WO2021120666A1 - 电机控制方法、电机控制装置及电机控制器 - Google Patents

电机控制方法、电机控制装置及电机控制器 Download PDF

Info

Publication number
WO2021120666A1
WO2021120666A1 PCT/CN2020/111019 CN2020111019W WO2021120666A1 WO 2021120666 A1 WO2021120666 A1 WO 2021120666A1 CN 2020111019 W CN2020111019 W CN 2020111019W WO 2021120666 A1 WO2021120666 A1 WO 2021120666A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
lead angle
commutation
angle
phase lead
Prior art date
Application number
PCT/CN2020/111019
Other languages
English (en)
French (fr)
Inventor
陈彬
胡余生
肖胜宇
敖文彬
王颜章
张晓菲
全威
吴文贤
黄秋鸣
卢宝平
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021120666A1 publication Critical patent/WO2021120666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Definitions

  • This application relates to the technical field of motor control, and in particular to a motor control method, a motor control device and a motor controller.
  • the windings of brushless motors have inductive characteristics, so the winding current lags behind the applied voltage, so a certain phase lead angle (the phase lead angle is the angle at which the commutation phase of the excitation voltage leads the commutation phase of the back EMF) is usually set to make the phase current lead Corresponding back EMF (ie CPA current lead angle method), that is, commutation excitation in advance before the back EMF zero crossing point, in order to improve the output torque and efficiency of the motor.
  • CPA current lead angle method ie CPA current lead angle method
  • the brushless DC motor When the motor is running at a high speed, the motor cannot be accelerated due to the suppression of the back electromotive force.
  • the brushless DC motor In order to ensure the high-speed operation of the brushless motor, the brushless DC motor must be field weakened.
  • the current lead angle is increased (that is, the phase current exceeds the
  • the zero crossing point of the electromotive force is at a certain angle, which is the target lead angle, so that the motor can reach the target speed)
  • reduce the number of stator conductor turns that are linked with the permanent magnetic field thus reducing the linkage with the permanent magnetic field
  • the stator winding flux linkage achieves equivalent field weakening.
  • the inventor realized that due to uneven motor speed and sampling errors, there will be errors between the actual phase lead angle and the target phase lead angle, resulting in uneven current and In the process of motor acceleration, due to the large error between the actual phase lead angle and the target phase lead angle, and the short commutation period of the excitation voltage, the back-EMF zero-crossing point will lead the phase lead angle commutation point, resulting in the commutation of the motor excitation voltage Error, the motor is running abnormally.
  • this application provides a motor control method, a motor control device, and a motor controller to solve the motor lead angle control method in the related art. Because the actual phase lead angle and the target phase lead angle have a large error, it is easy to cause the motor The problem of abnormal operation.
  • the present application provides a motor control method, including: obtaining the actual phase lead angle when the motor is running; obtaining the difference angle between the actual phase lead angle and the target phase lead angle; wherein the target phase lead angle is the
  • the commutation phase of the excitation voltage applied to the motor leads the angle of the commutation phase of the back electromotive force of the motor; the commutation phase of the excitation voltage of the motor is adjusted according to the difference angle.
  • the actual phase lead angle of the motor is obtained in real time, and then the difference angle between the actual phase lead angle and the target phase lead angle is obtained, and then the commutation phase of the excitation voltage of the motor is adjusted according to the difference angle, so that the motor is rotating at the speed
  • the difference between the actual phase lead angle and the target phase lead angle is gradually reduced to achieve a stable current and avoid the back-EMF zero-crossing point leading to the excitation voltage commutation phase due to the large error between the actual lead angle and the target lead angle. This leads to problems such as incorrect commutation of the excitation voltage and abnormal operation of the motor.
  • the step of adjusting the commutation phase of the excitation voltage of the motor according to the difference angle includes: when the actual phase lead angle is greater than the target phase lead angle, predicting the commutation phase The commutation phase of the excitation voltage is delayed by the time corresponding to the difference angle; wherein the predicted commutation phase is the commutation phase of the excitation voltage predicted according to the actual phase lead angle.
  • the excitation voltage when the actual phase lead angle is smaller than the target phase lead angle, the excitation voltage is commutated by the time corresponding to the difference angle in the predicted commutation phase; wherein, The predicted commutation phase is the commutation phase of the excitation voltage predicted based on the actual phase lead angle.
  • the step of lagging the difference angle when the excitation voltage commutation includes: not applying the excitation voltage to the motor within a time corresponding to the difference angle.
  • the step of obtaining the actual phase lead angle of the motor during operation includes: obtaining a voltage signal of the excitation voltage; obtaining a position signal of the rotor of the motor; and according to the voltage signal and the The position signal obtains the actual phase lead angle of the motor operation.
  • the acquiring the position signal of the rotor of the motor includes: detecting the position signal of the rotor through a Hall sensor; wherein the Hall sensor is installed on the stator of the motor.
  • the step of obtaining the actual phase lead angle of the motor operation according to the voltage signal and the position signal includes: according to the waveform of the voltage signal of the excitation voltage and the position of the rotor The waveform of the signal obtains the actual phase lead angle of the motor operation.
  • the obtained waveform obtains the zero-crossing commutation phase information of the back electromotive force, and the voltage waveform of the excitation voltage of the motor is detected according to the oscilloscope, and then the comparison is performed to obtain intuitively The actual phase lead angle of the commutation of the excitation voltage of the motor.
  • the present application provides a motor control device, including: a first acquisition module for acquiring the actual phase lead angle of the motor during operation; a second acquisition module for acquiring the difference between the actual phase lead angle and the target phase lead angle Value angle; wherein, the target phase lead angle is the angle at which the motor reaches the target speed and the commutation phase of the excitation voltage applied to the motor leads the commutation phase of the back electromotive force of the motor; a processing module for The difference angle adjusts the commutation phase of the excitation voltage of the motor.
  • the processing module includes: a first processing unit, configured to predict the commutation phase and lag the corresponding difference angle when the actual phase lead angle is greater than the target phase lead angle The excitation voltage is commutated over time; wherein the predicted commutation phase is the commutation phase of the excitation voltage predicted according to the actual phase lead angle.
  • the processing module includes: a second processing unit, configured to, when the actual phase lead angle is less than the target phase lead angle, in predicting the commutation phase, leading the difference angle corresponding to the The excitation voltage is commutated over time; wherein the predicted commutation phase is the commutation phase of the excitation voltage predicted according to the actual phase lead angle.
  • the present application provides a motor controller, including: at least one processor; and a memory communicatively connected with the at least one processor; wherein the memory stores a computer program executed by the at least one processor, and The computer program is executed by the at least one processor, so that the at least one processor executes a motor control method, and the motor control method includes:
