WO2022237829A1 - 一种电机的控制方法、控制系统和存储介质 - Google Patents

一种电机的控制方法、控制系统和存储介质 Download PDF

Info

Publication number
WO2022237829A1
WO2022237829A1 PCT/CN2022/092167 CN2022092167W WO2022237829A1 WO 2022237829 A1 WO2022237829 A1 WO 2022237829A1 CN 2022092167 W CN2022092167 W CN 2022092167W WO 2022237829 A1 WO2022237829 A1 WO 2022237829A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
coordinate system
motor
vector
estimated value
Prior art date
Application number
PCT/CN2022/092167
Other languages
English (en)
French (fr)
Inventor
杨雷
宾宏
诸自强
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2022237829A1 publication Critical patent/WO2022237829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation

Definitions

  • the present application relates to the technical field of rotor position estimation in a control system of a permanent magnet synchronous motor, in particular to a motor control method, control system and storage medium.
  • the carrier ratio and sampling ratio of the motor control system are usually insufficient (generally below 20).
  • the synchronous film observer scheme is adopted for the sensorless control scheme of the permanent magnet synchronous motor.
  • the scheme does not also consider the operation of the motor under the condition of low carrier ratio and low sampling ratio.
  • the embodiment of the present application expects to provide a motor control method, control system and storage medium to solve the problem in the related art that it is difficult to accurately estimate the motor rotor when the motor has no sensor under the condition of low carrier ratio and low sampling ratio. When the position is set, the control efficiency of the motor is reduced, and even the problem that the motor cannot run is caused.
  • a motor control method the method is applied in a control system, the input end of the control system and the output end of the control system are respectively connected to the input end of the motor, the method includes:
  • a preset rotor position estimation algorithm for a discrete-time motor model is used to determine rotor position estimation information ;
  • the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation are determined;
  • a control system, the input end of the control system and the output end of the control system are respectively connected to the input end of the motor, comprising:
  • An estimating module configured to determine, based on the received voltage vector in the rotor dq coordinate system of the motor and the feedback current vector in the rotor dq coordinate system, a preset rotor position estimation algorithm for a discrete-time motor model Estimated information on rotor position;
  • a determining module configured to determine the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation according to the estimated information of the rotor position;
  • Transformation module for carrying out Clark transformation and Park transformation to the three-phase input current of described motor successively, obtain the feedback current vector under the rotor dq coordinate system again;
  • the current control module is used to perform current control on the obtained feedback current vector in the rotor dq coordinate system and the input feedback current vector in the rotor dq coordinate system, and obtain the voltage vector in the rotor dq coordinate system again;
  • the motor control module is used to sequentially perform Park inverse transformation on the voltage vector in the dq coordinate system of the newly obtained rotor, SVPWM modulation to obtain a PWM pulse wave, and input the PWM pulse wave to the inverter to obtain the input voltage of the motor to control the motor.
  • a storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the motor control method described above.
  • the motor control method, control system, and storage medium provided in the embodiments of the present application adopt the preset time-based discrete-time
  • the rotor position estimation algorithm of the motor model determines the estimated information of the rotor position, and according to the estimated information of the rotor position, determines the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation, and performs Clark transformation on the three-phase input current of the motor in turn and Park transformation, re-obtain the feedback current vector in the rotor dq coordinate system, perform current control on the re-obtained feedback current vector in the rotor dq coordinate system and the input command current vector in the rotor dq coordinate system, and re-obtain the rotor dq coordinates
  • the voltage vector in the system, the voltage vector in the dq coordinate system of the newly obtained rotor is inversely transformed by Park, Space Vector Pulse Width Modulation (SVPWM) modulation and pulse width modulation (Pulse Wi
  • the accurate rotor position can be obtained so that the entire control system can know the operation of the motor based on the accurate rotor position, so that the control system can
  • the control of the input voltage of the motor is effectively realized, thereby improving the control efficiency of the control system for the motor, thereby improving the performance of the motor, and ensuring the stable operation of the motor.
  • Fig. 1 is a schematic structural diagram of a synovial film observer in the related art
  • FIG. 2 is a schematic flowchart of an optional motor control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an example of an optional motor control system provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an example of an optional rotor position estimation algorithm provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an example of an optional phase-locked loop provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an example of another optional motor control system provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an example of another optional motor control system provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of an optional control system provided by the embodiment of the present application.
  • the carrier ratio and sampling ratio of the control system are usually insufficient, generally below 20. Under this condition, it is difficult for the traditional permanent magnet synchronous motor sensorless control scheme to accurately estimate the motor rotor. position, leading to a decrease in the performance of the control system, a reduction in efficiency, or even failure to operate.
  • FIG. 1 is a schematic diagram of the structure of the synchronous film observer in the related art.
  • the synchronous film current observer based on the motor model has a v s * , z and e s * are processed to obtain bang-bang controller pair Process with the feedback signal i s to obtain the signal z, and the low-pass filter processes the signal z to obtain the signal Flux angle calculator for signals processed, get Compare the value obtained by processing ⁇ * with another flux angle calculator By summing, the rotor electrical angle in the rotor position information can be obtained
  • the existing permanent magnet synchronous motor vector control scheme needs to be maintained under the condition of relatively high carrier ratio (f c /f 0 ) and sampling ratio (f s /f 0 ), where f c is the carrier frequency, f s is the current sampling frequency, and f 0 is the fundamental frequency of the motor.
  • the fundamental frequency (f 0 ) of the motor may exceed 1kHz, while the carrier frequency (f c ) and current sampling The frequency (f s ) is typically between 10 kHz and 20 kHz.
  • the carrier frequency (f c ) and current sampling frequency (f s ) are limited by switching losses, and the maximum can only be set to 1kHz to 2kHz.
  • the motor carrier ratio (f c /f 0 ) and sampling ratio (f s /f 0 ) are limited below 20, or even below 10. This extreme situation puts forward higher requirements for sensorless control.
  • Traditional sensorless control schemes will generate large position estimation errors under the conditions of low carrier ratio and low sampling ratio, which will affect the performance of the motor and even make the control system unstable.
  • FIG. 2 is a schematic flowchart of an optional motor control method provided by the embodiment of the present application. Referring to FIG. 2, the method may include:
  • both the input end and the output end of the control system are connected to the input end of the motor to realize the control of the three-phase input current of the motor.
  • the control system needs to control the position of the motor rotor during the control of the three-phase input current Estimation, through the estimation of the rotor position, the estimated value of the rotor electrical angle and the estimated value of the rotor electrical angular velocity can be determined, and the accurate estimation of the estimated value of the rotor electrical angular velocity directly affects the control of the control system on the three-phase input current.
  • the preset rotor position estimation algorithm for the discrete-time motor model is used to determine the estimated information of the rotor position .
  • the rotor position estimation information may include an estimated value of the rotor electrical angle and an estimated value of the rotor electrical angular velocity.
  • the continuous-time motor model is generally used to estimate the rotor position information.
  • the continuous-time motor model can generally be expressed by the following formula:
  • i dq [k+1] ⁇ i dq [k]+ ⁇ u u dq [k-1]+ ⁇ e e dq [k] (1)
  • the embodiment of the present application proposes a rotor position estimation algorithm for the discrete-time motor model,
  • the influence of the sampling delay on the estimation of the rotor position is also fully considered, so that the estimated information of the rotor position can be accurately determined, thereby improving the control performance of the control system on the motor.
  • the estimated information of the rotor position can be accurately determined. Since the estimated information of the rotor position includes the estimated value of the rotor electrical angle and the estimated value of the rotor electrical angular velocity, however, in the control system, the three-phase input current During the processing, the transformation parameters of the Park transformation and the Park inverse transformation are related to the estimated value of the rotor electrical angle and the estimated value of the rotor electrical angular velocity. Then, after calculating the estimated information of the rotor position, it is necessary to update it according to the estimated information of the rotor position The transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation, so as to further better control the three-phase input current.
