WO2021120739A1 - 一种激光追踪平衡车控制方法 - Google Patents

一种激光追踪平衡车控制方法 Download PDF

Info

Publication number
WO2021120739A1
WO2021120739A1 PCT/CN2020/116240 CN2020116240W WO2021120739A1 WO 2021120739 A1 WO2021120739 A1 WO 2021120739A1 CN 2020116240 W CN2020116240 W CN 2020116240W WO 2021120739 A1 WO2021120739 A1 WO 2021120739A1
Authority
WO
WIPO (PCT)
Prior art keywords
balance car
parameter
module
wind wheel
car
Prior art date
Application number
PCT/CN2020/116240
Other languages
English (en)
French (fr)
Inventor
缪文南
陈雪娇
温易升
邓凯文
黄一峰
黄柳峰
周锦彬
Original Assignee
华南理工大学广州学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学广州学院 filed Critical 华南理工大学广州学院
Publication of WO2021120739A1 publication Critical patent/WO2021120739A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles

Definitions

  • the invention relates to a control method, in particular to a control method of a laser tracking balance car, belonging to the technical field of laser tracking balance car.
  • Electric balance car is also called somatosensory car, thinking car, camera car and so on.
  • Its operating principle is mainly based on a basic principle called dynamic stability. It uses the gyroscope and acceleration sensor inside the car body to detect the change of the car body's attitude, and uses the servo control system to accurately drive the motor to respond.
  • the adjustment of the system to maintain the balance of the system is a new type of green environmental protection product used by modern people as a means of transportation, leisure and entertainment.
  • the laser tracking balance car in the prior art uses the gyroscope and acceleration sensor inside the car body to detect the change of the car body's attitude. This method will cause the problem of the difference between the time axis of the gyroscope and the accelerator.
  • the laser tracking camera module is not easy to deal with the complex output in the machine vision algorithm, and the existing balance car can only maintain balance when the balance car is in motion, because the operator has a certain balance force on the balance car during the movement. , But the balance car cannot achieve balance when it is upright. Therefore, a laser tracking balance car control system and its control method are designed to solve the above problems.
  • the main purpose of the present invention is to provide a laser tracking balance car control method, which can make the balance car be in a balanced state when it is stationary, and can move the balance car according to the laser.
  • the control method of a laser tracking balance car of the present invention includes the following steps:
  • Step 1 Receive user operations through the mobile terminal
  • Step 2 Send a control command to the Bluetooth module through the mobile terminal
  • Step 3 Send the control information to the micro-control chip through the Bluetooth module
  • Step 4 The vision module collects the laser signal and generates the motion track and sends it to the micro-control chip;
  • Step 5 The micro-control chip detects whether the balance car is in a stationary state, if it is, the angle deviation of the balance car’s attitude is obtained through the six-axis processing module, and then the wind wheel adjustment parameters are determined according to the PI algorithm to make the balance car in a balanced state; if not, pass
  • the six-axis processing module obtains the spatial data of the body posture of the balance car, and then determines the adjustment parameters of the DC motor drive module according to the PID algorithm so that the balance car is in a balanced state and moves according to the motion trajectory.
  • the wind wheel motor drives the wind wheel to accelerate under instantaneous acceleration to generate centrifugal acceleration and force the trolley in the opposite direction to make the balance car in a balanced state.
  • step 5 determining the adjustment parameters of the DC motor drive module according to the PID algorithm to make the balance car in a balanced state specifically includes:
  • the proportional parameter is equivalent to the restoring force of the balance car when it falls, and this parameter is greater than the acceleration of gravity. When the proportional parameter is gradually increased, the balance car can start to remain upright.
  • the differential parameter is equivalent to the damping force. Adjust the differential parameter Used to suppress the swing of the car model;
  • the invention provides a laser tracking balance car control method.
  • the laser is detected by a vision module to determine the movement trajectory of the balance car, and then the control of the balance car is realized according to the connection of the mobile terminal and the micro-control chip.
  • the operation is simple and the operation is simple.
  • the PI algorithm is used to control the wind wheel module to make the balance car in a balanced state
  • the PID algorithm is used to control the DC motor module when in motion to make the balance in a balanced state, so that the balance car can also be in a balanced state when it is stationary
  • the PI algorithm is used when it is stationary. Since the upright balance will inevitably affect the advancement of the trolley, under the action of the upright control, the trolley will lean forward to obtain acceleration, so the wheels will move backwards.
