20、逆时针方向排序;21、压缩空气人造风喷孔;22、气流;23、高速气流的方向;24、静止桨叶前—后缘连线;25、上表面;26、下表面;27、气流向下倾斜;28、升力;29、顺时针气旋涵道内静止旋翼升力装置;30、逆时针气旋涵道内静止旋翼升力装置;31、增加升力装置;32、附加静止旋翼;33、涵道内固定机翼;34、翼根;35、翼端;36、背板;37、坐板;38、扶手;39、支撑腿;40、卡扣机构;41、转动连接;42、前支撑腿;43、后左支撑腿;44、后右支撑腿;45、活塞杆式柱体;46、气缸式套筒;47、活塞;48、支撑腿触地端;49、地面;50、可动关节部;51、充气阀门;52、排气阀;53、端口;54、左足踏板支架;55、右足踏板支架;56、压缩空气储气装置;57、压缩空气传输通路;58、压缩空气排气装置;59、储气排管;60、集管;61、排管入口;62、排管入口阀门;63、排管出口;64、排管出口阀门;65、入口集管;66、出口集管;67、集管进气口;68、集管进气阀;69、集管出气口;70、集管出气阀;71、减压室;72、连接管;73、单向阀;74、压缩空气人造风排气装置;75、压缩空气喷气引擎;76、膨胀室;77、渐缩渐阔管;78、送风筒;79、压缩空气膨胀室;80、喷气引擎拉瓦尔喷管;81、左后喷喷气引擎;82、左前喷喷气引擎;83、右后喷喷气引擎;84、右前喷喷气引擎;85、装伞密封袋;86、升高踏板;87、下降踏板;88、起动-加速踏板;89、减速-制动踏板;90、左转按钮;91、右转按钮;92、下喷喷气引擎;93、连接结构。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术 语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,在本申请的描述中,除非另有说明,“多个”、“多根”、“多组”的含义是两个或两个以上,“若干个”、“若干根”、“若干组”的含义是一个或一个以上。
现参见图1至图6,对本申请的以压缩空气为动力源的个人飞行器及其运行方法的实施例进行描述。应当理解的是,以下仅是本申请的示意性实施方式,并不对本申请构成任何特别的限定。
如图1至图6所示,本申请实施例提供的以压缩空气为动力源的个人飞行器,包括气旋涵道内静止旋翼升力装置1、坐架2、压缩空气供气设备3、安全设备和控制系统。其中,气旋涵道内静止旋翼升力装置1和压缩空气供气设备3分别安装在坐架2上。
如图1和图2所示,气旋涵道内静止旋翼升力装置1包括气旋涵道4、涵道内静止旋翼5和涵道内压缩空气人造风吹风口6。
具体来说,气旋涵道4为由气旋圆筒7和渐阔下口8组成的竖直设置在坐架2两侧的的气体通道。气旋圆筒内壁9呈圆柱面曲面,圆柱面曲面由气旋圆筒7内壁上平行于气旋圆筒的轴线10的线段以轴线10为旋转轴并保持与轴线定距离为气旋圆筒半径旋转一周所形成的曲面,且其表面光滑。气旋圆筒7上方敞开与大气相通,气旋圆筒7下方与渐阔下口8相延续。渐阔下口8由气旋圆筒下端筒壁向外下方匀称延伸一段距离形成,渐阔下口8各节段的横截面均为圆形且各横截面所示的圆从上到下直径渐增。在气旋圆筒7内位于中上部的一个水平节段称为工作水平节段11,在工作水平节段11上分布着涵道内静止旋翼5和涵道内压缩空气人造风吹风口6。
如图1至图3所示,涵道内静止旋翼5包括位于中央的圆盘形静止桨毂12和固定连接在静止桨毂12周围放射状匀称排布的多片静止桨叶13。涵道内静止旋翼5的静止桨毂12和静止桨叶13与真正旋翼的桨毂和桨叶的主要区别在于:静止桨毂12和静止桨叶13是“静止”不转的,静止桨 毂12和静止桨叶13水平静止于气旋圆筒7内。静止桨毂12的中心位于气旋圆筒的轴线10上但不与任何发动机轴相连接,静止桨毂12本身静止不动也不会带动固定连接在其周围的静止桨叶13转动。静止桨叶13的外周端固定连接在气旋圆筒内壁9上,静止桨叶13形同机翼具有翼型14和攻角15、前缘16和后缘17,而且每片静止桨叶13的后缘17隔一个扇形空间18与另一片静止桨叶13的前缘16相邻,使在一个静止桨毂12周围放射状排布的多片静止桨叶13依次按照从前缘16至后缘17的顺序呈顺时针方向排序19或逆时针方向排序20(参见图4),二者分别称为顺时针或逆时针排序静止桨叶。具有顺时针或逆时针排序静止桨叶的涵道内静止旋翼称为顺时针或逆时针涵道内静止旋翼,内置顺时针或逆时针涵道内静止旋翼的气旋圆筒称为顺时针或逆时针气旋圆筒。
如图1至图3所示,涵道内压缩空气人造风吹风口6有多个,每个涵道内压缩空气人造风吹风口6在工作水平节段11对应于一片静止桨叶13并设置在气旋圆筒内壁9上,每个涵道内压缩空气人造风吹风口6由一组水平展开的数个压缩空气人造风喷孔21组成,每一组压缩空气人造风喷孔21水平朝向对应的一片静止桨叶13的前缘16喷射高速的气流22,高速气流的方向23与该静止桨叶前—后缘连线24的夹角相当于机翼之翼弦与相对风流(Relative Airflow)的方向之夹角即攻角(Angle of attack)15,即在高速的气流22与静止桨叶13之间的相对运动相当于旋翼机高速转动的桨叶与静止的空气之间的相对运动。这样,从涵道内压缩空气人造风吹风口6喷射的高速的气流22加大了具有一定翼型14的静止桨叶的上表面25和下表面26的压力差(上表面气流速度高压力低),从涵道内压缩空气人造风吹风口6喷射的高速的气流22亦冲击着具有一定攻角15的静止桨叶的下表面26,以及从涵道内压缩空气人造风吹风口6喷射的气流紧贴凸出的静止桨叶的上表面25高速流动至离开静止桨叶的后缘17的气流向下倾斜27。因此,根据伯努利原理、牛顿第三定律、康达效应(Coanda Effect)从涵道内压缩空气人造风吹风口6如此喷射高速的气流22具有提高静止桨叶13的升力28的作用。其中,向顺时针或逆时针排序静止桨叶吹风的压缩空气人造风吹风口称为顺时针或逆时针人造风吹风口。
从顺时针或逆时针人造风吹风口吹出的人造风高速气流22于静止桨 毂12一侧吹过对应的顺时针或逆时针排序静止桨叶13后,该桨叶后缘邻近的气旋圆筒内壁9的圆柱面曲面将气流导向沿气旋圆筒内壁9的圆柱面曲面顺时针或逆时针方向旋转。沿气旋圆筒内壁9的圆柱面曲面环绕气旋圆筒的轴线10顺时针或逆时针旋转的气旋保持有一定的角动量,且不断被同一气旋圆筒7内的多个顺时针或逆时针人造风吹风口吹出的人造风高速气流22及其继续沿气旋圆筒内壁9的圆柱面曲面环绕气旋圆筒的轴线10顺时针或逆时针旋转的气旋所补充、叠加,以至在气旋圆筒内形成高速顺时针或逆时针旋转的空气柱。其中部分高速旋转气流不同程度地多次与具有一定翼型14和攻角15的静止桨叶13高速相对运动,有利于压缩空气人造风提高升力的利用率,而且在气旋圆筒7内由于高速旋转的空气柱中高风速引起的低气压(低于外界环境大气压)也有利于增加气旋圆筒7的升力。