  • the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation can be obtained, thereby updating the Park transformation and Park inverse transformation in the control system.
  • S203 Perform Clark transformation and Park transformation on the three-phase input current of the motor in sequence, and obtain the feedback current vector in the dq coordinate system of the rotor again;
  • the Park transformation and Park inverse transformation in the control system are updated through S202. Then, in the control of the three-phase input current, the Clark transformation is first performed on the three-phase input current to obtain the feedback current vector in the static ⁇ coordinate system, and then adopt The transformation parameter of the Park transformation performs Park transformation on the feedback current vector in the static ⁇ coordinate system, and obtains the feedback current vector in the rotor dq coordinate system again.
  • the input command current vector in the rotor dq coordinate system will also be obtained.
  • current control needs to be performed on the feedback current vector in the rotor dq coordinate system obtained again, and the command current vector in the rotor dq coordinate system, so as to obtain the voltage vector in the rotor dq coordinate system again.
  • S205 Carry out inverse Park transformation on the voltage vector in the rotor dq coordinate system obtained again, SVPWM modulation to obtain a PWM pulse wave, and input the PWM pulse wave to the inverter to obtain an input voltage of the motor to control the motor.
  • S201 may include:
  • the estimated value of the back electromotive force vector of the motor is determined by using a preset observer for a discrete-time motor model
  • An estimate of the rotor position of the electric machine is extracted from the estimate of the back EMF vector.
  • the estimation of the rotor position after receiving the voltage vector in the rotor dq coordinate system and the feedback current vector in the rotor dq coordinate system, according to the voltage vector in the rotor dq coordinate system and the rotor dq coordinate system
  • the feedback current vector is calculated using an observer for a discrete-time motor model, eg, an EMF (Romberg) observer, to obtain an estimate of the back EMF vector.
  • the estimated value of the rotor position of the motor is extracted from the estimated value of the back electromotive force vector.
  • the estimated value of the back electromotive force vector is usually processed by phase-locked loop technology , so that the estimated information of the rotor position can be obtained, that is, the estimated value of the electrical angle of the rotor position and the estimated value of the electrical angular velocity of the rotor position.
  • a preset value for discrete time determines the estimated value of the back EMF vector of the motor, including:
  • the first control parameter, the second control parameter, the third control parameter, the voltage vector under the rotor dq coordinate system and the feedback current vector under the rotor dq coordinate system determine the estimated value of the voltage vector under the rotor dq coordinate system
  • the estimated value of the counter electromotive force vector is determined.
  • the estimated value of the counter electromotive force vector is determined.
  • the following formula is used to calculate the estimated value of the voltage vector in the rotor dq coordinate system:
  • i dq [k] is the feedback current vector in the rotor dq coordinate system obtained by the kth sampling
  • u dq [k-1] is the estimated value of the voltage vector in the k-1th sampling in the rotor dq coordinate system
  • is the first control parameter
  • ⁇ u is the second control parameter
  • ⁇ e is the third control parameter
  • G 1 is the first control parameter of the observer feedback gain.
  • the estimated value of the feedback current vector in the rotor dq coordinate system in this sampling can be calculated, since this formula is designed for the model given by formula (1) Therefore, the calculated feedback current vector in the rotor dq coordinate system will be used for the next estimation of current and back electromotive force.
  • the following formula is used to calculate the estimated value of the back electromotive force vector:
  • i dq [k] is the feedback current vector in the rotor dq coordinate system obtained by the kth sampling
  • G2 is the second feedback gain of the observer
  • the estimated value of the back electromotive force vector in this sampling can be calculated by using the difference equation of the above formula (3). Since this formula is designed for the model given by formula (1), so, The calculation of the estimated value of the back electromotive force vector has higher accuracy, which is beneficial to estimate the rotor position signal.
  • the transformation parameters of the inverse Park transformation, the motor resistance, the motor synchronous inductance, and the sampling period are used to determine the second control parameter
  • the third control parameter is determined according to the estimated value of the current electrical angular velocity of the rotor, the motor resistance, the synchronous inductance of the motor, and the sampling period.
  • the estimated information of the rotor position will change, that is, the estimated value of the rotor electrical angle and the rotor electrical angular velocity
  • the estimated value of varies with the voltage vector in the rotor dq coordinate system and the feedback current vector in the rotor dq coordinate system. Therefore, in order to determine the first control parameter, the second control parameter and the third control parameter, First, an estimate of the current rotor electrical angular velocity needs to be obtained.
  • the control system knows the motor resistance, the synchronous inductance of the motor, and the sampling period of the feedback current vector in the rotor dq coordinate system, after obtaining the estimated value of the current rotor electrical angular velocity, according to the estimated value of the current rotor electrical angular velocity, the motor resistance , the synchronous inductance of the motor, the sampling period of the feedback current vector in the rotor dq coordinate system, determine the first control parameter, because the second control parameter is related to the transformation parameter for the inverse Park transformation, so, according to the estimated value of the current rotor electrical angular velocity,
  • the conversion parameters for Park inverse transformation, motor resistance, motor synchronous inductance, sampling period, determine the second control parameter, and determine the third control parameter according to the estimated value of the current rotor electrical angular velocity, motor resistance, motor synchronous inductance, and sampling period.
  • the following formula is used to calculate the first control parameter:
  • is the first control parameter
  • R is the motor resistance
  • L is the synchronous inductance of the motor
  • T S is the sampling period
  • the second control parameter is calculated using the following formula:
  • ⁇ u is the second control parameter
  • R is the motor resistance
  • L is the synchronous inductance of the motor
  • T S is the sampling period
  • the following formula is used to calculate the third control parameter:
  • ⁇ e is the third control parameter
  • R is the motor resistance
  • L is the synchronous inductance of the motor
  • T S is the sampling period
  • first control parameter, second control parameter and third control parameter are related parameters of the motor and the control system, and the first feedback gain and the second feedback gain of the above-mentioned observer can be modeled or experience adjustments.
  • the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation are determined, including:
  • the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation are determined.
  • the estimated value of the estimated rotor electrical angular velocity update to the estimated value of the current rotor electrical angular velocity
  • use the estimated value of the current rotor electrical angular velocity and the estimated value of the current rotor electrical angle to The transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation are determined, so that the precise control of the motor is realized through the accurate estimation of the rotor position, and the control performance of the motor is improved.
  • Fig. 3 is a schematic structural diagram of an example of an optional motor control system provided by the embodiment of the present application.
  • the three-phase input current i abc of the motor 308 is transformed by a Clark transformation module 306 to obtain
  • the Park transformation module 305 is used to perform Park transformation on i ⁇ to obtain the feedback current vector i dq in the rotor dq coordinate system.
  • the current controller 301 is used for current control to obtain the voltage vector u dq in the rotor dq coordinate system
  • the Park inverse transformation module 302 is used to perform Park inverse transformation on u dq to obtain the voltage vector u ⁇ in the static ⁇ coordinate system, which is modulated by SVPWM
  • the module 303 performs SVPWM modulation on u ⁇ to obtain a PWM pulse wave, and the PWM pulse wave controls the inverter 304 to drive the permanent magnet synchronous motor.
  • the transformation parameters of the above-mentioned Park transformation module 305 and Park inverse transformation module 302 are values related to the estimated value of the rotor electrical angular velocity and the rotor electrical angle obtained in the estimation of the rotor position. In the control of the input current, the rotor position needs to be estimated. Specifically, in the rotor position estimation module 307, after receiving u dq and i dq , the above formulas (2) to (5) and (8) can be used to estimate Estimated value of rotor electrical angular velocity and an estimate of the rotor electrical angle thereby according to and Determine the transformation parameters of the Park transformation module 305 and the transformation parameters of the Park inverse transformation module 302.
  • the transformation parameters of the Park transformation module 305 and the Park inverse transformation module 302 change, that is to say, the control system is based on the new Park transformation module 305 and The transformation parameters of the Park inverse transformation module 302 realize the control of the motor, due to the accurate estimation of and The control performance of the control system can be improved.
  • Fig. 4 is a schematic flowchart of an example of an optional rotor position estimation algorithm provided by the embodiment of the present application.
