WO2021120198A1 - 线性马达 - Google Patents
线性马达 Download PDFInfo
- Publication number
- WO2021120198A1 WO2021120198A1 PCT/CN2019/127120 CN2019127120W WO2021120198A1 WO 2021120198 A1 WO2021120198 A1 WO 2021120198A1 CN 2019127120 W CN2019127120 W CN 2019127120W WO 2021120198 A1 WO2021120198 A1 WO 2021120198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- linear motor
- support
- vibrator assembly
- support shaft
- return
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/34—Reciprocating, oscillating or vibrating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
- H02K33/02—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
Definitions
- the utility model relates to the technical field of motors, in particular to a linear motor.
- the support shaft is always fixed or hard supported in different forms.
- the impact force is all received by the bearing, which causes the shaft to be easily deformed.
- the purpose of the utility model is to provide a linear motor, so that when the shaft is subjected to external impact, the shaft is not easily deformed.
- a linear motor the linear motor includes a housing provided with an accommodation space, a support shaft and a vibrator assembly arranged in the accommodation space;
- the vibrator assembly is slidably connected to the supporting shaft for reciprocating vibration
- Both ends of the support shaft are connected to the housing through a support member, and the rigidity of the support member is less than the rigidity of the support shaft.
- the linear motor further includes a limiting member fixed to a side of the support member close to the vibrator assembly, and the limiting member has a ring shape and surrounds the supporting shaft.
- the limiting member includes a first fixing portion fixed to a side of the support member close to the vibrator assembly, and a second fixing portion that is bent and extended from the edge of the first fixing portion to be fixedly connected to the housing Two fixed part.
- the linear motor further includes an impact piece fixed on the housing, the impact piece has a through hole penetrating along the vibration direction, and the support member and the limiting member are accommodated in the through hole. ⁇ In the hole.
- the thickness of the impact plate in the vibration direction is greater than or equal to the sum of the thickness of the limiting member and the supporting member in the vibration direction.
- the projected area of the support along the vibration direction is greater than or equal to the projected area of the support shaft along the vibration direction.
- the linear motor further includes a coil fixedly connected to the housing, and the coil is wound on the outside of the vibrator assembly and is spaced apart from the vibrator assembly.
- the vibrator assembly includes a first drive magnet and a second drive magnet sleeved outside the support shaft, and the first drive magnet and the second drive magnet are charged in the direction of vibration. Magnetic, and the magnetic poles of the opposite sides of the first driving magnet and the second driving magnet are the same.
- the vibrator assembly further includes a pole core sleeved outside the support shaft, a first counterweight and a second counterweight, and the pole core is arranged on the first drive magnet and the Between the second driving magnets, the first counterweight and the second counterweight are respectively arranged on the side of the first driving magnet and the second driving magnet close to the support .
- the linear motor further includes a return assembly arranged on both sides of the coil along the vibration direction, the return assembly includes two return pieces respectively arranged on both sides of the vibrator assembly along the vertical vibration direction, so The return member is magnetized along the vertical vibration direction, the magnetization directions of the two return members are opposite, and the magnetic pole on the side of the return member close to the support shaft is the same as the first drive magnet and the second drive magnet.
- the magnetic poles of the side of the steel close to the support are opposite.
- Both ends of the support shaft are connected to the housing by a support member, and the stiffness of the support member is less than that of the support shaft.
- Figure 1 is a partial three-dimensional structural diagram of a linear motor provided by an embodiment of the utility model
- Figure 2 is a three-dimensional exploded structural diagram of a linear motor provided by an embodiment of the utility model
- Fig. 3 is an exploded structure diagram between the supporting shaft, the support and the striker in Fig. 2;
- Fig. 4 is an exploded structure diagram of the vibrator assembly in Fig. 2 and an exploded structure diagram between the supporting shaft, the support and the impact sheet;
- FIG. 5 is a diagram of the connection relationship between the support shaft of the linear motor and the support before and after being impacted by an embodiment of the utility model
- FIG. 6 is a top view of the relationship between the magnetic field lines of the vibrator assembly and the return assembly of the linear motor provided by an embodiment of the present invention.