  • the target phase lead angle is that the motor reaches the target speed, and the commutation phase of the excitation voltage applied to the motor leads the motor The angle of the commutation phase of the back EMF;
  • the commutation phase of the excitation voltage of the motor is adjusted according to the difference angle.
  • the motor control method provided in this application includes: obtaining the actual phase lead angle of the motor during operation, obtaining the difference angle between the actual phase lead angle and the target phase lead angle, and adjusting the commutation phase of the motor excitation voltage according to the difference angle.
  • the target phase lead angle is the angle by which the commutation phase of the excitation voltage applied to the motor leads the commutation phase of the back EMF when the motor reaches the target speed, that is, the angle that leads the zero crossing point of the back EMF.
  • the excitation voltage of the motor needs to be commutation ahead of the back electromotive force to achieve the field weakening speed increase.
  • the commutation phase of the excitation voltage here is advanced and reversed.
  • the angle of the electromotive force commutation phase is the target phase lead angle.
  • the actual phase lead angle of the motor is obtained in real time, and then the difference angle between the actual phase lead angle and the target phase lead angle is obtained, and then the excitation voltage of the motor is adjusted according to the difference angle.
  • Commutation phase so that the motor gradually reduces the difference between the actual phase lead angle and the target phase lead angle during the continuous change of the speed, so as to achieve a stable current and avoid the back EMF caused by the large error between the actual lead angle and the target lead angle.
  • the zero point is ahead of the commutation phase of the excitation voltage, resulting in errors in the commutation of the excitation voltage and abnormal motor operation.
  • Fig. 1 is a flowchart of a motor control method according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of a voltage signal waveform and a position signal waveform according to an embodiment of the present application
  • Fig. 3 is another flowchart of a motor control method according to an embodiment of the present application.
  • Fig. 4 is a structural block diagram of a motor control device according to an embodiment of the present application.
  • Fig. 5 is another structural block diagram of a motor control device according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the hardware structure of a motor controller according to an embodiment of the present application.
  • the embodiment of the present application provides a motor control method.
  • the motor control method is applied to the control of a DC brushless motor in some embodiments.
  • the motor control method includes:
  • Step S101 Obtain the actual phase lead angle when the motor is running. Specifically, when the DC brushless motor is running, the DC brushless motor cannot increase the speed due to the suppression of the back electromotive force. In order to increase the speed of the motor, it is necessary to perform field weakening control on the motor. Therefore, an excitation voltage is applied to the motor windings to enable the motor to increase its speed by field weakening. Normally, the excitation voltage needs to lead the zero-crossing point of the back EMF for commutation, so the target phase lead angle needs to be calculated.
  • the target phase lead angle is a parameter related to the target speed of the motor.
  • the calculation method of the target phase lead angle has relatively mature algorithms in related technologies, and the calculation process of the target phase lead angle will not be repeated here. Due to the uneven speed and current sampling error, the actual phase lead angle during the motor operation will be in error with the required target phase lead angle, so the actual phase lead angle of the motor is obtained in real time.
  • Step S102 Obtain the difference angle between the actual phase lead angle and the target phase lead angle.
  • the target phase lead angle is the angle at which the commutation phase of the excitation voltage applied to the motor leads the commutation phase of the back electromotive force of the motor when the motor reaches the target speed.
  • Step S103 Adjust the commutation phase of the excitation voltage of the motor according to the difference angle. Specifically, after obtaining the difference angle between the actual phase lead angle and the target phase lead angle, the commutation phase of the excitation voltage applied to the motor is adjusted according to the difference angle.
  • the excitation voltage of the DC brushless motor has a forward voltage and a reverse voltage.
  • the commutation phase of the excitation voltage is adjusted to control the actual phase lead angle, so as to reduce the actual phase lead angle and the target phase lead angle when the motor speed changes.
  • the difference of makes the current of the motor stable, the fluctuation is small, and it can also avoid the commutation error of the excitation voltage.
  • the excitation voltage of the motor In the process of increasing the speed of the motor, in order to make the motor reach the target speed, the excitation voltage of the motor needs to be commutated ahead of the back electromotive force to realize the field weakening speed.
  • the angle at which the commutation phase of the excitation voltage leads the commutation phase of the back EMF is the target phase lead angle.
  • the above step S103 relates to the step of adjusting the commutation phase of the excitation voltage of the motor according to the difference angle, including: when the actual phase lead angle is greater than the target phase lead angle, in predicting the commutation phase, lagging the corresponding difference angle Time to commutate the excitation voltage.
  • the predicted commutation phase is the commutation phase of the excitation voltage predicted based on the actual phase lead angle. Specifically, referring to Fig. 2, when the obtained actual phase lead angle is greater than the target phase lead angle, the actual phase lead angle of the brushless DC motor in Fig. 2 during operation is ⁇ . That is, the commutation angle of the excitation voltage leading the position sensor is ⁇ .
  • the required target phase lead angle is ⁇
  • the actual phase lead angle ⁇ is greater than the target phase lead angle ⁇ .
  • the difference angle between the two is ⁇ - ⁇ , indicating that the excitation voltage is more advanced, and the motor current is not stable, the motor runs abnormally or even abnormal noise.
  • the phase lead angle is corrected. That is, when the next excitation voltage leads the back-EMF zero-crossing point commutation (that is, the predicted commutation phase, the predicted commutation phase is the commutation phase of the excitation voltage predicted based on the actual phase lead angle), the excitation voltage lags the difference angle ⁇ Reversal is performed at the time corresponding to - ⁇ .
  • commutation is carried out after the time corresponding to ⁇ - ⁇ is lagging behind.
  • the excitation voltage is not applied to the windings of the DC brushless motor.
  • the difference between the target phase lead angle and the actual phase lead angle is gradually reduced, and finally the two are consistent, so that the current of the motor is stable, the speed fluctuation is reduced, the noise of the motor is reduced, and the current peak is caused by the motor.
  • the device is damaged.
  • the excitation voltage is commutated ahead of the time corresponding to the difference angle.
  • the predicted commutation phase is the commutation phase of the excitation voltage predicted based on the actual phase lead angle. Specifically, since the speed of the motor is not uniform during the operation of the motor, in some embodiments, it may happen that the actual phase lead angle is smaller than the target phase lead angle. Since there is a difference between the actual phase lead angle and the target phase lead angle, there is an error in the commutation of the excitation voltage, which will also cause the current to be unstable.
  • the zero-crossing point of the back-EMF is ahead of the commutation point of the excitation voltage, which leads to errors in the commutation of the excitation voltage of the motor and noise in the motor. Since the actual phase lead angle is smaller than the target phase lead angle, at this time, the excitation voltage is controlled to lead the difference angle during commutation to perform commutation, so as to gradually reduce the difference between the actual phase lead angle and the target phase lead angle, and finally make the two They are consistent, so that the motor current is stable, and the abnormal operation of the motor is avoided.