  • the rotor position estimation algorithm mainly includes: EMF observer 401 and phase-locked loop technology 402, wherein, The EMF observer receives u dq and i dq , based on the control system in Figure 3, using formulas (2)-(5) and (8), calculate the estimated value of the back EMF vector Then use the phase-locked loop technique to process to obtain the estimated value of the rotor electrical angular velocity and an estimate of the rotor electrical angle
  • Fig. 5 is a schematic structural diagram of an example of an optional phase-locked loop provided by the embodiment of the present application, as shown in Fig. Module 505, specifically, obtained by divider 501 (including and ), first input to the complex modulo module 505, the equivalent rotor position error is obtained through the divider 501 and the inverter 502, and the signal is input into the proportional-integral module 503 to obtain the estimated electrical angular velocity of the rotor And further input into the integration module 504 to obtain the estimated rotor electrical angle
  • FIG. 6 is a schematic structural diagram of an example of another optional control system provided by the embodiment of the present application. As shown in FIG. 6 , compared with FIG. 3 , The transformation parameters of the Park inverse transformation module 602a are Correspondingly, the second control parameter is calculated using the above formula (6);
  • FIG. 7 is a schematic structural diagram of an example of another optional control system provided by the embodiment of the present application, as shown in FIG. 7 , compared with FIG. 3 , the transformation parameters of the Park inverse transformation module 702b are Correspondingly, the second control parameter is calculated using the above formula (7).
  • the motor control method, control system, and storage medium provided in the embodiments of the present application adopt the preset time-based discrete-time
  • the rotor position estimation algorithm of the motor model determines the estimated information of the rotor position, and according to the estimated information of the rotor position, determines the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation, and performs Clark transformation on the three-phase input current of the motor in turn and Park transformation, re-obtain the feedback current vector in the rotor dq coordinate system, perform current control on the re-obtained feedback current vector in the rotor dq coordinate system and the input command current vector in the rotor dq coordinate system, and re-obtain the rotor dq coordinates
  • the voltage vector under the coordinate system of the rotor is subjected to Park inverse transformation and SVPWM modulation to the voltage vector under the rotor dq coordinate system obtained again, and the PWM pulse wave is input to the inverter to obtain the
  • the precise rotor position enables the entire control system to know the operation of the motor based on the precise rotor position, so that the control system can effectively control the input voltage of the motor, thereby improving the control efficiency of the control system for the motor, thereby improving the performance of the motor. performance to ensure the stable operation of the motor.
  • the motor can still obtain accurate rotor position observation performance under the condition of low carrier ratio or low sampling ratio.
  • Fig. 8 is an optional The schematic structural diagram of the control system, as shown in FIG. 8 , includes: an estimation module 81, a determination module 82, a conversion module 83, a current control module 84 and a motor control module 85; wherein,
  • the estimation module 81 is used to determine the rotor position according to the received voltage vector in the dq coordinate system of the rotor and the feedback current vector in the dq coordinate system of the rotor, using a preset rotor position estimation algorithm for a discrete-time motor model. Estimated information on location;
  • a determining module 82 configured to determine the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation according to the estimated information of the rotor position;
  • the transformation module 83 is used to sequentially perform Clark transformation and Park transformation on the three-phase input current of the motor, and obtain the feedback current vector under the dq coordinate system of the rotor again;
  • the current control module 84 is used to perform current control on the obtained feedback current vector in the rotor dq coordinate system and the input feedback current vector in the rotor dq coordinate system, and obtain the voltage vector in the rotor dq coordinate system again;
  • the motor control module 85 is used to sequentially perform Park inverse transformation on the voltage vector in the rotor dq coordinate system obtained again, SVPWM modulation to obtain a PWM pulse wave, and input the PWM pulse wave to the inverter to obtain the input voltage of the motor to control the motor .
  • the estimation module 81 is specifically used for:
  • the estimated value of the back electromotive force vector of the motor is determined by using a preset observer for a discrete-time motor model
  • An estimate of the rotor position of the electric machine is extracted from the estimate of the back EMF vector.
  • the estimation module 81 determines the back electromotive force of the motor by using a preset observer for a discrete-time motor model according to the voltage vector in the rotor dq coordinate system and the feedback current vector in the rotor dq coordinate system Estimates for vectors include:
  • the first control parameter, the second control parameter, the third control parameter, the voltage vector under the rotor dq coordinate system and the feedback current vector under the rotor dq coordinate system determine the estimated value of the voltage vector under the rotor dq coordinate system
  • the estimated value of the counter electromotive force vector is determined.
  • the estimation module 81 uses formula (2) to calculate and obtain the estimated value of the voltage vector in the rotor dq coordinate system;
  • i dq [k] is the feedback current vector in the rotor dq coordinate system obtained by the kth sampling
  • u dq [k-1] is the estimated value of the voltage vector in the k-1th sampling in the rotor dq coordinate system
  • is the first control parameter
  • ⁇ u is the second control parameter
  • ⁇ e is the third control parameter
  • G 1 is the first control parameter of the observer feedback gain.
  • the estimation module 81 uses formula (3) to calculate the estimated value of the back electromotive force vector
  • i dq [k] is the feedback current vector in the rotor dq coordinate system obtained by the kth sampling
  • G2 is the second feedback gain of the observer
  • the estimation module 81 determines the first control parameter of the control system, the second control parameter of the control system and the third control parameter of the control system, including:
  • the transformation parameters of the inverse Park transformation, the motor resistance, the motor synchronous inductance, and the sampling period are used to determine the second control parameter
  • the estimation module 81 uses formula (4) to calculate and obtain the first control parameter
  • is the first control parameter
  • R is the motor resistance
  • L is the synchronous inductance of the motor
  • T S is the sampling period
  • the control system uses formula (5) to calculate the second control parameter
  • ⁇ u is the second control parameter
  • R is the motor resistance
  • L is the synchronous inductance of the motor
  • T S is the sampling period
  • ⁇ e is the third control parameter
  • R is the motor resistance
  • L is the synchronous inductance of the motor
  • T S is the sampling period
  • the determination module 82 determines the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation according to the estimated information of the rotor position, including:
  • the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation are determined.
  • the above-mentioned estimation module 81, determination module 82, transformation module 83, current control module 84 and motor control module 85 can be realized by a processor located on the control system, specifically a central processing unit (CPU, Central Processing Unit), Implementations such as microprocessor (MPU, Microprocessor Unit), digital signal processor (DSP, Digital Signal Processing) or field programmable gate array (FPGA, Field Programmable Gate Array).
  • CPU Central Processing Unit
  • Implementations such as microprocessor (MPU, Microprocessor Unit), digital signal processor (DSP, Digital Signal Processing) or field programmable gate array (FPGA, Field Programmable Gate Array).
  • the accurate rotor position is obtained so that the entire
  • the control system can know the operation of the motor based on the precise rotor position, so that the control system can effectively control the input voltage of the motor, thereby improving the control efficiency of the control system for the motor, thereby improving the performance of the motor and ensuring the motor's Stable operation.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including but not limited to disk storage and optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • the embodiment of the present application provides a motor control method, control system, and storage medium.
  • a preset for discrete The rotor position estimation algorithm of the time-based motor model determines the estimated information of the rotor position.
  • the transformation parameters of the Park transformation and the transformation parameters of the Park inverse transformation are determined, and the three-phase input current of the motor is sequentially carried out.
  • Transformation and Park transformation re-obtain the feedback current vector in the rotor dq coordinate system, perform current control on the re-obtained feedback current vector in the rotor dq coordinate system and the input command current vector in the rotor dq coordinate system, and re-obtain the rotor dq
  • the Park inverse transformation is performed on the voltage vector in the rotor dq coordinate system obtained again, and the SVPWM modulation is used to obtain the PWM pulse wave, and the PWM pulse wave is input to the inverter to obtain the input voltage of the motor to control the motor ; That is to say, through the preset rotor position estimation algorithm for the motor model based on discrete time, without the need for a rotor position sensor, the rotor can be accurately estimated under the conditions of motor operation and low carrier ratio and low sampling ratio In this way, the precise rotor position is obtained so that the entire control system can know the operation of the motor based on the precise rotor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

