WO2021118276A2 - 황 생산 미생물 및 이를 이용한 황의 생산 방법 - Google Patents

황 생산 미생물 및 이를 이용한 황의 생산 방법 Download PDF

Info

Publication number
WO2021118276A2
WO2021118276A2 PCT/KR2020/018093 KR2020018093W WO2021118276A2 WO 2021118276 A2 WO2021118276 A2 WO 2021118276A2 KR 2020018093 W KR2020018093 W KR 2020018093W WO 2021118276 A2 WO2021118276 A2 WO 2021118276A2
Authority
WO
WIPO (PCT)
Prior art keywords
halomonas
sulfur
mongoliensis
strains
producing
Prior art date
Application number
PCT/KR2020/018093
Other languages
English (en)
French (fr)
Other versions
WO2021118276A3 (ko
Inventor
송효순
김영민
Original Assignee
에코바이오홀딩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에코바이오홀딩스 주식회사 filed Critical 에코바이오홀딩스 주식회사
Publication of WO2021118276A2 publication Critical patent/WO2021118276A2/ko
Publication of WO2021118276A3 publication Critical patent/WO2021118276A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide

Definitions

  • the present invention relates to a sulfur-producing microorganism and a method for producing sulfur using the same, and more particularly , a microorganism having excellent conversion ability from hydrogen sulfide (H 2 S) to elemental sulfur, a method for producing biosulfur using the same, and hydrogen sulfide It relates to a method for removing hydrogen sulfide from a mixed gas.
  • H 2 S hydrogen sulfide
  • Hydrogen sulfide is mixed with landfill gas (LFG), a mixed gas generated from solid waste landfills, digestion gas (ADG) from anaerobic digesters, by-product gas from crude oil refining, natural gas, and by-product gas generated from industrial facilities. has been Hydrogen sulfide mixed in these gases damages the equipment, such as corrosion of the transfer pipe.
  • LFG landfill gas
  • ADG digestion gas
  • by-product gas from crude oil refining
  • natural gas and by-product gas generated from industrial facilities.
  • hydrogen sulfide is a representative substance that causes odor, and is toxic enough to regulate the indoor exposure limit concentration to 10 ppm for 10 minutes, and is converted into sulfuric acid (H 2 SO 4 ) by combining with moisture to cause acid rain. Therefore, it is necessary to completely remove hydrogen sulfide from the gas containing hydrogen sulfide.
  • Landfill gas is harmful from an environmental point of view, but methane (CH 4 ), which accounts for 50 to 60% of landfill gas, can be used as an alternative energy source for power plants, cogeneration plants, and district heating and cooling. It is also useful in terms of efficient use of In addition to methane, landfill gas also contains harmful components such as hydrogen sulfide along with moisture, carbon dioxide, and nitrogen, and the conversion of landfill gas into gas fuel is sequentially linked to pre-treatment facilities and refined by component step by step to produce methane gas with high calorific value as a clean energy source (Registration Patent 10-1024969).
  • Sulfur-oxidizing microorganisms or sulfur-reducing microorganisms have been reported in aquatic ecosystems including soil ecosystems and the ocean, and generally perform sulfur-oxidation or sulfate-reduction actions under anaerobic conditions. That is, mostly by anaerobic respiration, the reduction action of oxygen (O 2 ) or nitric acid (NO 3 - ) is coupled with the reduction action of chemolithotrophic sulfate reducing microorganisms (SRB), or sulfuric acid under partially aerobic conditions. It is produced by oxidation by SOB.
  • bio-sulfur produced by microorganisms is an important resource used in fertilizers, agriculture, cosmetics, etc., and has recently been highlighted as an eco-friendly raw material compared to sulfur in petrochemical products.
  • one aspect of the present invention is to provide a sulfur-producing microorganism that produces sulfur using hydrogen sulfide.
  • Another aspect of the present invention is to provide a method for producing sulfur from hydrogen sulfide using the sulfur-producing microorganism of the present invention as described above.
  • Another aspect of the present invention is to provide a method for removing hydrogen sulfide using the sulfur-producing microorganism of the present invention as described above.
  • Halo Monas mongoliensis Halomonas mongoliensis
  • Halo Monas stavensii Halomonas stavensii
  • a sulfur-producing microorganism of the genus Halomonas is provided.
  • a sulfur-producing microorganism of the genus Halomonas having a high removal rate of sulfate ions (SO 4 2- ) and sulfide ions (S 2- ), and effective bio-sulfur production using the sulfur-producing microorganism of the genus Halomonas is provided. but also the removal of hydrogen sulfide.
  • 1 shows a phylogenetic tree based on 16s rRNA sequencing for representative strains isolated under aerobic conditions.
  • Figure 2 shows the microbial growth results of the strains selected in the first aerobic condition batch experiment.
  • Figure 3 shows the microbial growth results of the strains selected in the second aerobic condition batch experiment.
  • Figure 4 shows the change profile of the sulfate ion (sulfate, SO 4 2- ) of the strains selected in the aerobic condition batch experiment.
  • Figure 5 shows the sulfide ion (sulfide, S 2- ) change profile of the selected strains in aerobic conditions batch experiment.
  • strain SS-102 shows the microbial growth of strain SS-102 according to the concentration of carbon source under aerobic conditions.
  • strain YM-7 shows the microbial growth of strain YM-7 according to the concentration of carbon source under aerobic conditions.
  • a sulfur-producing microorganism of the genus Halomonas having a high removal rate of sulfate ions (SO 4 2- ) and sulfide ions (S 2- ), and effective bio-sulfur production using the sulfur-producing microorganism of the genus Halomonas of the present invention is provided. It is possible to carry out production as well as removal of hydrogen sulfide.
  • the sulfur-producing microorganism of the genus Halo Monas of the present invention is Halomonas mongoliensis ( Halomonas mongoliensis ), Halomonas stavensii ), or a combination thereof.
  • the halo Pseudomonas Mongolia Li N-Sys (Halomonas mongoliensis) is halo Pseudomonas Mongolia Li N-Sys (Halomonas mongoliensis) SS-102 ( KACC 81111BP) which it is preferred, the haloalkyl Pseudomonas Mongolia Li N-Sys (Halomonas mongoliensis) is halo Pseudomonas star Ben when (Halomonas stavensii ) YM-7 (KACC 81112BP) is preferred.