  • step S101 involves obtaining the actual phase lead angle when the motor is running.
  • this step includes:
  • Step S1011 Obtain the voltage signal of the excitation voltage.
  • the voltage signal of the excitation voltage is collected by an oscilloscope.
  • the oscilloscope acquires the voltage signal of the excitation voltage by collecting the excitation voltage at both ends of the winding of the motor.
  • Step S1012 Obtain the position signal of the rotor of the motor.
  • the position signal of the rotor is detected by a Hall sensor.
  • the Hall sensor is installed on the stator of the DC brushless motor, and the Hall sensor is used to obtain the position of the rotor of the motor during the rotation, specifically the phase position, which is a general technology in the field and will not be repeated here.
  • Step S1013 Obtain the actual phase lead angle of the motor operation according to the voltage signal and the position signal. Specifically, in some embodiments, the waveform of the voltage signal of the excitation voltage is compared with the waveform of the position signal of the rotor. Please refer to Figure 2.
  • the waveform of the voltage signal of the excitation voltage represents the commutation phase information of the excitation voltage
  • the waveform of the rotor position signal represents the phase information of the zero-crossing point of the back electromotive force. Comparing the two waveforms, the excitation voltage of the motor can be obtained.
  • the actual phase lead angle of the direction is compared with the waveform of the position signal of the rotor.
  • the obtained waveform obtains the zero-crossing commutation phase information of the back electromotive force.
  • the actual phase lead angle of the commutation of the excitation voltage of the motor can be obtained intuitively.
  • the motor control method of the embodiment of the present application obtains the actual phase lead angle of the motor in real time. Then obtain the difference angle between the actual phase lead angle and the target phase lead angle. Then adjust the commutation phase of the excitation voltage of the motor according to the difference angle, so that the motor will gradually reduce the difference between the actual phase lead angle and the target phase lead angle during the continuous change of the motor speed, so as to achieve a stable current and avoid the actual lead.
  • the large error between the lead angle and the target lead angle causes the zero-crossing point of the back-EMF to be ahead of the commutation phase of the excitation voltage, which leads to errors in the commutation of the excitation voltage and abnormal motor operation.
  • the embodiment of the present application provides a motor control device, which is used to implement the above-mentioned embodiments and preferred implementation manners, and those that have been described will not be repeated.
  • the term "module” implements a predetermined function of software, hardware, or a combination of software and hardware in some embodiments.
  • the devices described in the following embodiments are preferably implemented by software, the implementation of hardware or a combination of software and hardware is also conceived.
  • the motor control device includes a first acquisition module 41, a second acquisition module 42, and a processing module 43.
  • the first obtaining module 41 is used to obtain the actual phase lead angle when the motor is running. For details, please refer to the detailed description of step S101.
  • the second acquisition module 42 is used to acquire the difference angle between the actual phase lead angle and the target phase lead angle.
  • the target phase lead angle is the angle at which the motor reaches the target speed and the commutation phase of the excitation voltage applied to the motor leads the commutation phase of the back electromotive force of the motor.
  • step S102 please refer to the detailed description of step S102.
  • the processing module 43 is configured to adjust the commutation phase of the excitation voltage of the motor according to the difference angle. For details, refer to the detailed description of step S103.
  • the commutation phase of the excitation voltage is adjusted according to the difference between the actual phase lead angle and the target phase lead angle during the operation of the motor, and the actual phase lead angle is controlled.
  • the difference between the actual phase lead angle and the target phase lead angle is reduced, so that the current of the motor is stable, the fluctuation is small, and the commutation error of the excitation voltage can also be avoided.
  • the processing module 43 includes: a first processing unit 431 and a second processing unit 432.
  • the first processing unit 431 is used for when the actual phase lead angle is greater than the target phase lead angle, the excitation voltage commutation lags the difference angle.
  • the second processing unit 432 is used for when the actual phase lead angle is smaller than the target phase lead angle, the excitation voltage commutation leads the difference angle.
  • the embodiment of the present application also provides a motor controller. Please refer to FIG. 6.
  • the motor controller includes a processor 61 and a memory 62.
  • the processor 61 and the memory 62 are connected by a bus or other methods in some embodiments. In FIG. 6, the connection by a bus is taken as an example.
  • the processor 61 is a central processing unit (CPU) in some embodiments.
  • the processor 61 is, in some embodiments, other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (ASIC), field programmable gate arrays (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components and other chips, or a combination of the above-mentioned various types of chips.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • the memory 62 is used as a non-transitory computer-readable storage medium, and in some embodiments is used to store non-transitory software programs, non-transitory computer executable programs, and modules, such as those corresponding to the motor control method in the embodiments of the present application Program instructions or modules (for example, the first acquisition module 41, the second acquisition module 42, and the processing module 43 shown in FIG. 4).
  • the processor 61 executes various functional applications and data processing of the processor by running the non-transitory software programs, instructions, and modules stored in the memory 62, that is, realizes the motor control method in the foregoing method embodiment.
  • the memory 62 includes a program storage area and a data storage area in some embodiments.
  • the storage program area stores an operating system and an application program required by at least one function in some embodiments.
  • the storage data area stores data created by the processor 61 and the like in some embodiments.
  • the memory 62 includes a high-speed random access memory in some embodiments.
  • the memory 62 further includes non-transitory memory in some embodiments, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the memory 62 includes a memory remotely provided with respect to the processor 61, and these remote memories are connected to the processor 61 through a network in some embodiments. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 62, and when executed by the processor 61, the motor control method in the embodiment shown in FIG. 1 or FIG. 3 is executed.
  • An embodiment of the present application also provides a motor, which includes the motor controller in the above specific implementation.
  • the program is stored in a computer readable storage medium.
  • the storage medium in some embodiments is a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), a random access memory (RAM), and a flash memory (Flash Memory).
  • the storage medium in some embodiments is a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), a random access memory (RAM), and a flash memory (Flash Memory).
  • HDD Hard Disk Drive
  • Solid-State Drive Solid-State Drive
  • SSD Solid-State Drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种电机控制方法、装置、电机控制器、电机及存储介质,该电机控制方法包括:获取电机运行时的实际相位超前角(S101),获取该实际相位超前角和目标相位超前角的差值角度(S102),根据该差值角度调整电机的励磁电压的换向相位(S103),其中该目标相位超前角为电机达到目标转速,施加于电机的励磁电压的换向相位超前电机的反电动势换向相位的角度,即超前反电动势过零点的角度。该控制方法使得电机在转速不断变化的过程中,渐渐缩小实际相位超前角与目标相位超前角的差值,达到平稳电流、避免由于实际超前角与目标超前角误差大造成的反电动势过零点超前于励磁电压换向相位,从而导致励磁电压换向错误、电机运行异常的问题。