- an embodiment of the present invention provides a linear motor
- the linear motor includes a housing 10 provided with a receiving space 15, a support shaft 14 arranged in the receiving space 15, a vibrator The assembly 20, the coil 30 and the return assembly 40; the vibrator assembly 20 is slidably connected to the support shaft 14 for reciprocating vibration; the coil 30 is connected to the housing 10, and the coil 30 is wound on the vibrator
- the outer side of the assembly 20 is spaced apart from the vibrator assembly 20, and the coil 30 is used to drive the vibrator assembly 20 to reciprocate along the axial direction of the support shaft 14 after being energized;
- the return assembly 40 is connected to the In the housing 10, a magnetic force is formed between the return assembly 40 and the vibrator assembly 20, and the magnetic force is used to drive the vibrator assembly 20 to reset after the coil 30 is de-energized.
- both ends of the supporting shaft 14 are connected to the housing 10 through supporting members (17A, 17B), and the supporting members (17A, 17B) are used to restrict the supporting shaft 14 relative to the housing.
- the body 10 is displaced, the rigidity of the support (17A, 17B) is less than the rigidity of the support shaft 14, and the support (17A, 17B) is used to precede the support after the support shaft 14 is impacted.
- the shaft 14 is deformed, so that the supporting shaft 14 is not easily deformed; and it is convenient to assemble the supporting shaft 14.
- the housing 10 includes a frame 11, a first end cover 12, a second end cover 13, and a bottom plate 16 connected in sequence;
- the vibrator assembly 20 includes a sleeve
- the first driving magnet 21A and the second driving magnet 21B are arranged outside the supporting shaft 14.
- the vibrator assembly 20 further includes a pole core 22 sleeved outside the supporting shaft 14, and the pole core 22 is arranged Between the first driving magnet 21A and the second driving magnet 21B, the first driving magnet 21A and the second driving magnet 21B are magnetized along the vibration direction, and the first driving magnet
- the magnetic steel 21A and the second drive magnetic steel 21B have the same magnetic poles on the side close to the pole core 22; in this embodiment, the support shaft 14 is cylindrical, and the coil 30 is energized with the first A magnetic force is generated between the driving magnet 21A and the second driving magnet 21B, and the magnetic force is used to drive the first driving magnet 21A and the second driving magnet 21B along the supporting shaft.
- the vibrator assembly 20 also includes sleeves on the support shaft 14 and respectively arranged on the first drive magnet 21A and the second driving magnet 21B, the first counterweight 23 and the second counterweight 24 outside the second driving magnet 21B; further, the first counterweight 23 and the second counterweight
- the inside of the block 24 is provided with a mounting groove 231, and the mounting groove 231 is used for accommodating the bearing (25A, 25B) so that the first weight 23 and the second weight 24 can pass through the bearing ( 25A, 25B) is sleeved outside the supporting shaft 14; when the vibrator assembly 20 reciprocates in the accommodating space 15, because the friction between the bearings (25A, 25B) and the supporting shaft 14 is very small, the supporting shaft
- the fixing of 14 is relatively stable, there is no displacement in the axial direction, and the linear motor can operate normally.
- each support (17A, 17B) along the vibration direction is larger than the projected area of the support shaft 14 along the vibration direction.
- the linear motor also includes a fixed Where the supporting member (17A, 17B) is close to the limiting member (18A, 18B) on the side of the vibrator assembly 20, the limiting member (18A, 18B) is annular and surrounds the supporting shaft 14.
- the supporting shaft 14 is fixed to the supporting member (17A, 17B) through the central hole of the limiting member (18A, 18B).
- the linear motor further includes an impact piece (19A, 19B) fixed on the housing 10, the impact piece (19A, 19B) has a through hole 191 penetrating in the vibration direction, the support member (17A, 17B) ) And the limiting member (18A, 18B) are accommodated in the through hole 191, and the thickness of each impact piece (19A, 19B) along the vibration direction is greater than or equal to the limiting member (18A, 18B) and the limiting member (18A, 18B).