  • the method for producing sulfur using the sulfur-producing microorganism of the genus Halomonas of the present invention is a condition comprising the sulfur-producing microorganism of the genus Halomonas sulfate ions (SO 4 2- ), sulfide ions (S 2- ), or a combination thereof. It will include the step of culturing under the.
  • the sulfate ion (SO 4 2- ) concentration may be in the range of 100 to 5,000 mg/L, preferably in the range of 100 to 500 mg/L.
  • the sulfide ion (S 2 - ) concentration may be in the range of 1.0 to 100 mg/L, preferably in the range of 1.0 to 10 mg/L.
  • the production method of sulfur using the sulfur-producing microorganism of the genus Halomonas of the present invention is the production of sulfur-producing microorganisms of the genus Halomonas of the present invention at 36-40 °C, pH 8-10.5, NaCl concentration 4-8%, carbon source acetate concentration 15-30 mM may include culturing in aerobic or anaerobic conditions of, preferably in aerobic or anaerobic conditions of 36-38 ° C, pH 9.5-10, NaCl concentration of 5-7%, carbon source acetate concentration of 20-30 mM including the steps of
  • the temperature is less than 36 °C or exceeds 40 °C, there is a problem of slow microbial growth and metabolic activity; If the NaCl concentration is less than 4%, there is a problem that the growth is reduced, if it exceeds 8%, there is a problem that the sulfur metabolism activity of microorganisms is reduced; If the pH is less than 8 or exceeds 10.5, there is a problem that the growth of microorganisms is inhibited; When the carbon source acetate concentration is less than 15mM or exceeds 30mM, there is a problem in that the sulfur metabolic activity of microorganisms is lowered.
  • the method of removing hydrogen sulfide using the sulfur-producing microorganisms of the genus Halomonas of the present invention includes the step of culturing the sulfur-producing microorganisms of the genus Halomonas in water in which hydrogen sulfide is dissolved.
  • the water in which the hydrogen sulfide is dissolved may be sewage, wastewater, sewage, or a combination thereof.
  • the culturing step may be carried out under aerobic conditions of 36-40° C., pH 8-10.5, NaCl concentration 4-8%, carbon source acetate concentration 15-30 mM, preferably 36-38° C., pH 9.5-10, It is carried out under aerobic or anaerobic conditions with a NaCl concentration of 5-7% and a carbon source acetate concentration of 20-30 mM.
  • sulfur-producing microorganisms of the genus Halomonas having a high removal rate of sulfate ions (SO 4 2- ) and sulfide ions (S 2- ) are provided, and effective bio-sulfur production using the sulfur-producing microorganisms of the genus Halomonas is provided. It is possible to carry out production as well as removal of hydrogen sulfide.
  • strains were isolated by three approaches in order to isolate all microorganisms that can be primarily isolated in this study and identified according to the results of 16s rRNA sequencing.
  • strains 37 strains from the Thiobacillus selective medium, and 27 strains from the general nutrient medium) were isolated, and a total of 14 strains were isolated from the sample medium, and a total of 16 strains were isolated from the Alkalilimnicola ehrlichii selective medium. It was isolated and identified according to the results of 16s rRNA sequencing.
  • a total of 38 strains were isolated and identified as a result of strain isolation under aerobic/anaerobic conditions using a photosynthetic bacterial selective medium, and as a result of identification, Actinotalea ferrariae (1 piece, indicated by numbers below) , Arthrobacter psychrochitiniphilus (1) , Bacillus aryabhattai (1), Brevibacterium luteolum (2 ), Deinococcus swuensis (1), Halomonas alkaliantarctica (3), Halomonas alkaliphila (1), Halomonas boliviensis (4), Halomonas stevensii (4), Halomonas titanicae (3), Janibacter anophelis (1 ), Methylobacterium platani (1), Microbacterium foliorum (1), Microbacterium laevaniformans (2), Microbacterium saccharophilum (1), Nocardioides cavernae (1), Ochrobactrum daejeonense (3), Ochrobactrum or
  • Halomonas alkaliantarctica has the ability to produce alkalophillic, halophilic, gram-negative, aerobic, rod, and EPS (exopolysaccharide).
  • Halomonas alkaliphila is an alkaline, halotolerant, aerobic gram-negative bacterium. It can grow even under NaCl concentration conditions of up to 20%. It accumulates osmolytes and PHB and produces EPS.
  • Halomonas boliviensis is a gram-negative, rod with basophilic, alkali-tolerant, psychrophilic, aerobic, motile, undulate margin, cream pigment colonies. It has a wide range of growth conditions, uses various carbohydrates as a carbon source as a heterotrophic microorganism , reduces nitrate (NO 3 ⁇ ) and exhibits tryptophan deaminase activity.
  • Halomonas responsiblensis is a haloalkaliphic, motile, Gram-negative, bacillus.
  • Halomonas daqingensis is a halophilic, Gram-negative, and bacillus species reported isolated from crude oil-contaminated soil.
  • Halomonas mongoliensis is a haloalkaliphilic, denitrifying, straight or curved rod, non-sporing, reported as an N 2 O-utilizing microorganism. It is a gram-negative microorganism. They are facultative anaerobes using oxidative metabolism, and can use a wide range of organic substrates. This strain uses a wide range of organic substrates to reduce nitrate and nitrous oxide and convert nitrite to gaseous nitrogen.
  • Halomonas stevensii is a basophilic gram-negative bacterium. It is motile and the cells are non-endospore-free bacilli. They form cream pigment colonies.
  • Halomonas titanicae is a basophil gram-negative, heterotrophic, non-endospore-forming strain, and is known as a rust-eating microorganism.
  • strains isolated under aerobic conditions showed a similarity as shown in FIG. 1, and strains with the highest similarity to Thiomicrospira cyclica (Gbr11, Gbr12) and strains with high similarity to Halmonas mongoliensis , Halomonas alkalicola, and Halomonas stevensii were It was found to be close to Alkalilimnicola ehrlichii.
  • Halomonas including Halomonas mongoliensis are Depending on the heterotrophic sulfide oxidation capacity it was reported that the Thioalkalivibrio, Alkalispirillum / Alkalilimnicola and systematics (phylogenetic) distance very close relationship.