  • Fig. 1 is a system diagram of a preferred embodiment of a control system corresponding to a control method of a laser tracking balance car according to the present invention
  • Fig. 2 is a flowchart of a preferred embodiment of a method for controlling a laser tracking balance car according to the present invention.
  • a laser tracking balance car control method wherein the tracking balance car includes a Bluetooth module, a DC motor drive module, a micro-control chip, a wind wheel module, a six-axis motion processing module, a vision module, and a mobile terminal, Including the following steps:
  • Step 1 Receive user operations through the mobile terminal
  • Step 2 Send a control command to the Bluetooth module through the mobile terminal
  • Step 3 Send the control information to the micro-control chip through the Bluetooth module
  • Step 4 The vision module collects the laser signal and generates the motion track and sends it to the micro-control chip;
  • Step 5 The micro-control chip detects whether the balance car is in a stationary state, if it is, the angle deviation of the balance car’s attitude is obtained through the six-axis processing module, and then the wind wheel adjustment parameters are determined according to the PI algorithm to make the balance car in a balanced state; if not, pass
  • the six-axis processing module obtains the spatial data of the body posture of the balance car, and then determines the adjustment parameters of the DC motor drive module according to the PID algorithm so that the balance car is in a balanced state and moves according to the motion trajectory.
  • the six-axis motion processing module adopts the model MPU-6000 (6050) six-axis motion processing module.
  • the Bluetooth module adopts the model CY-BT-04 Bluetooth module, and the chip of the CY-BT-04 Bluetooth module adopts the Blu eCore4-Ext chip, which complies with the V2.1+EDR Bluetooth specification, CY- BT-04 Bluetooth module supports UART, USB, SPI, PCM, SPDIF interfaces, and supports SPP Bluetooth serial port protocol.
  • the DC motor drive module adopts the model TB6612FNG DC motor drive module, adopts a high-current MOSFET-H bridge structure, dual-channel circuit output, PWM support frequency up to 100kHz, and the standby state TB6612FNG DC motor drive module has built-in low voltage Detection circuit and thermal shutdown protection circuit.
  • the microcontroller chip adopts a low-end 32-bit ARM microcontroller with a model of STM32F series, and its core is Cortex-M3.
  • the STM32FARM microcontroller can be divided into three major types according to the size of the on-chip Flash. Type: small capacity (16K and 32K), medium capacity (64K and 128K), large capacity (256K, 384K and 512K), the program memory capacity is 64KB, the voltage is 2V ⁇ 3.6V, the working temperature is -40°C ⁇ 85°C, The data converter A/D10x12b, the oscillator is located inside.
  • the vision module adopts an OpenMV camera.
  • the OpenMV camera program is written through a high-level language Python script, which can fully control OpenMV, including IO pins, Differentiation frame difference algorithm, ColorTracking color tracking, MarkerTracking mark tracking, OpticalFlow Optical flow algorithm.
  • determining the wind wheel adjustment parameters to make the balance car in a balanced state specifically includes: the six-axis processing module obtains the attitude angle and speed information of the balance car, and then differentially processes the attitude angle to obtain the attitude angular velocity, and performs the speed information
  • the wind wheel motor drives the wind wheel to accelerate under instantaneous acceleration to generate centrifugal acceleration and force the trolley in the opposite direction to make the balance car in a balanced state.
  • determining the adjustment parameters of the DC motor drive module according to the PID algorithm in step 5 so that the balance car is in a balanced state specifically includes:
  • the proportional parameter is equivalent to the restoring force of the balance car when it falls, and this parameter is greater than the acceleration of gravity. When the proportional parameter is gradually increased, the balance car can start to remain upright.
  • the differential parameter is equivalent to the damping force. Adjust the differential parameter Used to suppress the swing of the car model;
  • the balance car Decrease the differential parameter, and then gradually increase the proportional parameter, until the balance car starts to oscillate again, so far determine the maximum value of the proportional parameter, and finally output the motor speed adjustment parameter value of the DC motor module according to the adjusted proportional parameter and the differential parameter.
  • the speed and attitude angle information of the balance car are detected and then the motor speed adjustment parameters of the DC motor module (such as the voltage value of the motor speed) are determined to make the DC motor module motor instantaneously accelerate to generate a certain reaction force to make it in a balanced state So as to control the balance car to be in a balanced state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