- each of the impact plates (19A, 19B) is used to make the vibrator assembly 20 first hit the impact plate (19A, 19B) or hit the impact sheet (19A, 19B) and the limiting member (18A, 18B) at the same time; preferably, the limiting member (18A, 18B) includes a support member (17A, 17B) The first fixing portion on the side close to the vibrator assembly 20 and the second fixing portion (not shown in the figure) bent and extended from the edge of the first fixing portion to the housing.
- the projected area of each support (17A, 17B) along the vibration direction is equal to the projected area of the support shaft 14 along the vibration direction.
- Figure 5 (a) shows the relative position of the support (17A, 17B) and the support shaft 14 before impact
- Figure 5 (b) shows the support (17A, 17B) and the support shaft after the impact
- the relative position of 14 can be intuitively seen: when the linear motor receives an impact, the vibrator assembly 20 is completely supported by the support shaft 14, and the impact force is great. At this time, the support shaft 14 drives the support (17A, 17B) Deformation occurs, the stiffness of the support (17A, 17B) is less than the stiffness of the support shaft 14, so the support (17A, 17B) deforms first, and the deformation of the support (17A, 17B) is larger than that of the support shaft 14.
- Figure 6 specifically describes the top view of the relationship between the magnetic field lines of the vibrator assembly 20 and the return assembly 40.
- the positive direction indicated by the arrow is defined as the N pole
- X represents the direction in which the current flows from the coil 30
- O represents In the direction in which current flows from the coil 30, the first driving magnet 21A and the second driving magnet 21B are magnetized along the movement direction of the vibrator assembly 20, and the first driving magnet 21A and the second driving magnet 21A are magnetized in the direction of movement of the vibrator assembly 20.
- the magnetic poles on the opposite sides of the two drive magnets 21B are the same.
- the magnetic poles on the opposite sides of the first drive magnet 21A and the second drive magnet 21B are both N poles; the return assembly 40 is arranged on the On both sides of the coil 30, each restoring assembly 40 includes restoring pieces located on both sides of the vibrator assembly 20, and the two restoring members in each restoring assembly 40 are magnetized along the radial direction of the supporting shaft 14, The magnetic poles of the two return members in each return assembly 40 that are close to the pole core 22 are the same, and the magnetic poles of the two return members in each return assembly 40 are the same as those of the first drive magnet 21A.
- the return assembly 40 includes a first return piece 41 and a second return piece 42 arranged on one side of the coil 30, which are arranged on the coil On the other side of 30, the third return piece 43 and the fourth return piece 44, the first return piece 41, the second return piece 42, the third return piece 43 and the fourth return piece 44 are all along the diameter of the support shaft 14.
- the first return piece 41, the second return piece 42, the third return piece 43, and the fourth return piece 44 have the same magnetic poles on the side close to the pole core 22, and the first return piece 41 ,
- the magnetic poles of the second return piece 42, the third return piece 43, and the fourth return piece 44 are the same as the magnetic poles on the opposite sides of the first drive magnet 21A and the second drive magnet 21B, and the first return piece 41.
- the second restoring member 42, the third restoring member 43, and the fourth restoring member 44 are all fixed in the housing 10 and are spaced apart from the vibrator assembly 20; preferably, the left end of the first driving magnet 21A
- the right end surface of the second drive magnet 21B extends into and is located at the middle of the first return piece 41 and the second return piece 42 in the axial direction of the support shaft 14, and the right end surface of the second drive magnet 21B extends into and is located at the third return piece 43 and the fourth return piece.
- the restoring member 44 is in the middle of the axial direction of the supporting shaft 14; the first restoring member 41, the second restoring member 42, the third restoring member 43, and the fourth restoring member 44 are close to the N pole of the vibrator assembly 20; when the coil 30 Power on, preferably, the coil 30 is energized through the flexible circuit board, the flexible circuit board is fixedly installed in the housing 10, and the current direction is shown in FIG. 5, the direction of the current in the coil 30 is also determined, so the direction of the magnetic field generated by the coil 30 is also Determine, according to the left-hand rule, it can be obtained that the coil 30 receives the Lorentz force F to the right.
- the vibrator receives the Lorentz force F to the left; in the same way, it can be seen that the coil 30 is energized.