  • each of the isolated strains was inoculated into the separated liquid medium, and each isolated microorganism was cultured at a culture temperature of 30° C. and aerobic/anaerobic conditions for 2 days.
  • the strains were sterilized using a medium in which sulfate ions (SO 4 2- ) and sulfide ions (S 2- ) were subtracted from the medium used for separation as a basal medium. produced.
  • Sulfate ion (SO 4 2- ) and sulfide ion (S 2- ) are used as 500 mg/L and 100 mg/L, respectively, sulfate ion as (NH 4 ) 2 SO 4 and phosphorus sulfide ion as Na 2 S*nH 2 O It was produced by filtration sterilization. Each ion standard solution was put into the basal medium, and the sulfate ion (SO 4 2- ) was finally prepared to be 50 mg/L and the sulfide ion (S 2- ) to be 1 mg/L.
  • the primary screening for yellow conversion rate was performed by inoculating 0.1% (v/v) strain in a total volume of 10 ml of medium for measurement, but the sample amount for final measurement was small, so Teflon coated-silicon septa and aluminum seal Centrifuge the cultured strain in a total volume of 100ml in a 150ml penicillin bottle sealed with an aluminum seal, discard the supernatant, and wash to make the wet weight equal to 0.1% (ww/v ) was inoculated into the measurement medium. Those not inoculated were used as a control. After inoculation, incubation was performed with shaking at 150 rpm at 30° C. for 24 hours. For aerobic conditions, air was injected into the upper layer of the penicillin bottle, and for anaerobic conditions, N 2 gas was injected.
  • Each strain was inoculated into the liquid medium used for isolation and prepared by culturing in aerobic/anaerobic conditions at 25°C for 2 days.
  • PFENNIG'S MEDIUM I was modified and used as a measurement medium. Sulfate ions and sulfide ions were not added separately, and the filtered process water supernatant was used.
  • the cultured strain was centrifuged, the supernatant was discarded, washed, and the wet weight was measured and inoculated into 30 ml of PFENNIG'S MEDIUM I modified measuring medium at 0.1% (w.w./v). Screening was performed in 150 ml penicillin bottles sealed with teflon coated-silicon septa and aluminum seals. Those not inoculated were used as a control. After inoculation, incubation was performed with shaking at 25° C. at 160 rpm for 24 hours.
  • solutions C and E were prepared according to PFENNIG'S MEDIUM I.
  • a sulfur source was used as the filtration process.
  • the optimal conditions were derived by measuring the sulfur conversion rate and the growth of microorganisms through a batch experiment.
  • the optimum conditions were first fixed at pH 9 and 37° C. based on the process water production conditions, and the sulfur conversion rate test was performed by dividing the conditions into aerobic conditions and conditions according to the amount of carbon source acetate.
  • strains (Halomonas alkaliphila SSJ-2, Halomonas alkaliantarctica 2SSJ-3, Halomonas titanicae YM-24 , Halomonas mongoliensis SS-102, Halomonas stevensii YM-7) and preliminary strain 1 ( Methylobacterium komagatae SH) were selected through the sulfur conversion screen. -6) was cultured using the culture conditions of each isolate strain and the medium used for isolation for batch experiment and yellow conversion rate test.
  • the culture conditions were 37 ° C., aerobic/anaerobic conditions, each strain was inoculated into 100 ml of each liquid medium for 3 days, bulk up culture was performed, and cultured until OD 0.8 or more was prepared. Each cultured strain was centrifuged at 10,000 rpm for 10 minutes, the supernatant medium was discarded, and the wet weight was measured by collecting the strains.
  • the batch culture for the sulfur conversion rate test in aerobic conditions is performed by adjusting the MABM medium for measurement used in the sulfur conversion rate screen for each condition, and adding sulfate ions (5,000 mg/L (NH 4 ) 2 SO 4 ) or sulfide ions (10 mg/L Na 2 S*nH 2 O) stock solution was added to 10 ml to prepare a medium.
  • Table 4 shows the composition of the MABM-modified basal medium for the aerobic condition batch culture test.
  • the medium was placed in a 150ml penicillin bottle sealed with Teflon coated-silicon septa and an aluminum seal in the same way as the screen and sealed off from the external environment, and the inoculum of each strain was inoculated. and inoculated so that the initial OD 600 value was 0.05 (0.1 g/L wet weight). Cultivation was performed in a shaking incubator at 37° C. and 180 rpm. A strain not inoculated was used as a control.
  • Sulfate ions (SO 4 2- ) and sulfide ions (S 2- ) were finalized at 500 mg/L and 1 mg/L, respectively, and 5,000 mg/L of (NH 4 ) 2 SO 4 and 10 mg/L Sulfide ions are filtered and sterilized using Na 2 S*nH 2 O to adjust the final concentration.
  • the batch culture for the yellow conversion rate test under anaerobic conditions is CO 3 2- to increase the accuracy when measuring the MABM medium for measurement used in the yellow conversion rate screen as shown in Table 5 below. It was prepared by excluding the ionic component. CO 3 2- It was confirmed that the ions act as inhibitors when measuring sulfate ions (SO 4 2- , sulfate)/sulfide ions (S 2- , sulfide). This was performed by excluding from anaerobic conditions.
  • Sulfate ions (5,000 mg/L (NH 4 ) 2 SO 4 ) or sulfide ions in 90 ml of MABM were added with a syringe using H 2 S gas (20,000 mg/L) provided by Ecobio Holdings Co., Ltd.
  • H 2 S gas (20,000 mg/L) provided by Ecobio Holdings Co., Ltd.
  • the anaerobic condition was to remove oxygen in the penicillin bottle by bubbling N 2 gas at 8 psi for 3 minutes, and then filling the N 2 gas.
  • the medium was placed in a 150ml penicillin bottle sealed with Teflon-coated-silicon septa and an aluminum seal in the same way as aerobic conditions, and was sealed off from the external environment, and the inoculation amount of each strain was inoculated and initialized.