一种激光追踪平衡车控制方法,属于平衡车技术领域,移动终端无线连接蓝牙模块,蓝牙模块与微控芯片导线连接,微控芯片通过导线与直流电机驱动模块、六轴运动处理模块和视觉模块导线连接,能在静止时也保持平衡车处于平衡状态。

Description

一种激光追踪平衡车控制方法 技术领域
本发明涉及一种控制方法,特别涉及一种激光追踪平衡车控制方法,属于激光追踪平衡车技术领域。
背景技术
电动平衡车,又叫体感车、思维车、摄位车等。市场上主要有独轮和双轮两类。其运作原理主要是建立在一种被称为动态稳定的基本原理上,利用车体内部的陀螺仪和加速度传感器,来检测车体姿态的变化,并利用伺服控制系统,精确地驱动电机进行相应的调整,以保持系统的平衡,是现代人用来作为代步工具、休闲娱乐的一种新型的绿色环保的产物。
而现有技术中的激光追踪平衡车皆是采用利用车体内部的陀螺仪和加速度传感器,来检测车体姿态的变化此种方式会出现陀螺仪与加速器时间轴之差的问题,其次用于激光追踪的摄模块并不容易处理机器视觉算法中处理复杂的输出,并且现有的平衡车只能在平衡车运动时保持平衡,由于在运动过程中,操作者对平衡车具有一定的平衡力,但是平衡车在直立时无法实现平衡,为此设计一种激光追踪平衡车控制系统及其控制方法来解决上述问题。
发明内容
本发明的主要目的是为了提供一种激光追踪平衡车控制方法,能使得平衡车在静止时也处于平衡状态,且能根据激光对平衡车的移动。
本发明的目的可以通过采用如下技术方案达到:
本发明一种激光追踪平衡车控制方法,包括如下步骤:
步骤1:通过移动终端接收使用者操作;
步骤2:通过移动终端发送控制指令至蓝牙模块;
步骤3:通过蓝牙模块将控制信息发送至微控芯片;
步骤4:视觉模块采集激光信号并生成运动轨迹发送给微控芯片;
步骤5:微控芯片检测平衡车是否处于静止状态,若是,则通过六轴处理模块获取平衡车姿态角度偏差,然后根据PI算法确定风轮调整参数使得平衡车处于平衡状态;若不是,则通过六轴处理模块获取平衡车车体姿态的空间数据,然后根据PID算法确定直流电机驱动 模块调整参数使得平衡车处于平衡状态并按照运动轨迹移动。
优选的,根据PI算法确定风轮调整参数使得平衡车处于平衡状态具体包括:六轴处理模块获取平衡车姿态角度以及速度信息,然后对姿态角度进行微分处理得到姿态角速度,对速度信息进行积分处理得到速度值,然后根据公式a=kp*B+kd*B′-kp[kp 1*e(k)+ki 1∑e(k)]=得到风轮调整参数a,其中k、p和d为角度调节参数,p 1和i 1为速度调节参数,e(k)为速度信息,B为姿态角度,B′为姿态角速度;
根据确定风轮调整参数对风轮的电机瞬间转动需要的电压值进行调整,风轮的电机在瞬时加速下带动风轮加速产生离心加速度将小车往反方向上施力使得平衡车处于平衡状态。
优选的,
步骤5中根据PID算法确定直流电机驱动模块调整参数使得平衡车处于平衡状态具体包括:
51:比例参数相当于所述平衡车倒下的回复力,该参数要大于重力加速度,当逐步增大比例参数时,所述平衡车开始能够保持直立,微分参数相当于阻尼力,调节微分参数用于抑制车模的摆动;
52:调节比例参数P、微分参数D这两个参数时遵循先比例后微分的顺序,先调整比例参数使得所述追踪平衡车能够保持直立并且开始来回摆动,然后逐步增加微分参数,所述追踪平衡车逐步直立稳定,进一步增大微分参数直到两轮自平衡车开始共振,至此确定微分参数的最大值;