从涵道内压缩空气人造风吹风口6吹出的人造风和气旋圆筒7内高速旋转的空气柱中气旋的高速气流在与静止桨叶13高速相对运动中空气动力学作用使流过具有一定翼型14和攻角15的静止桨叶13的气流向下倾斜27,这个向下的速度分量使高速顺时针或逆时针旋转的空气柱气旋在旋转中有一定程度的下行趋势,而在气旋圆筒内高速旋转的空气柱中形成高速顺时针或逆时针螺旋式下降气旋,直至螺旋式下降气旋从气旋圆筒7内旋转下降进入渐阔下口8。
螺旋式下降气旋从气旋圆筒7内旋转下降进入渐阔下口8后继续旋转下降。随着渐阔下口8直径渐增,在渐阔下口顺时针或逆时针旋转的气旋的直径也渐增。由于角动量守恒(due to conservation of angular momentum),在渐阔下口8中气旋直径渐增的同时气旋风速渐减,在渐阔下口8中气旋风速渐减的同时气压有所回升而高于在其上方的气旋圆筒7内气压,故渐阔下口8对气旋圆筒7也有一定的托升作用。
由于在渐阔下口8中气旋仍然保留有相当高的风速,在渐阔下口8内的气压仍然明显低于外界大气压力,使渐阔下口受到大气给予的一定程度的托升力。在渐阔下口8中顺时针或逆时针螺旋式下降气旋继续旋转下降,直到从渐阔下口8顺时针或逆时针气旋式向下泄出。从渐阔下口8顺时针或逆时针气旋式向下泄出气流对于渐阔下口8的反作用力也赋予渐阔下口 8一定的升力。
其中,气旋涵道内具有顺时针排序静止桨叶、顺时针人造风吹风口从而产生高速顺时针旋转的空气柱、高速顺时针螺旋式下降气旋和顺时针气旋式向下泄出的气旋涵道内静止旋翼升力装置称为顺时针气旋涵道内静止旋翼升力装置29(参见图4)。气旋涵道内具有逆时针排序静止桨叶、逆时针人造风吹风口从而产生高速逆时针旋转的空气柱、高速逆时针螺旋式下降气旋和逆时针气旋式向下泄出的气旋涵道内静止旋翼升力装置称为逆时针气旋涵道内静止旋翼升力装置30(参见图4)。如图4所示,顺时针气旋涵道内静止旋翼升力装置29和逆时针气旋涵道内静止旋翼升力装置30分别对称地通过连接结构93固定安装在坐架2左右两侧处于扭矩平衡。压缩空气供气设备3、安全设备和控制系统也分别安装设置在坐架2上。
如图1、图3和图5所示,气旋圆筒7内涵道内静止旋翼5的下方还设有增加升力装置31,增加升力装置31包括附加静止旋翼32和涵道内固定机翼33。
具体地,附加静止旋翼32可有一部至多部,固定设置在气旋圆筒7内涵道内静止旋翼5的下方某个或数个水平节段上。其形态结构和固定方式与涵道内静止旋翼5相同。更具体地说,在一个顺时针气旋圆筒内可有一部至多部按顺时针方向排布的附加静止旋翼,在一个逆时针气旋圆筒内可有一部至多部按逆时针方向排布的附加静止旋翼;它们所具有的静止桨叶的翼型14和攻角15与它们在气旋圆筒7内气旋来流方向相适应。
涵道内固定机翼33在每个气旋圆筒7内可设有一层至多层,其中每层涵道内固定机翼33由匀称分布在一个水平阶段上的数片机翼组成,每片机翼的翼根34固定连接在气旋圆筒内壁9上,其翼端35伸向气旋圆筒7中央但不超过气旋圆筒中央的轴线10,涵道内固定机翼的翼型14、攻角15、前缘16和后缘17与它们在气旋圆筒7内所在位置气旋来流相适应。
如图4和图5所示,坐架2为由高强度轻质材料制成的框架结构,包括背板36、坐板37、扶手38和支撑腿39。
具体地,背板36为椅背状结构,其背面设有卡扣机构40用于安装固定压缩空气供气设备3。背板36前面设有一对肩背带和一个腹带,分别用 于从人体双肩和腹部将飞行人员系缚在背板36上,背板36下方与坐板37连接。
坐板37为相当于坐面的板状结构,坐板37上设有一对臀腿带,用于分别从人体左、右腹股沟部系缚飞行人员臀腿部于坐板37上。
扶手38有左右两个,其形状、位置有如扶手椅子的扶手。两个扶手38的后端与背板36或坐板37的两侧构成转动连接41,两个扶手38的前端可以在控制下以其后端转动连接41为轴上下左右活动。
支撑腿39可有数根,通常为三根,它们从背板36或坐板37下部分别向下外方伸出,并依据其所在的方位命名,如称为前支撑腿42、后左支撑腿43和后右支撑腿44。每根支撑腿39由活塞杆式柱体45及套设在其外的气缸式套筒46构成。
具体地,活塞杆式柱体45上端为活塞47,活塞47可以在气缸式套筒46内上下滑动,活塞杆式柱体45下端为支撑腿触地端48,所有支撑腿触地端48触地时分布在水平地面49上。气缸式套筒46筒壁上端通过可动关节部50连接在背板36或坐板37下部。气缸式套筒46内腔腔壁光滑与活塞47密封接触且活塞47可以在气缸式套筒46内腔上下滑动。气缸式套筒46内腔上端设有充气阀门51和排气阀52;气缸式套筒46内腔下端设有端口53,端口53口径与活塞杆式柱体45直径适配,使活塞杆式柱体45随活塞47在气缸式套筒46内上下运动平稳,并可节制活塞47向下滑出。
进一步地,在前支撑腿42的气缸式套筒46下端外部左右两侧分别设有与该套筒垂直的短板,称为左足踏板支架54和右足踏板支架55。支撑腿39的总长度可调,可以通过调节活塞杆式柱体45和气缸式套筒46交叠部分的程度来调节,即活塞杆式柱体45和气缸式套筒46交叠部分较多或较少时,支撑腿39的总长度较短或较长。
具体地,当活塞杆式柱体45和气缸式套筒46交叠部分最多支撑腿的总长度最短时,为支撑腿的基础着地长度,若个人飞行器以基础着地长度支撑腿停止在地面49时,从坐板37到地面49的高度相当于人体小腿的长度;当活塞杆式柱体45和气缸式套筒46交叠部分最少支撑腿的总长度最长,达到最长支撑腿长度,若个人飞行器以最长支撑腿长度支撑停止在 地面49时从坐板37到地面49的高度大于人体整个下肢的长度;由于气缸式套筒46的筒壁上端上述可动关节部50可以适应支撑腿39与坐板37所在平面的交角一定程度的变化,故个人飞行器在地面49停止时支撑腿39可以从基础着地长度变化到最长支撑腿长度,或从最长支撑腿长度变化到基础着地长度;当人体臀部坐在坐板37上时膝关节微屈便可轻松将其两足分别置于左足踏板支架54和右足踏板支架55上;当个人飞行器以基础着地长度支撑腿停止在地面49启动起飞程序时,在控制下排气阀52关闭,压缩空气可以通过开启的充气阀门51进入气缸式套筒46内腔上部,使在活塞47以上的气缸式套筒46内腔上部气体压力骤升。当气缸式套筒46内腔上部气体压力达到一定值时,推动活塞47迅速下行,使活塞杆式柱体45下行并从端口53伸出于气缸式套筒46下端之外。在此过程中,活塞杆式柱体45和气缸式套筒46交叠部分减少同时支撑腿39的总长度增加,直至达到最长支撑腿的长度。由于支撑在地面49上的支撑腿触地端48与地面49之间作用力和反作用力的相互作用,当支撑腿39的总长度增加时推举气缸式套筒46及其以上的个人飞行器主体部分迅速上升,起到“起飞助力”的作用,辅助顺时针气旋涵道内静止旋翼升力装置29和逆时针气旋涵道内静止旋翼升力装置30产生的升力,使个人飞行器携带着最长支撑腿起飞升空。反过来,当携带着最长支撑腿飞行的个人飞行器从空中降落,最长支撑腿下端的支撑腿触地端48突然触地时,地面49立即直接阻止活塞杆式柱体45继续向下运动,而气缸式套筒46及其以上的个人飞行器主体部分继续向下运动并未被地面49立即直接阻止,发生与前述“起飞助力”方向相反的气缸式套筒46和活塞杆式柱体45的相对运动,即气缸式套筒46向下运动使部分已位于端口53之外的活塞杆式柱体45再经端口53伸入气缸式套筒46内腔,使活塞杆式柱体45和气缸式套筒46交叠部分再次增加并且支撑腿39的总长度减少,在其减少至基础着地长度的过程中,活塞47上方现有的气缸式套筒46内腔空间不断缩小并且气体压力不断升高时,排气阀52开启使气缸式套筒46内腔压力不至于突然过高但形成对气缸式套筒46及其以上的个人飞行器主体部分继续向下运动的缓冲阻力,对个人飞行器触地下降速度有所缓冲,有利于个人飞行器降落着陆减震,在此称上述这种气缸式套筒46和活塞杆式柱体45 交叠部分增加的相对运动为“降落缓冲”。