- the current direction is opposite, so I won’t repeat it here; thus, the vibrator assembly 20 is driven to reciprocate and output vibration inductance.
- the vibrator hits the first end cover through the first mass 23 and the second mass 24 strikes the second end cover to output the vibration sensation.
- the working process of the return assembly 40 is described below: after the coil 30 is de-energized, a first magnetic force is generated between the two first return pieces 41 and the second return piece 42 located on both sides of the coil 30 and the first drive magnet 21A; A second magnetic force is generated between the third return piece 43 and the fourth return piece 44 and the second drive magnet 21B.
- the first magnetic force and the second magnetic force cooperate with each other to move the vibrator assembly 20 until the coil 30 is energized.
- the previous balance position completes the reset action; the magnetic force formed between the return assembly 40 and the vibrator assembly 20 can not only provide the restoring force when the vibrator assembly 20 is restored, but also support the vibrator assembly 20.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
本实用新型提供了一种线性马达,所述线性马达包括设有收容空间的壳体、设置于所述收容空间内的支承轴和振子组件;所述振子组件滑动连接于所述支承轴上进行往复振动;所述支承轴的两端均通过支撑件连接所述壳体,所述支撑件的刚度小于所述支承轴的刚度。本实用新型提供的线性马达,所述支承轴的两端均通过支撑件连接所述壳体,所述支撑件的刚度小于所述支承轴的刚度,当轴部受到外部冲击力后,轴部不易变形。
Description
本实用新型涉及马达技术领域,尤其涉及一种线性马达。
现有的线性马达采用轴支承时,总是通过不同形式将支承轴进行固定或者硬支承,当轴部受到外部冲击后冲击力全部由轴承受,导致轴易变形。
因此,亟需一种当轴部受到外部冲击力后,轴部不易变形的线性马达。
发明概述
本实用新型的目的在于提供一种线性马达,以使当轴部受到外部冲击力后,轴部不易变形。
问题的解决方案
本实用新型的技术方案如下:一种线性马达,所述线性马达包括设有收容空间的壳体、设置于所述收容空间内的支承轴和振子组件;
所述振子组件滑动连接于所述支承轴上进行往复振动;
所述支承轴的两端均通过支撑件连接所述壳体,所述支撑件的刚度小于所述支承轴的刚度。
作为一种改进,所述线性马达还包括固定于所述支撑件靠近所述振子组件一侧的限位件,所述限位件呈环形并环绕所述支承轴。
作为一种改进,所述限位件包括固定于所述支撑件靠近所述振子组件一侧的第一固定部以及自所述第一固定部边缘弯折延伸至于所述壳体固定连接的第二固定部。
作为一种改进,所述线性马达还包括固定于所述壳体上的撞击片,所述撞击片具有沿振动方向贯穿的通孔,所述支撑件和所述限位件收容于所述通孔内。
作为一种改进,所述撞击片沿振动方向的厚度大于或等于所述限位件与所述支 撑件沿振动方向的厚度之和。
作为一种改进,所述支撑件沿振动方向的投影面积大于等于所述支承轴沿振动方向的投影面积。
作为一种改进,所述线性马达还包括与所述壳体固定连接的线圈,所述线圈绕置于所述振子组件的外侧并与所述振子组件间隔设置。
