WO2024179271A1 - 磁极位置确定系统 - Google Patents

磁极位置确定系统 Download PDF

Info

Publication number
WO2024179271A1
WO2024179271A1 PCT/CN2024/075271 CN2024075271W WO2024179271A1 WO 2024179271 A1 WO2024179271 A1 WO 2024179271A1 CN 2024075271 W CN2024075271 W CN 2024075271W WO 2024179271 A1 WO2024179271 A1 WO 2024179271A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
rotor
quadrant
moment
determining
Prior art date
Application number
PCT/CN2024/075271
Other languages
English (en)
French (fr)
Other versions
WO2024179271A9 (zh
Inventor
周金伟
姜学想
李希志
任兆亭
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2024179271A1 publication Critical patent/WO2024179271A1/zh
Publication of WO2024179271A9 publication Critical patent/WO2024179271A9/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/32Determining the initial rotor position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present disclosure relates to the technical field of motor control, and in particular to a magnetic pole position determination system.
  • Permanent magnet synchronous motors as electromechanical transducers, have been widely used in aerospace, industrial transmission, household appliances and other scenarios. Permanent magnet synchronous motors have become a research hotspot in the field of AC speed control transmission due to their simple structure, small size, light weight and high efficiency. Permanent magnet synchronous motors require precise rotor pole position and speed signals to achieve magnetic field orientation and speed control.
  • a magnetic pole position determination system comprising a motor and a magnetic pole position determination device.
  • the motor comprises a rotor.
  • the magnetic pole determination device is coupled to the motor; the magnetic pole determination device is configured to: inject a high-frequency voltage in a two-phase stationary coordinate system of the motor at a first moment; determine the initial magnetic pole position of the rotor and the rotation speed of the rotor based on the high-frequency voltage; apply a zero voltage vector pulse to the motor at a second moment; determine the current vector position angle corresponding to the zero voltage vector pulse; determine the magnetic pole position of the rotor based on the first moment, the second moment, the rotation speed of the rotor, the current vector position angle, a preset mapping table and the initial magnetic pole position; wherein the preset mapping table is configured to find the quadrant where the magnetic pole of the rotor is located based on the current vector position angle, and the quadrant is the quadrant where the direct axis of the rotor and the quadrat
  • a magnetic pole position determination method of a magnetic pole position determination system wherein the magnetic pole position determination system includes a motor and a magnetic pole position determination device.
  • the motor includes a rotor.
  • the magnetic pole determination device is coupled to the motor.
  • the determination method includes: injecting a high-frequency voltage in a two-phase stationary coordinate system of the motor at a first moment; determining the initial magnetic pole position of the rotor and the rotation speed of the rotor based on the high-frequency voltage; applying a zero voltage vector pulse to the motor at a second moment; determining the current vector position angle corresponding to the zero voltage vector pulse; determining the magnetic pole position of the rotor based on the first moment, the second moment, the rotation speed of the rotor, the current vector position angle, a preset mapping table and the initial magnetic pole position; wherein the preset mapping table is configured to find the quadrant where the magnetic pole of the rotor is located based on the current vector position angle, and the quadrant is the quadrant where the direct axis of the rotor and the quadrature axis of the rotor are located; if it is determined that the first magnetic pole of the rotor converges to the target magnetic pole, the position angle of the rotor is compensated according to a preset angle
  • FIG1 is a block diagram of a magnetic pole position determination system according to some embodiments.
  • FIG2 is a schematic diagram of a motor according to some embodiments.
  • FIG3 is a schematic diagram of another motor according to some embodiments.
  • FIG4 is a flow chart of steps performed by a magnetic pole position determination system according to some embodiments.
  • FIG5 is a schematic diagram of a stationary axis system for a high frequency square wave injection method according to some embodiments
  • FIG6 is a zero voltage vector single pulse method phasor diagram according to some embodiments.
  • FIG. 7 is another flow chart of steps performed by a magnetic pole position determination system according to some embodiments.
  • FIG8 is another flow chart of steps performed by a magnetic pole position determination system according to some embodiments.
  • FIG9 is another flow chart of steps performed by a magnetic pole position determination system according to some embodiments.
  • FIG10 is a diagram showing the relationship between the current vector and the magnetic pole position when the rotor rotates in a first direction according to some embodiments
  • 11 is a diagram showing the relationship between the current vector and the magnetic pole position when the rotor rotates in the second direction according to some embodiments;
  • FIG12 is a verification diagram corresponding to a method for determining a magnetic pole position according to some embodiments.
  • FIG13 is another verification diagram corresponding to the method for determining the magnetic pole position according to some embodiments.
  • FIG14 is a schematic diagram of a method for determining a magnetic pole position according to some embodiments.
  • FIG. 15 is a structural diagram of a magnetic pole determination device according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • coupled indicates, for example, that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Cut-off frequency when the amplitude of the input signal is kept constant, the frequency is changed so that the output signal drops to 0.707 times the maximum value, that is, the -3dB point is described by the frequency response characteristics, which is the cut-off frequency.
  • the cut-off frequency is configured as a special frequency to describe the frequency characteristic index.
  • the cut-off frequency also refers to the boundary frequency (usually -3dB) at which the output signal energy of a system begins to decrease or rise in the band-stop filter.
  • Low-pass filtering also known as high-cut filtering or treble-cut filtering
  • filtering rules are as follows: low-frequency signals less than the cutoff frequency can pass normally, while high-frequency signals greater than the cutoff frequency are blocked and weakened during the filtering process. The degree of blocking and weakening of high-frequency signals will vary according to different frequencies and different filtering procedures (purposes).
  • a low-pass filter is an electronic filtering device that allows signals with a frequency lower than the cutoff frequency to pass through, but prevents signals with a frequency higher than the cutoff frequency from passing through.
  • Park's transformation (also known as Park's transformation) is the most commonly used coordinate transformation for analyzing the operation of synchronous motors.
  • Park's transformation projects the stator's a, b, c three-phase currents onto the direct axis (d axis) rotating with the rotor, the quadrature axis (q axis) and the zero axis (0 axis) perpendicular to the dq plane, that is, the abc coordinate system is transformed into the dq coordinate system, thereby achieving the diagonalization of the stator inductance matrix and simplifying the operation analysis of the synchronous motor.
  • Permanent-magnet synchronous motor also known as permanent-magnet synchronous motor, is a synchronous motor whose rotor uses permanent magnets instead of windings.
  • the Proportional-Integral Controller is a linear controller that forms a control deviation based on a given value and an actual output value, and uses a linear combination of the proportion and integral of the deviation to form a control quantity to control the controlled object.
  • the motion control of a permanent magnet synchronous motor requires precise rotor pole position signals and precise speed signals to achieve magnetic field orientation and speed control of the rotor.
  • the rotor pole position i.e., the south pole (S pole) and the north pole (N pole)
  • the direction of rotation of the rotor may be reversed or the permanent magnet synchronous motor may fail to start when the permanent magnet synchronous motor is started. This may also affect the operating performance of the system including the permanent magnet synchronous motor (e.g., an air conditioning system) after starting.
  • the system performing vector control usually detects the magnetic pole position of the rotor through components such as photoelectric encoders and rotary transformers, which will affect the lightweight and reliability of the system including the permanent magnet synchronous motor.
  • the magnetic pole position of the rotor is observed by obtaining the parameters of the permanent magnet synchronous motor (such as obtaining current or voltage), which can reduce costs and improve reliability.
  • a double pulse method is used to solve the technical problem of identifying the magnetic pole position of the rotor at low speed.
  • the double pulse method requires injecting a first voltage pulse and a second voltage pulse in the d-axis and -d-axis directions (as shown in FIG6 ) in sequence, and realizing magnetic pole position identification according to the current response.
  • the second voltage pulse needs to be injected after a predetermined time interval after the injection of the first voltage pulse.
  • the rotor of the permanent magnet synchronous motor rotates, the rotor may have rotated a certain angle within the predetermined time interval, resulting in an incorrect injection direction of the second voltage pulse, which affects the accuracy of the identification of the magnetic pole position.
  • the d-axis current peak accumulation method is used to identify the magnetic pole position of the rotor in a stationary state. It should be noted that the d-axis current peak accumulation method refers to extracting and accumulating the current peak signal of the d-axis during the high-frequency voltage signal injection process, and realizing the magnetic pole position identification by judging the positive and negative of the accumulated value.
  • the time required for identifying the magnetic pole position of the rotor by this method is relatively long, resulting in a relatively long process for identifying the magnetic pole position.
  • the present disclosure provides a magnetic pole position determination system 10 .
  • the magnetic pole position determination system 10 includes a motor 11 and a magnetic pole determination device 12 .
  • the motor 11 is coupled to the magnetic pole determination device 12 .
  • the motor 11 is, for example, a permanent magnet synchronous motor. As shown in FIG. 2 and FIG. 3 , the motor 11 includes a rotor 110, and the rotor 110 includes, for example, magnetic poles and a rotor core. In some embodiments, as shown in FIG. 2 , the motor 11 is, for example, a surface-mounted permanent magnet synchronous motor, that is, the magnetic poles are mounted on the surface of the rotor core. In other embodiments, as shown in FIG. 3 , the motor 11 is, for example, an internal permanent magnet synchronous motor, that is, the magnetic poles are arranged inside the rotor core.
  • the motor 11 further includes a stator 120, which is, for example, a stator coil.
  • the stator 120 is configured to generate a rotating magnetic field so that the rotor 110 is cut by magnetic lines of force in the rotating magnetic field to generate current.
  • the stator 120 includes a stator core and a stator winding.
  • the stator winding is, for example, a stator three-phase winding.
  • the magnetic pole determination device 12 is configured to determine the magnetic pole position of the rotor 110 based on one or more of the first moment, the second moment, the rotor speed, the current vector position angle, a preset mapping table, and the initial magnetic pole position; here, the preset mapping table is configured to find the quadrant in which the magnetic pole of the rotor 110 is located based on the current vector position angle, and the quadrant is the quadrant composed of the d-axis of the rotor and the q-axis of the rotor.