如图6所示并同时参考图4和图5,压缩空气供气设备3可以包括压缩空气储气装置56、压缩空气传输通路57和压缩空气排气装置58。
具体来说,储气装置56为管状结构,由质轻、耐受高压的材质构成,内储高压/超高压压缩空气。储气装置包括多根储气排管59和位于储气排管59两端的集管60。
其中,每根储气排管59的一端设有排管入口61和排管入口阀门62,另一端设有排管出口63和排管出口阀门64。与多根储气排管59的入口端相连通的集管称为入口集管65,与多根储气排管59的出口端相连通的集管称为出口集管66。入口集管65上设有集管进气口67和集管进气阀68,集管进气口67和集管进气阀68即压缩空气储气装置56的进气口和进气阀。出口集管66上设有多个集管出气口69和集管出气阀70,它们即压缩空气储气装置56的出气口和出气阀。
在集管出气阀70关闭而集管进气阀68开启,同时储气排管59上的所有阀门开启时,可以通过集管进气口67向压缩空气储气装置56加压充气。其中,可应用本发明人2015年一项已获授权的发明专利《经济利用压缩空气为汽车动力源的系统及其方法》(专利号:ZL 201510289802.3)公开的“压缩空气产储供气机构”,或本发明人2016年另一项获得授权的发明专利《以压缩空气为施力源的系统及其方法、飞机》(专利号:ZL201610125197.0)公开的“压缩空气产供装置”向压缩空气储气装置56加压充入高压/超高压压缩空气。在集管进气阀68关闭而集管出气阀70开启同时储气排管59上的所有阀门关闭,唯有需要向外输出压缩空气的储气排管59的排管出口阀门64开启时,该储气排管中的压缩空气可以通过其排管出口63从压缩空气储气装置56向外输出压缩空气。
压缩空气传输通路57是压缩空气储气装置56内高压/超高压压缩空气向压缩空气排气装置58传输的通路,其包括减压室71、连接管72和单向阀73。
具体来说,减压室71可为一个或数个,减压室71为数个时它们按照压力递降的顺序串连为一串或数串,其中设计压力相同的若干个减压室71可以相互并联,减压室中压力按设计要求低于压缩空气储气装置56或排 序在前的上一级减压室71中的压力。连接管72和单向阀73设置在压缩空气储气装置56和减压室71之间、减压室71之间、减压室71与压缩空气排气装置58之间、以及减压室71与气缸式套筒46或其他用气设备之间,用于压缩空气单向传输。
压缩空气排气装置58用于排出从压缩空气传输通路57传输来的具有一定设计压力的压缩空气,压缩空气排气装置58包括压缩空气人造风排气装置74和压缩空气喷气引擎75。
其中,压缩空气人造风排气装置74有两部,分别竖置在坐架2左右两侧。每部压缩空气人造风排气装置74从上到下依次排列着膨胀室76、渐缩渐阔管77和送风筒78。
具体来说,膨胀室76内径大于与其相连的连接管72的管径,膨胀室76的内壁设有气体射入调节器,气体射入调节器用于调控从连接管72和单向阀73射入到膨胀室76内的压缩空气的压力和流量。进入膨胀室76中的压缩空气以一定压力向其下方的渐缩渐阔管77排放时给予膨胀室76的室壁一定的向上的反作用力,并由于渐缩渐阔管77具有“流速放大器”作用,使流经其中的气流加速排入与其相延续的送风筒78,进而送风筒78分为几支分筒环绕气旋圆筒7外围分别将人造风送达在工作水平节段11上分布在气旋圆筒内壁9的涵道内压缩空气人造风吹风口6。在每个涵道内压缩空气人造风吹风口6由一组水平展开的数个压缩空气人造风喷孔21水平朝向对应的一片静止桨叶13的前缘16喷射高速的气流22。
压缩空气喷气引擎75为以压缩空气为喷射工质的喷气引擎,共有多部,每部均由压缩空气膨胀室79和喷气引擎拉瓦尔喷管80构成。
在使用过程中,其压缩空气膨胀室79接受从连接管72和单向阀73传输来的具有一定压力的压缩空气,通过喷气引擎拉瓦尔喷管80喷口喷射高速气流的反作用力产生推力。压缩空气喷气引擎75喷出的气流温度远低于传统技术喷气发动机喷出的灼热燃气,不会对个人飞行器及其周围环境、人员造成烧蚀损伤,故压缩空气喷气引擎75可以设置在坐架2的周侧几乎任何有需要的部位,只需将传输一定压力压缩空气的连接管72和单向阀73连通到该位置即可。
分别设置在坐架2的周侧的压缩空气喷气引擎75单独启动时的推力 及协同启动时产生的合力对个人飞行器形成目标方向的推送,比如设置在坐架2左右两侧分别向后和向前喷气的四个称为左后喷喷气引擎81、左前喷喷气引擎82、右后喷喷气引擎83和右前喷喷气引擎84。
具体来说,当左后喷喷气引擎81和右后喷喷气引擎83开启而左前喷喷气引擎82和右前喷喷气引擎84关闭时,产生将个人飞行器向前推送的合力(提速、向前飞行)。当左后喷喷气引擎81和右后喷喷气引擎83关闭而左前喷喷气引擎82和右前喷喷气引擎84开启时,产生将个人飞行器向后推送的合力(缓冲减速、后行)。当左后喷喷气引擎81和右前喷喷气引擎84开启而左前喷喷气引擎82和右后喷喷气引擎83关闭时,产生将个人飞行器顺时针旋转的合力。当右后喷喷气引擎83和左前喷喷气引擎82开启而右前喷喷气引擎84和左后喷喷气引擎81关闭时,产生将个人飞行器逆时针旋转的合力。当左后喷喷气引擎81开启而右后喷喷气引擎83、左前喷喷气引擎82和右前喷喷气引擎84关闭时,产生将个人飞行器向右前方的推力。当右后喷喷气引擎83开启而左后喷喷气引擎81、左前喷喷气引擎82和右前喷喷气引擎84关闭时,产生将个人飞行器向左前方的推力。
若干个分别设置在坐架2下方向下喷气的压缩空气下喷喷气引擎92单独或协同工作时对个人飞行器产生相应局部或各协同部位向上的推力或合力,以提高起飞升力、缓冲降落速度、调节坐架2平衡。压缩空气喷气引擎75为个人飞行器姿态控制、航向保持和航线变化提供所需的推力、力矩。
进一步地,本申请实施例的安全设备包括压缩空气安全气囊系统和紧急救援降落伞系统。
具体来说,压缩空气安全气囊系统包括传感器,电子控制器单元和安全气囊。