作为一种改进,所述振子组件包括套设于所述支承轴外的第一驱动磁钢和第二驱动磁钢,所述第一驱动磁钢和所述第二驱动磁钢沿振动方向充磁,且所述第一驱动磁钢和所述第二驱动磁钢相对面的磁极相同。
作为一种改进,所述振子组件还包括套设于所述支承轴外的极芯、第一配重块及第二配重块,所述极芯设置在所述第一驱动磁钢和所述第二驱动磁钢之间,所述第一配重块和所述第二配重块分别设置在所述第一驱动磁钢和所述第二驱动磁钢靠近所述支撑件的一侧。
作为一种改进,所述线性马达还包括沿振动方向设置于所述线圈两侧的回复组件,所述回复组件包括两个沿垂直振动方向分别设于所述振子组件两侧的回复件,所述回复件沿垂直振动方向充磁,两个所述回复件的充磁方向相反,所述回复件靠近所述支承轴一侧的磁极与所述第一驱动磁钢和所述第二驱动磁钢靠近所述支撑件一侧的磁极相反。
发明的有益效果
本实用新型的有益效果在于:
所述支承轴的两端均通过支撑件连接所述壳体,所述支撑件的刚度小于所述支承轴的刚度,当轴部受到外部冲击力后,轴部不易变形。
对附图的简要说明
图1为本实用新型一实施例提供的线性马达的局部立体结构图;
图2为本实用新型一实施例提供的线性马达的立体爆炸结构图;
图3为图2中支承轴与支撑件及撞击片之间的爆炸结构图;
图4为图2中振子组件的爆炸结构图和支承轴与支撑件及撞击片之间的爆炸结构 图;
图5为本实用新型一实施例提供的线性马达的支承轴受到撞击前后与支撑件之间的连接关系图;
图6为本实用新型一实施例提供的线性马达的振子组件和回复组件的磁力线关系俯视图。
发明实施例
下面结合附图和实施方式对本实用新型作进一步说明。
请参看图1和2,本实用新型的一实施方式提供了一种线性马达,所述线性马达包括设有收容空间15的壳体10、设置于所述收容空间15内的支承轴14、振子组件20、线圈30及回复组件40;所述振子组件20滑动连接于所述支承轴14上进行往复振动;所述线圈30与所述壳体10连接,所述线圈30绕置于所述振子组件20的外侧并与所述振子组件20间隔设置,所述线圈30用于在通电后驱动所述振子组件20沿所述支承轴14的轴向方向做往复运动;所述回复组件40连接所述壳体10,所述回复组件40与所述振子组件20之间形成磁作用力,所述磁作用力用于在所述线圈30断电后驱动所述振子组件20复位。
请参看图3,所述支承轴14的两端均通过支撑件(17A,17B)连接所述壳体10,所述支撑件(17A,17B)用于限制所述支承轴14相对所述壳体10发生位移,所述支撑件(17A,17B)的刚度小于所述支承轴14的刚度,所述支撑件(17A,17B)用于在所述支承轴14受到冲击后先于所述支承轴14发生形变,从而使支承轴14部不易变形;并且便于装配支承轴14。
请一并参看图1-4,在本实施例中,所述壳体10包括依次连接的框体11、第一端盖12、第二端盖13及底板16;所述振子组件20包括套设于所述支承轴14外的第一驱动磁钢21A和第二驱动磁钢21B,所述振子组件20还包括套设于所述支承轴14外的极芯22,所述极芯22设置在所述第一驱动磁钢21A和所述第二驱动磁钢21B之间,所述第一驱动磁钢21A和所述第二驱动磁钢21B沿振动方向充磁,且所述第一驱动磁钢21A和所述第二驱动磁钢21B靠近所述极芯22的一面的磁极相同;在本实施例中,所述支承轴14为圆柱形,所述线圈30通电后与所述第一驱 动磁钢21A和所述第二驱动磁钢21B之间产生磁作用力,所述磁作用力用于驱动所述第一驱动磁钢21A和所述第二驱动磁钢21B沿所述支承轴14的轴向方向做往复运动时以撞击第一端盖12或第二端盖13;所述振子组件20还包括套设于所述支承轴14外并分别设置在所述第一驱动磁钢21A和所述第二驱动磁钢21B第二驱动磁钢21B外侧的第一配重块23及第二配重块24;进一步地,所述第一配重块23和所述第二配重块24的内部均设有安装槽231,所述安装槽231用于容纳轴承(25A,25B)、以使所述第一配重块23和所述第二配重块24通过所述轴承(25A,25B)套设于所述支承轴14外;当振子组件20在收容空间15内做往复运动时,由于轴承(25A,25B)与支承轴14之间的摩擦力非常小,因此支承轴14的固定较为稳定,在轴向不发生位移,线性马达可正常运行。