Description

电机控制方法、电机控制装置及电机控制器
相关申请
本申请要求2019年12月18日申请的,申请号为201911308044.X,名称为″电机控制方法、装置、电机控制器、电机及存储介质″的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电机控制技术领域,具体涉及一种电机控制方法、电机控制装置及电机控制器。
背景技术
发明人知晓无刷电动机利用电子换向替代了机械换向,克服了传统直流电机由于电刷摩擦而产生的一系列问题,并且具有调速性能好、体积小、效率高等优点。无刷电机的绕组呈电感特性,因此绕组电流滞后于所施加的电压,所以通常设置一定相位超前角(相位超前角即励磁电压换向相位超前反电动势换向相位的角度)以使得相电流超前相应的反电动势(即CPA电流超前角法),即在反电动势过零点之前提前换向励磁,以实现提高电机输出扭矩和效率。
由于电机高速运转时,受反电动势抑制,电机不能提速,为了保证无刷电机高速运行,必须对无刷直流电机进行弱磁增速,相关技术中通过增大电流超前角(即让相电流超电动势过零点一定角度,该角度即为目标超前角,从而使得电机能够达到目标转速),减小与永磁磁场交链的定子导体匝数,从而见减小了与永磁磁场交链的定子绕组磁链,实现了等效弱磁。但是在采用该CPA电流超前角法弱磁的过程中,发明人意识到,由于电机转速不均及采样误差等,会导致实际相位超前角与目标相位超前角存在误差,导致电流不平稳,且在电机加 速过程中由于实际相位超前角与目标相位超前角误差较大,而励磁电压的换向周期短,会出现反电动势过零点超前于相位超前角换向点,从而导致电机励磁电压换向错误,电机运行异常。
申请内容
基于此,本申请提供了一种电机控制方法、电机控制装置及电机控制器,以解决相关技术中的电机超前角控制方法,由于实际相位超前角与目标相位超前角误差较大,容易导致电机运行异常的问题。
本申请提供了一种电机控制方法,包括:获取电机运行时的实际相位超前角;获取所述实际相位超前角和目标相位超前角的差值角度;其中,所述目标相位超前角为所述电机达到目标转速,施加于所述电机的励磁电压的换向相位超前所述电机的反电动势换向相位的角度;根据所述差值角度调整所述电机的励磁电压的换向相位。
通过上述步骤,实时获取电机的实际相位超前角,然后获取实际相位超前角与目标相位超前角的差值角度,然后根据该差值角度调整电机的励磁电压的换向相位,从而使得电机在转速不断变化的过程中,渐渐缩小实际相位超前角与目标相位超前角的差值,达到平稳电流、避免由于实际超前角与目标超前角误差大造成的反电动势过零点超前于励磁电压换向相位,从而导致励磁电压换向错误、电机运行异常的问题。
在其中一些实施例中,所述根据所述差值角度调整所述电机的励磁电压的换向相位的步骤,包括:当所述实际相位超前角大于所述目标相位超前角时,在预测换向相位,滞后所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相位是根据所述实际相位超前角预测的所述励磁电压的换向相位。
通过上述步骤,当实际相位超前角大于目标相位超前角时,在励磁电压超前反电动势过零点换向时,在该励磁电压的预测换向相位,该励磁电压滞后该差值角度对应的时间再进行 换向,例如由正电压换为负电压时滞后该差值角度再进行换向,从而在电机的转速不断变化的过程中,渐渐缩小目标相位超前角与实际相位超前角的差值,最终达到两者一致,使得电机的电流平稳,较小转速波动,降低电机噪音,避免电流峰值导致电机相关器件损坏。
在其中一些实施例中,当所述实际相位超前角小于所述目标相位超前角时,在预测换向相位,超前所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相位是根据所述实际相位超前角预测的所述励磁电压的换向相位。
通过上述步骤,实际相位超前角小于目标相位超前角时,则此时控制励磁电压在换向时超前该差值角度进行换向,以此渐渐缩小实际相位超前角与目标相位超前角的差值,最终使两者达到一致,从而使电机电流平稳,避免电机运行异常。
在其中一些实施例中,所述励磁电压换向时滞后所述差值角度的步骤,包括:在滞后所述差值角度对应的时间内,不对所述电机施加励磁电压。
在其中一些实施例中,所述获取电机运行时的实际相位超前角的步骤,包括:获取所述励磁电压的电压信号;获取所述电机的转子的位置信号;根据所述电压信号和所述位置信号获取所述电机运行的实际相位超前角。
在其中一些实施例中,所述获取所述电机的转子的位置信号包括:通过霍尔传感器检测所述转子的位置信号;其中,所述霍尔传感器安装在所述电机的定子上。
在其中一些实施例中,所述根据所述电压信号和所述位置信号获取所述电机运行的实际相位超前角的步骤,包括:根据所述励磁电压的电压信号的波形和所述转子的位置信号的波形获取所述电机运行的实际相位超前角。
通过上述步骤,根据霍尔传感器获取电机运行过程中转子的位置信息,得到的波形获取反电动势的过零点换向相位信息,根据示波器检测电机的励磁电压的电压波形,然后进行比较,直观地获知电机的励磁电压换向的实际相位超前角。
本申请提供了一种电机控制装置,包括:第一获取模块,用于获取电机运行时的实际相 位超前角;第二获取模块,用于获取所述实际相位超前角和目标相位超前角的差值角度;其中,所述目标相位超前角为所述电机达到目标转速,施加于所述电机的励磁电压的换向相位超前所述电机的反电动势换向相位的角度;处理模块,用于根据所述差值角度调整所述电机的励磁电压的换向相位。
在其中一些实施例中,所述处理模块包括:第一处理单元,用于当所述实际相位超前角大于所述目标相位超前角时,在预测换向相位,滞后所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相位是根据所述实际相位超前角预测的所述励磁电压的换向相位。
在其中一些实施例中,所述处理模块包括:第二处理单元,用于当所述实际相位超前角小于所述目标相位超前角时,在预测换向相位,超前所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相位是根据所述实际相位超前角预测的所述励磁电压的换向相位。
本申请提供了一种电机控制器,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器执行电机控制方法,所述电机控制方法包括:
获取电机运行时的实际相位超前角;
获取所述实际相位超前角和目标相位超前角的差值角度;其中,所述目标相位超前角为所述电机达到目标转速,施加于所述电机的励磁电压的换向相位超前所述电机的反电动势换向相位的角度;
根据所述差值角度调整所述电机的励磁电压的换向相位。
本申请提供的电机控制方法包括:获取电机运行时的实际相位超前角,获取该实际相位超前角和目标相位超前角的差值角度,根据该差值角度调整电机励磁电压的换向相位。其中 该目标相位超前角为电机达到目标转速时,施加于电机的励磁电压的换向相位超前电机的反电动势换向相位的角度,即超前反电动势过零点的角度。通过本申请提供的电机控制方法,在对电机提速过程中,为了使得电机达到目标转速,需要让电机的励磁电压超前反电动势换向,以达到弱磁提速,这里的励磁电压换向相位超前反电动势换向相位的角度即为目标相位超前角,实时获取电机的实际相位超前角,然后获取实际相位超前角与目标相位超前角的差值角度,然后根据该差值角度调整电机的励磁电压的换向相位,从而使得电机在转速不断变化的过程中,渐渐缩小实际相位超前角与目标相位超前角的差值,达到平稳电流、避免由于实际超前角与目标超前角误差大造成的反电动势过零点超前于励磁电压换向相位,从而导致励磁电压换向错误、电机运行异常的问题。
附图说明
为了更清楚地说明本申请具体实施方式或相关技术中的技术方案,下面将对具体实施方式或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,根据这些附图获得其他的附图。
图1是根据本申请实施例的电机控制方法的一个流程图;
图2是根据本申请实施例的电压信号波形和位置信号波形示意图;
图3是根据本申请实施例的电机控制方法的另一个流程图;
图4是根据本申请实施例的电机控制装置的一个结构框图;
图5是根据本申请实施例的电机控制装置的另一个结构框图;
图6是根据本申请实施例的电机控制器的硬件结构示意图。
其中,上述附图中的附图标记为:
41、第一获取模块;42、第二获取模块;43、处理模块;431、第一处理单元;432、第 二处理单元;61、处理器;62、存储器。
具体实施方式
为使本申请实施例的技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种电机控制方法,在本申请实施例中,该电机控制方法在一些实施例中应用于直流无刷电机的控制,请参阅图1,该电机控制方法包括:
步骤S101:获取电机运行时的实际相位超前角。具体地,直流无刷电机在运行时,由于受反电动势抑制,直流无刷电机无法提速。为了提高电机转速,需要对电机进行弱磁控制,因此对电机绕组施加励磁电压,使电机能够弱磁增速。通常情况下励磁电压需要超前反电动势过零点进行换向,因此需要计算目标相位超前角。该目标相位超前角是与电机的目标转速相关的参数。该目标相位超前角的计算方式在相关技术中已经有较为成熟的算法,在此不再赘述该目标相位超前角的计算过程。由于转速不均及电流采样误差等原因,使得电机运行过程中的实际相位超前角会与需要的目标相位超前角存在误差,因此实时获取该电机运行的实际相位超前角。
步骤S102:获取该实际相位超前角和目标相位超前角的差值角度。其中该目标相位超前角为电机达到目标转速,施加于电机的励磁电压的换向相位超前电机的反电动势换向相位的角度。
步骤S103:根据该差值角度调整电机的励磁电压的换向相位。具体地,获取实际相位超前角与目标相位超前角的差值角度后,根据该差值角度调整施加于电机的励磁电压的换向相位。直流无刷电机的励磁电压有正向电压和反向电压,调整该励磁电压的换向相位实现控 制实际相位超前角,从而在电机转速变化的过程中,缩小实际相位超前角与目标相位超前角的差值,使得电机的电流平稳,波动小,也能避免励磁电压换向错误。
在对电机提速过程中,为了使得电机达到目标转速,需要使电机的励磁电压超前反电动势换向,以实现弱磁提速。这里的励磁电压的换向相位超前反电动势换向相位的角度即为目标相位超前角。通过上述步骤S101至S103,实时获取电机的实际相位超前角。然后获取实际相位超前角与目标相位超前角的差值角度。然后根据该差值角度调整电机的励磁电压的换向相位,从而使得电机在转速不断变化的过程中,渐渐缩小实际相位超前角与目标相位超前角的差值,达到平稳电流、避免由于实际超前角与目标超前角误差大造成的反电动势过零点超前于励磁电压换向相位,从而导致励磁电压换向错误、电机运行异常的问题。
上述步骤S103涉及到根据该差值角度调整电机的励磁电压的换向相位的步骤,包括:当该实际相位超前角大于目标相位超前角时,在预测换向相位,滞后该差值角度对应的时间对励磁电压进行换向。其中该预测换向相位是根据实际相位超前角预测的励磁电压的换向相位。具体地,请参阅图2,当获取得到的实际相位超前角大于目标相位超前角时,图2中直流无刷电机运行时的实际相位超前角为β。即励磁电压超前位置传感器的换向角度为β。而需要的目标相位超前角为α,则实际相位超前角β大于目标相位超前角α。则两者的差值角度为β-α,说明励磁电压超前较多,会出现电机电流不平稳,电机运行异常甚至出现异响的问题。在下半个周期,或者1/2*N(n=1,2,3,4......)电周期对相位超前角进行修正。即在下一个励磁电压超前反电动势过零点换向(即预测换向相位,该预测换向相位为根据实际相位超前角预测的励磁电压的换向相位)时,该励磁电压滞后该差值角度β-α对应的时间再进行换向。例如由正电压换为负电压时滞后β-α对应的时间再进行换向,而在滞后该差值角度β-α对应的时间期间,不对直流无刷电机的绕组施加励磁电压,从而在电机的转速不断变化的过程中,渐渐缩小目标相位超前角与实际相位超前角的差值,最终达到两者一致,使得电机的电流平稳,减小转速波动,降低电机噪音,避免电流峰值导致电机相关器件损坏。
在一些实施例中,当该实际相位超前角小于目标相位超前角时,在预测换向相位,超前该差值角度对应的时间对励磁电压进行换向。其中该预测换向相位是根据实际相位超前角预测的励磁电压的换向相位。具体地,由于电机的运行过程中,速度是不均匀的,在一些实施例中会出现实际相位超前角小于目标相位超前角的情况。由于实际相位超前角与目标相位超前角存在差值,这样励磁电压换向有误差,则同样会导致电流不平稳。在电机加速过程中,由于速度变化快,在一些实施例中会出现反电动势过零点提前于励磁电压超前换向点,导致电机励磁电压换向错误,电机出现噪音。由于实际相位超前角小于目标相位超前角,则此时控制励磁电压在换向时超前该差值角度进行换向,以此渐渐缩小实际相位超前角与目标相位超前角的差值,最终使两者达到一致,从而使电机电流平稳,避免电机运行异常。