提供一种电机的控制方法,包括:根据转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用针对基于离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息,根据转子位置的估计信息,确定出Park变换和Park逆变换的变换参数,对三相输入电流依次进行Clark变换和Park变换,重新得到反馈电流矢量,对重新得到的反馈电流矢量和输入的转子dq坐标系下的指令电流矢量进行电流控制,重新得到电压矢量,对重新得到的电压矢量依次进行Park逆变换,SVPWM调制得到PWM脉冲波,将PWM脉冲波输入至逆变器,得到电机的输入电压。同时提供一种控制系统和存储介质。

Description

一种电机的控制方法、控制系统和存储介质
相关申请的交叉引用
本申请基于申请号为202110511974.6,申请日为2021年5月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及永磁同步电机的控制系统中转子位置估计技术领域,尤其是涉及一种电机的控制方法、控制系统和存储介质。
背景技术
目前,在高速电机应用或低开关频率的应用场合中,电机的控制系统的载波比和采样比通常不足(一般为20以下)。在此条件下,在相关技术中,针对永磁同步电机无传感器控制方案,采用滑膜观测器方案,然而,该方案中并未还考虑电机在低载波比低采样比条件下的运行。
可见,传统永磁同步电机无传感器控制方案很难准确估算出电机转子位置,如此,导致电机的控制系统性能下降,效率降低,甚至出现无法运行的问题。
发明内容
本申请实施例期望提供一种电机的控制方法、控制系统和存储介质,以解决相关技术中当电机在低载波比低采样比的条件下永磁同步电机无传感器时很难准确估计出电机转子位置时,产生的对电机的控制效率降低,甚至导致电机无法运行的问题。
本申请的技术方案是这样实现的:
一种电机的控制方法,所述方法应用于控制系统中,所述控制系统的输入端与所述控制系统的输出端分别连接至电机的输入端,所述方法包括:
根据接收到的所述电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息;
根据所述转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数;
对所述电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量;
对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的指令电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量;
对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,SVPWM调制得到PWM脉冲波,将所述PWM脉冲波输入至逆变器,得到所述电机的输入电压以控制所述电机。
一种控制系统,所述控制系统的输入端和所述控制系统的输出端分别连接至电机的输入端,包括:
估计模块,用于根据接收到的所述电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息;
确定模块,用于根据所述转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数;
变换模块,用于对所述电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量;
电流控制模块,用于对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的反馈电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量;
电机控制模块,用于对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,SVPWM调制得到PWM脉冲波,将所述PWM脉冲波输入至逆变器,得到所述电机的输入电压以控制所述电机。
一种存储介质,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述所述的电机的控制方法。
本申请实施例所提供的电机的控制方法、控制系统和存储介质,根据接收到的电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息,根据转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数,对电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量,对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的指令电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量,对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,空间矢量脉冲调制(Space Vector Pulse Width Modulation,SVPWM)调制和得到脉冲宽度调制(Pulse Width Modulation,PWM)脉冲波,将PWM脉冲波输入至逆变器,得到电机的输入电压以控制电机;也就是说,通过预设的针对基于离散时间的电机模型的转子位置估计算法,在无需转子位置传感器的情况下,在电机运行与低载波比低采样比的条件下能够精确地估计出转子位置,这样,得到精确地转子位置使得整个控制系统基于精确地转子位置能够获知电机的运转情况,使得控制系统能够有效地实现对电机的输入电压的控制,从而提高了控制系统对电机的控制效率,进而提高了电机的性能,保证电机的稳定运行。
附图说明
图1为相关技术中滑膜观测器的结构示意图;
图2为本申请实施例提供的一种可选的电机的控制方法的流程示意图;
图3为本申请实施例提供的一种可选的电机的控制系统的实例的结构示意图;
图4为本申请实施例提供的一种可选的转子位置估计算法的实例的流程示意图;
图5为本申请实施例提供的一种可选的锁相环的实例的结构示意图;
图6为本申请实施例提供的另一种可选的电机的控制系统的实例的结构示意图;
图7为本申请实施例提供的又一种可选的电机的控制系统的实例的结构示意图;
图8为本申请实施例提供的一种可选的控制系统的结构示意图。
具体实施方式
为了更好地了解本申请的目的、结构及功能,下面结合附图,对本申请的一种电机的控制方法、控制系统做进一步详细的描述。
在对本申请所提供的电机的控制方法进行说明之前,首先相关技术中的相关知识进行解释说明。
在高速电机应用或低开关频率的应用场合中,控制系统的载波比和采样比通常不足,一般为20以下,在此条件下,传统永磁同步电机无传感器控制方案很难准确估算出电机转子位置,导致控制系统性能下降,效率降低,甚至无法运行。
在相关技术中,有多种永磁同步电机无传感器控制方案,图1为相关技术中滑膜观测器的结构示意图,如图1所示,基于电机模型的滑膜电流观测器对输入端的信号v s *,z和e s *进行处理,得到
Figure PCTCN2022092167-appb-000001
bang-bang控制器对
Figure PCTCN2022092167-appb-000002
和反馈信号i s进行处理,得到信号z,低通滤波器对信号z进行处理,得到信号
Figure PCTCN2022092167-appb-000003
磁通角计算器对信号
Figure PCTCN2022092167-appb-000004
进行处理,得到
Figure PCTCN2022092167-appb-000005
将另一磁通角计算器处理ω *得到的值与
Figure PCTCN2022092167-appb-000006
求和,就可以得到转子位置信息中的转子电角度
Figure PCTCN2022092167-appb-000007
然而,上述滑膜观测器的方案并未考虑电机在低载波比低采样比条件下运行的情况,所以,该方案估计出的转子位置信息在该条件下也很难准确估计出转子的位置信息。
具体来说,现有的永磁同步电机矢量控制方案需要维持在较高的载波比(f c/f 0)和采样比(f s/f 0)条件下,其中,f c为载波频率,f s为电流采样频率、f 0为电机基频,但是,在一些特殊场合,例如,高速电机应用中,电机的基频(f 0)可能超过1kHz,而载波频率(f c)和电流采样频率(f s)一般在10kHz到20kHz之间。又如,在大功率永磁同步电机应用中,虽然电机基频不高(f 0=100Hz),但载波频率(f c)和电流采样频率(f s)受到开关损耗限制,最高只能设置到1kHz到2kHz。在以上两种场合,电机的载波比(f c/f 0)和采样比(f s/f 0)被限制在20以下,甚至低于10。此种极端 情况对无传感器控制提出较高的要求,传统无传感器控制方案在这种低载波比低采样比条件下会产生较大的位置估计误差,影响电机性能甚至使控制系统失稳。
为了电机在低载波比低采样比条件下提高电机的控制性能,本申请的实施例提供一种电机的控制方法,该方法应用于控制系统中,该控制系统的输入端与控制系统的输出端分别连接至电机的输入端,图2为本申请实施例提供的一种可选的电机的控制方法的流程示意图,参照图2所示,该方法可以包括:
S201:根据接收到的电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息;
具体来说,控制系统的输入端和输出端均连接至电机的输入端,实现对电机三相输入电流的控制,这里,控制系统在对三相输入电流的控制中,需要对电机转子位置进行估计,通过对转子位置的估计可以确定出转子电角度的估计值和转子电角速度的估计值,而转子电角速度的估计值的准确估计直接影响控制系统对三相输入电流的控制。
那么,为了提高控制系统的控制性能,首先,需要准确地估计出转子位置,为了准确地估计出转子位置,在转子位置的估计中,在接收到转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量之后,根据转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定转子位置的估计信息。
这里,需要说明的是,上述转子位置估计信息可以包括转子电角度的估计值和转子电角速度的估计值。
另外,针对永磁同步电机而言,一般采用连续时间的电机模型来对转子位置信息进行估计,然而,采用连续时间的电机模型所估计出的转子位置存在较大的误差,所以,在本申请实施例中,提出了针对离散时间的电机模型的转子位置估计算法,其中,离散时间的电机模型一般可以用如下公式表示:
i dq[k+1]=Φi dq[k]+Γ uu dq[k-1]+Γ ee dq[k]       (1)
其中,i dq[k]为第k次采样得到的转子dq坐标系下的反馈电流矢量,(i dq[k]=i d[k]+ji q[k],i d和i q分别为d、q轴电流),u dq[k]为第k次采样中转子dq坐标系下的电压矢量(u dq[k]=u d[k]+ju q[k],u d和u q分别为d、q轴电压),e dq[k]为第k次采样中转子dq坐标系下的反电动势矢量(e dq[k]=jψ fω e,ψ f为电机的永磁体磁链,ω e为转子电角速度)。
需要指出的是,在上述离散时间的电机模型中精确地考虑到了电机驱动中采样延时的影响,那么针对该模型,本申请实施例提出一种针对离散时间的电机模型的转子位置估计算法,也充分考虑到了采样延时对转子位置估计的影响,从而能够精确地确定出转子位置的估计信息,从而提高了控制系统对电机的控制性能。
S202:根据转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数;
通过S202,能够精确地确定出转子位置的估计信息,由于转子位置的估计信息中包括有转子电角度的估计值和转子电角速度的估计值,然而,在控制系统中在对三相输入电流的处理中,Park变换和Park逆变换的变换参数均与转子电角度的估计值和转子电角速度的估计值有关,那么,在计算出转子位置的估计信息之后,需要根据转子位置的估计信息去更新Park变换的变换和Park逆变换的变换参数,以进一步更好的对三相输入电流进行控制。
至此,便可以得到Park变换的变换参数和Park逆变换的变换参数,从而更新了控制系统中的Park变换和Park逆变换。
S203:对电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量;
通过S202更新了控制系统中的Park变换和Park逆变换,那么,在对三相输入电流的控制中,先对三相输入电流进行Clark变换,得到静止αβ坐标系下的反馈电流矢量,然后采用Park变换的变换参数对静止αβ坐标系下的反馈电流矢量进行Park变换,重新得到转子dq坐标系下的反馈电流矢量。