  • the magnetic pole position determination system 10 can also include a space vector pulse width modulation (SVPWM) operation device and a three-phase thin film capacitor drive device.
  • SVPWM space vector pulse width modulation
  • a control method for determining the magnetic pole position of the rotor 110 is provided, which is applied to the magnetic pole determination device 12, as shown in Figure 4.
  • the control method includes S100-S104.
  • Figure 5 shows the ABC axis system, the dq axis system, The phase relationship between the axis system (i.e., the observation axis system) and the d m -q m axis system (i.e., the measurement axis system).
  • the axis system i.e., the observation axis system
  • the d m -q m axis system i.e., the measurement axis system.
  • the d m -q m axis system lags behind The axis is 45° (ie ⁇ /4).
  • FIG6 shows an ⁇ stationary coordinate system.
  • the two-phase stationary coordinate system is, for example, an ⁇ stationary coordinate system.
  • the signal form of the high-frequency voltage injected into the two-phase stationary coordinate system of the motor 11 is a square wave signal with symmetry between the positive and negative half cycles, and its mathematical expression is, for example, formula (1).
  • u inj is the amplitude of the injected high-frequency voltage signal
  • Tinj is the injection period of the high-frequency voltage signal
  • n is the number of periods of the injected high-frequency voltage signal.
  • the magnetic pole position determination system 10 further includes a voltage regulator 13 , which is coupled to the magnetic pole determination device 12 and configured to regulate the output voltage of the motor 11 .
  • the magnetic pole determining device 12 superimposes a high-frequency voltage (for example, a high-frequency square wave voltage) on the d-axis voltage output by the voltage regulator 13 .
  • a high-frequency voltage for example, a high-frequency square wave voltage
  • the magnetic poles of the rotor 110 include a first sub-magnetic pole (for example, an N pole) and a second sub-magnetic pole (for example, an S pole).
  • the magnetic pole position determination system 10 further includes an inverter 14 , which is coupled to the magnetic pole determination device 12 and configured to convert direct current into alternating current.
  • the magnetic pole determining device 12 obtains the initial magnetic pole position of the rotor 110 and the rotation speed of the rotor 110 according to the feedback value of the three-phase current output by the inverter 14 .
  • ⁇ e is the actual rotor pole electrical angle; To observe the electrical angle of the rotor poles; is the rotor magnetic pole observation error angle.
  • ⁇ e is the actual rotor pole electrical angle; To observe the electrical angle of the rotor poles; is the rotor magnetic pole observation error angle.
  • the magnetic pole determination device is further configured to obtain a magnetic pole position error signal according to the high-frequency voltage and the feedback value of the three-phase current output by the inverter.
  • the high-frequency voltage u inj is injected into In the coordinate system, we get formula (2).
  • u inj is the amplitude of the injected high-frequency voltage signal.
  • the dq coordinate system and The voltage in the coordinate system satisfies formula (3).
  • u dh is the d-axis voltage
  • u qh is the q-axis voltage
  • for Shaft voltage for Shaft voltage
  • the high-frequency current response signal of the motor 11 under the action of the high-frequency voltage signal satisfies formula (5).
  • pi dh is the d-axis current
  • pi qh is the q-axis current
  • L d is the d-axis equivalent inductance
  • L q is the q-axis equivalent inductance
  • the current in the d m -q m coordinate system satisfies formula (6A).
  • the current in the dq coordinate system satisfies formula (6B).
  • T is the signal period.
  • L1 is the q-axis inductance and L0 is the d-axis inductance.
  • the high-frequency current signal in the d m -q m coordinate system is subjected to difference processing to obtain an observation error, and when the observation error is less than a preset error threshold, the magnetic pole position error signal of the rotor 110 can be obtained by formula (8) considering the polarity of the injected high-frequency voltage.
  • is the acquired magnetic pole position error signal of the rotor 110
  • Ts is the sampling frequency of the discretized system
  • k-beat current sampling value is the k-beat current sampling value.
  • the magnetic pole position determination system 10 also includes a rotor position observer, and the magnetic pole determination device 12 is further configured to: input the acquired magnetic pole position error signal into the rotor position observer (for example, a PI type position observer, that is, a proportional and integral type position observer), and the initial magnetic pole position and rotation speed of the rotor 110 can be obtained.
  • the rotor position observer for example, a PI type position observer, that is, a proportional and integral type position observer
  • the method of high-frequency square wave injection is used to obtain the initial magnetic pole position and rotation speed of the rotor 110, which has high reliability and good dynamic performance.
  • the observation result of the initial magnetic pole position of the rotor 110 obtained by the method of high-frequency square wave injection may converge to the d axis or to the -d axis. Therefore, the method based on high-frequency square wave injection cannot determine the magnetic pole position of the rotor 110. At this time, continue to execute S102.
  • the motor 11 further includes an upper bridge arm and a lower bridge arm, which are configured to control the current or provide voltage in the motor 11.
  • the upper bridge arm includes three power switch components
  • the lower bridge arm includes three power switch components.
  • the motor 11 further includes a freewheeling diode configured to reduce stress on the circuit of the motor 11 in the second direction and ensure that the circuit can operate normally when the power switch component is switched.
  • applying a zero voltage vector pulse to the motor 11 means: when the stator phase current of the motor 11 is equal to zero, the three power switch components on the upper bridge arm or the lower bridge arm of the motor 11 are opened and maintained for a predetermined time, so that the three power switch components and the freewheeling diode connected in parallel in the second direction form a path.
  • stator phase current of the motor 11 refers to the current flowing in the stator coil of the motor 11.
  • the motor 11 is in an idling state, that is, the motor 11 is running without load.
  • the stator winding When applying zero voltage vector pulse to the motor 11, the stator winding is short-circuited, and the back electromotive force generated by the rotation of the rotor 110 induces a current vector i0 in the stator winding.
  • the position of the current vector i0 in the two-phase stationary coordinate system is ⁇ ⁇ .
  • ⁇ ⁇ satisfies formula (9).
  • ⁇ ⁇ tan -1 (i ⁇ ,i ⁇ )
  • is the angle between the current vector i0 and the ⁇ -axis
  • i ⁇ is the current on the ⁇ -axis
  • i ⁇ is the current on the ⁇ -axis
  • the voltage equation of the motor 11 is, for example, equation (10).
  • vd is the d-axis voltage
  • vq is the q-axis voltage
  • id is the d-axis current
  • iq is the q-axis current
  • Rs is the stator resistance of the motor 11
  • is the electrical angular velocity of the rotor 110
  • ⁇ f is the rotor excitation flux
  • Lq is the q-axis inductance
  • Ld is the d-axis inductance.
  • i0 is the current vector
  • ⁇ f is the rotor excitation flux
  • ⁇ T is the angle of rotation per unit time
  • id is the d-axis current
  • iq is the q-axis current.
  • ⁇ dq is the angle between the current vector i0 and the d-axis
  • is the electrical angular velocity of the rotor 110
  • id is the d-axis current
  • iq is the q-axis current
  • the motor 11 when the motor 11 rotates in a first direction (e.g., the Z direction in FIG6 ), ⁇ >0, id ⁇ 0, iq ⁇ 0, and
  • a second direction e.g., the Y direction in FIG6
  • the relationship between the current vector i0 excited by the zero voltage vector pulse applied to the motor 11 and the magnetic pole position of the rotor 110 is fixed. Therefore, in some embodiments of the present disclosure, when the observation results of the initial magnetic pole position of the rotor 110 have been obtained by the high-frequency square wave injection method, the fixed relationship between the current vector i0 and the magnetic pole position of the rotor 110 can be used to determine the magnetic pole direction and magnetic pole position of the rotor 110.
  • the current vector i0 excited by applying a single pulse of zero voltage vector to the electrode 11 is analyzed at d
  • the relationship between the position of the current vector i0 and the magnetic pole position of the rotor 110 is obtained by using the characteristics of the components on the a-axis and q-axis. This relationship is independent of the parameters, rotor position, speed, etc. of the motor 11. In this way, the current vector position can be obtained by applying a zero voltage vector pulse to the motor 11 and sampling the current, thereby realizing the identification of the magnetic pole position.
  • a method of applying a zero voltage vector single pulse to the motor 11 is proposed. After applying the zero voltage vector single pulse, the current vector i0 can be located by sampling the stator phase current and transforming its position to the ⁇ axis system, thereby realizing the identification of the magnetic pole position. In this way, the magnetic pole position identification speed is fast, and there is no restriction on the method of injecting high-frequency voltage into the motor 11.
  • the preset mapping table is configured to find the quadrant where the magnetic pole of the rotor 110 is located based on the current vector position angle, and the quadrant is the quadrant where the d-axis of the rotor 110 and the q-axis of the rotor are located.
  • S104 includes S1041 - S1043 .
  • the time difference between the first moment t1 and the second moment t2 is: t2-t1.
  • the initial position of the magnetic pole at the first moment t1 is, for example, ⁇ HF
  • the rotational speed of the rotor 110 is, for example, ⁇ .
  • S1042 Determine the reference quadrant where the d-axis is located at the second time t2 based on the current vector position angle and a preset mapping table.
  • the ⁇ stationary coordinate system divides the rotation plane of the magnetic pole into a first quadrant, a second quadrant, a third quadrant, and a fourth quadrant.
  • the rotation position of the magnetic pole includes the magnetic pole position of the first sub-pole and the magnetic pole position of the second sub-pole.
  • the position of the first sub-pole corresponds to the position of the d-axis
  • the position of the second sub-pole corresponds to the position of the -d-axis.
  • the magnetic pole determining device 12 obtains the position of the first sub-pole and the position of the second sub-pole corresponding to the first moment t1 .
  • the magnetic pole determining device 12 applies a zero voltage vector pulse to the motor 11 at the second moment t2, obtains the current vector position angle, and determines the position of the first sub-magnetic pole and the position of the second sub-magnetic pole corresponding to the rotor 110 at the second moment t2. Then, based on the current vector position angle and the preset mapping table, the quadrant where the d-axis is located is determined to determine the quadrant where the first sub-magnetic pole is located.
  • the rotational position of the first sub-pole and the second sub-pole at the second moment t2 is determined based on the time difference, the initial position of the magnetic pole of the rotor 110, and the rotor speed, and the angle range of the d-axis at the second moment t2 is determined based on the characteristics of the zero voltage vector single pulse.
  • S1043 includes S201 - S203 .
  • the quadrant where the current vector i0 is located is the target quadrant.