53.减小微分参数,然后逐步增大比例参数,直到所述平衡车又开始震荡,至此确定比例参数的最大值,根据调节的比例参数、微分参数最终输出直流电机模块电机速度调整参数值。
本发明的有益技术效果:
本发明提供的一种激光追踪平衡车控制方法,通过视觉模块对激光进行检测确定平衡车运动移动轨迹,然后根据移动终端与微控芯片相连实现平衡车的控制,操作简单,并且根据平衡车在静止时采用PI算法对风轮模块进行控制使得平衡车处于平衡状态,而在运动时采用PID算法对直流电机模块进行控制使得平衡处于平衡状态,从而使得平衡车处于静止状态时也能处于平衡状态,同时在静止时采用PI算法,由于直立平衡必然会影响到小车的前进,小车在直立控制的作用下,小车会前倾获取加速度,所以车轮会向后运动,这时小车的速度会被减慢,但是由于是负反馈作用,速度减慢之后,速度控制的偏差会增大,小车前倾的角 度会增大,如此作用,小车便不能保持直立平衡,所以一般的单负反馈系统在直立控制的影响下会起到正反馈的作用,所以不能采用一般的单负反馈系统,要使用串级负反馈系统,在串级负反馈系统中,使用微分的效果不明显,所以这里采用的是PI算法控制,使得控制效果更好。
附图说明
图1为按照本发明的一种激光追踪平衡车控制方法对应控制系统的一优选实施例的系统图;
图2为按照本发明的一种激光追踪平衡车控制方法的一优选实施例的流程图。
具体实施方式
为使本领域技术人员更加清楚和明确本发明的技术方案,下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1和2所示,一种激光追踪平衡车控制方法,其中追踪平衡车包括蓝牙模块、直流电机驱动模块、微控芯片、风轮模块、六轴运动处理模块、视觉模块和移动终端,包括如下步骤:
步骤1:通过移动终端接收使用者操作;
步骤2:通过移动终端发送控制指令至蓝牙模块;
步骤3:通过蓝牙模块将控制信息发送至微控芯片;
步骤4:视觉模块采集激光信号并生成运动轨迹发送给微控芯片;
步骤5:微控芯片检测平衡车是否处于静止状态,若是,则通过六轴处理模块获取平衡车姿态角度偏差,然后根据PI算法确定风轮调整参数使得平衡车处于平衡状态;若不是,则通过六轴处理模块获取平衡车车体姿态的空间数据,然后根据PID算法确定直流电机驱动模块调整参数使得平衡车处于平衡状态并按照运动轨迹移动。
在本实施例中,所述六轴运动处理模块采用型号为MPU-6000(6050)六轴运动处理模块。
在本实施例中,所述蓝牙模块采用型号为CY-BT-04蓝牙模块,所述CY-BT-04蓝牙模块的芯片采用Blu eCore4-Ext芯片,遵循V2.1+EDR蓝牙规范,CY-BT-04蓝牙模块支持UART,USB,SPI,PCM,SPDIF接口,并支持SPP蓝牙串口协议。
在本实施例中,所述直流电机驱动模块采用型号为TB6612FNG直流电机驱动模块,采用大电流MOSFET-H桥结构,双通道电路输出,PWM支持频率高达100kHz,待机状态TB6612FNG直流电机驱动模块内置低压检测电路与热停机保护电路。