S204:对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的指令电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量;
具体来说,由于转子dq坐标系下的反馈电流矢量得到了更新,所以,在控制系统中,除了三相输入电流之外,还会得到输入的转子dq坐标系下的指令电流矢量,在执行完Park变换之后,需要对重新得到的转子dq坐标系下的反馈电流矢量转子dq坐标系下的指令电流矢量进行电流控制,从而重新得到转子dq坐标系下的电压矢量。
S205:对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,SVPWM调制得到PWM脉冲波,将PWM脉冲波输入至逆变器,得到电机的输入电压以控制电机。
在重新得到转子dq坐标系下的电压矢量之后,需要采用Park逆变换的变换参数对转子dq坐标系下的电压矢量进行Park逆变换,得到静止αβ坐标系下的电压矢量,对静止αβ坐标系下的电压矢量进行SVPWM调制得到PWM脉冲波控制逆变器驱动永磁同步电机,将得到的三相输入电流完成对电机的电流控制。
如此,通过对转子位置的估计信息的确定,更新了控制系统中的Park变换的变换参数和Park逆变换的变换参数,从而使得控制系统能够对电机实现有效的控制。
为了更加精确地实现对转子位置的估计,在一种可选的实施例中,S201可以包括:
根据转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的观测器,确定出电机的反电动势矢量的估计值;
从反电动势矢量的估计值中提取出电机的转子位置的估计信息。
具体来说,针对转子位置的估计中,在接收到转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量之后,根据转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用针对离散时间的电机模型的观测器,例如,EMF(龙贝格)观测器观测器,来计算得到反电动势矢量的估计值。
在计算得到反电动势矢量的估计值之后,从反电动势矢量的估计值中提取出电机的转子位置的估计信息中,在实际应用中,通常采用锁相环技术对反电动势矢量的估计值进行处理,从而可以得到转子位置的估计信息,即转子位置的电角度的估计值和转子位置的电角速度的估计值。
为了确定出电机的反电动势的估计值,在一种可选的实施例中,根据电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的观测器,确定出电机的反电动势矢量的估计值,包括:
确定出控制系统的第一控制参数,控制系统的第二控制参数和控制系统的第三控制参数;
根据第一控制参数,第二控制参数,第三控制参数,转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,确定出转子dq坐标系下的电压矢量的估计值;
根据转子dq坐标系下的电压矢量和转子dq坐标系下的电压矢量的估计值,确定出反电动势矢量的估计值。
具体来说,先确定出第一控制参数,第二控制参数和第三控制参数,利用这些控制参数,以及接收到的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,确定出转子dq坐标系下的电压矢量的估计值。
然后,在基于转子dq坐标系下的电压矢量的估计值和转子dq坐标系下的反馈电流矢量在确定出反电动势矢量的估计值。
进一步地,为了得到转子dq坐标系下的反馈电流矢量,在一种可选的实施例中,采用如下公式计算得到转子dq坐标系下的电压矢量的估计值:
Figure PCTCN2022092167-appb-000008
其中,i dq[k]为第k次采样得到的转子dq坐标系下的反馈电流矢量,
Figure PCTCN2022092167-appb-000009
为第k+1次采样中转子dq坐标系下的反馈电流矢量的估计值,
Figure PCTCN2022092167-appb-000010
为第k次采样中转子dq坐标系下的反馈电流矢量的估计值,u dq[k-1]为第k-1次采样中转子dq坐标系下的电压矢量的估计值,
Figure PCTCN2022092167-appb-000011
为第k次采样中转子dq坐标系下的反电动势矢量的估计值,Φ为第一控制参数,Γ u为第二控制参数,Γ e为第三控制参数,G 1为观测器的第一反馈增益。
也就是说,采用上述公式(2)的差分方程,就可以计算出本次采样中转子dq 坐标系下的反馈电流矢量的估计值,由于该公式是针对公式(1)给出的模型所设计出的公式,所以,计算出转子dq坐标系下的反馈电流矢量将被用于下一次对电流和反电动势的估计。
进一步地,为了得到反电动势矢量的估计值,在一种可选的实施例中,采用如下公式计算得到反电动势矢量的估计值:
Figure PCTCN2022092167-appb-000012
其中,i dq[k]为第k次采样得到的转子dq坐标系下的反馈电流矢量,
Figure PCTCN2022092167-appb-000013
为第k+1次采样中转子dq坐标系下的反电动势矢量的估计值,
Figure PCTCN2022092167-appb-000014
为第k次采样中的转子dq坐标系下的反电动势矢量的估计值,G 2为观测器的第二反馈增益,
Figure PCTCN2022092167-appb-000015
为第k次采样中转子dq坐标系下的反馈电流矢量的估计值。
也就是说,采用上述公式(3)的差分方程,就可以计算出本次采样中反电动势矢量的估计值,由于该公式是针对公式(1)给出的模型所设计出的公式,所以,计算出反电动势矢量的估计值的精确度较高,有利于估计出转子位置信号。
另外,为了确定出控制系统的第一控制参数,第二控制参数和第三控制参数,在一种可选的实施例中,确定出控制系统的第一控制参数,控制系统的第二控制参数和控制系统的第三控制参数,包括:
获取当前转子电角速度的估计值;
根据当前转子电角速度的估计值,电机电阻,电机同步电感,转子dq坐标系下的反馈电流矢量的采样周期,确定第一控制参数;
根据当前转子电角速度的估计值,进行Park逆变换的变换参数,电机电阻,电机同步电感,采样周期,确定第二控制参数;
根据当前转子电角速度的估计值,电机电阻,电机同步电感,采样周期,确定第三控制参数。
具体来说,由于在转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量的变化会引起转子位置的估计信息的变化,也就是说,转子电角度的估计值和转子电角速度的估计值是随着转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量的变化而变化的,所以,为了确定出第一控制参数,第二控制参数和第三控制参数,首先需要获取当前转子电角速度的估计值。
由于控制系统已知电机电阻,电机同步电感,转子dq坐标系下的反馈电流矢量的采样周期,所以,在获取到当前转子电角速度的估计值之后,根据当前转子电角速度的估计值,电机电阻,电机同步电感,转子dq坐标系下的反馈电流矢量的采样周期,确定第一控制参数,由于第二控制参数与进行Park逆变换的变换参数有关,所以,根据当前转子电角速度的估计值,进行Park逆变换的变换参数,电机电阻,电机同步电感,采样周期,确定第二控制参数,根据当前转子电角速度的估计值, 电机电阻,电机同步电感,采样周期,确定第三控制参数。
进一步地,为了确定出第一控制参数,在一种可选的实施例中,采用如下公式计算得到第一控制参数:
Figure PCTCN2022092167-appb-000016
其中,Φ为第一控制参数,R为电机电阻,L为电机同步电感,T S为采样周期,
Figure PCTCN2022092167-appb-000017
为当前转子电角速度的估计值。
进一步地,为了确定出第二控制参数,在一种可选的实施例中,当Park逆变换的变换参数为时,采用如下公式计算得到第二控制参数:
Figure PCTCN2022092167-appb-000018
其中,Γ u为第二控制参数,R为电机电阻,L为电机同步电感,T S为采样周期,
Figure PCTCN2022092167-appb-000019
为当前转子电角速度的估计值。
需要说明的是,当Park逆变换的变换参数为
Figure PCTCN2022092167-appb-000020
时,采用如下公式计算得到第二控制参数:
Figure PCTCN2022092167-appb-000021
当Park逆变换的变换参数为
Figure PCTCN2022092167-appb-000022
时,采用如下公式计算得到第二控制参数:
Figure PCTCN2022092167-appb-000023
进一步地,为了确定出第三控制参数,在一种可选的实施例中,采用如下公式计算得到第三控制参数:
Figure PCTCN2022092167-appb-000024
其中,Γ e为第三控制参数,R为电机电阻,L为电机同步电感,T S为采样周期,
Figure PCTCN2022092167-appb-000025
为当前转子电角速度的估计值。
这里,需要说明的是,上述第一控制参数,第二控制参数和第三控制参数为电机及控制系统的相关参数,并且,上述观测器的第一反馈增益和第二反馈增益可以通过建模或经验进行调节。
为了确定出Park变换的变换参数和Park逆变换的变换参数,在一种可选的实施例中,根据转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数,包括:
将转子位置估计信息中的转子电角速度的估计值更新为当前转子电角速度的估计值,将转子位置估计信息中的转子电角度的估计值更新为当前转子电角度的估计 值;
根据当前转子电角速度的估计值和当前转子电角度的估计值,确定出Park变换的变换参数和Park逆变换的变换参数。
具体来说,当确定出转子位置估计信息之后,由于转子位置估计信息中包括有转子电角速度的估计值和转子电角度的估计值,为了实现实时更新,将估计出的转子电角速度的估计值更新为当前转子电角速度的估计值,将估计出的转子电角度的估计值更新为当前转子电角度的估计值,最后,利用当前转子电角速度的估计值和当前转子电角度的估计值,来确定Park变换的变换参数和Park逆变换的变换参数,从而通过对转子位置的精确估计,实现对电机的精确控制,提高了对电机的控制性能。
下面举实例来对上述一个或多个实施例中的所述电机的控制方法进行说明。
图3为本申请实施例提供的一种可选的电机的控制系统的实例的结构示意图,如图3所示,对电机308的三相输入电流i abc利用Clark变换模块306进行Clark变换,得到静止αβ坐标系下的反馈电流矢量i αβ,利用Park变换模块305对i αβ进行Park变换,得到转子dq坐标系下的反馈电流矢量i dq,对i dq和输入的
Figure PCTCN2022092167-appb-000026
采用电流控制器301进行电流控制,得到转子dq坐标系下的电压矢量u dq,利用Park逆变换模块302对u dq进行Park逆变换,得到静止αβ坐标系下的电压矢量u αβ,利用SVPWM调制模块303对u αβ进行SVPWM调制,得到PWM脉冲波,PWM脉冲波控制逆变器304驱动永磁同步电机。
需要说明的是,上述Park变换模块305和Park逆变换模块302的变换参数是与转子位置估计中得到的转子电角速度的估计值和转子电角度有关的值,本实例中在对电机的三相输入电流的控制中,需要对转子位置进行估计,具体来说,在转子位置估计模块307中,在接收到u dq和i dq,采用上述公式(2)至(5)和(8)可以估计出转子电角速度的估计值
Figure PCTCN2022092167-appb-000027
和转子电角度的估计值
Figure PCTCN2022092167-appb-000028
从而根据
Figure PCTCN2022092167-appb-000029
Figure PCTCN2022092167-appb-000030
确定Park变换模块305的变换参数和Park逆变换模块302的变换参数,此时Park变换模块305和Park逆变换模块302的变换参数发生变化,也就是说,控制系统依据新的Park变换模块305和Park逆变换模块302的变换参数实现对电机的控制,由于精确地估计出
Figure PCTCN2022092167-appb-000031
Figure PCTCN2022092167-appb-000032
能够提高控制系统的控制性能。
图4为本申请实施例提供的一种可选的转子位置估计算法的实例的流程示意图,如图4所示,转子位置估计算法主要包括:EMF观测器401和锁相环技术402,其中,EMF观测器接收到u dq和i dq,基于图3的控制系统,采用公式(2)-(5)和(8),计算得到反电动势矢量的估计值