  • S203 Determine the position of the first sub-pole and the position of the second sub-pole based on the target quadrant and the multiple candidate quadrants.
  • S1042 includes S301 - S302 .
  • the d-axis is located within each of a plurality of preset angle ranges.
  • the plurality of preset angle ranges include, for example: (315°, 45°), (45°, 135°), (135°, 225°), (225°, 315°).
  • the first sub-pole when the rotor 110 rotates in the first direction and the current vector excited by the zero voltage vector pulse applied to the motor 11 is located in the first quadrant, the first sub-pole may be located in the second quadrant or the third quadrant, and the first sub-pole may be located in the second quadrant or the third quadrant.
  • the second sub-pole may be located in the first or fourth quadrant.
  • the first sub-pole is located in the second quadrant.
  • the quadrant where the current vector is located will be misjudged as the second quadrant.
  • the first sub-pole is located in a quadrant other than the second quadrant, resulting in incorrect identification of the magnetic pole position of the motor 11.
  • the range where the current vector is located is divided into (315°, 45°), (45°, 135°), (135°, 225°) and (225°, 315°). In this way, the corresponding angle range in the quadrant where the current vector is located can be narrowed to solve the problem of misjudgment of the sign of i ⁇ due to small current and poor sampling accuracy.
  • the range where the current vector is located may be divided into (316°, 45°), (45°, 135°), (135°, 225°) and (225°, 316°).
  • S302 Determine the reference quadrant where the d-axis is located at the second time t2 based on the target preset angle range and the preset mapping table.
  • the preset mapping table includes a plurality of preset angles and a reference quadrant corresponding to each preset angle.
  • the quadrant where the d-axis is located is determined to be the first quadrant and the second quadrant based on the current vector position angle and the first sub-preset mapping table.
  • the preset mapping table for example, includes a first sub-preset mapping table (ie, Table 1), and the first sub-preset mapping table shows the magnetic pole position information of the current vector in different position intervals.
  • Table 1 First sub-preset mapping table
  • the proximity of the values of i ⁇ and i ⁇ may lead to misjudgment of the area where the magnetic pole is located.
  • the actual positions of the d-axis are all within the second quadrant, and are respectively located within and outside the range of zone III in FIG10 .
  • the current vector i0 belongs to the range of (45°, 135°).
  • the position of the rotor is still determined as the d-axis, that is, the identification result of the magnetic pole position of the rotor is the N pole, which is consistent with the magnetic pole position identification result when no misjudgment occurs.
  • the magnetic pole position (d-axis) may be distributed in partial areas of the first and second quadrants (e.g., area III in FIG. 10).
  • the -d-axis may be distributed in partial areas of the third and fourth quadrants (e.g., areas II and IV in FIG. 10).
  • the current vector in the range of (315°, 45°) can be determined according to i ⁇ >0, i ⁇ >
  • a magnetic pole position identification strategy can be formulated according to this rule: that is, if the current vector is judged to be within the range of (315°, 45°) according to i ⁇ >0, i ⁇ >
  • the quadrant where the d-axis is located is determined to be the third quadrant and the fourth quadrant based on the current vector position angle and the second sub-preset mapping table.
  • the preset mapping table for example, also includes a second sub-preset mapping table (ie, Table 2), and the second sub-preset mapping table shows the magnetic pole position information of the current vector in different position intervals.
  • a second sub-preset mapping table ie, Table 2
  • the magnetic pole position determination method provided by the present disclosure further includes: when the first sub-pole of the rotor 110 converges to the target magnetic pole, compensating the current vector position angle of the rotor 110 according to a preset angle.
  • the target magnetic pole is the position of the first sub-magnetic pole at the second moment.
  • the magnetic pole position may be distributed in partial areas of the third quadrant and the fourth quadrant (e.g., zone III in FIG11 ).
  • the -d-axis may be distributed in partial areas of the first quadrant and the second quadrant (e.g., zone II and zone IV in FIG11 ).
  • a permanent magnet synchronous motor with a power of 2.2 kW is used as a control motor, a coupling is coaxially connected to a loading motor, and two frequency converters are coupled in a common DC bus manner.
  • a vector control algorithm is implemented by a microprocessor (such as an ARM embedded processor) to control the permanent magnet synchronous motor.
  • the switching frequency of the inverter of the permanent magnet synchronous motor is 6 kHz.
  • a high-frequency injection method is first used to observe the initial position of the magnetic pole using the salient pole characteristics of the permanent magnet synchronous motor. Then a single pulse of a zero voltage vector is applied to the motor to excite the stator current vector, and the magnetic pole position is identified according to the magnetic pole position determination method disclosed in the present invention. If the observation results obtained by the high-frequency injection method converge to the S pole (i.e., the -d axis), a 180° compensation is performed to obtain the accurate position of the rotor. If the observation results obtained by the high-frequency injection method converge to the N pole (i.e., the d axis), no compensation is required.
  • the current vector amplitude excited by the zero voltage vector pulse is controlled to be 0.5A.
  • the amplitude of the A-phase stator current excited by the zero voltage vector pulse is, for example, 0.5A, which will not affect the normal operation of the motor.
  • the magnetic pole position identification result is N pole, so no angle compensation is required. The identification process takes about 3ms.
  • the amplitude of the A-phase stator current excited by the zero voltage vector pulse is, for example, 0.5A, and the magnetic pole position identification process takes about 3ms.
  • the magnetic pole position identification result is an S pole, and it is necessary to compensate 180° based on the observation result of the initial position of the magnetic pole to obtain the correct initial position.
  • the principle architecture of the magnetic pole position determination system includes a zero voltage vector single pulse magnetic pole determination device (i.e., magnetic pole determination device 12), a permanent magnet synchronous motor (i.e., motor 11), and a PI regulator (i.e., a proportional and integral regulator).
  • a zero voltage vector single pulse magnetic pole determination device i.e., magnetic pole determination device 12
  • a permanent magnet synchronous motor i.e., motor 11
  • a PI regulator i.e., a proportional and integral regulator
  • the principle architecture of the magnetic pole position determination system further includes an inverse Pike transformation module, which is configured to transform and output the voltage.
  • the principle architecture of the magnetic pole position determination system also includes a space vector pulse width modulation operation device.
  • the space vector pulse width modulation operation device mainly uses the ideal flux circle of the three-phase symmetrical motor stator as a reference standard when the three-phase symmetrical sinusoidal wave voltage is used for power supply, and switches with different switching modes of the three-phase inverter to form a PWM wave, that is, a pulse width modulation waveform, and uses the actual flux vector formed to track its accurate flux circle.
  • the principle architecture of the magnetic pole position determination system further includes a low-pass filter, and the low-pass filter is configured to obtain a signal of a required frequency through filtering.
  • the principle architecture of the magnetic pole position determination system further includes a capacitor driver, and the capacitor driver is configured to implement variable frequency drive.
  • the principle architecture of the magnetic pole position determination system further includes a Clarke transformation device configured to transform the currents I a , I b and I c of the motor 11 in a three-phase stationary coordinate system into currents I a and I ⁇ in a two-phase stationary coordinate system.
  • the principle architecture of the magnetic pole position determination system further includes a Park transformation device, and the Park transformation device 129 is configured to transform the currents I a and I ⁇ in a two-phase stationary coordinate system into currents I d and I q in a two-phase rotating coordinate system.
  • i d is the feedback value of d-axis current. is the given value of the q-axis current
  • i q is the current feedback value of the q-axis.
  • d-axis voltage value is the q-axis voltage value.
  • ⁇ -axis voltage is the ⁇ -axis voltage.
  • i a and i c are the collected two-phase stator currents.
  • i ⁇ is the ⁇ -axis current feedback value
  • i ⁇ is the ⁇ -axis current feedback value.
  • ⁇ HF is the initial position calculated by the high-frequency injection method
  • is the speed calculated by the high-frequency injection method.
  • the initial position output after completing the magnetic pole position identification is the rotor position in the vector control system; is the speed feedback value in the vector control system; S ABC is the inverter instruction corresponding to the zero voltage vector pulse.
  • a high frequency square wave voltage is injected into the d-axis voltage output by the voltage regulator to complete the position confirmation of the magnetic poles of the rotor 110 by the magnetic pole position determination system 100 .
  • the magnetic pole position determination method provided in some embodiments of the present disclosure, through the relationship between the current vector excited by the zero voltage vector pulse and the position of the rotor 110, combined with the initial position observation result of the rotor 110 obtained based on the high-frequency voltage injection method, constructs a magnetic pole position identification scheme when the rotor 110 is in forward and reverse rotation, and the d-axis of the rotor and the current vector are in different position areas.
  • the present disclosure also provides a hardware structure diagram of a magnetic pole determination device.
  • the magnetic pole determination device 12 includes a processor 401 .
  • Processor 401 can be a central processing unit (CPU), a general-purpose processor network processor (NP), a digital signal processor (DSP), a microprocessor, a microcontroller, a programmable logic device (PLD) or any combination thereof.
  • CPU central processing unit
  • NP general-purpose processor network processor
  • DSP digital signal processor
  • microprocessor a microcontroller
  • PLD programmable logic device
  • the magnetic pole determination device 12 further includes a memory 402 and a communication interface 403 coupled to the processor 401.
  • the processor 401, the memory 402 and the communication interface 403 are coupled via a bus 404.
  • the memory 402 may contain computer program codes.
  • the processor 401 may execute the computer program codes stored in the memory 402, thereby implementing the magnetic pole position determination method of the magnetic pole position determination system provided in the present disclosure.
  • the communication interface 403 can be configured to communicate with other devices or communication networks (such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc.
  • devices or communication networks such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc.
  • the bus 404 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • FIG. 15 only one thick line is used to represent the bus 404, but this does not mean that there is only one bus or one type of bus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本公开提供一种磁极位置确定系统,包括电机和磁极位置确定装置。电机包括转子。磁极确定装置与电机耦接;磁极确定装置,被配置为在第一时刻在电机的两相静止坐标系下注入高频电压;基于高频电压,确定转子的磁极初始位置以及转子的转速;在第二时刻向电机施加零电压矢量脉冲;确定零电压矢量脉冲对应的电流矢量位置角;基于第一时刻、第二时刻、转子的转速、电流矢量位置角、预设映射表以及磁极初始位置,确定转子的磁极位置;其中,预设映射表被配置为基于电流矢量位置角查找转子的磁极所在的象限,象限为转子的直轴与转子的交轴所在的象限。