  • OD 600 value was 0.05 (0.1 g/L wet weight). Cultivation was performed in a shaking incubator at 37° C. and 180 rpm. In addition, from the batch culture test under anaerobic conditions, only 2 strains ( Halomonas mongoliensis SS-102, Halomonas stevensii YM-7) were inoculated and performed except for 3 strains that did not grow out of 5 strains in the first batch experiment. What was not inoculated was used as a control (control).
  • Sulfate ions (SO 4 2- ) and sulfide ions (S 2- ) were finalized at 500 mg/L and 1 mg/L, respectively, and 5,000 mg/L of (NH 4 ) 2 SO 4 and sulfide ions were H 2 Filter sterilize using S(g) to tailor the final concentration added.
  • the batch culture for the test of the sulfur conversion rate by carbon source concentration was prepared as shown in Table 6, MABM medium was prepared in the basal medium with a concentration of Na-acetate, a carbon source, of 10 mM and 20 mM, and the batch culture test was performed by dividing the conditions. To increase the accuracy of the measurement, CO 3 2- It was prepared by excluding the ionic component.
  • MABM medium in 90ml of MABM, use the same 100ml of sulfate ions (5,000 mg/L (NH 4 ) 2 SO 4 ) or H 2 S gas (20,000 mg/L) provided by Ecobio Holdings in the case of sulfide ions. added by syringe.
  • the anaerobic condition was to remove oxygen in the penicillin bottle by bubbling N 2 gas at 8 psi for 3 minutes, and then filling the N 2 gas.
  • the medium was placed in a 150ml penicillin bottle sealed with Teflon coated-silicon septa and an aluminum seal and sealed from the external environment, and the inoculation amount of each strain was inoculated and the initial OD value of 600 It inoculated so that it might become this 0.05 (0.1g/L wet weight). Cultivation was carried out in a shaking incubator at 37 °C and 180 rpm.
  • Sulfate ions (SO 4 2- ) and sulfide ions (S 2- ) were finalized at 500 mg/L and 1 mg/L, respectively, and 5,000 mg/L of (NH 4 ) 2 SO 4 and sulfide ions were H 2 Filter sterilize using S(g) to tailor the final concentration added.
  • samples were collected for each hour of the growth of microorganisms and measured at OD 600 using a HACH DR 6000 spectrophotometer.
  • OD 600 OD 600
  • 5 ml of each sample being cultured was collected using a syringe. After that, it was put into a 12ml measuring vial, and samples were measured with the initial basal medium as a blank at a single wavelength (600nm). It was measured by tracking the value measured as it was cultured, and the growth rate for each strain was calculated.
  • the measurement method was the same as the yellow conversion screen test with a DR 6000 spectrophotometer using the HACH kit based on the "Standard method for examination of water and wastewater" (4500-S). 5 ml of each sample was collected and filtered through a 0.2 ⁇ m syringe filter to measure sulfate ions and sulfide ions.
  • the sulfide ion (S 2- ) was measured using the HACH 8131 Methylene blue method as a method approved by USEPA (376.2 method). This is a method of measuring expression in a spectrometer by applying sulfide reagent 1 and sulfide reagent 2 .
  • deionized water DI water, deionized water
  • DI water DI water, deionized water
  • Halomonas mongoliensis SS-102 in the case of Halomonas mongoliensis SS-102, it showed exponential growth up to 10 hours, and then showed a tendency to be maintained and decreased little by little. In the case of Halomonas stavensii YM-7, it did not show growth until 24 hours, but showed rapid growth after 48 hours. In selecting one strain based on this result, two strains out of 6 strains were selected.
  • the SS-102 and YM-7 strains showed higher sulfur conversion in aerobic conditions than in anaerobic conditions, and showed that sulfur conversion was performed using sulfide ions rather than sulfate ions.
  • Halomonas mongoliensis SS-102 and Halomonas stavensii YM-7 were found to be the most efficient strains among microorganisms in the biosulfur production process water, and the optimum conditions for sulfur conversion were 37°C, pH 9.8, NaCl concentration 6 %, it was found that the sulfur conversion rate was high under aerobic conditions at a carbon source acetate concentration of 20 mM. In addition, it was found that the microbial growth at this time was the best. The growth of microorganisms was shown to be proportional to the concentration of carbon source acetate and the concentration of sulfide ions (S 2 - ).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 황 생산 미생물 및 이를 이용한 황의 생산 방법에 관한 것으로, 보다 상세하게는 할로모나스 몽골리엔시스( Halomonas mongoliensis), 할로모나스 스타벤시( Halomonas stavensii) 또는 이들의 조합인, 할로모나스 속 황 생산 미생물; 할로모나스 속 황 생산 미생물을 이용한, 황의 생산 방법; 및 할로모나스 속 황 생산 미생물을 이용한, 황화 수소의 제거 방법에 관한 것이다.

Description

황 생산 미생물 및 이를 이용한 황의 생산 방법
본 발명은 황 생산 미생물 및 이를 이용한 황의 생산 방법에 관한 것으로, 보다 상세하게는 황화수소(H 2S)로부터 원소 황으로의 우수한 전환능을 갖는 미생물 및 이를 이용하여 바이오황을 생산하는 방법 및 황화수소가 혼합되어 있는 가스에서 황화수소를 제거하는 방법에 관한 것이다.
황화수소는 고형 폐기물 매립지에서 발생하는 혼합가스인 매립가스(landfill gas: LFG), 혐기성 소화조로부터 발생하는 소화가스(ADG), 원유 정제 시의 부생가스, 천연가스, 산업시설에서 발생하는 부생가스 등에 혼입되어 있다. 이들 가스에 혼입되어 있는 황화수소는 이송관로의 부식 등, 설비에 손상을 준다. 또한, 황화수소는 악취를 유발하는 대표적인 물질이며, 실내 노출 제한기준농도를 10분간 10ppm으로 규제할 정도로 독성을 가지며, 수분과 결합하여 황산(H 2SO 4)으로 전환되어 산성비를 유발한다. 따라서 황화수소가 혼입되어 있는 가스에서 황화수소를 완전히 제거하는 것이 필요하다.