Figure PCTCN2022092167-appb-000033
然后采用锁相环技术对
Figure PCTCN2022092167-appb-000034
进行处理,得到转子电角速度的估计值
Figure PCTCN2022092167-appb-000035
和转子电角度的估计值
Figure PCTCN2022092167-appb-000036
图5为本申请实施例提供的一种可选的锁相环的实例的结构示意图,如图5所示,包括除法器501、反相器502、比例积分模块503、积分模块504和复数求模模块505,具体来说,由除法器501得到
Figure PCTCN2022092167-appb-000037
(包括有
Figure PCTCN2022092167-appb-000038
Figure PCTCN2022092167-appb-000039
),首先输入到复数求模模块505中,经过除法器501和反相器502得到等效转子位置误差,该信号输入进比例积分模块503得到估计转子电角速度
Figure PCTCN2022092167-appb-000040
并进一步输入进积分模块504得到估计转子电角度
Figure PCTCN2022092167-appb-000041
另外,针对第二控制参数是与变换参数有关的值,图6为本申请实施例提供的另一种可选的控制系统的实例的结构示意图,如图6所示,与图3相比,Park逆变换模块602a的变换参数为
Figure PCTCN2022092167-appb-000042
相应地,第二控制参数采用上述公式(6)计算得到;图7为本申请实施例提供的另一种可选的控制系统的实例的结构示意图,如图7所示,与图3相比,Park逆变换模块702b的变换参数为
Figure PCTCN2022092167-appb-000043
相应地,第二控制参数采用上述公式(7)计算得到。
本申请实施例所提供的电机的控制方法、控制系统和存储介质,根据接收到的电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息,根据转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数,对电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量,对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的指令电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量,对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,SVPWM调制,将PWM脉冲波输入至逆变器,得到电机的输入电压以控制电机;也就是说,通过预设的针对基于离散时间的电机模型的转子位置估计算法,在无需转子位置传感器的情况下,在电机运行与低载波比低采样比的条件下能够精确地估计出转子位置,这样,得到精确地转子位置使得整个控制系统基于精确地转子位置能够获知电机的运转情况,使得控制系统能够有效地实现对电机的输入电压的控制,从而提高了控制系统对电机的控制效率,进而提高了电机的性能,保证电机的稳定运行。
通过上述实例,无需转子位置传感器,降低了成本并增加可靠性,先电机运行于低载波比或低采样比的条件下仍可获得精确地转子位置观测性能。
基于同一发明构思,本申请的实施例提供一种控制系统,该控制系统的输入端和控制系统的输出端分别连接至电机的输入端,图8为本申请实施例提供的一种可选的控制系统的结构示意图,参照图8所示,包括:估计模块81,确定模块82,变换模块83,电流控制模块84和电机控制模块85;其中,
估计模块81,用于根据接收到的电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息;
确定模块82,用于根据转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数;
变换模块83,用于对电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量;
电流控制模块84,用于对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的反馈电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量;
电机控制模块85,用于对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,SVPWM调制得到PWM脉冲波,将PWM脉冲波输入至逆变器,得到电机的输入电压以控制电机。
本申请其他实施例中,估计模块81具体用于:
根据转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的观测器,确定出电机的反电动势矢量的估计值;
从反电动势矢量的估计值中提取出电机的转子位置的估计信息。
本申请其他实施例中,估计模块81根据转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的观测器,确定出电机的反电动势矢量的估计值中,包括:
确定出控制系统的第一控制参数,控制系统的第二控制参数和控制系统的第三控制参数;
根据第一控制参数,第二控制参数,第三控制参数,转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,确定出转子dq坐标系下的电压矢量的估计值;
根据转子dq坐标系下的电压矢量和转子dq坐标系下的电压矢量的估计值,确定出反电动势矢量的估计值。
本申请其他实施例中,估计模块81采用公式(2)计算得到转子dq坐标系下的电压矢量的估计值;
其中,i dq[k]为第k次采样得到的转子dq坐标系下的反馈电流矢量,
Figure PCTCN2022092167-appb-000044
为第k+1次采样中转子dq坐标系下的反馈电流矢量的估计值,
Figure PCTCN2022092167-appb-000045
为第k次采样中转子dq坐标系下的反馈电流矢量的估计值,u dq[k-1]为第k-1次采样中转子dq坐标系下的电压矢量的估计值,
Figure PCTCN2022092167-appb-000046
为第k次采样中转子dq坐标系下的反电动势矢量的估计值,Φ为第一控制参数,Γ u为第二控制参数,Γ e为第三控制参数,G 1为观测器的第一反馈增益。
本申请其他实施例中,估计模块81采用公式(3)计算得到反电动势矢量的估计值;
其中,i dq[k]为第k次采样得到的转子dq坐标系下的反馈电流矢量,
Figure PCTCN2022092167-appb-000047
为第k+1次采样中转子dq坐标系下的反电动势矢量的估计值,
Figure PCTCN2022092167-appb-000048
为第k次采样中的转子dq坐标系下的反电动势矢量的估计值,G 2为观测器的第二反馈增益,
Figure PCTCN2022092167-appb-000049
为第k次采样中转子dq坐标系下的反馈电流矢量的估计值。
本申请其他实施例中,估计模块81确定出控制系统的第一控制参数,控制系统的第二控制参数和控制系统的第三控制参数中,包括:
获取当前转子电角速度的估计值;
根据当前转子电角速度的估计值,电机电阻,电机同步电感,转子dq坐标系下的反馈电流矢量的采样周期,确定第一控制参数;
根据当前转子电角速度的估计值,进行Park逆变换的变换参数,电机电阻,电机同步电感,采样周期,确定第二控制参数;
根据当前转子电角速度的估计值,电机电阻,电机同步电感,采样周期,确定第三控制参数。
本申请其他实施例中,估计模块81采用公式(4)计算得到第一控制参数;
其中,Φ为第一控制参数,R为电机电阻,L为电机同步电感,T S为采样周期,
Figure PCTCN2022092167-appb-000050
为当前转子的电角速度的估计值。
本申请其他实施例中,当Park逆变换的变换参数为时,控制系统采用公式(5)计算得到第二控制参数;
其中,Γ u为第二控制参数,R为电机电阻,L为电机同步电感,T S为采样周期,
Figure PCTCN2022092167-appb-000051
为当前转子的电角速度的估计值。
本申请其他实施例中,估计模块81采用公式(8)计算得到第三控制参数;
其中,Γ e为第三控制参数,R为电机电阻,L为电机同步电感,T S为采样周期,
Figure PCTCN2022092167-appb-000052
为当前转子的电角速度的估计值。
本申请其他实施例中,确定模块82根据转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数中,包括:
将转子位置估计信息中的转子电角速度的估计值更新为当前转子电角速度的估计值,将转子位置估计信息中的转子电角度的估计值更新为当前转子电角度的估计值;
根据当前转子电角速度的估计值和当前转子电角度的估计值,确定出Park变换的变换参数和Park逆变换的变换参数。
在实际应用中,上述估计模块81、确定模块82、变换模块83、电流控制模块84和电机控制模块85可由位于控制系统上的处理器实现,具体为中央处理器(CPU,Central Processing Unit)、微处理器(MPU,Microprocessor Unit)、数字信号处理器(DSP,Digital Signal Processing)或现场可编程门阵列(FPGA,Field Programmable  Gate Array)等实现。
基于前述实施例,本申请的实施例提供一种存储介质,该存储介质存储有一个或者多个程序,该一个或者多个程序可被一个或者多个处理器执行本申请实施例提供的电机的控制方法。
本申请提供一种存储介质,根据接收到的电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息,根据转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数,对电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量,对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的指令电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量,对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,SVPWM调制得到PWM脉冲波,将PWM脉冲波输入至逆变器,得到电机的输入电压以控制电机;也就是说,通过预设的针对基于离散时间的电机模型的转子位置估计算法,在无需转子位置传感器的情况下,在电机运行与低载波比低采样比的条件下能够精确地估计出转子位置,这样,得到精确地转子位置使得整个控制系统基于精确地转子位置能够获知电机的运转情况,使得控制系统能够有效地实现对电机的输入电压的控制,从而提高了控制系统对电机的控制效率,进而提高了电机的性能,保证电机的稳定运行。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在 计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本申请较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例所提供一种电机的控制方法、控制系统和存储介质,根据接收到的电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息,根据转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数,对电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量,对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的指令电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量,对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,SVPWM调制得到PWM脉冲波,将PWM脉冲波输入至逆变器,得到电机的输入电压以控制电机;也就是说,通过预设的针对基于离散时间的电机模型的转子位置估计算法,在无需转子位置传感器的情况下,在电机运行与低载波比低采样比的条件下能够精确地估计出转子位置,这样,得到精确地转子位置使得整个控制系统基于精确地转子位置能够获知电机的运转情况,使得控制系统能够有效地实现对电机的输入电压的控制,从而提高了控制系统对电机的控制效率,进而提高了电机的性能,保证电机的稳定运行。