Description

磁极位置确定系统
本申请要求于2023年02月27日提交的、申请号为202310173341.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电机控制技术领域,尤其涉及一种磁极位置确定系统。
背景技术
永磁同步电机作为机电换能装置已广泛应用于航空航天、工业传动、家用电器等场景。永磁同步电机以其结构简单、体积小、重量轻、效率高等特点,成为了交流调速传动领域的研究热点。永磁同步电机需要精确的转子磁极位置和速度信号以实现磁场定向和速度控制。
发明内容
一方面,提供一种磁极位置确定系统,所述磁极位置确定系统包括电机和磁极位置确定装置。所述电机包括转子。所述磁极确定装置与所述电机耦接;所述磁极确定装置,被配置为:在第一时刻在所述电机的两相静止坐标系下注入高频电压;基于所述高频电压,确定所述转子的磁极初始位置以及所述转子的转速;在第二时刻向所述电机施加零电压矢量脉冲;确定所述零电压矢量脉冲对应的电流矢量位置角;基于所述第一时刻、所述第二时刻、所述转子的转速、所述电流矢量位置角、预设映射表以及所述磁极初始位置,确定所述转子的磁极位置;其中,所述预设映射表被配置为基于所述电流矢量位置角查找所述转子的磁极所在的象限,所述象限为所述转子的直轴与所述转子的交轴所在的象限。
另一方面,提供一种磁极位置确定系统的磁极位置确定方法,其中,所述磁极位置确定系统包括电机和磁极位置确定装置。所述电机包括转子。所述磁极确定装置与所述电机耦接。所述确定方法包括:在第一时刻在所述电机的两相静止坐标系下注入高频电压;基于所述高频电压,确定所述转子的磁极初始位置以及所述转子的转速;在第二时刻向所述电机施加零电压矢量脉冲;确定所述零电压矢量脉冲对应的电流矢量位置角;基于所述第一时刻、所述第二时刻、所述转子的转速、所述电流矢量位置角、预设映射表以及所述磁极初始位置,确定所述转子的磁极位置;其中,所述预设映射表被配置为基于所述电流矢量位置角查找所述转子的磁极所在的象限,所述象限为所述转子的直轴与所述转子的交轴所在的象限;若确定所述转子的第一磁极收敛至目标磁极,则按照预设角度对所述转子的位置角进行补偿。
附图说明
图1为根据一些实施例的一种磁极位置确定系统的结构图;
图2为根据一些实施例的一种电机的示意图;
图3为根据一些实施例的另一种电机的示意图;
图4为根据一些实施例的一种磁极位置确定系统的所执行步骤的一个流程图;
图5为根据一些实施例的高频方波注入法的静止轴系示意图;
图6为根据一些实施例的零电压矢量单脉冲法相量图;
图7为根据一些实施例的一种磁极位置确定系统的所执行步骤的另一个流程图;
图8为根据一些实施例的一种磁极位置确定系统的所执行步骤的又一个流程图;
图9为根据一些实施例的一种磁极位置确定系统的所执行步骤的又一个流程图;
图10为根据一些实施例的转子第一方向旋转时电流矢量与磁极位置之间的关系图;
图11为根据一些实施例的转子第二方向旋转时电流矢量与磁极位置之间的关系图;
图12为根据一些实施例的磁极位置确定方法对应的一个验证图;
图13为根据一些实施例的磁极位置确定方法对应的另一个验证图;
图14为根据一些实施例的磁极位置确定方法对应的架构图;
图15为根据一些实施例的磁极确定装置的结构图。
具体实施方式
下面将结合附图,对本公开的一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
以下,对本公开涉及的专有名词进行介绍。
截止频率,当保持输入信号的幅度不变,改变频率使输出信号降至最大值的0.707倍,即用频响特性来表述-3dB点处,即为截止频率,截止频率被配置为说明频率特性指标的一个特殊频率。此外,截止频率还指一个系统的输出信号能量开始下降或者在带阻滤波器中上升的边界频率(通常以-3dB为界限)。
低通滤波(Low-pass Filter),也称高频去除过滤(High-cut Filter)或者最高去除过滤(Treble-cut Filter),是一种过滤方式,其过滤规则为:小于截止频率的低频信号可以正常通过,大于截止频率的高频信号在过滤过程中则被阻隔、减弱,对高频信号阻隔、减弱的幅度会依据不同的频率以及不同的滤波程序(目的)而改变。
低通滤波器,是指容许小于截止频率的信号通过,但大于截止频率的信号不能通过的电子滤波装置。
派克变换(也称帕克变换,Park's transformation),是分析同步电机运行最常用的一种坐标变换。派克变换将定子的a,b,c三相电流投影到随着转子旋转的直轴(d轴),交轴(q轴)与垂直于dq平面的零轴(0轴)上去,即abc坐标系变换到dq坐标系,从而实现了对定子电感矩阵的对角化,对同步电动机的运行分析起到了简化作用。
永磁同步马达(permanent-magnet synchronous motor,PMSM),即永磁同步电机,是指一种转子以永久磁铁代替绕线的同步马达。
比例和积分调节器(Proportional-Integral Controller,PI调节器)是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例和积分通过线性组合构成控制量,对被控对象进行控制。
传递函数,指零初始条件下线性系统的响应量(即输出量)的拉普拉斯变换(或z变换)与激励量(即输入量)的拉普拉斯变换之比。记作G(s)=Y(s)/U(s),这里,Y(s)、U(s)分别为输出量和输入量的拉普拉斯变换。
永磁同步电机的运动控制需要精确的转子的磁极位置信号和精确的速度信号以实现转子的磁场定向和速度控制,在永磁同步电机的无传感器矢量控制中,若对转子的磁极位置(即南极(S极)和北极(N极))判断有误,则可能在永磁同步电机起动时,出现转子的旋转方向发生反转或永磁同步电机起动失败的情况,也可能影响包括永磁同步电机的系统(例如为空调系统)起动后的运行性能。
然而,高性能的矢量控制依赖于准确的转子的磁极位置和转速反馈。在一些实施例中,执行矢量控制的系统通常通过光电编码器、旋转变压器等元件来实现对于转子的磁极位置的检测,这样,会影响包括永磁同步电机的系统的轻量化和可靠性。在永磁同步电机的无传感器矢量控制中,通过获取永磁同步电机的参量(例如获取电流或电压),以实现对转子的磁极位置的观测,这样可以降低成本,提高可靠性。然而,对于在启动之前转子可能已经处于旋转状态,且转速较低的装置(例如空调风机),需要先对转子的磁极初始位置和转速进行观测,再将观测结果应用于无传感器的矢量控制。因此,准确的磁极初始位置和转速观测是实现无传感器矢量控制的前提。
相关技术中,采用双脉冲法来解决对低转速下转子的磁极位置进行辨识的技术问题,例如,采用双脉冲法需要在d轴和-d轴方向(如图6所示)依次注入第一电压脉冲和第二电压脉冲,并根据电流响应实现磁极位置辨识。然而,在双脉冲法中,第二电压脉冲需要在注入第一电压脉冲后,间隔预定时间再注入,在永磁同步电机的转子旋转的情况下,在上述间隔的预定时间内,转子可能已转过一定角度,导致第二电压脉冲的注入方向有误,影响磁极位置的辨识的准确性。
相关技术中,采用d轴电流峰值累加法对静止状态下的转子的磁极位置进行辨识。需要说明的是,d轴电流峰值累加法是指在高频电压信号注入过程中,提取d轴的电流峰值信号并进行累加,并通过判断累加值的正负来实现磁极位置辨识。然而,该方法所需的对转子的磁极位置的辨识时间较长,导致磁极位置辨识的过程较长。
为解决上述问题,如图1所示,本公开提供了一种磁极位置确定系统10,磁极位置确定系统10包括电机11和磁极确定装置12,电机11与磁极确定装置12耦接。
在一些实施中,电机11例如为永磁同步电机。如图2和图3所示,电机11包括转子110,转子110例如包括磁极和转子铁芯。在一些实施例中,如图2所示,电机11例如为表贴式永磁同步电机,即磁极贴装在转子铁芯的表面。在另一些实施例中,如图3所示,电机11例如为内置式永磁同步电机,即磁极设置于转子铁芯的内部。
在一些实施例中,如图2和图3所示,电机11还包括定子120,定子120例如为定子线圈。定子120被配置为产生旋转磁场,以使得转子110在旋转磁场中被磁力线切割进而产生电流。定子120包括定子铁芯和定子绕组。这里,定子绕组例如为定子三相绕组。
在一些实施例中,磁极确定装置12被配置为:基于第一时刻、第二时刻、转子转速、电流矢量位置角、预设映射表以及磁极初始位置中的一个或多个,确定转子110的磁极位置;这里,预设映射表被配置为基于电流矢量位置角查找转子110的磁极所在的象限,象限为转子的d轴与转子的q轴组成的象限。
这样,可以准确地确定转子110的磁极位置,从而提高低转速下转子110的磁极位置辨识的准确性。需要说明的是,磁极位置确定系统10还可以包括空间矢量脉宽调制(space vector pulse width modulation,SVPWM)运算装置和三相薄膜电容驱动装置。
为了提升电网侧电能质量,在本公开一些实施例中,提供一种确定转子110的磁极位置的控制方法,应用于磁极确定装置12,如图4所示,在一些实施例中,该控制方法包括S100-S104。
S100、在第一时刻t1在电机11的两相静止坐标系下注入高频电压。
图5示出了ABC轴系,d-q轴系,轴系(即观测轴系)和dm-qm轴系(即测量轴系)的相位关系。在一些实施例中,如图5所示,在转子110的第一方向(例如为图5中Z方向)上,dm-qm轴系滞后于轴系45°(即π/4)。
图6示出了αβ静止坐标系,在一些实施例中,两相静止坐标系例如为αβ静止坐标系。
在一些实施例中,在电机11的两相静止坐标系下注入高频电压的信号形式为正负半周对称的方波信号,其数学表达式例如为公式(1)。
这里,uinj为注入的高频电压信号的幅值,Tinj为高频电压信号的注入周期,n为注入的高频电压信号的周期数。
在一些实施例中,如图1所示,磁极位置确定系统10还包括电压调节器13,电压调节器13与磁极确定装置12耦接,被配置为对电机11的输出电压进行调节。
在一些实施例中,磁极确定装置12将高频电压(例如为高频方波电压)叠加到电压调节器13输出的d轴电压。
需要说明的是,在一些实施例中,转子110的磁极包括第一子磁极(例如为N极)和第二子磁极(例如为S极)。
S101、基于上述高频电压,确定转子110的磁极初始位置以及转子110的转速。
在一些实施例中,如图1所示,磁极位置确定系统10还包括逆变器14,逆变器14与磁极确定装置12耦接,被配置为将直流电转变为交流电。
磁极确定装置12根据逆变器14输出的三相电流的反馈值获得转子110的磁极初始位置以及转子110的转速。
如图5所示,在一些实施例中,θe为实际转子磁极电角度;为观测转子磁极电角度;为转子磁极观测误差角。这里,θe满足
在一些实施例中,磁极确定装置还被配置为:根据高频电压,以及逆变器输出的三相电流的反馈值,获取磁极位置误差信号。例如:在一些实施例中,将高频电压uinj注入到坐标系下,得到公式(2)。
这里,轴电压,轴电压,uinj为注入的高频电压信号的幅值。
在一些实施例中,d-q坐标系和坐标系下的电压满足公式(3)。
这里,udh为d轴电压,uqh为q轴电压,轴电压,轴电压,为注入高频电压信号的周期。
在一些实施例中,注入高频电压信号的周期满足公式(4)。
并且,在一些实施例中,电机11在高频电压信号作用下的高频电流响应信号满足公式(5)。
这里,pidh为d轴电流,piqh为q轴电流,Ld为d轴等效电感,Lq为q轴等效电感。
在一些实施例中,dm-qm坐标系下的电流满足公式(6A)。
这里,为dm轴电流,为qm轴电流,T为信号周期。
在一些实施例中,d-q坐标系下的电流满足公式(6B)。
这里,为d轴电流,轴电流,T为信号周期。
因此,根据公式(6A)可得:dm-qm坐标系下的高频电流信号满足公式(7)。