上述步骤S101涉及到获取电机运行时的实际相位超前角。在一些实施例中,请参阅图3,该步骤包括:
步骤S1011:获取该励磁电压的电压信号。具体地,在一些实施例中通过示波器采集励磁电压的电压信号。该示波器通过采集电机的绕组两端的励磁电压,从而获取励磁电压的电压信号。
步骤S1012:获取该电机的转子的位置信号。具体地,在一些实施例中通过霍尔传感器检测该转子的位置信号。该霍尔传感器安装在直流无刷电机的定子上,用霍尔传感器来获取电机的转子在旋转过程中的位置,具体为相位位置,为本领域中的通用技术,在此不再赘述。
步骤S1013:根据该电压信号和该位置信号获取电机运行的实际相位超前角。具体地,在一些实施例中将该励磁电压的电压信号的波形和转子的位置信号的波形进行比较。请参阅图2,励磁电压的电压信号的波形表征了励磁电压的换向相位信息,转子的位置信号的波形表征了反电动势过零点的相位信息,比较两个波形,能够获取电机的励磁电压换向的实际相位超前角。
通过上述步骤,根据霍尔传感器获取电机运行过程中转子的位置信息,得到的波形获取 反电动势的过零点换向相位信息。根据示波器采集电机的励磁电压的电压波形,然后进行比较,在一些实施例中直观地获知电机的励磁电压换向的实际相位超前角。
本申请实施例的电机控制方法,实时获取电机的实际相位超前角。然后获取实际相位超前角与目标相位超前角的差值角度。然后根据该差值角度调整电机的励磁电压的换向相位,从而使得电机在转速不断变化的过程中,渐渐缩小实际相位超前角与目标相位超前角的差值,达到平稳电流、避免由于实际超前角与目标超前角误差大造成的反电动势过零点超前于励磁电压换向相位,从而导致励磁电压换向错误、电机运行异常的问题。
本申请实施例提供了一种电机控制装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语″模块″在一些实施例中实现预定功能的软件、硬件、或软件和硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是被构想的。
本申请实施例提供一种电机控制装置,请参阅图4,该电机控制装置包括:第一获取模块41、第二获取模块42及处理模块43。
该第一获取模块41用于获取电机运行时的实际相位超前角,具体内容详见步骤S101的具体描述。
该第二获取模块42用于获取实际相位超前角和目标相位超前角的差值角度。其中,该目标相位超前角为电机达到目标转速,施加于电机的励磁电压的换向相位超前所述电机的反电动势换向相位的角度,具体内容详见步骤S102的具体描述。
该处理模块43用于根据该差值角度调整电机的励磁电压的换向相位,具体内容详见步骤S103的具体描述。
通过本申请实施例的电机控制装置,根据电机运行过程中的实际相位超前角与目标相位超前角的差值调整该励磁电压的换向相位,控制实际相位超前角,从而在电机转速变化的过程中,缩小实际相位超前角与目标相位超前角的差值,使得电机的电流平稳,波动小,也能 避免励磁电压换向错误。
在一些实施例中,请参阅图5,该处理模块43包括:第一处理单元431及第二处理单元432。其中该第一处理单元431用于当该实际相位超前角大于目标相位超前角时,励磁电压换向时滞后该差值角度。该第二处理单元432用于当该实际相位超前角小于目标相位超前角时,励磁电压换向时超前该差值角度。
上述各个模块的更进一步的功能描述与上述对应实施例相同,在此不再赘述。
本申请实施例还提供了一种电机控制器,请参阅图6,该电机控制器包括处理器61和存储器62。其中处理器61和存储器62在一些实施例中通过总线或者其他方式连接,图6中以通过总线连接为例。
处理器61在一些实施例中为中央处理器(Central Processing Unit,CPU)。处理器61在一些实施例中以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器62作为一种非暂态计算机可读存储介质,在一些实施例中用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本申请实施例中的电机控制方法对应的程序指令或模块(例如,图4所示的第一获取模块41、第二获取模块42和处理模块43)。处理器61通过运行存储在存储器62中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的电机控制方法。
存储器62在一些实施例中包括存储程序区和存储数据区。其中,存储程序区在一些实施例中存储操作系统、至少一个功能所需要的应用程序。存储数据区在一些实施例中存储处理器61所创建的数据等。此外,存储器62在一些实施例中包括高速随机存取存储器。存储器62在一些实施例中还包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其 他非暂态固态存储器件。在一些实施例中,存储器62包括相对于处理器61远程设置的存储器,这些远程存储器在一些实施例中通过网络连接至处理器61。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器62中,当被所述处理器61执行时,执行如图1或图3所示实施例中的电机控制方法。
上述电机控制器具体细节对应参阅图1至图3所示的实施例中对应的相关描述和效果进行理解,此处不再赘述。
本申请实施例还提供了一种电机,该电机包括上述具体实施方式中的电机控制器。
本领域技术人员在一些实施例中理解,实现上述实施例方法中的全部或部分流程,是通过计算机程序来指令相关的硬件来完成。所述的程序在一些实施例中存储于一计算机可读取存储介质中,该程序在执行时,在一些实施例中包括如上述各电机控制方法的实施例的流程。其中,所述存储介质在一些实施例中为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质在一些实施例中还包括上述种类的存储器的组合。
虽然结合附图描述了本申请的实施例,但是本领域技术人员在一些实施例中在不脱离本申请的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (17)