Claims (12)

  1. 一种电机的控制方法,所述方法应用于控制系统中,所述控制系统的输入端与所述控制系统的输出端分别连接至电机的输入端,所述方法包括:
    根据接收到的所述电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息;
    根据所述转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数;
    对所述电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量;
    对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的指令电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量;
    对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,SVPWM调制得到PWM脉冲波,将所述PWM脉冲波输入至逆变器,得到所述电机的输入电压以控制所述电机。
  2. 根据权利要求1所述的方法,其中,所述根据接收到的所述电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息,包括:
    根据所述转子dq坐标系下的电压矢量和所述转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的观测器,确定出所述电机的反电动势矢量的估计值;
    从所述反电动势矢量的估计值中提取出所述电机的转子位置的估计信息。
  3. 根据权利要求2所述的方法,其中,所述根据所述转子dq坐标系下的电压矢量和所述转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的观测器,确定出所述电机的反电动势矢量的估计值,包括:
    确定出所述控制系统的第一控制参数,所述控制系统的第二控制参数和所述控制系统的第三控制参数;
    根据所述第一控制参数,所述第二控制参数,所述第三控制参数,所述转子dq坐标系下的电压矢量和所述转子dq坐标系下的反馈电流矢量,确定出所述转子dq坐标系下的电压矢量的估计值;
    根据所述转子dq坐标系下的电压矢量和所述转子dq坐标系下的电压矢量的估计值,确定出所述反电动势矢量的估计值。
  4. 根据权利要求3所述的方法,其中,采用如下公式计算得到所述转子dq坐标系下的电压矢量的估计值:
    Figure PCTCN2022092167-appb-100001
    其中,i dq[k]为第k次采样得到的转子dq坐标系下的反馈电流矢量,
    Figure PCTCN2022092167-appb-100002
    为第k+1次采样中转子dq坐标系下的反馈电流矢量的估计值,
    Figure PCTCN2022092167-appb-100003
    为第k次采样中转子dq坐标系下的反馈电流矢量的估计值,
    Figure PCTCN2022092167-appb-100004
    为第k-1次采样中转子dq坐标系下的电压矢量的估计值,
    Figure PCTCN2022092167-appb-100005
    为第k次采样中转子dq坐标系下的反电动势矢量的估计值,Φ为所述第一控制参数,Γ u为所述第二控制参数,Γ e为所述第三控制参数,G 1为观测器的第一反馈增益。
  5. 根据权利要求3所述的方法,其中,采用如下公式计算得到所述反电动势矢量的估计值:
    Figure PCTCN2022092167-appb-100006
    其中,i dq[k]为第k次采样得到的转子dq坐标系下的反馈电流矢量,
    Figure PCTCN2022092167-appb-100007
    为第k+1次采样中转子dq坐标系下的反电动势矢量的估计值,
    Figure PCTCN2022092167-appb-100008
    为第k次采样中的转子dq坐标系下的反电动势矢量的估计值,G 2为所述观测器的第二反馈增益,
    Figure PCTCN2022092167-appb-100009
    为第k次采样中转子dq坐标系下的反馈电流矢量的估计值。
  6. 根据权利要求3所述的方法,其中,所述确定出所述控制系统的第一控制参数,所述控制系统的第二控制参数和所述控制系统的第三控制参数,包括:
    获取当前转子电角速度的估计值;
    根据所述当前转子电角速度的估计值,所述电机电阻,所述电机同步电感,转子dq坐标系下的反馈电流矢量的采样周期,确定所述第一控制参数;
    根据所述当前转子电角速度的估计值,进行Park逆变换的变换参数,所述电机电阻,所述电机同步电感,所述采样周期,确定所述第二控制参数;
    根据所述当前转子电角速度的估计值,所述电机电阻,所述电机同步电感,所述采样周期,确定所述第三控制参数。
  7. 根据权利要求6所述的方法,其中,采用如下公式计算得到所述第一控制参数:
    Figure PCTCN2022092167-appb-100010
    其中,Φ为所述第一控制参数,R为所述电机电阻,L为所述电机同步电感,T S为所述采样周期,
    Figure PCTCN2022092167-appb-100011
    为所述当前转子的电角速度的估计值。
  8. 根据权利要求6所述的方法,其中,当Park逆变换的变换参数为时,采用如下公式计算得到所述第二控制参数:
    Figure PCTCN2022092167-appb-100012
    其中,Γ u为所述第二控制参数,R为所述电机电阻,L为所述电机同步电感, T S为所述采样周期,
    Figure PCTCN2022092167-appb-100013
    为所述当前转子的电角速度的估计值。
  9. 根据权利要求6所述的方法,其中,采用如下公式计算得到所述第三控制参数:
    Figure PCTCN2022092167-appb-100014
    其中,Γ u为所述第三控制参数,R为所述电机电阻,L为所述电机同步电感,T S为所述采样周期,
    Figure PCTCN2022092167-appb-100015
    为所述当前转子的电角速度的估计值。
  10. 根据权利要求1所述的方法,其中,所述根据所述转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数,包括:
    将所述转子位置估计信息中的转子电角速度的估计值更新为当前转子电角速度的估计值,将所述转子位置估计信息中的转子电角度的估计值更新为当前转子电角度的估计值;
    根据所述当前转子电角速度的估计值和所述当前转子电角度的估计值,确定出Park变换的变换参数和Park逆变换的变换参数。
  11. 一种控制系统,所述控制系统的输入端和所述控制系统的输出端分别连接至电机的输入端,包括:
    估计模块,用于根据接收到的所述电机的转子dq坐标系下的电压矢量和转子dq坐标系下的反馈电流矢量,采用预设的针对离散时间的电机模型的转子位置估计算法,确定出转子位置的估计信息;
    确定模块,用于根据所述转子位置的估计信息,确定出Park变换的变换参数和Park逆变换的变换参数;
    变换模块,用于对所述电机的三相输入电流依次进行Clark变换和Park变换,重新得到转子dq坐标系下的反馈电流矢量;
    电流控制模块,用于对重新得到的转子dq坐标系下的反馈电流矢量和输入的转子dq坐标系下的反馈电流矢量进行电流控制,重新得到转子dq坐标系下的电压矢量;
    电机控制模块,用于对重新得到的转子dq坐标系下的电压矢量依次进行Park逆变换,SVPWM调制得到PWM脉冲波,将所述PWM脉冲波输入至逆变器,得到电机的输入电压以控制电机。
  12. 一种存储介质,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至10中任一项所述的电机的控制方法。
PCT/CN2022/092167 2021-05-11 2022-05-11 一种电机的控制方法、控制系统和存储介质 WO2022237829A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110511974.6A CN113241986B (zh) 2021-05-11 2021-05-11 一种电机的控制方法、控制系统和存储介质
CN202110511974.6 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022237829A1 true WO2022237829A1 (zh) 2022-11-17