这里,L1为q轴电感,L0为d轴电感。
然后,对dm-qm坐标系下的高频电流信号进行作差处理,得到观测误差,并在该观测误差小于预设误差阈值的情况下,考虑注入的高频电压的极性,转子110的磁极位置误差信号可以通过公式(8)获取。
这里,ε为获取的转子110的磁极位置误差信号,Ts为离散化后的系统的采样频率,为k拍电流采样值。
在一些实施例中,磁极位置确定系统10还包括转子位置观测器,磁极确定装置12还被配置为:将获取的磁极位置误差信号输入转子位置观测器(例如为PI型位置观测器,即,比例与积分型位置观测器),即可得到转子110的初始磁极位置和转速。
需要说明的是,采用高频方波注入的方法来获取转子110的磁极初始位置和转速,可靠性高、动态性能好。然而,基于高频方波注入的方法获取到的转子110的磁极初始位置的观测结果可能收敛至d轴,也可能收敛至-d轴。因此,基于高频方波注入的方法无法确定转子110的磁极位置。此时,继续执行S102。
S102、在第二时刻t2向电机11施加零电压矢量脉冲。
在一些实施例中,电机11还包括上桥臂和下桥臂,上桥臂和下桥臂被配置为控制电机11中的电流或提供电压。例如,上桥臂包括三个功率开关组件,下桥臂包括三个功率开关组件。
在一些实施例中,电机11还包括续流二极管,续流二极管被配置为减小电机11的电路在第二方向上的压力,以及确保电路在功率开关组件切换的情况下可以正常运行。
在一些实施例中,对电机11施加零电压矢量脉冲是指:在电机11的定子相电流等于零的情况下,则打开电机11的上桥臂或下桥臂上的三个功率开关组件,并维持预定时间,使三个功率开关组件和第二方向并联的续流二极管形成通路。
需要说明的是,电机11的定子相电流是指在电机11的定子线圈中流动的电流。在定子相电流等 于零的情况下,电机11处于空转状态,即,电机11在没有负载的情况下运转。
S103、确定上述零电压矢量脉冲对应的电流矢量位置角。
在对电机11施加零电压矢量脉冲的过程中,定子绕组发生短路,转子110旋转产生的反电势在定子绕组中感应出电流矢量i0。在一些实施例中,如图6所示,电流矢量i0在两相静止坐标系中的位置为θαβ
在一些实施例中,θαβ满足公式(9)。
θαβ=tan-1(iβ,iα)      公式(9)
这里,θαβ为电流矢量i0与α轴的夹角,iβ为β轴的电流,iα为α轴的电流。
在对电机11施加零电压矢量脉冲的情况下,电机11的电压方程例如为公式(10)。
这里,vd为d轴电压,vq为q轴电压,id为d轴电流,iq为q轴电流,Rs为电机11的定子电阻,ω为转子110的电角速度,ψf为转子励磁磁链,Lq为q轴电感,Ld为d轴电感。
在一些实施例中,由于定子电阻Rs的压降较小,可忽略定子电阻Rs对电流矢量i0的影响。此时,根据公式(10),可得公式(11)。
这里,i0为电流矢量,ψf为转子励磁磁链,ωT为单位时间内转动的角度,id为d轴电流,iq为q轴电流。
由于转子110在单位时间内转动的角度ωT较小,因此对ωT做小量近似,然后,根据公式(11)可得,dq轴系中电流矢量i0的位置为公式(12)。
这里,θdq为电流矢量i0与d轴之间的夹角,ω为转子110的电角速度,id为d轴电流,iq为q轴电流。
在一些实施例中,如图6所示,当电机11沿第一方向(例如图6中Z方向)旋转时,ω>0,id<0,iq<0,且|iq|大于|id|,此时可确定电流矢量i0与-q轴之间的夹角小于预设夹角阈值,且电流矢量i0滞后于-q轴。当电机11沿第二方向(例如图6中Y方向)旋转时,ω<0,id<0,iq>0,且|iq|大于|id|。此时,可确定电流矢量i0与q轴之间的夹角小于预设夹角阈值,且电流矢量i0滞后于q轴。
需要说明的是,对电机11施加零电压矢量脉冲所激发的电流矢量i0与转子110的磁极位置关系固定,因此,在本公开一些实施例中,在采用高频方波注入的方法中,已得到转子110的磁极初始位置的观测结果的情况下,可以用电流矢量i0与转子110的磁极位置之间的固定关系来确定转子110的磁极方向以及磁极位置。
在本公开一些实施例中,通过分析对电极11施加零电压矢量单脉冲所激发的电流矢量i0分别在d 轴和q轴上分量特点,得到电流矢量i0的位置与转子110的磁极位置之间的关系。该关系与电机11的参数、转子位置、转速等无关。这样,可以通过对电机11施加零电压矢量脉冲并进行电流采样,得到电流矢量位置,进而实现对磁极位置的辨识。
在本公开一些实施例中,提出的向电机11施加零电压矢量单脉冲的方法,在施加零电压矢量单脉冲之后,通过采样定子相电流,并将其位置变换至αβ轴系,即可实现对电流矢量i0的定位,从而实现磁极位置的辨识。这样,对磁极的位置辨识速度快,且对于向电机11进行高频电压注入的方法无限制。
S104、基于第一时刻t1、第二时刻t2、转子110的转速、电流矢量位置角、预设映射表以及磁极初始位置,确定转子110的磁极位置。
这里,预设映射表被配置为基于电流矢量位置角查找转子110的磁极所在的象限,象限为转子110的d轴与转子的q轴所在的象限。
在一些实施例中,如图7所示,S104包括S1041-S1043。
S1041、确定第一时刻t1与第二时刻t2之间的时间差,并基于该时间差、磁极初始位置以及转子110的转速,确定磁极在第二时刻t2的转动位置。
这里,第一时刻t1与第二时刻t2之间的时间差为:t2-t1。
在一些实施例中,磁极在第一时刻t1的初始位置例如为θHF,转子110的转速例如为ω,在第二时刻t2对电机11施加零电压矢量脉冲的情况下,可以得到转子110的磁极在第二时刻t2的转动位置为:θHF+(t2-t1)ω。
S1042、基于电流矢量位置角以及预设映射表,确定d轴在第二时刻t2所在的参考象限。
在一些实施例中,如图6所示,αβ静止坐标系将磁极的旋转平面分为第一象限、第二象限、第三象限和第四象限。
在一些实施例中,磁极的转动位置包括第一子磁极的磁极位置以及第二子磁极的磁极位置。这里,如图6所示,第一子磁极的位置例如对应d轴的位置,第二子磁极的位置例如对应-d轴的位置。
在对电机11进行高频方波注入的方法中,已得到转子110的磁极初始位置的观测结果的情况下,磁极确定装置12获取第一时刻t1对应的第一子磁极的位置和第二子磁极的位置。
磁极确定装置12在第二时刻t2向电机11施加一个零电压矢量脉冲,获取电流矢量位置角,并确定转子110在第二时刻t2的对应的第一子磁极的位置和第二子磁极的位置。然后,基于电流矢量位置角以及预设映射表,确定d轴所在象限,以确定第一子磁极的所在象限。
S1043、基于上述参考象限以及磁极在第二时刻t2的转动位置,确定磁极位置。
可以理解的是,由于电机11处于低速转动的状态,在获取第一时刻t1与第二时刻t2的时间差的情况下,基于该时间差、转子110的磁极初始位置以及转子速度,确定第一子磁极和第二子磁极在第二时刻t2的转动位置,并基于零电压矢量单脉冲的特性,确定d轴在第二时刻t2所在的角度范围。进而,基于d轴在第二时刻t2所在的角度范围以及第一子磁极和第二子磁极的转动位置,确定磁极初始位置的观测结果收敛至d轴还是收敛至-d轴。
在一些实施例中,如图8所示,S1043包括S201-S203。
S201、基于d轴在第二时刻t2所在的参考象限,确定电流矢量i0在第二时刻t2所在的目标象限。
需要说明的是,电流矢量i0的位置所在的象限即为目标象限。
S202、基于磁极在第二时刻t2的转动位置,确定第一子磁极所在的多个候选象限。
S203、基于目标象限以及多个候选象限,确定第一子磁极的位置以及第二子磁极的位置。
在一些实施例中,为了避免磁极位置辨识错误,如图9所示,在本公开一些实施例中,S1042包括S301-S302。
S301、从多个预设角度范围中确定电流矢量位置角对应的目标预设角度范围。
这里,d轴位于多个预设角度范围中的每个预设角度范围内。
在一些实施例中,多个预设角度范围例如包括:(315°,45°)、(45°,135°)和(135°,225°)、(225°,315°)。
需要说明的是,如图6所示,在转子110沿第一方向旋转、向电机11施加的零电压矢量脉冲所激发的电流矢量位于第一象限的情况下,第一子磁极可能位于第二象限或第三象限,第 二子磁极可能位于第一象限或第四象限。
在一些实施例中,在向电机11施加零电压矢量脉冲的情况下,若电流矢量位于第一象限且靠近β轴,即,iα趋近于0,则第一子磁极位于第二象限。
若此时由于电流较小且采样精度较差导致iα的符号被误判断为负号,则会将电流矢量所在象限误判断为第二象限。如图6所示,在电机11沿第一方向旋转,且电流矢量位于第二象限的情况下,第一子磁极位于除第二象限之外的其它象限,导致对电机11的磁极位置辨识有误。
在一些实施例中,将电流矢量所在的范围划分为(315°,45°)、(45°,135°)、(135°,225°)和(225°,315°),这样,可以缩小电流矢量所在的象限中对应的角度范围,以解决由于电流较小且采样精度较差导致iα的符号被误判的问题。
在另一些实施例中,可以将电流矢量所在的范围划分为(316°,45°)、(45°,135°)、(135°,225°)和(225°,316°)。
S302、基于目标预设角度范围以及预设映射表,确定d轴在第二时刻t2所在的参考象限。
这里,预设映射表包括多个预设角度以及与每个预设角度对应的参考象限。
在一些实施例中,若确定电极11沿第一方向旋转,则基于电流矢量位置角以及第一子预设映射表,确定d轴所在的象限为第一象限和第二象限。
在电机11沿第一方向旋转的情况下,预设映射表例如包括第一子预设映射表(即表1),第一子预设映射表示出了电流矢量在不同位置区间时的磁极位置信息。
表1:第一子预设映射表
在一些实施例中,如图10所示,在电极11沿第一方向旋转,且电流矢量i0位于(315°,45°)范围(即图10中Ⅰ区和Ⅱ区)内,即,电流矢量i0临近θαβ=k*45°,(k=1,2)的情况下,由于iα和iβ值的接近,可能会导致对磁极所在区域的误判。例如,可能将θαβ=40°误判为θαβ=50°。d轴的实际位置均处于第二象限范围内,且分别位于图10中的Ⅲ区范围内和Ⅲ区范围外。在将电流矢量所在的角度误判为θαβ=50°的情况下,电流矢量i0隶属于(45°,135°)范围。根据第一子预设映射表,在电流矢量位于(45°,135°)范围内的情况下,转子位于第二象限的情况下,转子的位置仍被确定为d轴,即,对转子的磁极位置的辨识结果为N极,与不发生误判时的磁极位置辨识结果一致。
电机11沿第二方向旋转或者在其他角度处发生对电流矢量的区域误判的情况下,与上述判断过程一致。这样,采用本公开中的磁极位置确定方法,在一定范围内,即使对iα和iβ的符号的正负或大小关系判定出现错误,仍然可以实现准确的磁极位置辨识。
在电流矢量在(315°,45°)范围内的情况下,基于上述构建的几何关系,磁极位置(d轴)可能分布在第一象限和第二象限中的部分区域(例如图10中Ⅲ区)。-d轴可能分布在第三象限和第四象限中的部分区域(例如图10中Ⅱ区和Ⅳ区)。其中,电流矢量在(315°,45°)范围可以根据iα>0,iα>|iβ|确定。因此可以根据该规律制定磁极位置辨识策略:即,若根据iα>0,iα>|iβ|判断电流矢量位于(315°,45°)范围,则进一步判断由高频注入法得到的转子位置象限,若位于第一象限或第二象限中的至少之一,则磁极为N极;若位于第三象限或第四象限中的至少之一,则为S极。
在一些实施例中,若确定转子的转动方向为第二方向,则基于电流矢量位置角以及第二子预设映射表,确定d轴所在的象限为第三象限和第四象限。
在电机11沿第二方向旋转的情况下,预设映射表例如还包括第二子预设映射表(即表2),第二子预设映射表示出了电流矢量在不同位置区间的磁极位置信息。
表2:第二子预设映射表