  1. 一种电机控制方法,其中,包括:
    获取电机运行时的实际相位超前角;
    获取所述实际相位超前角和目标相位超前角的差值角度;其中,所述目标相位超前角为所述电机达到目标转速,施加于所述电机的励磁电压的换向相位超前所述电机的反电动势换向相位的角度;
    根据所述差值角度调整所述电机的励磁电压的换向相位。
  2. 根据权利要求1所述的电机控制方法,其中,所述根据所述差值角度调整所述电机的励磁电压的换向相位的步骤,包括:
    当所述实际相位超前角大于所述目标相位超前角时,在预测换向相位,滞后所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相位是根据所述实际相位超前角预测的所述励磁电压的换向相位。
  3. 根据权利要求2所述的电机控制方法,其中,所述滞后所述差值角度对应的时间对所述励磁电压进行换向的步骤,包括:
    在滞后所述差值角度对应的时间内,不对所述电机施加励磁电压。
  4. 根据权利要求1-3中任一项所述的电机控制方法,其中,所述根据所述差值角度调整所述电机的励磁电压的换向相位的步骤,包括:
    当所述实际相位超前角小于所述目标相位超前角时,在预测换向相位,超前所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相位是根据所述实际相位超前角预测的所述励磁电压的换向相位。
  5. 根据权利要求1-4中任一项所述的电机控制方法,其中,所述获取电机运行时的实际相位超前角的步骤,包括:
    获取所述励磁电压的电压信号;
    获取所述电机的转子的位置信号;
    根据所述电压信号和所述位置信号获取所述电机运行的实际相位超前角。
  6. 根据权利要求5所述的电机控制方法,其中,所述获取所述电机的转子的位置信号包括:
    通过霍尔传感器检测所述转子的位置信号;其中,所述霍尔传感器安装在所述电机的定子上。
  7. 根据权利要求5所述的电机控制方法,其中,所述根据所述电压信号和所述位置信号获取所述电机运行的实际相位超前角的步骤,包括:
    根据所述励磁电压的电压信号的波形和所述转子的位置信号的波形获取所述电机运行的实际相位超前角。
  8. 一种电机控制装置,其中,包括:
    第一获取模块(41),用于获取电机运行时的实际相位超前角;
    第二获取模块(42),用于获取所述实际相位超前角和目标相位超前角的差值角度;其中,所述目标相位超前角为所述电机达到目标转速,施加于所述电机的励磁电压的换向相位超前所述电机的反电动势换向相位的角度;
    处理模块(43),用于根据所述差值角度调整所述电机的励磁电压的换向相位。
  9. 根据权利要求8所述的电机控制装置,其中,所述处理模块(41)包括:
    第一处理单元(431),用于当所述实际相位超前角大于所述目标相位超前角时,在预测换向相位,滞后所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相位是根据所述实际相位超前角预测的所述励磁电压的换向相位。
  10. 根据权利要求8或9所述的电机控制装置,其中,所述处理模块(41)包括:
    第二处理单元(432),用于当所述实际相位超前角小于所述目标相位超前角时,在预测换向相位,超前所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相 位是根据所述实际相位超前角预测的所述励磁电压的换向相位。
  11. 一种电机控制器,其中,包括:
    至少一个处理器(61);以及
    与所述至少一个处理器(61)通信连接的存储器(62);其中,所述存储器(62)存储有被所述至少一个处理器(61)执行的计算机程序,所述计算机程序被所述至少一个处理器(61)执行,以使所述至少一个处理器(61)执行电机控制方法,所述电机控制方法包括:
    获取电机运行时的实际相位超前角;
    获取所述实际相位超前角和目标相位超前角的差值角度;其中,所述目标相位超前角为所述电机达到目标转速,施加于所述电机的励磁电压的换向相位超前所述电机的反电动势换向相位的角度;
    根据所述差值角度调整所述电机的励磁电压的换向相位。
  12. 根据权利要求11所述的电机控制器,其中,所述根据所述差值角度调整所述电机的励磁电压的换向相位的步骤,包括:
    当所述实际相位超前角大于所述目标相位超前角时,在预测换向相位,滞后所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相位是根据所述实际相位超前角预测的所述励磁电压的换向相位。
  13. 根据权利要求12所述的电机控制方法,其中,所述滞后所述差值角度对应的时间对所述励磁电压进行换向的步骤,包括:
    在滞后所述差值角度对应的时间内,不对所述电机施加励磁电压。
  14. 根据权利要求11-13中任一项所述的电机控制器,其中,所述根据所述差值角度调整所述电机的励磁电压的换向相位的步骤,包括:
    当所述实际相位超前角小于所述目标相位超前角时,在预测换向相位,超前所述差值角度对应的时间对所述励磁电压进行换向;其中,所述预测换向相位是根据所述实际相位超前 角预测的所述励磁电压的换向相位。
  15. 根据权利要求11-14中任一项所述的电机控制器,其中,所述获取电机运行时的实际相位超前角的步骤,包括:
    获取所述励磁电压的电压信号;
    获取所述电机的转子的位置信号;
    根据所述电压信号和所述位置信号获取所述电机运行的实际相位超前角。
  16. 根据权利要求15所述的电机控制器,其中,所述获取所述电机的转子的位置信号包括:
    通过霍尔传感器检测所述转子的位置信号;其中,所述霍尔传感器安装在所述电机的定子上。
  17. 根据权利要求15所述的电机控制器,其中,所述根据所述电压信号和所述位置信号获取所述电机运行的实际相位超前角的步骤,包括:
    根据所述励磁电压的电压信号的波形和所述转子的位置信号的波形获取所述电机运行的实际相位超前角。
PCT/CN2020/111019 2019-12-18 2020-08-25 电机控制方法、电机控制装置及电机控制器 WO2021120666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911308044.X 2019-12-18
CN201911308044.XA CN113014158B (zh) 2019-12-18 2019-12-18 电机控制方法、装置、电机控制器、电机及存储介质