在一实施例中,请一并参看图4和5,每一支撑件(17A,17B)沿振动方向的投影面积大于所述支承轴14沿振动方向的投影面积,所述线性马达还包括固定于所述支撑件(17A,17B)靠近所述振子组件20一侧的限位件(18A,18B),所述限位件(18A,18B)呈环形并环绕所述支承轴14,所述支承轴14通过所述限位件(18A,18B)的中心孔固定于所述支撑件(17A,17B)。所述线性马达还包括固定于所述壳体10上的撞击片(19A,19B),所述撞击片(19A,19B)具有沿振动方向贯穿的通孔191,所述支撑件(17A,17B)和所述限位件(18A,18B)收容于所述通孔191内,每一撞击片(19A,19B)沿振动方向的厚度大于或等于所述限位件(18A,18B)与所述支撑件(17A,17B)沿振动方向的厚度之和,所述每一撞击片(19A,19B)均用于使振子组件20在往复运动的极限行程时先撞击所述撞击片(19A,19B)或同时撞击所述撞击片(19A,19B)和所述限位件(18A,18B);优选地是,所述限位件(18A,18B)包括固定于所述支撑件(17A,17B)靠近所述振子组件20一侧的第一固定部以及自所述第一固定部边缘弯折延伸至于所述壳体固定连接的第二固定部(图中未示出)。
在另一实施例中,每一支撑件(17A,17B)沿振动方向的投影面积均等于所述支承轴14沿振动方向的投影面积。
请参看图5,图5(a)中为受冲击前支撑件(17A,17B)与支承轴14的相对位置,图5(b)中为受冲击后支撑件(17A,17B)与支承轴14的相对位置,由此可直 观的看出:当线性马达收到冲击后,振子组件20完全由支承轴14进行支承,冲击力很大,此时支承轴14带动支撑件(17A,17B)发生变形,支撑件(17A,17B)的刚度小于支承轴14的刚度,因此支撑件(17A,17B)先发生形变,并且支撑件(17A,17B)的形变量比支承轴14的形变量要大,一部分冲击力被支撑件(17A,17B)通过形变后吸收;并且支承轴14整体沿支承轴14的径向发生位移,又一部分冲击力被支承轴14与支撑件(17A,17B)之间的摩擦吸收,应当指出的是,这里指的支承轴14的状态是加上振子组件20的重力的,从而使支承轴14自身变形减小,从而保护了支承轴14。
请参看图6,图6具体描述了振子组件20和回复组件40的磁力线关系俯视图,应当指出的是,箭头所指的正方向定义为N极,X表示电流从线圈30流入的方向,O代表电流从线圈30流出的方向,所述第一驱动磁钢21A和所述第二驱动磁钢21B沿所述振子组件20的运动方向充磁,且所述第一驱动磁钢21A和所述第二驱动磁钢21B相对面的磁极相同,在一实施例中,第一驱动磁钢21A和所述第二驱动磁钢21B相对面的磁极均为N极;所述回复组件40设置于所述线圈30两侧,每一回复组件40均包括位于所述振子组件20两侧的回复件,所述每一回复组件40中的两个回复件沿所述支承轴14的径向方向充磁,所述每一回复组件40中的两个回复件靠近所述极芯22的一面的磁极相同,且所述每一回复组件40中的两个回复件的磁极与所述第一驱动磁钢21A和所述第二驱动磁钢21B相对面的磁极相同;具体地,所述回复组件40包括设置于所述线圈30一侧的第一回复件41和第二回复件42,设置于所述线圈30另一侧第三回复件43和第四回复件44,所述第一回复件41、第二回复件42、第三回复件43及第四回复件44均沿所述支承轴14的径向方向充磁,所述第一回复件41、第二回复件42、第三回复件43及第四回复件44靠近所述极芯22的一面的磁极相同,且所述第一回复件41、第二回复件42、第三回复件43及第四回复件44的磁极与所述第一驱动磁钢21A和所述第二驱动磁钢21B相对面的磁极相同,所述第一回复件41、第二回复件42、第三回复件43及第四回复件44均固定于所述壳体10内且均与所述振子组件20间隔设置;优选的,第一驱动磁钢21A的左端面伸入并位于所述第一回复件41和第二回复件42在支承轴14轴向的中部,第二驱动磁钢21B的右端面伸入并位于所述第三回复件43 和第四回复件44在支承轴14轴向的中部;第一回复件41、第二回复件42、第三回复件43和第四回复件44靠近所述振子组件20的磁极为N极;当线圈30通电,优选地,线圈30通过柔性电路板通电,柔性电路板固定安装于壳体10内,且电流方向如图5所示,线圈30内电流的方向也确定,因此线圈30产生的磁场方向也确定,根据左手定则,可以得出线圈30受向右的洛伦兹力F,根据牛顿第三运动定律可得,振子受到向左的洛伦兹力F;同理可知线圈30通电后的电流方向相反的情况,故在此不再赘述;从而驱动振子组件20往复运动输出振感;优选地,为输出更为强烈的振感,振子通过第一质量块23撞击所述第一端盖以及第二质量块24撞击所述第二端盖从而输出振感。
下面描述回复组件40的工作过程:线圈30断电后,位于线圈30两侧的两个第一回复件41和第二回复件42与第一驱动磁钢21A之间产生第一磁作用力;第三回复件43和第四回复件44与第二驱动磁钢21B之间产生第二磁作用力,第一磁作用力和第二磁作用力相互配合、将振子组件20移动到线圈30通电前的平衡位置,完成复位动作;通过回复组件40与振子组件20之间形成的磁作用力不仅能够提供振子组件20回复时回复力的作用,而且还起到支撑振子组件20的作用。