在一些实施例中,本公开提供的磁极位置确定方法,还包括:在转子110的第一子磁极收敛至目标磁极的情况下,按照预设角度对转子110的电流矢量位置角进行补偿。
其中,目标磁极为第二时刻下的第一子磁极的位置。
在一些实施例中,如图11所示,电流矢量在(315°,45°)范围内(例如图11中Ⅰ区和Ⅱ区)的情况下,由前述所构建的几何关系,磁极位置(d轴)可能分布在第三象限和第四象限的部分区域(例如图11中Ⅲ区)。-d轴可能分布在第一象限和第二象限中的部分区域(例如图11中Ⅱ区和Ⅳ区)。
在一些实施例中,如图12和图13所示,将功率为2.2kW的永磁同步电机作为控制电机,将联轴器与加载电机同轴联接,且将两台变频器采用共直流母线的方式耦接。通过微处理器(例如ARM嵌入式处理器)实现矢量控制算法,对永磁同步电机进行控制。永磁同步电机的逆变器的开关频率为6kHz。这里,使用的永磁同步电机的主要参数例如为:额定功率2.2kW,额定电流5.6A,额定转速1500r/min,d轴电感Ld=22.4mH,q轴电感Lq=51.8mH,极对数P=3,定子电阻Rs=1.88Ω。
如图12所示,在一些实施例中,首先使用高频注入法,利用永磁同步电机的凸极特性对磁极的初始位置进行观测。然后向电机施加零电压矢量单脉冲,激发定子电流矢量,并根据本公开中的磁极位置确定方法进行磁极位置辨识。若通过采用高频注入法获取的观测结果收敛至S极(即-d轴),则进行180°补偿,从而得到准确的转子的位置。若通过采用高频注入法获取的观测结果收敛至N极(即d轴),则不需要进行补偿。这里,零电压矢量脉冲所激发的电流矢量幅值被控制为0.5A。
如图12所示,在一些实施例中,在第一时刻使用高频注入法对磁极的初始位置进行观测,并在t=40ms(即第二时刻)处向电机施加零电压矢量脉冲以完成磁极位置辨识。零电压矢量脉冲所激发的A相定子电流幅值例如为0.5A,不会影响电机正常运行。在图12中,磁极位置辨识结果为N极,因此不需要进行角度补偿。辨识过程耗时3ms左右。
如图13所示,在一些实施例中,在第一时刻使用高频注入法对磁极的初始位置进行观测,并在t=40ms(即第二时刻)处向电机施加零电压矢量脉冲以进行磁极位置辨识。零电压矢量脉冲所激发的A相定子电流幅值例如为0.5A,磁极位置辨识过程耗时3ms左右。在图13中,磁极位置辨识结果为S极,需要磁极初始位置的观测结果的基础上补偿180°,从而得到正确的初始位置。
如图14所示,在一些实施例中,磁极位置确定系统的原理架构包括零电压矢量单脉冲磁极确定装置(即磁极确定装置12)、永磁同步电机(即电机11)、PI调节器(即比例和积分调节器)。
在一些实施例中,磁极位置确定系统的原理架构还包括反派克变换模块,反派克变换模块被配置为对电压进行变换并输出。
在一些实施例中,磁极位置确定系统的原理架构还包括空间矢量脉宽调制运算装置,空间矢量脉宽调制运算装置主要是以三相对称正弦波电压供电时,三相对称电机定子理想磁链圆为参考标准,以三相逆变器的不同开关模式作切换,从而形成PWM波,即脉冲宽度调制波形,并且以所形成的实际磁链矢量来追踪其准确磁链圆。
在一些实施例中,磁极位置确定系统的原理架构还包括低通滤波器,低通滤波器被配置为经过滤得到需要的频率的信号。
在一些实施例中,磁极位置确定系统的原理架构还包括电容驱动器,电容驱动器被配置为实现变频驱动。
在一些实施例中,磁极位置确定系统的原理架构还包括克拉克变换装置。克拉克变换装置被配置为将电机11的三相静止坐标系下的电流Ia、Ib和Ic变换至两相静止坐标系下的电流Ia和Iβ
在一些实施例中,磁极位置确定系统的原理架构还包括派克变换装置,派克变换装置129被配置为将两相静止坐标系下的电流Ia和Iβ变换至两相旋转坐标系下的电流Id和Iq
为d轴电流给定值;id为d轴电流反馈值。为q轴电流给定值;iq为q轴的电流反馈值。为d轴电压值;为q轴电压值。为α轴电压;为β轴电压。ia和ic为采集到的两相定子电流。iα 为α轴电流反馈值iβ为β轴电流反馈值。θHF为高频注入法计算得到的初始位置ω为高频注入法计算得到的转速。为完成磁极位置辨识之后输出的初始位置;为完成磁极辨识之后的转速观测结果。为矢量控制系统中的转子位置;为矢量控制系统中的转速反馈值;SABC为零电压矢量脉冲对应的逆变器指令。
这里,将高频方波电压注入到电压调节器输出的d轴电压,以完成磁极位置确定系统100对转子110的磁极的位置确认。
本公开一些实施例提供的磁极位置确定方法,通过零电压矢量脉冲所激发的电流矢量与转子110的位置之间的关系,结合基于高频电压注入法得到的转子110的初始位置观测结果,构建了转子110的正转和反转、转子的d轴和电流矢量处于不同位置区域的情况下的磁极位置辨识方案。本公开提供的确定方法中,只需施加一个零电压矢量脉冲,即可完成对磁极位置的辨识,且只需对采集到的iα和iβ进行正负判断和大小比较便能完成对电流矢量所在区域的判定,因此对电流采样的精度要求低,辨识速度快。
本公开还提供一种磁极确定装置的硬件结构示意图。在一些实施例中,如图15所示,磁极确定装置12包括处理器401。
处理器401可以是中央处理器(central processing unit,CPU),通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。
在一些实施例中,磁极确定装置12还包括与处理器401耦接的存储器402和通信接口403。处理器401、存储器402和通信接口403通过总线404耦接。
存储器402可以包含计算机程序代码。处理器401可以执行存储器402中存储的计算机程序代码,从而实现本公开提供的磁极位置确定系统的磁极位置确定方法。
通信接口403可以被配置为与其他设备或通信网络通信(如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
总线404可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。图15中仅用一条粗线表示总线404,但并不表示仅有一根总线或一种类型的总线。
本领域的技术人员将会理解,本申请的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种磁极位置确定系统,包括:
    电机,包括转子;
    磁极确定装置,与所述电机耦接;所述磁极确定装置,被配置为:
    在第一时刻在所述电机的两相静止坐标系下注入高频电压;
    基于所述高频电压,确定所述转子的磁极初始位置以及所述转子的转速;
    在第二时刻向所述电机施加零电压矢量脉冲;
    确定所述零电压矢量脉冲对应的电流矢量位置角;
    基于所述第一时刻、所述第二时刻、所述转子的转速、所述电流矢量位置角、预设映射表以及所述磁极初始位置,确定所述转子的磁极位置;其中,所述预设映射表被配置为基于所述电流矢量位置角查找所述转子的磁极所在的象限,所述象限为所述转子的直轴与所述转子的交轴所在的象限。
  2. 根据权利要求1所述的磁极位置确定系统,其中,所述基于所述第一时刻、所述第二时刻、所述转子的转速、所述电流矢量位置角、预设映射表以及所述磁极初始位置,确定所述转子的磁极位置,包括:
    确定所述第一时刻与所述第二时刻之间的时间差,并基于所述时间差、所述磁极初始位置以及所述转子的转速,确定所述磁极在所述第二时刻的转动位置;
    基于所述电流矢量位置角以及所述预设映射表,确定所述直轴在所述第二时刻所在的参考象限;
    基于所述参考象限以及所述转动位置,确定所述磁极位置。
  3. 根据权利要求2所述的磁极位置确定系统,其中,所述磁极包括第一子磁极和第二子磁极;所述转动位置包括所述第一子磁极的磁极位置以及所述第二子磁极的磁极位置;
    所述基于所述参考象限以及所述转动位置,确定所述磁极位置,包括:
    基于所述参考象限,确定所述电流矢量在所述第二时刻所在的目标象限;
    基于所述转动位置,确定所述电流矢量对应的多个候选象限;
    基于所述目标象限以及所述多个候选象限,确定所述第一子磁极的位置以及所述第二子磁极的位置;其中,所述第一子磁极的位置所在的象限与所述目标象限对应。
  4. 根据权利要求2所述的磁极位置确定系统,其中,所述基于所述电流矢量位置角以及所述预设映射表,确定所述直轴在所述第二时刻所在的参考象限,包括:
    从多个预设角度范围中确定所述电流矢量位置角对应的目标预设角度范围;其中,所述直轴位于所述多个预设角度范围中的每个预设角度范围内;
    基于所述目标预设角度范围以及所述预设映射表,确定所述直轴在所述第二时刻所在的参考象限;其中,所述预设映射表包括所述多个预设角度以及与所述每个预设角度对应的参考象限。