在本实施例中,所述微控芯片采用型号为STM32F系列中低端的32位ARM微控制器,其内核是Cortex-M3,该STM32FARM微控制器按片内Flash的大小可分为三大类:小容量(16K和32K)、中容量(64K和128K)、大容量(256K、384K和512K),程序存储器容量是64KB,电压2V~3.6V,工作温度为-40℃~85℃,数据转换器A/D10x12b,振荡器位于内部。
在本实施例中,所述视觉模块采用OpenMV摄像头,该OpenMV摄像头程序的编写通过高级语言Python脚本,可以完全控制OpenMV,包括IO引脚,Differencing帧差分算法,ColorTracking颜色追踪,MarkerTracking标记跟踪,OpticalFlow光流算法。
本实施例中,根据PI算法确定风轮调整参数使得平衡车处于平衡状态具体包括:六轴处理模块获取平衡车姿态角度以及速度信息,然后对姿态角度进行微分处理得到姿态角速度,对速度信息进行积分处理得到速度值,然后根据公式a=kp*B+kd*B′-kp[kp 1*e(k)+ki 1∑e(k)]=得到风轮调整参数a,其中k、p和d为角度调节参数,p 1和i 1为速度调节参数,e(k)为速度信息,B为姿态角度,B′为姿态角速度;
根据确定风轮调整参数对风轮的电机瞬间转动需要的电压值进行调整,风轮的电机在瞬时加速下带动风轮加速产生离心加速度将小车往反方向上施力使得平衡车处于平衡状态。
本实施例中,步骤5中根据PID算法确定直流电机驱动模块调整参数使得平衡车处于平衡状态具体包括:
51:比例参数相当于所述平衡车倒下的回复力,该参数要大于重力加速度,当逐步增大比例参数时,所述平衡车开始能够保持直立,微分参数相当于阻尼力,调节微分参数用于抑制车模的摆动;
52:调节比例参数P、微分参数D这两个参数时遵循先比例后微分的顺序,先调整比例参数使得所述追踪平衡车能够保持直立并且开始来回摆动,然后逐步增加微分参数,所述追踪平衡车逐步直立稳定,进一步增大微分参数直到两轮自平衡车开始共振,至此确定微分参数的最大值;
53.减小微分参数,然后逐步增大比例参数,直到所述平衡车又开始震荡,至此确定比例参数的最大值,根据调节的比例参数、微分参数最终输出直流电机模块电机速度调整参数值,具体地根据PID公式通过对平衡车速度以及姿态角度信息进行检测然后确定直流电机模 块电机速度调整参数(如电机速度的电压值)使得直流电机模块电机瞬间加速从而产生一定反作用力使得其处于平衡状态从而控制平衡车处于平衡状态。
以上,由于直立平衡必然会影响到小车的前进,小车在直立控制的作用下,小车会前倾获取加速度,所以车轮会向后运动,这时小车的速度会被减慢,但是由于是负反馈作用,速度减慢之后,速度控制的偏差会增大,小车前倾的角度会增大,如此作用,小车便不能保持直立平衡,所以一般的单负反馈系统在直立控制的影响下会起到正反馈的作用,所以不能采用一般的单负反馈系统,要使用串级负反馈系统,在串级负反馈系统中,使用微分的效果不明显,所以这里采用的是PI算法控制,使得控制效果更好,且由于风轮的电机瞬间电压使得风轮产生瞬间加速从而产生李欣加速度将小车往反方向产生作用力从而处于平衡状态。以上所述,仅为本发明进一步的实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明所公开的范围内,根据本发明的技术方案及其构思加以等同替换或改变,都属于本发明的保护范围。