需要说明的是,本实用新型实施例中所有方向性指示(诸如上、下、内、外、顶部、底部......)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,该元件可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为“连接”另一个元件,它可以是直接连接另一个元件或者可能同时存在居中元件。
以上所述的仅是本实用新型的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本实用新型创造构思的前提下,还可以做出改进,但这些均属于本实用新型的保护范围。
Claims (10)
- 一种线性马达,其特征在于,所述线性马达包括设有收容空间的壳体、设置于所述收容空间内的支承轴和振子组件;所述振子组件滑动连接于所述支承轴上进行往复振动;所述支承轴的两端均通过支撑件连接所述壳体,所述支撑件的刚度小于所述支承轴的刚度。
- 根据权利要求1所述的线性马达,其特征在于:所述线性马达还包括固定于所述支撑件靠近所述振子组件一侧的限位件,所述限位件呈环形并环绕所述支承轴。
- 根据权利要求2所述的线性马达,其特征在于:所述限位件包括固定于所述支撑件靠近所述振子组件一侧的第一固定部以及自所述第一固定部边缘弯折延伸至于所述壳体固定连接的第二固定部。
- 根据权利要求2所述的线性马达,其特征在于:所述线性马达还包括固定于所述壳体上的撞击片,所述撞击片具有沿振动方向贯穿的通孔,所述支撑件和所述限位件收容于所述通孔内。
- 根据权利要求4所述的线性马达,其特征在于:所述撞击片沿振动方向的厚度大于或等于所述限位件与所述支撑件沿振动方向的厚度之和。
- 根据权利要求1所述的线性马达,其特征在于:所述支撑件沿振动方向的投影面积大于等于所述支承轴沿振动方向的投影面积。
- 根据权利要求1所述的线性马达,其特征在于:所述线性马达还包括与所述壳体固定连接的线圈,所述线圈绕置于所述振子组件的外侧并与所述振子组件间隔设置。
- 根据权利要求1所述的线性马达,其特征在于:所述振子组件包括套设于所述支承轴外的第一驱动磁钢和第二驱动磁钢,所述第一驱动磁钢和所述第二驱动磁钢沿振动方向充磁,且所述第一驱动磁钢和所述第二驱动磁钢相对面的磁极相同。
- 根据权利要求8所述的线性马达,其特征在于:所述振子组件还包 括套设于所述支承轴外的极芯、第一配重块及第二配重块,所述极芯设置在所述第一驱动磁钢和所述第二驱动磁钢之间,所述第一配重块和所述第二配重块分别设置在所述第一驱动磁钢和所述第二驱动磁钢靠近所述支撑件的一侧。
- 根据权利要求7所述的线性马达,其特征在于:所述线性马达还包括沿振动方向设置于所述线圈两侧的回复组件,所述回复组件包括两个沿垂直振动方向分别设于所述振子组件两侧的回复件,所述回复件沿垂直振动方向充磁,两个所述回复件的充磁方向相反,所述回复件靠近所述支承轴一侧的磁极与所述第一驱动磁钢和所述第二驱动磁钢靠近所述支撑件一侧的磁极相反。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/127120 WO2021120198A1 (zh) | 2019-12-20 | 2019-12-20 | 线性马达 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/127120 WO2021120198A1 (zh) | 2019-12-20 | 2019-12-20 | 线性马达 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021120198A1 true WO2021120198A1 (zh) | 2021-06-24 |
Family
ID=76476998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/127120 WO2021120198A1 (zh) | 2019-12-20 | 2019-12-20 | 线性马达 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021120198A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000092813A (ja) * | 1998-09-11 | 2000-03-31 | Minolta Co Ltd | リニアモータ駆動装置 |
KR101320226B1 (ko) * | 2012-08-16 | 2013-10-21 | 삼성전기주식회사 | 진동발생장치 |