其中,传感器包括加速度计(accelerometers)和撞击感知器,加速度计用于检测个人飞行器的速度变化,撞击感知器用于检测发生碰撞的类型、角度和严重程度,加速度计和撞击感知器将它们检测到的信息馈送至电子控制器单元;电子控制器单元对来自这些传感器的信息进行分析判断,立即确定是否触发安全气囊电路以及部署相关部位的安全气囊适度充气。
在一个实施例中,安全气囊包括压缩空气储气罐、进气阀、气囊和通气孔。压缩空气储气罐内储存适量一定压力的压缩空气,气囊设置在坐架适当部位并通过进气阀与压缩空气储气罐相连,通气孔为气囊与大气之间的通气孔,压缩空气储气罐内储存的压缩空气可以在控制下通过开启的进气阀适时、适量充入气囊。当飞行人员身体碰撞并挤压已具有一定压力的气囊时,通过通气孔开始放气降低气囊内压力以利于缓冲碰撞。其中,安全气囊按依据摆放的位置可分为前方气囊、侧边气囊、靠背上端气囊、坐板气囊和外部气囊。
在使用过程中,前方气囊和侧边气囊以及靠背上端气囊平时分别折叠安装在两个扶手38的前端和侧边以及背板36的上端(图中未显示),可以在控制下分别迅速从两个扶手38的前端向内和从两个扶手38侧边向两侧以及从背板36的上端向上充气膨胀、弹出展开,用于从前方、两侧和上方缓冲碰撞过程中对飞行人员驱体和头部的撞击。坐板气囊设置在坐板37上面(图中未显示),可在控制下充气膨胀为一定厚度的气垫,用于缓冲对于飞行人员骨盆的撞击。外部气囊安装在个人飞行器的外部,可以在控制下展开覆盖诸如压缩空气供气设备等质硬区域,旨在缓冲、减少个人飞行器与行人之间撞击伤害。
紧急救援降落伞系统包括降落伞、降落伞开伞拉绳、压缩空气张伞喷气引擎和压缩空气加速张伞气球。
具体来说,降落伞的伞衣、伞绳折叠装在带有尼龙搭扣的装伞密封袋85中。装伞密封袋85设置在背板36上端(如图4、图5所示),背板36上端设有悬挂点(图中未显示),悬挂点与穿过装伞密封袋85的伞绳端部永久性连接。尼龙搭扣在压缩空气张伞喷气引擎发射时打开。开伞拉绳的一端与降落伞相连,开伞拉绳的另一端与压缩空气张伞喷气引擎相连。压缩空气张伞喷气引擎结构小巧并包括压缩空气储气管、带有可控阀门的进气管、膨胀室和拉伐尔喷管。其沿垂直方向活动连接在背板36上端后部(图中未显示),且在拉伐尔喷管喷口正下方垂直设有用于收容从拉伐尔喷管喷口喷出气体的废气筒。
一旦在紧急状态下可控阀门开启,该压缩空气储气管中的压缩空气经进气管迅速进入膨胀室并从拉伐尔喷管向下沿废气筒喷出,驱动压缩空气 张伞喷气引擎向上射出并带着开伞拉绳迅速升空,开伞拉绳即将降落伞从打开尼龙搭扣的装伞密封袋85中拉出并随之升空。在空中降落伞伞衣在空气的作用下张开,开始伞衣充气;压缩空气加速张伞气球可有数个(图中未显示),为具有质轻耐压材质外壳的小球形容器,内部容纳压缩空气。它们分别匀称地设置在伞衣底边内侧并且在朝向伞衣内侧方向设有张伞气球阀门,张伞气球阀门在降落伞从装伞密封袋85中拉出升空时开启,张伞气球内压缩空气向伞衣内喷射,加速伞衣充气涨满、完成开伞。迅速张开的伞衣是气动减速面,其下降受到的空气阻力通过伞绳及其端部与悬挂点永久性连接传递到个人飞行器使其下降减速和安全着陆。
进一步地,本申请实施例的控制系统包括人工驾驶操作装置和自动控制系统。
具体地,参看图4和图5,人工驾驶操作装置包括升高踏板86、下降踏板87、起动-加速踏板88、减速-制动踏板89、左转按钮90和右转按钮91。
升高踏板86和下降踏板87设置在左足踏板支架54上,其中升高踏板86排列在下降踏板87的右侧。当飞行人员左足踩踏升高踏板86时,个人飞行器从地面49升起或在空中继续升高;当飞行人员左足踩踏下降踏板87时,个人飞行器在空中高度下降或从空中降落地面49。
起动-加速踏板88和减速-制动踏板89设置在右足踏板支架55上,其中起动-加速踏板88排列在减速-制动踏板89的右侧。当飞行人员右足踩踏起动-加速踏板88时,个人飞行器在空中启动飞行和加速;当飞行人员右足踩踏减速-制动踏板89时,个人飞行器在空中飞行减速以至空中悬停,而且进一步深踏该踏板可使个人飞行器缓慢后飞。
左转按钮90和右转按钮91分别设置在左右扶手38前端端部的下方。当人体左右两前臂分别置于左右扶手38上,左右两手在左右扶手前端端部自然微屈,便可轻松触及设置在左右扶手38前端端部的下方的左转按钮90和右转按钮91。当飞行人员左手指扣按左扶手前端端部的下方的左转按钮90时,个人飞行器在空中飞行中左转;当飞行人员右手指扣按右扶手前端端部的下方的右转按钮91时,个人飞行器在空中飞行中右转。
进一步地,本申请实施例的自动控制系统包括姿态平衡反馈控制系统 和自动驾驶系统。
具体来说,姿态平衡反馈控制系统由姿态平衡传感器、计算机中心和姿态控制压缩空气喷气引擎组成。其中,姿态平衡传感器将其感受的个人飞行器姿态失衡的信息传递给计算机中心,计算机中心分析处理来自姿态平衡传感器有关个人飞行器姿态失衡的信息并发出相应的及时纠正个人飞行器姿态失衡状态的指令给设置在坐架2周围的压缩空气喷气引擎75,它们相互协调配合适时适量喷气,从而维持个人飞行器在空中姿态平衡。
进一步,自动驾驶系统包括感知设备、连接网络和执行器。其中,感知设备包括传感器、全球定位系统(GPS或北斗)和惯性测量单元(IMU),用于采集和处理个人飞行器的环境信息,以及定位和航向信息。连接网络包括感知设备接入的个人飞行器物联网,个人飞行器物联网是个人飞行器及其生态系统内物-物相连的互联网,用于分析从感知设备收集的数据和信息、设计个人飞行器航路、预测未来一段时间内的状况并制定相应的安全措施、对空中飞行的个人飞行器进行集中管理、控制和下达相应指令。执行器包括能够接受和执行指令对个人飞行器进行高度、速度和转向自动控制的设备,用于使个人飞行器按照指令自动驾驶起飞、沿航路飞行并在目的地安全降落。
另一方面,本申请还提供了一种以压缩空气为动力源的个人飞行器的运行方法,该运行方法包括以下步骤:
S1,加压充气步骤:
在集管出气阀70关闭而集管进气阀68开启,同时储气排管59上的所有阀门开启时,从“压缩空气产储供气机构”或“压缩空气产供装置”通过集管进气口67向压缩空气储气装置56加压充入足量高压/超高压压缩空气。
S2,飞行人员就位步骤:
坐架2的支撑腿39处于基础着地长度支撑在起飞地点地面49。飞行人员坐在坐板37上,背靠背板36,以背板36前面设有的一对肩背带和腹带分别将飞行人员双肩和腹部系缚在背板36上;以坐板37上设有的一对臀腿带分别从飞行人员左、右腹股沟部将飞行人员臀腿部系缚于坐板37上。
S3,起飞升空步骤:
飞行人员左足踩踏升高踏板86,在控制下气旋涵道内静止旋翼升力装置1中从涵道内压缩空气人造风吹风口6水平朝向对应的具有一定翼型14和攻角15的静止桨叶13的前缘16喷射高速气流。压缩空气高速气流22与静止桨叶13相对运动中产生升力28,并在气旋圆筒7内形成高速气旋、旋转的空气柱,且由于流过具有一定翼型14和攻角15的静止桨叶13的气流向下倾斜27,在高速旋转的空气柱中形成高速螺旋式下降气旋。气旋圆筒7内附加静止旋翼32和涵道内固定机翼33在与气旋高速气流相对运动中增加升力。在气旋圆筒7内由于高速旋转的空气柱中高风速引起的低气压使其受到大气给予的一定程度的托升力,从渐阔下口8气旋式向下泄出气流的反作用力也赋予渐阔下口8一定的升力。这时在控制下压缩空气可以通过充气阀门51进入气缸式套筒46内腔上部,使在活塞47以上的气缸式套筒46内腔上部气体压力骤升,使活塞杆式柱体45和气缸式套筒46交叠部分减少同时支撑腿39的总长度增加,直至活塞杆式柱体45和气缸式套筒46交叠部分最少、支撑腿39达到总长度最长,推举气缸式套筒46及其以上的个人飞行器主体部分迅速上升,起到前述“起飞助力”作用,辅助气旋涵道内静止旋翼升力装置1产生的升力,推举个人飞行器携带上述最长支撑腿起飞升空。飞行人员需要时左足交替踩踏升高踏板86或下降踏板87,控制气旋涵道内静止旋翼升力装置1中从涵道内压缩空气人造风吹风口6水平朝向对应的具有一定翼型14和攻角15的静止桨叶13的前缘16喷射高速气流22保持相对稳定风量、风速和气旋涵道内静止旋翼升力装置1升力,使个人飞行器相对稳定在适宜高度。在起飞升空过程中,姿态平衡传感器将个人飞行器姿态失衡的信息及时传递给计算机中心,计算机中心对此发出相应指令,设置在坐架2周围的压缩空气喷气引擎75相互协调配合适时适量喷气,维持个人飞行器在空中姿态平衡,同时分别对称地固定安装在坐架2左右两侧的顺时针气旋涵道内静止旋翼升力装置29和逆时针气旋涵道内静止旋翼升力装置30处于扭矩平衡,而且上述姿态平衡、扭矩平衡保持在整个飞行过程中。
S4,目标方向飞行步骤:
在个人飞行器达到适当高度时飞行人员右足踩踏起动-加速踏板88, 在控制下左后喷喷气引擎81和右后喷喷气引擎83开启(左前喷喷气引擎82和右前喷喷气引擎84处于关闭状态)产生将个人飞行器向前推送的合力,个人飞行器在空中开始加速向前飞行。飞行人员驾驶通过操作起动-加速踏板88、减速-制动踏板89、升高踏板86、下降踏板87、左转按钮90和右转按钮91,使个人飞行器适时加速、减速、升高、降低、左转和右转,使左后喷喷气引擎81、左前喷喷气引擎82、右后喷喷气引擎83和右前喷喷气引擎84、以及若干个设置在坐架2下方的下喷喷气引擎92等单独或协同工作,对个人飞行器产生相应的推力或合力,向目的地上空飞行。
S5,悬停降落步骤:
当个人飞行器接近目的地上空时,飞行人员右足踩踏减速-制动踏板89,左后喷喷气引擎81和右后喷喷气引擎83关闭而左前喷喷气引擎82和右前喷喷气引擎84开启,产生将个人飞行器向后推送的合力,缓冲个人飞行器继续向前运动的惯性,起到减速制动作用,从而使正在空中向前飞行的个人飞行器逐渐减速,直至悬停在目的地上空。
飞行人员左足踩踏下降踏板87,在控制下气旋涵道内静止旋翼升力装置1中从涵道内压缩空气人造风吹风口6水平朝向对应的具有一定翼型14和攻角15的静止桨叶13的前缘16喷射人造风风量和风速渐减。人造风气流与静止桨叶13相对运动产生的升力28渐减,在气旋圆筒7内形成的气旋、旋转的空气柱及其螺旋式下降气旋风量和风速渐减,气旋圆筒内附加静止旋翼32和涵道内固定机翼33所起的增加升力作用也渐减。在气旋圆筒7内气压逐渐回升使其受到大气给予的托升力渐减,从渐阔下口8气旋式向下泄出气流的流量和流速及其产生的反作用力和因此赋予渐阔下口8的升力均渐减,个人飞行器在目的地上空开始下降。
当携带着最长支撑腿飞行的个人飞行器在目的地上空从空中降落,最长支撑腿下端的支撑腿触地端48触地时,活塞杆式柱体45继续向下运动立即被地面49直接阻止,而气缸式套筒46及其以上的个人飞行器主体部分继续向下运动并未被地面49立即直接阻止。气缸式套筒46继续向下运动使部分位于端口53之外的活塞杆式柱体45经端口53伸入气缸式套筒46内腔,使活塞杆式柱体45和气缸式套筒46交叠部分再次增加并且支撑 腿39的总长度减少,使活塞47上方现有的气缸式套筒46内腔空间不断缩小同时气体压力不断升高时,排气阀52开启使气缸式套筒46内腔压力不至于突然过高但形成对气缸式套筒46及其以上的个人飞行器主体部分继续向下运动的缓冲阻力,对个人飞行器主体部分下降速度有所缓冲,起到前述“降落缓冲”作用,直到个人飞行器以基础着地长度支撑腿支撑在目的地地面49。
此外应当理解的是,在本申请的可选实施例中,以上所述的步骤S3至步骤S5也可以采用如上描述的自动驾驶系统来执行。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种以压缩空气为动力源的个人飞行器,其特征在于,包括气旋涵道内静止旋翼升力装置(1)、坐架(2)以及压缩空气供气设备(3),所述气旋涵道内静止旋翼升力装置(1)和所述压缩空气供气设备(3)分别安装在所述坐架(2)上;
    其中,所述气旋涵道内静止旋翼升力装置(1)包括气旋涵道(4)、涵道内静止旋翼(5)和涵道内压缩空气人造风吹风口(6),所述涵道内静止旋翼(5)和所述涵道内压缩空气人造风吹风口(6)在同一个工作水平节段(11)固定安装在所述气旋涵道(4)中,所述涵道内静止旋翼(5)包括静止桨毂(12)和固定连接在所述静止桨毂(12)周围且呈放射状排布的多片静止桨叶(13),所述静止桨叶(13)形同机翼并具有翼型(14)、攻角(15)、前缘(16)和后缘(17),且每片所述静止桨叶(13)的后缘(17)与另一片所述静止桨叶(13)的前缘(16)相对;
    其中,所述气旋涵道内静止旋翼升力装置(1)对称且扭矩平衡地固定安装在所述坐架(2)两侧,所述压缩空气供气设备(3)向所述涵道内压缩空气人造风吹风口(6)供给压缩空气,以使所述涵道内压缩空气人造风吹风口(6)朝向所述静止桨叶(13)的前缘(16)喷射气流(22)。
  2. 根据权利要求1所述的以压缩空气为动力源的个人飞行器,其特征在于,所述气旋涵道(4)为由气旋圆筒(7)和渐阔下口(8)组成的竖直设置在所述坐架(2)两侧的气体通道;
    其中,在所述气旋圆筒(7)内,所述静止桨叶(13)的外周端固定连接在气旋圆筒内壁(9)上;在所述气旋圆筒(7)内还设有增加升力装置(31),所述增加升力装置(31)包括附加静止旋翼(32)和涵道内固定机翼(33),所述附加静止旋翼(32)和所述涵道内固定机翼(33)分别固定设置在所述涵道内静止旋翼(5)和所述渐阔下口(8)之间的所述气旋圆筒内壁(9)上。
  3. 根据权利要求2所述的以压缩空气为动力源的个人飞行器,其特征在于,所述坐架(2)包括背板(36)、坐板(37)、扶手(38)和支撑腿(39);
    所述背板(36)的背面设有用于安装所述压缩空气供气设备(3)的 卡扣机构(40),所述背板(36)前面设有用于系缚人体于所述背板(36)上的肩背带和腹带,且所述背板(36)的底部与所述坐板(37)连接;