Family

ID=77133417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092167 WO2022237829A1 (zh) 2021-05-11 2022-05-11 一种电机的控制方法、控制系统和存储介质

Country Status (2)

Country Link
CN (1) CN113241986B (zh)
WO (1) WO2022237829A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117674664A (zh) * 2023-12-07 2024-03-08 爱微(江苏)电力电子有限公司 电动压缩机控制器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113241987B (zh) * 2021-05-11 2022-12-20 广东美的白色家电技术创新中心有限公司 一种电机的控制方法、控制系统和存储介质
CN113241986B (zh) * 2021-05-11 2023-12-08 广东美的白色家电技术创新中心有限公司 一种电机的控制方法、控制系统和存储介质
CN113938073A (zh) * 2021-10-09 2022-01-14 广东汇天航空航天科技有限公司 电机位置估测方法、装置、控制器、电动汽车及飞行汽车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130229135A1 (en) * 2012-03-02 2013-09-05 University Of Nebraska-Lincoln Drive systems including sliding mode observers and methods of controlling the same
CN110323986A (zh) * 2019-06-04 2019-10-11 广东工业大学 一种永磁同步电机转子位置角估算方法
CN113241986A (zh) * 2021-05-11 2021-08-10 广东美的白色家电技术创新中心有限公司 一种电机的控制方法、控制系统和存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186352B2 (ja) * 2008-12-12 2013-04-17 本田技研工業株式会社 電動機の磁極位置推定装置
US20100237817A1 (en) * 2009-03-23 2010-09-23 Jingbo Liu Method and Apparatus for Estimating Rotor Position in a Sensorless Synchronous Motor
CN103532464B (zh) * 2013-10-28 2015-12-09 东南大学 永磁同步电机的无传感器矢量控制系统和控制方法
CN105227025A (zh) * 2015-11-12 2016-01-06 哈尔滨工业大学 一种永磁同步电机低载波比无位置传感器控制系统及其控制方法
CN110995094B (zh) * 2019-12-09 2021-04-13 哈尔滨工业大学 一种低载波比控制下的永磁同步电机位置和速度估算方法
CN112701977A (zh) * 2021-01-27 2021-04-23 上海应用技术大学 基于滑模观测器的永磁同步电机控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130229135A1 (en) * 2012-03-02 2013-09-05 University Of Nebraska-Lincoln Drive systems including sliding mode observers and methods of controlling the same
CN110323986A (zh) * 2019-06-04 2019-10-11 广东工业大学 一种永磁同步电机转子位置角估算方法
CN113241986A (zh) * 2021-05-11 2021-08-10 广东美的白色家电技术创新中心有限公司 一种电机的控制方法、控制系统和存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FU YAN: "RESEARCH ON LOW-FREQUENCY-RATIO SENSORLESS CONTROL STRATEGY FOR IPMSM DRIVES", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 28 February 2018 (2018-02-28), CN , XP093003945, ISSN: 1674-0246 *
YUAN GUOFENG, ZENONG NIU, CHUNYU ZHENG, ZHENGXI LI: "Discrete-Time Luenberger Observer for Interior Permanent Magnet Synchronous Motor with Low-Frequency-Ratio", TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, vol. 34, no. 2, 28 February 2019 (2019-02-28), pages 236 - 244, XP093003950, ISSN: 1000-6753, DOI: 10.19595/j.cnki.1000-6753.tces.171527 *
ZHANG GUOQIANG: "RESEARCH ON POSITION SENSORLESS CONTROL FOR IPMSM DRIVES", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, CN, 15 January 2018 (2018-01-15), CN , XP093003949, ISSN: 1674-022X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117674664A (zh) * 2023-12-07 2024-03-08 爱微(江苏)电力电子有限公司 电动压缩机控制器

Also Published As

Publication number Publication date
CN113241986B (zh) 2023-12-08
CN113241986A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022237829A1 (zh) 一种电机的控制方法、控制系统和存储介质
JP5155344B2 (ja) 電動機の磁極位置推定装置
JP6367332B2 (ja) インバータ制御装置及びモータ駆動システム
JP4989075B2 (ja) 電動機駆動制御装置及び電動機駆動システム
JP5073063B2 (ja) 永久磁石同期電動機の制御装置
CN112713834B (zh) 一种永磁同步电机无位置传感器控制方法及系统
JP2004048868A (ja) 同期電動機の速度制御装置
CN113241987B (zh) 一种电机的控制方法、控制系统和存储介质
JPH08280199A (ja) 永久磁石界磁同期電動機のセンサレス制御装置
JP6726390B2 (ja) 永久磁石形同期電動機の制御装置
JP2000156993A (ja) 永久磁石型同期機の制御装置及びその制御方法
JP5808210B2 (ja) モータ制御装置およびモータ制御方法
CN117277878A (zh) 一种基于相角补偿的电机带载启动控制方法
CN111224599B (zh) 永磁辅助同步磁阻电机的控制方法
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动系统控制方法
JP3692085B2 (ja) モータ制御方法及び装置
WO2021232615A1 (zh) 电机转子位置检测方法、装置以及电机控制器
JP5186352B2 (ja) 電動機の磁極位置推定装置
JP2009284557A (ja) 永久磁石形同期電動機の制御装置
JP7180149B2 (ja) 交流電動機の制御装置
CN110311605B (zh) 一种综合利用三相电流与dq电流的电机驱动方法及系统
JP7529463B2 (ja) 電力変換装置、電力変換方法及びプログラム
CN111565001B (zh) 无位置传感器电机驱动方法、永磁同步电机和存储介质
JP2010063336A (ja) 回転機の制御装置
JP2010268663A (ja) ロータ角度推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806792

Country of ref document: EP

Kind code of ref document: A1