CN104052229A (zh) * | 2013-03-15 | 2014-09-17 | 三星电机株式会社 | 振动器以及包括该振动器的电子装置 |
CN105743316A (zh) * | 2014-12-08 | 2016-07-06 | 大银微系统股份有限公司 | 滑块型棒状线性马达平台 |
CN205986576U (zh) * | 2016-07-28 | 2017-02-22 | 深圳市信维通信股份有限公司 | 振动马达 |
CN110445343A (zh) * | 2019-07-17 | 2019-11-12 | 瑞声科技(南京)有限公司 | 线性振动马达 |
-
2019
- 2019-12-20 WO PCT/CN2019/127120 patent/WO2021120198A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000092813A (ja) * | 1998-09-11 | 2000-03-31 | Minolta Co Ltd | リニアモータ駆動装置 |
KR101320226B1 (ko) * | 2012-08-16 | 2013-10-21 | 삼성전기주식회사 | 진동발생장치 |
CN104052229A (zh) * | 2013-03-15 | 2014-09-17 | 三星电机株式会社 | 振动器以及包括该振动器的电子装置 |
CN105743316A (zh) * | 2014-12-08 | 2016-07-06 | 大银微系统股份有限公司 | 滑块型棒状线性马达平台 |
CN205986576U (zh) * | 2016-07-28 | 2017-02-22 | 深圳市信维通信股份有限公司 | 振动马达 |
CN110445343A (zh) * | 2019-07-17 | 2019-11-12 | 瑞声科技(南京)有限公司 | 线性振动马达 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021007813A1 (zh) | 线性振动马达 | |
US9467035B2 (en) | Vibration actuator | |
JP4603316B2 (ja) | シリンダ型リニアモータ用可動子 | |
US20190006926A1 (en) | Linear vibration motor | |
WO2018058807A1 (zh) | 线性振动马达 | |
KR102049343B1 (ko) | 수평 리니어 진동모터 | |
US20200412228A1 (en) | Vibration motor | |
WO2021000093A1 (zh) | 一种马达 | |
CN107107112B (zh) | 线性振动马达 | |
US11374476B2 (en) | Sounding device | |
JP6021459B2 (ja) | ステッピングモータ、レンズ装置、および、撮像装置 | |
US20170126109A1 (en) | Vibration motor | |
JP2008206335A (ja) | 円筒型リニアモータ | |
WO2021120198A1 (zh) | 线性马达 | |
CN212392794U (zh) | 线性马达 | |
US7595944B2 (en) | Optical actuator | |
JP2008259330A (ja) | アクチュエータ | |
JP2006075734A (ja) | 偏平振動アクチュエータ | |
JP2001112228A (ja) | 磁石可動型リニアアクチュエータ | |
JP5553064B2 (ja) | 振動発電機 | |
US8378542B2 (en) | Magnetic centre-finding device with no magnet on the rotor and with small air gap | |
JP2013055715A (ja) | 振動発電機 | |
JP2022072471A (ja) | 振動アクチュエータ | |
JP2010029026A (ja) | リニアモータ | |
JP2006192317A5 (zh) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19956674 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19956674 Country of ref document: EP Kind code of ref document: A1 |