매립가스(LFG)는 환경적 측면에서는 해가 되지만, 매립가스의 50~60%에 이르는 메탄(CH 4)은 발전소, 열병합 발전소 및 지역냉난방용 대체에너지원으로 활용할 수 있어 환경적 문제뿐만 아니라 에너지의 효율적 이용 면에서도 유용하다. 매립가스는 메탄 이외에도 수분, 이산화탄소, 질소 등과 함께 황화수소 등의 유해성분도 포함하며, 매립가스의 가스연료화는 전처리 시설을 순차적으로 연계시켜 성분 별로 단계적으로 정제하여 청정한 에너지원으로서 발열량이 높은 메탄가스를 산출하고 있다(등록특허 10-1024969).
최근 매립지 등에는 유기성 폐기물 매립이 같이 이루어져 매립가스 중에 황화수소가 점차 증가하는 추세이며, 이와 같은 황화수소가 수천 ppm 이상 고농도로 포함되게 되었다. 또한, 최근의 하수처리장에서 처리하는 오폐수는 도시하수뿐만 아니라 음식물쓰레기 침출수, 매립장 침출수, 분뇨처리장 1차 처리수 등 황 성분의 함유량이 매우 높은 유입수를 처리하면서 발생하는 소화가스의 황화수소 농도는 계속 증가하고 있는 추세로, 1,500 내지 2,000ppm을 상회하고, 때로는 3,000ppm을 넘는 처리장도 있다.
이에 따라 종래 알려진 티오바실러스 종이나 해외에서 도입되어 온 황산화 박테리아를 이용하여서는 매립가스 등에 혼입된 고농도의 황화수소를 완전히 제거하기가 어려운 실정이었다.
황 산화 미생물이나 황산 환원 미생물은 토양 생태계 및 해양을 비롯한 수생태계에 보고되어 있으며, 일반적으로 혐기 조건에서 황 산화 또는 황산 환원 작용을 하고 있다. 즉, 대부분 혐기적 호흡에 의해 산소(O 2)나 질산(NO 3 -)의 환원작용과 함께(coupled) 화학무기영양(Chemolithotrophic) 황산 환원 미생물(SRB)의 환원작용이나 부분적으로 호기성 조건에서 황산화 미생물(SOB)에 산화되어 생성한다. 한편, 미생물에 의해 생산되는 바이오황은 비료, 농업, 화장품 등에 이용되고 있는 중요한 자원으로서 석유화학제품의 황에 비해 친환경적인 원료로서 최근 부각되고 있다.
따라서 고농도의 황화수소가 혼입되어 있는 가스로부터 황화수소를 제거하며, 나아가 바이오 황을 효율적이고 경제적으로 생산할 수 있는 미생물의 발굴이 절실히 요구되고 있는 실정이다.
이에 본 발명의 한 측면은 황화수소를 이용하여 황을 생산하는 황 생산 미생물을 제공하는 것이다.
본 발명의 다른 측면은, 상기와 같은 본 발명의 황 생산 미생물을 이용하여 황화수소로부터 황을 생산하는 방법을 제공하는 것이다.
본 발명의 또 다른 측면은, 상기와 같은 본 발명의 황 생산 미생물을 이용하여 황화 수소를 제거하는 방법을 제공하는 것이다.
본 발명의 일 견지에 의하면, 할로모나스 몽골리엔시스( Halomonas mongoliensis), 할로모나스 스타벤시( Halomonas stavensii) 또는 이들의 조합인, 할로모나스 속 황 생산 미생물이 제공된다.
본 발명의 다른 견지에 의하면, 상기 본 발명의 할로모나스 속 황 생산 미생물을 이용한, 황의 생산 방법이 제공된다.
본 발명의 또 다른 견지에 의하면, 상기 본 발명의 할로모나스 속 황 생산 미생물을 이용한, 황화 수소의 제거 방법이 제공된다.
본 발명에 의하면, 황산이온(SO 4 2-) 및 황화이온 (S 2-)의 제거율이 높은 할로모나스 속 황 생산 미생물이 제공되며, 상기 할로모나스 속 황 생산 미생물을 이용하여 효과적인 바이오황의 생산뿐만 아니라 황화 수소의 제거를 수행할 수 있다.
도 1은 호기 조건에서 분리한 대표 균주들에 대한 16s rRNA 시퀀싱(sequencing) 기반의 계통도(phylogenetic tree)를 나타낸 것이다.
도 2는 1차 호기 조건 회분식 실험에서 선정된 균주들의 미생물 생장 결과를 나타낸 것이다.
도 3은 2차 호기 조건 회분식 실험에서 선정된 균주들의 미생물 생장 결과를 나타낸 것이다.
도 4는 호기 조건 회분식 실험에서 선정된 균주들의 황산이온(sulfate, SO 4 2-) 변화 프로파일을 나타낸 것이다.
도 5는 호기 조건 회분식 실험에서 선정 균주들의 황화이온(sulfide, S 2-) 변화 프로파일을 나타낸 것이다.
도 6은 호기 조건 탄소원 농도에 따른 균주 SS-102의 미생물 생장을 나타낸 것이다.
도 7은 호기 조건 탄소원 농도에 따른 균주 YM-7의 미생물 생장을 나타낸 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
본 발명에 의하면 황산이온(SO 4 2-) 및 황화이온 (S 2-)의 제거율이 높은 할로모나스 속 황 생산 미생물이 제공되며, 상기 본 발명의 할로모나스 속 황 생산 미생물을 이용하여 효과적인 바이오황의 생산뿐만 아니라 황화 수소의 제거를 수행할 수 있다.
보다 상세하게 본 발명의 할로모나스 속 황 생산 미생물은 할로모나스 몽골리엔시스( Halomonas mongoliensis), 할로모나스 스타벤시( Halomonas stavensii) 또는 이들의 조합인 것이다. 상기 할로모나스 몽골리엔시스( Halomonas mongoliensis)는 할로모나스 몽골리엔시스( Halomonas mongoliensis) SS-102(KACC 81111BP)인 것이 바람직하며, 상기 할로모나스 몽골리엔시스( Halomonas mongoliensis)는 할로모나스 스타벤시( Halomonas stavensii) YM-7(KACC 81112BP)인 것이 바람직하다.
본 발명에 의하면, 상기와 같은 본 발명의 할로모나스 속 황 생산 미생물을 이용한 황의 생산 방법이 제공된다.