Claims (3)

  1. 一种激光追踪平衡车控制方法,其特征在于:追踪平衡车包括蓝牙模块、直流电机驱动模块、微控芯片、风轮模块、六轴运动处理模块、视觉模块和移动终端,方法包括如下步骤:
    步骤1:通过移动终端接收使用者操作;
    步骤2:通过移动终端发送控制指令至蓝牙模块;
    步骤3:通过蓝牙模块将控制信息发送至微控芯片;
    步骤4:视觉模块采集激光信号并生成运动轨迹发送给微控芯片;
    步骤5:微控芯片检测平衡车是否处于静止状态,若是,则通过六轴处理模块获取平衡车姿态角度偏差,然后根据PI算法确定风轮调整参数使得平衡车处于平衡状态;若不是,则通过六轴处理模块获取平衡车车体姿态的空间数据,然后根据PID算法确定直流电机驱动模块调整参数使得平衡车处于平衡状态并按照运动轨迹移动。
  2. 根据权利要求1所述的一种激光追踪平衡车控制方法,其特征在于:根据PI算法确定风轮调整参数使得平衡车处于平衡状态具体包括:六轴处理模块获取平衡车姿态角度以及速度信息,然后对姿态角度进行微分处理得到姿态角速度,对速度信息进行积分处理得到速度值,然后根据公式a=kp*B+kd*B′-kp[kp 1*e(k)+ki 1∑e(k)]=得到风轮调整参数a,其中k、p和d为角度调节参数,p 1和i 1为速度调节参数,e(k)为速度信息,B为姿态角度,B′为姿态角速度;
    根据确定风轮调整参数对风轮的电机瞬间转动需要的电压值进行调整,风轮的电机在瞬时加速下带动风轮加速产生离心加速度将小车往反方向上施力使得平衡车处于平衡状态。
  3. 根据权利要求1所述的一种激光追踪平衡车控制方法,其特征在于:步骤5中根据PID算法确定直流电机驱动模块调整参数使得平衡车处于平衡状态具体包括:
    51:比例参数相当于所述平衡车倒下的回复力,该参数要大于重力加速度,当逐步增大比例参数时,所述平衡车开始能够保持直立,微分参数相当于阻尼力,调节微分参数用于抑制车模的摆动;
    52:调节比例参数P、微分参数D这两个参数时遵循先比例后微分的顺序,先调整比例参数使得所述追踪平衡车能够保持直立并且开始来回摆动,然后逐步增加微分参数,所 述追踪平衡车逐步直立稳定,进一步增大微分参数直到两轮自平衡车开始共振,至此确定微分参数的最大值;
    53.减小微分参数,然后逐步增大比例参数,直到所述平衡车又开始震荡,至此确定比例参数的最大值,根据调节的比例参数、微分参数最终输出直流电机模块电机速度调整参数值。
PCT/CN2020/116240 2019-12-16 2020-09-18 一种激光追踪平衡车控制方法 WO2021120739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911288253.2 2019-12-16
CN201911288253.2A CN110941280A (zh) 2019-12-16 2019-12-16 一种激光追踪平衡车控制方法

Publications (1)

Publication Number Publication Date
WO2021120739A1 true WO2021120739A1 (zh) 2021-06-24

Family

ID=69911470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116240 WO2021120739A1 (zh) 2019-12-16 2020-09-18 一种激光追踪平衡车控制方法

Country Status (2)