    所述扶手(38)有左右两个,所述扶手(38)的后端与所述背板(36)或所述坐板(37)的两侧转动连接(41);
    所述支撑腿(39)有数根,所述支撑腿(39)从所述背板(36)或所述坐板(37)的下部分别向下且向外伸出。
  4. 根据权利要求3所述的以压缩空气为动力源的个人飞行器,其特征在于,每根所述支撑腿(39)由活塞杆式柱体(45)及套设在其外的气缸式套筒(46)构成;
    所述活塞杆式柱体(45)的上端为活塞(47),所述活塞(47)可在所述气缸式套筒(46)内滑动,所述活塞杆式柱体(45)的下端为支撑腿触地端(48),所述气缸式套筒(46)的筒壁上端通过可动关节部(50)连接在所述背板(36)或所述坐板(37)下部;
    所述气缸式套筒(46)的内腔上端设有充气阀门(51)和排气阀(52),所述气缸式套筒(46)的内腔下端设有端口(53)用于使所述活塞杆式柱体(45)随所述活塞(47)在所述气缸式套筒(46)内上下运动时平稳伸入或伸出所述气缸式套筒(46)并节制所述活塞(47)向下滑出;其中向前下方伸出的所述支撑腿(39)即前支撑腿(42)的所述气缸式套筒(46)下端外部左右两侧分别设有左足踏板支架(54)和右足踏板支架(55);
    所述压缩空气供气设备(3)与所述充气阀门(51)连接,以向所述气缸式套筒(46)供给压缩空气。
  5. 根据权利要求4所述的以压缩空气为动力源的个人飞行器,其特征在于,所述压缩空气供气设备(3)包括压缩空气储气装置(56);
    所述压缩空气储气装置(56)包括多根储气排管(59)和位于所述储气排管(59)两端的集管(60),每根所述储气排管(59)的一端设有排管入口(61)和排管入口阀门(62),另一端设有排管出口(63)和排管出口阀门(64);
    其中,与多根所述储气排管(59)的排管入口(61)相连通的所述集管为入口集管(65),并且与多根所述储气排管(59)的排管出口(63)相连通的所述集管为出口集管(66);
    所述入口集管(65)上设有集管进气口(67)和集管进气阀(68),所述出口集管(66)上设有多个集管出气口(69)和集管出气阀(70)。
  6. 根据权利要求5所述的以压缩空气为动力源的个人飞行器,其特征在于,所述压缩空气供气设备(3)还包括与所述压缩空气储气装置(56)连通的压缩空气传输通路(57)、以及与所述压缩空气传输通路(57)连通的压缩空气排气装置(58);
    所述压缩空气传输通路(57)包括减压室(71)、连接管(72)和单向阀(73),所述连接管(72)和所述单向阀(73)设置在所述压缩空气储气装置(56)和所述减压室(71)之间、相邻所述减压室(71)之间、所述减压室(71)与所述压缩空气排气装置(58)之间、以及所述减压室(71)与所述气缸式套筒(46)之间,以用于单向传输压缩空气。
  7. 根据权利要求6所述的以压缩空气为动力源的个人飞行器,其特征在于,所述压缩空气排气装置(58)包括压缩空气人造风排气装置(74);
    所述压缩空气人造风排气装置(74)从上到下依次排列有膨胀室(76)、渐缩渐阔管(77)和送风筒(78);所述膨胀室(76)的内径大于与其相连的所述连接管(72)的管径,所述膨胀室(76)的内壁设有气体射入调节器,所述气体射入调节器用于调控从所述连接管(72)和所述单向阀(73)射入到所述膨胀室(76)内的压缩空气的压力和流量;所述送风筒(78)分为多支分筒并环绕所述气旋圆筒(7)外围,以将气流送达所述涵道内压缩空气人造风吹风口(6),其中,每个所述涵道内压缩空气人造风吹风口(6)均包括一组水平展开的多个压缩空气人造风喷孔(21),以水平朝向对应的所述静止桨叶(13)的前缘(16)喷射气流(22)。
  8. 根据权利要求7所述的以压缩空气为动力源的个人飞行器,其特征在于,所述压缩空气排气装置(58)还包括多个压缩空气喷气引擎(75);
    每部所述压缩空气喷气引擎(75)均由压缩空气膨胀室(79)和喷气引擎拉瓦尔喷管(80)构成,所述压缩空气膨胀室(79)接收从所述连接管(72)和所述单向阀(73)传输的压缩空气,并通过所述喷气引擎拉瓦尔喷管(80)的喷口喷射高速气流的反作用力来产生推力,其中包括设置在所述坐架(2)左右两侧分别向后和向前喷气的左后喷喷气引擎(81)、左前喷喷气引擎(82)、右后喷喷气引擎(83)和右前喷喷气引擎(84), 以及若干个设置在所述坐架(2)下方向下喷气的下喷喷气引擎(92)。
  9. 根据权利要求8所述的以压缩空气为动力源的个人飞行器,其特征在于,还包括安全设备,所述安全设备包括压缩空气安全气囊系统和紧急救援降落伞系统;
    其中,所述压缩空气安全气囊系统包括传感器、电子控制器单元和安全气囊;所述传感器包括加速度计和撞击感知器,所述加速度计用于检测所述以压缩空气为动力源的个人飞行器的速度变化,所述撞击感知器用于检测发生碰撞的类型、角度和严重程度,所述加速度计和所述撞击感知器与所述电子控制器单元信号连接以将检测到的信息馈送至所述电子控制器单元;所述电子控制器单元对所述信息进行分析判断,以确定是否部署安全气囊充气;所述安全气囊包括压缩空气储气罐、进气阀、气囊和通气孔,所述压缩空气储气罐内储存压缩空气,所述气囊设置在所述坐架(2)上并通过所述进气阀与所述压缩空气储气罐相连,所述通气孔为所述气囊与大气之间的通气孔,所述压缩空气储气罐内储存的压缩空气可受控地通过开启的所述进气阀充入所述气囊;
    所述紧急救援降落伞系统包括降落伞、降落伞开伞拉绳、压缩空气张伞喷气引擎和压缩空气加速张伞气球;所述降落伞的伞衣、伞绳折叠装在带有尼龙搭扣的装伞密封袋(85)中,所述装伞密封袋(85)设置在所述背板(36)上端,所述背板(36)上端设有悬挂点,所述悬挂点与穿过所述装伞密封袋(85)的所述伞绳的端部连接,所述尼龙搭扣可在所述压缩空气张伞喷气引擎发射时打开;所述降落伞开伞拉绳的一端与所述降落伞相连,另一端与所述压缩空气张伞喷气引擎相连;所述压缩空气张伞喷气引擎包括压缩空气储气管、带有可控阀门的进气管、膨胀室和拉伐尔喷管,在所述可控阀门开启的状态下,所述压缩空气储气管中的压缩空气经所述进气管进入所述膨胀室并从所述拉伐尔喷管向下喷出,驱动所述压缩空气张伞喷气引擎向上射出并引导所述降落伞开伞拉绳升空,所述降落伞开伞拉绳将所述降落伞从打开所述尼龙搭扣的所述装伞密封袋(85)中拉出并升空;所述压缩空气加速张伞气球的数量为多个,分别设置在伞衣的底边内侧且在朝向所述伞衣内侧方向设有张伞气球阀门,所述张伞气球阀门在所述降落伞从所述装伞密封袋(85)中拉出升空的状态下开启,并且所述 压缩空气加速张伞气球内的压缩空气向所述伞衣内喷射加速张伞。
  10. 根据权利要求9所述的以压缩空气为动力源的个人飞行器,其特征在于,还包括控制系统,所述控制系统用于控制所述安全设备工作并且包括人工驾驶操作装置和自动控制系统;