  5. 根据权利要求1至4中任一项所述的磁极位置确定系统,其中,
    所述预设映射表包括第一子预设映射表和第二子预设映射表;
    所述基于所述电流矢量位置角以及所述预设映射表,确定所述直轴在所述第二时刻所在的参考象限,包括:
    若确定所述转子沿第一方向旋转,则基于所述电流矢量位置角以及所述第一子预设映射表,确定所述直轴在所述第二时刻所在的象限为第一象限和第二象限;
    若确定所述转子沿第二方向旋转,则所述基于所述电流矢量位置角以及所述第二子预设映射表,确定所述直轴在所述第二时刻所在的象限为第三象限和第四象限;
    其中,所述第二方向与所述第一方向相反。
  6. 根据权利要求5所述的磁极位置确定系统,其中,所述电机还包括:
    上桥臂,所述上桥臂包括三个功率开关组件;
    下桥臂,所述下桥臂包括三个功率开关组件;以及
    续流二极管,被配置为减小所述电机的电路在所述第二方向上的压力;
    其中,所述在第二时刻向所述电机施加零电压矢量脉冲,包括:
    若确定所述电机的定子相电流等于零,则打开所述上桥臂的所述三个功率开关组件,或打开所述下桥臂的所述三个功率开关组件,并维持预定时间。
  7. 根据权利要求1至6中任一项所述的磁极位置确定系统,其中,所述磁极确定装置被还配置为:若确定所述转子的第一磁极收敛至目标磁极,则按照预设角度对所述转子的位置角进行补偿。
  8. 根据权利要求1至7中任一项所述的磁极位置确定系统,还包括电压调节器,所述电压调节器与所述磁极确定装置耦接,且被配置为对所述电机的输出电压进行调节;
    其中,所述在第一时刻在所述电机的两相静止坐标系下注入高频电压,包括:
    所述磁极确定装置将所述高频电压叠加到所述电压调节器输出的直轴电压。
  9. 根据权利要求8所述的磁极位置确定系统,其中,所述高频电压的信号形式为正负半轴对称的方波信号。
  10. 根据权利要求1至9中任一项所述的磁极位置确定系统,还包括逆变器,所述逆变器与所述磁极确定装置耦接,且被配置为将直流电转变为交流电;
    其中,所述基于所述高频电压,确定所述转子的磁极初始位置以及所述转子的转速,包括:所述磁极确定装置根据所述逆变器输出的三相电流的反馈值获得所述转子的磁极初始位置以及所述转子的转速。
  11. 根据权利要求10所述的磁极位置确定系统,还包括转子位置观测器,所述转子位置观测器与所述磁极确定装置耦接;
    其中,所述基于所述高频电压,确定所述转子的磁极初始位置以及所述转子的转速,还包括:
    基于所述高频电压,以及所述三相电流的反馈值,获取磁极位置误差信号;以及
    将所述磁极位置误差信号输入所述转子位置观测器,并得到所述转子的磁极初始位置以及所述转子的转速。
  12. 一种磁极位置确定系统的磁极位置确定方法,其中,
    所述确定系统包括:
    电机,包括转子;
    磁极确定装置,与所述电机耦接;
    所述确定方法包括:
    在第一时刻在所述电机的两相静止坐标系下注入高频电压;
    基于所述高频电压,确定所述转子的磁极初始位置以及所述转子的转速;
    在第二时刻向所述电机施加零电压矢量脉冲;
    确定所述零电压矢量脉冲对应的电流矢量位置角;
    基于所述第一时刻、所述第二时刻、所述转子的转速、所述电流矢量位置角、预设映射表以及所述磁极初始位置,确定所述转子的磁极位置;其中,所述预设映射表被配置为基于所述电流矢量位置角查找所述转子的磁极所在的象限,所述象限为所述转子的直轴与所述转子的交轴所在的象限;
    若确定所述转子的第一磁极收敛至目标磁极,则按照预设角度对所述转子的位置角进行补偿。
  13. 根据权利要求12所述的确定方法,其中,所述基于所述第一时刻、所述第二时刻、所述转子的转速、所述电流矢量位置角、预设映射表以及所述磁极初始位置,确定所述转子的磁极位置,包括:
    确定所述第一时刻与所述第二时刻之间的时间差,并基于所述时间差、所述磁极初始位置以及所述转子的转速,确定所述磁极在所述第二时刻的转动位置;
    基于所述电流矢量位置角以及所述预设映射表,确定所述直轴在所述第二时刻所在的参考象限;
    基于所述参考象限以及所述转动位置,确定所述磁极位置。
  14. 根据权利要求13所述的确定方法,其中,
    所述磁极包括第一子磁极和第二子磁极;
    所述转动位置包括所述第一子磁极的磁极位置以及所述第二子磁极的磁极位置;
    所述基于所述参考象限以及所述转动位置,确定所述磁极位置,包括:
    基于所述参考象限,确定所述第一子磁极在所述第二时刻所在的目标象限;
    基于所述转动位置,确定所述第一子磁极所在的多个候选象限;
    基于所述目标象限以及所述多个候选象限,确定所述第一子磁极的位置以及所述第二子磁极的位置;其中,所述第一子磁极的位置所在的象限与所述目标象限对应。
  15. 根据权利要求13所述的确定方法,其中,
    所述基于所述电流矢量位置角以及所述预设映射表,确定所述直轴在所述第二时刻所在的参考象限,包括:
    从多个预设角度范围中确定所述电流矢量位置角对应的目标预设角度范围;其中,所述直轴位于所述多个预设角度范围中的每个预设角度范围内;
    基于所述目标预设角度范围以及所述预设映射表,确定所述直轴在所述第二时刻所在的参考象限;其中,所述预设映射表包括所述多个预设角度以及与所述每个预设角度对应的参考象限。
  16. 根据权利要求12至15中任一项所述的确定方法,其中,
    所述预设映射表包括第一子预设映射表和第二子预设映射表;
    所述基于所述电流矢量位置角以及所述预设映射表,确定所述直轴在所述第二时刻所在的参考象限,包括:
    若确定所述转子沿第一方向旋转,则基于所述电流矢量位置角以及所述第一子预设映射表,确定所述直轴在所述第二时刻所在的象限为第一象限和第二象限;
    若确定所述转子沿第二方向旋转,则所述基于所述电流矢量位置角以及所述第二子预设映射表,确定所述直轴在所述第二时刻所在的象限为第三象限和第四象限;
    其中,所述第二方向与所述第一方向相反。
  17. 根据权利要求16所述的确定方法,其中,所述电机还包括:
    上桥臂,所述上桥臂包括三个功率开关组件;
    下桥臂,所述下桥臂包括三个功率开关组件;以及
    续流二极管,被配置为减小所述电机的电路在所述第二方向上的压力;
    其中,所述在第二时刻向所述电机施加零电压矢量脉冲,包括:
    若确定所述电机的定子相电流等于零,则打开所述上桥臂的所述三个功率开关组件,或打开所述下桥臂的所述三个功率开关组件,并维持预定时间。
  18. 根据权利要求12至17中任一项所述的确定方法,其中,所述磁极位置确定系统还包括:
    电压调节器,所述电压调节器与所述磁极确定装置耦接,且被配置为对所述电机的输出电压进行调节;
    其中,所述在第一时刻在所述电机的两相静止坐标系下注入高频电压,包括:
    所述磁极确定装置将所述高频电压叠加到所述电压调节器输出的直轴电压;
    其中,所述高频电压的信号形式为正负半轴对称的方波信号。
  19. 根据权利要求12至18中任一项所述的确定方法,其中,所述磁极位置确定系统还包括:
    逆变器,所述逆变器与所述磁极确定装置耦接,且被配置为将直流电转变为交流电;
    所述基于所述高频电压,确定所述转子的磁极初始位置以及所述转子的转速,包括:所述磁极确定装置根据所述逆变器输出的三相电流的反馈值获得所述转子的磁极初始位置以及所述转子的转速。
  20. 根据权利要求19所述的确定方法,其中,
    所述磁极位置确定系统还包括转子位置观测器,所述转子位置观测器与所述磁极确定装置耦接;
    其中,所述基于所述高频电压,确定所述转子的磁极初始位置以及所述转子的转速,还包括:
    基于所述高频电压,以及所述三相电流的反馈值,获取磁极位置误差信号;以及
    将所述磁极位置误差信号输入所述转子位置观测器,并得到所述转子的磁极初始位置以及所述转子的转速。
PCT/CN2024/075271 2023-02-27 2024-02-01 磁极位置确定系统 WO2024179271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310173341.8A CN118554828A (zh) 2023-02-27 2023-02-27 磁极位置确定系统及其磁极位置确定方法
CN202310173341.8 2023-02-27