보다 상세하게 본 발명의 할로모나스 속 황 생산 미생물을 이용한 황의 생산 방법은 상기 할로모나스 속 황 생산 미생물을 황산이온(SO 4 2-), 황화이온(S 2-) 또는 이들의 조합을 포함하는 조건 하에서 배양하는 단계를 포함하는 것이다.
이때, 상기 황산이온(SO 4 2-) 농도는 100 내지 5,000 mg/L 범위일 수 있으며, 바람직하게는 100 내지 500 mg/L 범위일 수 있다.
또한, 상기 황화이온(S 2-) 농도는 1.0 내지 100 mg/L 범위일 수 있으며, 바람직하게는 1.0 내지 10 mg/L 범위일 수 있다.
상기 본 발명의 할로모나스 속 황 생산 미생물을 이용한 황의 생산 방법은 본 발명의 할로모나스 속 황 생산 미생물을 36-40℃, pH 8-10.5, NaCl 농도 4-8%, 탄소원 아세테이트 농도 15-30 mM의 호기 조건 또는 혐기 조건에서 배양하는 단계를 포함할 수 있으며, 바람직하게는 36-38℃, pH 9.5-10, NaCl 농도 5-7%, 탄소원 아세테이트 농도 20-30mM의 호기 조건 또는 혐기 조건에서 배양하는 단계를 포함한다.
상기 온도가 36℃ 미만이거나 40℃를 초과하는 경우에는 미생물 생장 및 대사 활동이 느린 문제가 있으며; 상기 NaCl농도가 4% 미만인 경우에는 생장이 저하되는 문제가 있고, 8%를 초과하는 경우에는 미생물의 황 대사 활동이 저하되는 문제가 있으며; 상기 pH가 8 미만이거나 10.5를 초과하는 경우에는 미생물 생장이 저해되는 문제가 있으며; 상기 탄소원 아세테이트 농도가 15mM 미만이거나 30mM를 초과하는 경우에는 미생물의 황 대사 활동이 저하되는 문제가 있다.
나아가, 본 발명에 의하면, 상기와 같은 본 발명의 할로모나스 속 황 생산 미생물을 이용한 황화 수소의 제거 방법이 제공된다.
보다 상세하게, 상기 본 발명의 할로모나스 속 황 생산 미생물을 이용한 황화 수소의 제거 방법은 황화수소가 용해된 물에 상기 할로모나스 속 황 생산 미생물을 투입하여 배양하는 단계를 포함하는 것이다.
이때, 상기 황화수소가 용해된 물은 하수, 폐수, 오수 또는 이들의 조합일 수 있다.
상기 배양하는 단계는 36-40℃, pH 8-10.5, NaCl 농도 4-8%, 탄소원 아세테이트 농도 15-30mM의 호기 조건에서 수행될 수 있으며, 바람직하게는 36-38℃, pH 9.5-10, NaCl 농도 5-7%, 탄소원 아세테이트 농도 20-30mM의 호기 조건 또는 혐기 조건에서 수행되는 것이다.
이와 같이 본 발명에 의하면, 황산이온(SO 4 2-) 및 황화이온 (S 2-)의 제거율이 높은 할로모나스 속 황 생산 미생물이 제공되며, 상기 할로모나스 속 황 생산 미생물을 이용하여 효과적인 바이오황의 생산뿐만 아니라 황화 수소의 제거를 수행할 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
1. 공정수 시료 및 분리 준비
시료는 2019년 1월 16일 ㈜에코바이오 홀딩스로부터 공정수 생산 라인의 온도가 36~37℃인 바이오황 생산 공정수 총 200L(20LΥ10통)을 획득하였다. 공정수는 색상은 노란색을 띠는 바닐라색으로, 흰색 침전물이 바닥에 침전되어 있었고, 계란 썩은 냄새 같은 황 냄새가 났으며, pH는 8.5로 측정되었다. 상기 공정수를 20ml씩 덜어낸 시료 3개의 생물군집분석 (Bacterial community analysis)을 Macrogen사에 의뢰하였다. 공정 수 시료 내 타깃으로 하는 황 관련 이온을 분석하기 위해 여과된 시료를 이용하여 황산염이온(SO 4 2-)과 황화물이온(S 2-)을 HACH사에 제공한 시약과 분석 장비 DR6000 광분계(spectrometer)를 이용하여 측정하였다. 측정 결과 41,000 mg/L SO 4 2-와 210 mg/L S 2-가 시료 내에 존재하는 것을 확인하였다. 그리고 경기대학교 산학 협력단에서 고형물 시료를 이온크로마토그램(IC)으로 분석한 결과, 불소(F), 염소(Cl -), 아질산(NO 2 -), 브롬(Br -), 질산(NO 3 -), 인산(PO 4 3-), 황산염(SO 4 2-)이온 등이 검출되었다.
원 시료 내의 많은 염과 고형물이 존재하여 2차례에 걸쳐 원심 분리하여, 고형물은 제외하고 상등액을 준비하였다. 1차로 8,000 rpm에서 15분간 원심 분리하여 고형물을 제거한 후 상등액을 2차로 10,000 rpm에서 10분간 원심 분리하여 고형물을 제거하고 상등액만을 준비하였다. 이후 막여과 장치를 이용하여 여과액을 얻었다. 여과시, 여과지는 1.2㎛, 0.45㎛, 0.22㎛ (cellulose membrane)을 차례로 사용해 감압여과를 진행하였고, 이를 0.22㎛를 통과한 여과액을 준비하여 시료 배지로 사용하였다.
2. 황 생산 미생물의 분리
공정수 시료내의 존재하는 분리 가능한 모든 미생물을 분리하기 위해 크게 3가지 접근방법으로 순수분리 배양기술을 사용하여 호기/혐기 균주를 분리하였다. 즉, 먼저 광합성박테리아 선택배지 변형 27M(DSM) 배지, Thiobacillus 선택 배지, 일반영양배지(Nutrient broth)를 이용하였다. 두 번째는 공정수를 여과한 시료를 배지로 이용한 방법으로 공정수 내의 영양분을 활용하여 분리하였다. 마지막으로 Hoeft et. al(2007)이 Alkalilimnicola ehrlichii을 신종으로 발표한 논문을 참고하여 배지를 활용하였다.