    其中,所述人工驾驶操作装置包括升高踏板(86)、下降踏板(87)、起动-加速踏板(88)、减速-制动踏板(89)、左转按钮(90)和右转按钮(91);
    所述升高踏板(86)和所述下降踏板(87)设置在所述左足踏板支架(54)上;所述起动-加速踏板(88)和所述减速-制动踏板(89)设置在所述右足踏板支架(55)上;所述左转按钮(90)和所述右转按钮(91)分别设置在左右两侧的所述扶手(38)的前端端部的下方;
    所述自动控制系统包括姿态平衡反馈控制系统和自动驾驶系统,其中所述姿态平衡反馈控制系统由相互配合的姿态平衡传感器、计算机中心和姿态控制压缩空气喷气引擎组成;
    所述自动驾驶系统包括感知设备、连接网络和执行器;所述感知设备包括传感器、全球定位系统和惯性测量单元,用于采集和处理所述以压缩空气为动力源的个人飞行器的环境信息、以及定位和航向信息;所述连接网络包括所述感知设备接入的个人飞行器物联网;所述执行器包括能够接收和执行指令以对所述以压缩空气为动力源的个人飞行器进行高度、速度和转向自动控制的设备。
  11. 一种权利要求4至10中任一项所述的以压缩空气为动力源的个人飞行器的运行方法,其特征在于,包括:
    向所述压缩空气供气设备(3)中充入压缩空气;
    在控制下所述压缩空气供气设备(3)向所述涵道内压缩空气人造风吹风口(6)供给压缩空气,使得所述涵道内压缩空气人造风吹风口(6)朝向所述静止桨叶(13)的前缘(16)喷射气流(22),在所述气旋圆筒(7)内形成气旋,所述气旋涵道内静止旋翼升力装置(1)产生升力,驱动所述以压缩空气为动力源的个人飞行器起飞;同时压缩空气进入所述气缸式套筒(46)的内腔上部,向下推动所述活塞(47)使所述活塞杆式柱体(45)从所述气缸式套筒(46)向下伸出以助力推举所述以压缩空气为 动力源的个人飞行器升空;
    在控制下驱动所述以压缩空气为动力源的个人飞行器保持姿态平衡、向目的地飞行和/或悬停在目的地上空;
    在控制下所述涵道内压缩空气人造风吹风口(6)喷射人造风风量、风速渐减,所述气旋涵道内静止旋翼升力装置(1)升力渐减,所述以压缩空气为动力源的个人飞行器开始下降;当所述支撑腿触地端(48)触地后所述活塞杆式柱体(45)上推所述活塞(47)向所述气缸式套筒(46)的内腔上方运动,所述排气阀(52)开启以进行降落缓冲。
PCT/CN2020/119567 2019-12-18 2020-09-30 以压缩空气为动力源的个人飞行器及其运行方法 WO2021120785A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/757,397 US20230011026A1 (en) 2019-12-18 2020-09-30 Personal flying machine using compressed air as power source and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911311482.1 2019-12-18
CN201911311482.1A CN110963035A (zh) 2019-12-18 2019-12-18 以压缩空气为动力源的个人飞行器及其运行方法

Publications (1)

Publication Number Publication Date
WO2021120785A1 true WO2021120785A1 (zh) 2021-06-24

Family

ID=70034959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119567 WO2021120785A1 (zh) 2019-12-18 2020-09-30 以压缩空气为动力源的个人飞行器及其运行方法

Country Status (3)

Country Link
US (1) US20230011026A1 (zh)
CN (1) CN110963035A (zh)
WO (1) WO2021120785A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421426A (zh) * 2022-09-27 2022-12-02 兰州交通大学 一种高速列车侧翼升力调控装置安装布置及协同控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963035A (zh) * 2019-12-18 2020-04-07 王力丰 以压缩空气为动力源的个人飞行器及其运行方法
CN111568648B (zh) * 2020-05-25 2022-05-17 常利军 一种混合电气动悬浮担架
CN112527004B (zh) * 2020-10-22 2021-12-17 林海明珠(黑龙江)科技有限公司 速率方向一体化调控系统
CN113998136B (zh) * 2021-12-02 2024-01-19 北京机电工程研究所 一种微型飞行器发射装置及方法
CN114103572B (zh) * 2021-12-30 2023-08-22 北京国家新能源汽车技术创新中心有限公司 一种双涵道混合动力装置、飞行汽车以及控制方法
CN117163330B (zh) * 2023-09-01 2024-04-09 广东东软学院 用于地下管网巡检的工业无人机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183364A (zh) * 1996-08-30 1998-06-03 陈重庆 利用新型气体推进系统实现垂直起降的飞行器
US20030201362A1 (en) * 2002-04-25 2003-10-30 Fushun Yang Helicarplane
US20070095973A1 (en) * 2005-10-27 2007-05-03 Douglas Challis Aircraft having a helicopter rotor and an inclined front mounted propeller
CN102806994A (zh) * 2011-05-31 2012-12-05 王略 超轻型单人减速倾转式共轴直升机
CN104948234A (zh) * 2015-05-29 2015-09-30 王力丰 经济利用压缩空气为汽车动力源的系统及其方法
CN105649775A (zh) * 2016-03-04 2016-06-08 王力丰 以压缩空气为施力源的系统及其方法、飞机