Publications (2)

Publication Number Publication Date
WO2024179271A1 true WO2024179271A1 (zh) 2024-09-06
WO2024179271A9 WO2024179271A9 (zh) 2024-10-10

Family

ID=92454504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/075271 WO2024179271A1 (zh) 2023-02-27 2024-02-01 磁极位置确定系统

Country Status (2)

Country Link
CN (1) CN118554828A (zh)
WO (1) WO2024179271A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714844A (zh) * 2009-11-10 2010-05-26 哈尔滨工业大学 一种内置式永磁同步电机转子磁极初始位置检测方法
CN112671295A (zh) * 2020-11-30 2021-04-16 西北工业大学 一种基于电机共模电流的转子初始位置检测方法及系统
EP3876418A1 (en) * 2020-03-06 2021-09-08 maxon international ag Method for detecting the orientation of the rotor polarity of a bldc motor
CN113794406A (zh) * 2021-07-26 2021-12-14 清华大学 基于励磁系统的电机转子位置确定方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714844A (zh) * 2009-11-10 2010-05-26 哈尔滨工业大学 一种内置式永磁同步电机转子磁极初始位置检测方法
EP3876418A1 (en) * 2020-03-06 2021-09-08 maxon international ag Method for detecting the orientation of the rotor polarity of a bldc motor
CN112671295A (zh) * 2020-11-30 2021-04-16 西北工业大学 一种基于电机共模电流的转子初始位置检测方法及系统
CN113794406A (zh) * 2021-07-26 2021-12-14 清华大学 基于励磁系统的电机转子位置确定方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO CHUNTANG, ZHIYONG LAN, FANXIANG SHEN: "Review of Initial Position Angle Detection in Sensorless Control System of Permanent Magnet Synchronous Motor", ELECTRICAL ENGINEERING, vol. 21, no. 6, 15 June 2020 (2020-06-15), XP093204916, ISSN: 1673-3800 *

Also Published As

Publication number Publication date
WO2024179271A9 (zh) 2024-10-10
CN118554828A (zh) 2024-08-27

Similar Documents

Publication Publication Date Title
Xie et al. Minimum-voltage vector injection method for sensorless control of PMSM for low-speed operations
Piippo et al. Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors
US8975856B2 (en) Method of improving efficiency in a multiphase motor, and motor for implementing such a method
Gabriel et al. High-frequency issues using rotating voltage injections intended for position self-sensing
TWI418135B (zh) 馬達控制方法與系統及其中之數位信號處理器
CN108288935B (zh) 一种永磁同步电机电感参数获取方法及系统
Zhao et al. Position-Sensorless Control of $\text {DC}+\text {AC} $ Stator Fed Doubly Salient Electromagnetic Motor Covered Full Speed Range
WO2019227860A1 (zh) 永磁同步电机的永磁磁链的辨识方法及辨识装置
US8866449B1 (en) Sensor PM electrical machines
CN102420561A (zh) 基于级联高压变频器无速度传感器矢量控制方法
Lin et al. Improved rotor position estimation in sensorless-controlled permanent-magnet synchronous machines having asymmetric-EMF with harmonic compensation
CN106357187A (zh) 电励磁同步电机转子初始位置辨识系统及方法
JP2000156993A (ja) 永久磁石型同期機の制御装置及びその制御方法
CN105429547A (zh) 基于虚拟相构造的单相无刷直流电机矢量控制方法
CN116191964B (zh) 基于矢量谐振控制器的正弦型电励磁双凸极电机控制方法
WO2024179271A1 (zh) 磁极位置确定系统
Liu et al. A rotor initial position estimation method for sensorless control of SPMSM
Noguchi et al. Mechanical-sensorless permanent-magnet motor drive using relative phase information of harmonic currents caused by frequency-modulated three-phase PWM carriers
Yao et al. Rapid estimation and compensation method of commutation error caused by Hall sensor installation error for BLDC motors
Andreescu et al. Enhancement sensorless control system for PMSM drives using square-wave signal injection
Kou et al. An envelope-prediction-based sensorless rotor position observation scheme for LCI-fed EESM at zero and low speed
Liu et al. Research on initial rotor position estimation for SPMSM
CN108365790A (zh) 无人机电机直交轴电感测量方法、装置、设备和存储介质
Zhou et al. Compensation for rotor position detection error in sensorless DSEM drive based on line-voltage difference
Wu et al. Compensation method of DC-link current integral deviation for sensorless control of three-phase BLDC motor