(1) 1차 균주 분리 결과
본 연구에서 1차적으로 분리가능한 모든 미생물을 분리하기 위해 세 가지 접근방법으로 총 132개 균주를 분리하여 16s rRNA 시퀀싱 결과에 따라 동정하였으며, 균주 분리 결과 총 102개 균주(광합성박테리아 선택배지에서 38개 균주, Thiobacillus 선택 배지에서 37개 균주, 일반영양배지에서 27개 균주)를 분리하였으며, 추가적으로 시료 배지에서 분리한 균주는 총 14개 균주, 그리고 Alkalilimnicola ehrlichii 선택 배지에서 분리한 균주는 총 16 개 균주를 분리하여 16s rRNA 시퀀싱 결과에 따라 동정하였다.
균주 분리 결과를 분석하면, 다양한 배지와 방법으로 총 132개 균주 중 28개의 속(Genus), 48개의 종(species)을 분리하였으며, 그 중 할로모나스( Halomonas) 속이 총 81개 균주 (분리 균주의 61.3%)가 분리되었고, 10개의 종이 분리되었다. 가장 많이 분리된 균주는 H. mongoliensis (26개 균주), H. alkaliantarctica (14개균주), H. alkaliphilia (10개균주)로 나타났다.
(2) 광합성박테리아 선택배지에서 균주분리 결과
광합성박테리아 선택배지를 이용한 호기/혐기 조건에서 균주분리 결과 총 38개 균주를 분리 동정하였으며, 동정 결과 하기 표 1과 같이 Actinotalea ferrariae(1개, 이하 숫자로 표시) , Arthrobacter psychrochitiniphilus(1) , Bacillus aryabhattai(1) , Brevibacterium luteolum (2) , Deinococcus swuensis(1) , Halomonas alkaliantarctica (3) , Halomonas alkaliphila (1) , Halomonas boliviensis (4) , Halomonas stevensii (4) , Halomonas titanicae (3) , Janibacter anophelis (1) , Methylobacterium platani (1) , Microbacterium foliorum (1) , Microbacterium laevaniformans (2) , Microbacterium saccharophilum (1) , Nocardioides cavernae (1) , Ochrobactrum daejeonense (3) , Ochrobactrum oryzae (1) , Pannonibacter phragmitetus (2) , Pseudoclavibacter helvolus (1) , Staphylococcus epidermidis (1) , Stappia indica (1) , Tistrella mobilis (1)으로 나타났다. 그 중 Genus Halomonas 의 균주가 15개 균주로 가장 많이 분리 되었다.
No. 균주(strain) 명 가장 가까운 매칭(Closest match) 어세션 번호(Accession No.) 유사도 %
1 YM-27 Actinotalea ferrariae HQ730135 98.48
2 YM-12 Arthrobacter psychrochitiniphilus AJ810896 97.9
3 YM-21 Bacillus aryabhattai EF114313 99.93
4 K1 Brevibacterium luteolum AJ488509 99.93
5 K2 Brevibacterium luteolum AJ488509 99.93
6 YM-22 Deinococcus swuensis CP010028 99.29
7 K10 Halomonas alkaliantarctica AJ564880 99.45
8 YM-16 Halomonas alkaliantarctica AJ564880 99.45
9 YM-19 Halomonas alkaliantarctica AJ564880 99.45
10 YM-17 Halomonas alkaliphila AJ640133 99.93
11 K7 Halomonas boliviensis JH393258 99.57
12 K9 Halomonas boliviensis JH393258 99.57
13 YM-8 Halomonas boliviensis JH393258 99.59
14 YM-15 Halomonas boliviensis JH393258 99.59
15 YM-7 Halomonas stevensii AJTS01000047 99.93
(3) Alkalilimnicola ehrlichii 선택 배지에서 균주분리 결과
Alkalilimnicola ehrlichii 선택 배지를 이용한 호기 조건에서 균주분리 결과 하기 표 2와 같이 총 11개 균주를 분리 동정하였으며, 동정 결과 Halomonas campaniensis (1) , Halomonas mongoliensis(10)로 나타났다. Alkalilimnicola ehrlichii 선택 배지를 이용한 균주 분리에서 Halomonas mongoliensis가 우점으로 분리 동정되었다.
No. 균주(strain) 명 가장 가까운 매칭(Closest match) 어세션 번호 (Accession No.) 유사도 %
1 SS-106 Halomonas campaniensis AJ515365 98.15
2 SS-201 Halomonas mongoliensis AY962236 98.98
3 SS-4 Halomonas mongoliensis AY962236 98.98
4 SS-104 Halomonas mongoliensis AY962236 98.98
5 SS-2 Halomonas mongoliensis AY962236 98.98
6 SS-1 Halomonas mongoliensis AY962236 98.98
7 SS-102 Halomonas mongoliensis AY962236 99.27
8 SS-202 Halomonas mongoliensis AY962236 98.98
9 SS-204 Halomonas mongoliensis AY962236 98.98
10 SS-205 Halomonas mongoliensis AY962236 99.34
11 SS-206 Halomonas mongoliensis AY962236 98.98
3. 주요 분리 미생물의 특징
(1) 할로모나스 속(Genus Halomonas)
본 연구에서도 다양하고 많은 Halomonas 종들을 분리하였고, 그들과 16s rRNA 유전자 시퀀싱 분석에서 유사도가 높은 종들이 분리되었다. 유사도가 높은 종들을 보면, Halomonas alkaliantarctica는 호알칼리성(alkalophillic), 호염성(halophilic), 그람 음성, 호기성, 로드(rod), EPS(exopolysaccharide)를 생성할 수 있는 기능이 있다. Halomonas alkaliphila는 호알칼리성(alkaliphillic), 내염성(halotolerant), 호기성 그람 음성균이다. 최대 20%의 NaCl 농도 조건에서도 생장할 수 있다. Osmolytes와 PHB를 축적하고 EPS를 생산한다. Halomonas boliviensis는 호염성, 알칼리 내성(alkalitolerant), 호냉성(psychrophilic), 호기성, 운동성, 무결모양 마진(undulate margin), 크림 색소(cream pigment) 콜로니를 가진 그람 음성, 간균(rod)이다. 광범위한 생장 조건을 가지며, 종속영양 미생물(Heterotroph)로 다양한 탄수화물을 탄소원으로 사용하며, 질산염(NO 3 -)을 환원시키고 트립토판 디아미나아제(tryptophan deaminase) 활성을 나타낸다. Halomonas campaniensis는 할로알카리필릭(haloalkaliphic), 운동성(motile), 그람음성, 간균이다. Halomonas daqingensis는 조질의 오일(crude oil)로 오염된 토양에서 분리되어 보고된 종으로 호염성(halophilic), 그람 음성, 간균이다. Halomonas mongoliensis는 N 2O-사용(utilizing) 미생물로 보고된 할로알카리필릭(haloalkaliphilic), 탈질(denitrifying), 직선 혹은 곡선(straight or curved) 간균(rod), 포자 미생성(non-sporing), 그람음성 미생물(bacteria)이다. 산화적 대사를 이용한 통성 혐기성균이며, 광범위한 유기 기질을 이용할 수 있다. 이 균주는 광범위한 유기 기질(organic substrates)을 이용하여 질산염(nitrate), 아산화질소(nitrous oxide)를 줄이고 아질산염(nitrite)을 기체 상의 질소로 전환시킨다. Halomonas stevensii는 호염성 그람 음성균이다. 운동성이 있으며 세포는 내생포자가 없는 간균이다. 이들은 크림 피그먼트 콜로니(cream pigment colonies)를 형성한다. Halomonas titanicae는 호염 그람음성균, 종속영양성, 내생포자를 형성하지 않는 균주이며, 녹(rust)을 먹는 미생물로 알려져 있다.