Country Link
CN (1) CN110941280A (zh)
WO (1) WO2021120739A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941280A (zh) * 2019-12-16 2020-03-31 华南理工大学广州学院 一种激光追踪平衡车控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109955215A (zh) * 2017-12-14 2019-07-02 河北汇金机电股份有限公司 两轮自平衡机器人用激光雷达自适应调整装置及调整方法
WO2019173597A1 (en) * 2018-03-07 2019-09-12 Lit Motors Corporation Integrated control method for balancing a two wheeled vehicle using control moment gyroscopes and drive-by-wire steering systems
CN110764524A (zh) * 2019-12-16 2020-02-07 华南理工大学广州学院 一种激光追踪平衡车控制电路
CN110941280A (zh) * 2019-12-16 2020-03-31 华南理工大学广州学院 一种激光追踪平衡车控制方法
CN110941281A (zh) * 2019-12-16 2020-03-31 华南理工大学广州学院 一种激光追踪平衡车控制系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103010360B (zh) * 2011-09-26 2014-08-20 东莞易步机器人有限公司 一种自平衡两轮车的运动控制方法
KR101326957B1 (ko) * 2012-05-15 2013-11-13 현대자동차주식회사 보행 로봇의 발목제어 방법
CN105751230B (zh) * 2016-03-31 2018-12-21 纳恩博(北京)科技有限公司 一种路径控制方法、路径规划方法、第一设备及第二设备
CN105807689A (zh) * 2016-04-29 2016-07-27 上海海洋大学 一种两轮自平衡车控制系统
CN206162197U (zh) * 2016-10-31 2017-05-10 新疆大学 一种两轮自平衡蓝牙智能小车
CN109352658B (zh) * 2018-12-04 2024-02-23 中冶赛迪工程技术股份有限公司 工业机器人定位操控方法、系统及计算机可读存储介质
CN109507871B (zh) * 2018-12-11 2022-03-25 广东工业大学 用于两轮平衡车车身平衡控制的pid参数整定方法及产品
CN110134136A (zh) * 2019-05-29 2019-08-16 清华大学 无人驾驶摩托车视觉导航系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109955215A (zh) * 2017-12-14 2019-07-02 河北汇金机电股份有限公司 两轮自平衡机器人用激光雷达自适应调整装置及调整方法
WO2019173597A1 (en) * 2018-03-07 2019-09-12 Lit Motors Corporation Integrated control method for balancing a two wheeled vehicle using control moment gyroscopes and drive-by-wire steering systems
CN110764524A (zh) * 2019-12-16 2020-02-07 华南理工大学广州学院 一种激光追踪平衡车控制电路
CN110941280A (zh) * 2019-12-16 2020-03-31 华南理工大学广州学院 一种激光追踪平衡车控制方法
CN110941281A (zh) * 2019-12-16 2020-03-31 华南理工大学广州学院 一种激光追踪平衡车控制系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU JIAHUI: "Design of Two-Wheel Self-Balancing Scooter using LiDAR-based Kalman Filter", TECHNOLOGY WIND, no. 7, 1 March 2019 (2019-03-01), pages 4 - 20, XP055827168, ISSN: 1671-7341, DOI: 10.19392/j.cnki.1671-7341.201907004 *
LIU, SHISEN : "ROS-based STM32 Self-Balancing Scooter Equipped with LiDAR", PRACTICAL ELECTRONICS, vol. 21, no. 21, 30 November 2019 (2019-11-30), pages 3 - 4,12, XP009529026, ISSN: 1006-5059, DOI: 10.16589/j.cnki.cn11-3571/tn.2019.21.001 *

Also Published As

Publication number Publication date
CN110941280A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN105353762B (zh) 基于双余度姿态传感器的六旋翼无人机的控制方法
CN104155976B (zh) 自主式球轮移动机器人及其控制方法
WO2021120739A1 (zh) 一种激光追踪平衡车控制方法
CN102707734A (zh) 基于惯性姿态传感器的自稳定云台
CN208654640U (zh) 两轮平衡机器人控制系统
CN207718226U (zh) 一种两轮自平衡小车自动跟随系统
CN106980322A (zh) 多轴无人飞行载具及其平衡控制方法、电脑程序产品
CN104908869A (zh) 电动平衡车的电控系统
CN111665838B (zh) 一种自平衡机器人抗持续性外力作用的姿态控制方法
CN110941281A (zh) 一种激光追踪平衡车控制系统
CN108263381B (zh) 车辆及其应用的车道对中控制方法及系统
CN207607592U (zh) 重心可调的两轮自平衡底盘装置
CN107972036A (zh) 基于TensorFlow的工业机器人动力学控制系统及方法
CN108582074B (zh) 机器人、机器人控制方法及装置
CN104914871A (zh) 倒立摆系统的动态平衡控制方法及智能平衡车控制系统
CN110109353B (zh) 一种反作用轮平衡自行车机器人模糊自适应滑模控制系统
JP7415224B2 (ja) 移動装置
CN116069019A (zh) 多功能智能平衡小车的控制系统及其模糊自适应pid方法
CN205311778U (zh) 一种电动平衡扭扭车
CN209765335U (zh) 一种两轮自平衡移动机器人控制系统
CN203443592U (zh) 一种基于动态图像识别的车载人工智能系统
CN108909918A (zh) 一种平衡车的控制电路及其控制方法
CN204674738U (zh) 电动平衡车的电控系统
Huang et al. Design of self-balancing vehicle based on cascade PID control system
CN111381491B (zh) 球形机器人控制系统及其设计方法和直线运动控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904229

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20904229

Country of ref document: EP

Kind code of ref document: A1