Publications (1)

Publication Number Publication Date
WO2021120666A1 true WO2021120666A1 (zh) 2021-06-24

Family

ID=76382675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111019 WO2021120666A1 (zh) 2019-12-18 2020-08-25 电机控制方法、电机控制装置及电机控制器

Country Status (2)

Country Link
CN (1) CN113014158B (zh)
WO (1) WO2021120666A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114719799A (zh) * 2022-03-04 2022-07-08 武汉海微科技有限公司 一种软性材质边界检测方法、装置以及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671304B (zh) * 2021-01-14 2023-10-03 珠海格力电器股份有限公司 电机的控制方法及装置
CN114301364A (zh) * 2022-01-21 2022-04-08 北京信息科技大学 单相电流相位控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025749A1 (en) * 2010-07-29 2012-02-02 Lai Yen-Shin Control system of three phase induction motor driver and field weakening control method thereof
CN104767435A (zh) * 2015-04-27 2015-07-08 山东大学 基于中性点电压的无传感器无刷电机换相相位实时校正方法
CN106059409A (zh) * 2016-05-27 2016-10-26 北京航空航天大学 一种无位置传感器无刷直流电机转子换相误差校正方法及控制系统
CN107222135A (zh) * 2017-05-12 2017-09-29 哈尔滨工程大学 一种直流无刷电机无位置传感器控制系统换相控制方法
CN108270382A (zh) * 2016-12-30 2018-07-10 杭州三花研究院有限公司 一种控制方法及装置
CN108448981A (zh) * 2018-03-30 2018-08-24 歌尔股份有限公司 电机控制方法及设备
CN110212819A (zh) * 2019-05-28 2019-09-06 天津大学 一种用于高速无刷直流电机的换相误差补偿方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656354B2 (ja) * 2008-10-20 2015-01-21 キヤノン株式会社 駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025749A1 (en) * 2010-07-29 2012-02-02 Lai Yen-Shin Control system of three phase induction motor driver and field weakening control method thereof
CN104767435A (zh) * 2015-04-27 2015-07-08 山东大学 基于中性点电压的无传感器无刷电机换相相位实时校正方法
CN106059409A (zh) * 2016-05-27 2016-10-26 北京航空航天大学 一种无位置传感器无刷直流电机转子换相误差校正方法及控制系统
CN108270382A (zh) * 2016-12-30 2018-07-10 杭州三花研究院有限公司 一种控制方法及装置
CN107222135A (zh) * 2017-05-12 2017-09-29 哈尔滨工程大学 一种直流无刷电机无位置传感器控制系统换相控制方法
CN108448981A (zh) * 2018-03-30 2018-08-24 歌尔股份有限公司 电机控制方法及设备
CN110212819A (zh) * 2019-05-28 2019-09-06 天津大学 一种用于高速无刷直流电机的换相误差补偿方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114719799A (zh) * 2022-03-04 2022-07-08 武汉海微科技有限公司 一种软性材质边界检测方法、装置以及存储介质
CN114719799B (zh) * 2022-03-04 2024-04-26 武汉海微科技股份有限公司 一种软性材质边界检测方法、装置以及存储介质

Also Published As

Publication number Publication date
CN113014158B (zh) 2023-03-28
CN113014158A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2021120666A1 (zh) 电机控制方法、电机控制装置及电机控制器
TWI418135B (zh) 馬達控制方法與系統及其中之數位信號處理器
JP2007014198A (ja) センサレスモータを始動するためのモータ駆動装置を制御するための制御方法及びキャッチ始動シーケンサ
CN113131805B (zh) 一种无刷直流电机的控制装置及方法
CN1913332A (zh) 启动无传感器马达的系统和方法
WO2022237829A1 (zh) 一种电机的控制方法、控制系统和存储介质
WO2015045529A1 (ja) 電力変換装置及び電力変換方法
CN105024604A (zh) 一种永磁同步电机的弱磁控制方法和装置
CN113131806A (zh) 一种无刷直流电机的控制装置及方法
US9941826B2 (en) Motor drive control device
JP2000156993A (ja) 永久磁石型同期機の制御装置及びその制御方法
US10992243B2 (en) System and computer-implemented method for reducing angle error in electric motors
CN111224599B (zh) 永磁辅助同步磁阻电机的控制方法
JP2006054930A (ja) 同期モータの制御装置
WO2023067862A1 (ja) モータ装置、ワイパー装置、及びモータ制御方法
CN111162712B (zh) 直驱永磁同步电机的控制方法、牵引控制器及存储介质
CN114640291B (zh) 一种异步电机短时停机转速跟踪启动方法
CN109546901A (zh) 一种直流无刷电机换相方法
CN115378197B (zh) 开关磁阻电机及其控制方法、抗扰动方法、设备和介质
CN112398373B (zh) 一种无刷直流电机的控制方法、装置及存储介质
JP5923437B2 (ja) 同期電動機駆動システム
KR101684807B1 (ko) 진상각 제어기
CN107528504B (zh) 用于驱动包括转子的电机的方法和驱动电路
CN115065297B (zh) 一种基于角度优化控制的开关磁阻电机模式平稳切换方法
WO2024179271A1 (zh) 磁极位置确定系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901508

Country of ref document: EP

Kind code of ref document: A1