US20180079484A1 (en) * 2016-09-21 2018-03-22 Bell Helicopter Textron, Inc. Fuselage Mounted Engine with Wing Stow
CN110963035A (zh) * 2019-12-18 2020-04-07 王力丰 以压缩空气为动力源的个人飞行器及其运行方法
CN211308973U (zh) * 2019-12-18 2020-08-21 王力丰 以压缩空气为动力源的个人飞行器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180272856A1 (en) * 2015-09-20 2018-09-27 Kerry Manning Ducted Fan Propulsion System
WO2021000028A1 (pt) * 2019-07-03 2021-01-07 Alberto Carlos Pereira Filho Veículo voador tipo casulo de decolagem e pouso vertical

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183364A (zh) * 1996-08-30 1998-06-03 陈重庆 利用新型气体推进系统实现垂直起降的飞行器
US20030201362A1 (en) * 2002-04-25 2003-10-30 Fushun Yang Helicarplane
US20070095973A1 (en) * 2005-10-27 2007-05-03 Douglas Challis Aircraft having a helicopter rotor and an inclined front mounted propeller
CN102806994A (zh) * 2011-05-31 2012-12-05 王略 超轻型单人减速倾转式共轴直升机
CN104948234A (zh) * 2015-05-29 2015-09-30 王力丰 经济利用压缩空气为汽车动力源的系统及其方法
CN105649775A (zh) * 2016-03-04 2016-06-08 王力丰 以压缩空气为施力源的系统及其方法、飞机
US20180079484A1 (en) * 2016-09-21 2018-03-22 Bell Helicopter Textron, Inc. Fuselage Mounted Engine with Wing Stow
CN110963035A (zh) * 2019-12-18 2020-04-07 王力丰 以压缩空气为动力源的个人飞行器及其运行方法
CN211308973U (zh) * 2019-12-18 2020-08-21 王力丰 以压缩空气为动力源的个人飞行器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421426A (zh) * 2022-09-27 2022-12-02 兰州交通大学 一种高速列车侧翼升力调控装置安装布置及协同控制方法
CN115421426B (zh) * 2022-09-27 2023-07-11 兰州交通大学 一种高速列车侧翼升力调控装置安装布置及协同控制方法

Also Published As

Publication number Publication date
US20230011026A1 (en) 2023-01-12
CN110963035A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2021120785A1 (zh) 以压缩空气为动力源的个人飞行器及其运行方法
US3887146A (en) Aircraft with combination stored energy and engine compressor power source for augmentation of lift, stability, control and propulsion
US6616094B2 (en) Lifting platform
US6464459B2 (en) Lifting platform with energy recovery
JP4155081B2 (ja) 垂直離着陸装置
CN102107733B (zh) 仿生飞行器
US5149012A (en) Turbocraft
CN205891234U (zh) 用于直升机旋翼叶片的联合射流控制装置
CN106005396B (zh) 用于直升机旋翼叶片的联合射流控制装置及其控制方法
JPH05501095A (ja) ターボクラフト
WO2006116907A1 (fr) Moteur d’avion a compression d’air
CN105649775A (zh) 以压缩空气为施力源的系统及其方法、飞机
EP3781479B1 (en) Personal flight apparatus with vertical take-off and landing
CN110588969A (zh) 一种三维可变推进飞碟
CN102730179A (zh) 复合升力变形飞艇
CN104787306A (zh) 一种利用气动力控制飞行姿态的低速安全飞行器
RU2591102C1 (ru) Сверхзвуковой самолет с крыльями замкнутой конструкции
CN211308973U (zh) 以压缩空气为动力源的个人飞行器
RU2435707C2 (ru) Летательный аппарат вертикального взлета и посадки
CN110466732A (zh) 军用飞行器
US20200354054A1 (en) A vertical take off and landing flying machine
RU2693356C1 (ru) Сверхзвуковой самолет с туннельным фюзеляжем
CN206031797U (zh) 一种飞机
CN110816802A (zh) 热空气飞行器
JP2017007482A (ja) 主にロケットの推進原理(圧力推力等)を応用した垂直飛行システム及び同システム(の一部)などを局部的に転用した(圧縮)空気循環式等の再使用型宇宙往還機類。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903188

Country of ref document: EP

Kind code of ref document: A1