(2) 계통분류학적 비교 분석
분리한 균주들을 16s rRNA 유전자를 기반으로하여 계통분류학적으로 유연관계를 비교 분석하였다. 수행한 결과 호기 조건에서 분리한 균주들은 도 1과 같이 유연관계가 나타났으며, Thiomicrospira cyclica와 가장 유사도가 높은 균주들 (Gbr11, Gbr12)과 Halmonas mongoliensis, Halomonas alkalicola, Halomonas stevensii와 유사도가 높은 균주들이 Alkalilimnicola ehrlichii 과 가까운 것으로 나타났다. Sorokin et al (2001, 2006), Boltyanskaya et al (2007)에 따르면 Halomonas mongoliensis를 포함한 Halomonas heterotrophic sulfide oxidation능력에 따라 Thioalkalivibrio, Alkalispirillum/Alkalilimnicola와 계통분류학(phylogenetic)적인 거리가 매우 근접한 관계가 있다고 보고하였다.
4. 분리된 미생물들의 황전환율 스크리닝
바이오황 생산 공정수 내의 분리 동정한 균주들에 대해 황전환율을 분석하기 위해, 황대사 과정 중 황산이온(SO 4 2-) 환원, 또는 황화이온 (S 2-) 산화에 의하여 황원소(Element S0)를 생산하는 것으로 보고되어 있으므로, 황산이온(SO 4 2-, sulfate), 황화이온 (S 2-, sulfide)의 변화율을 측정하였다.
(1) 1차 분리 균주 스크린
1) 균주 및 배지 준비
황전환율 스크린을 위해 분리된 각 균주들을 각 분리되었던 액상배지에 접종하여 2일간 배양 온도 30℃, 호기/혐기 조건에서 각 분리 미생물을 배양하여 준비하였다. 분리한 균주들의 황전환율을 측정하기 위해 균주들은 분리할 때 사용하였던 배지들에서 황산이온(SO 4 2-)과 황화이온 (S 2-)을 뺀 배지를 기본배지(Basal media)로 하고 멸균하여 제작하였다. 황산이온(SO 4 2-)과 황화이온 (S 2-)은 각각 500mg/L, 100mg/L로 황산이온은 (NH 4) 2SO 4로 황화인이온은 Na 2S*nH 2O로 사용하여 여과 멸균 제작하였다. 각 이온 표준액들은 기본배지에 넣어 황산이온(SO 4 2-)은 50mg/L, 황화이온 (S 2-)은 1mg/L가 최종적으로 되게 준비하였다.
2) 균주 접종 및 배양
황전환율 1차적인 스크린은 측정용 배지 총 10ml 부피에서 0.1% (v/v) 균주를 접종하여 실시하였으나 최종적인 측정을 위한 시료량이 적어 테플론 코팅된 실리콘 격벽(teflon coated-silicon septa)과 알루미늄 씰(aluminum seal)로 밀봉된 150ml 페니실린 병(bottle)에 총 100ml 부피에 배양된 균주를 원심 분리하여 상등액을 버리고 세척(washing)하여 습윤 중량(wet weight)을 모두 동일하게 맞추어 0.1% (w.w./v)로 측정용 배지에 접종하였다. 접종하지 않는 것을 대조군(control)로 하였다. 접종 후, 24시간 30℃에서 150rpm으로 진탕 배양하였다. 호기 조건은 페니실린 병 상층부에 공기를 혐기조건은 N 2 가스를 주입하였다.
3) 황전환율 측정
24시간 배양 후 균주들의 성장을 확인하고, 황전환율을 황산이온(SO 4 2-)과 황화이온 (S 2-)을 각 성분의 측정방법에 따라 분석하였다. 배양액 시료를 10ml씩 주사기로 채취하여 0.2㎛ 실리지 필터로 여과하여 측정하였다. 균을 접종하지 않은 대조군도 동일하게 하여 초기 값과 24시간 후의 황산이온(SO 4 2-)과 황화이온 (S 2-)을 측정 분석하였다.
(2) 추가 균주 스크린
각 균주를 분리 시 사용하였던 액상 배지에 접종하여 2일간 25℃ 배양 조건에서 호기/혐기 조건에서 배양하여 준비하였다. 하기 표 3과 같이 PFENNIG'S MEDIUM I을 변형하여 측정용 배지로 사용하였으며 황산이온과 황화 이온은 별도로 넣지 않고, 여과한 공정수 상층액을 사용하였다.
추가 황전환율 스크린은 배양된 균주를 원심 분리하여 상등액을 버리고 세척(washing)하여 습윤 중량을 측정하여 0.1% (w.w./v)로 동일하게 PFENNIG'S MEDIUM I 변형한 측정용 배지 30ml에 접종하였다. 스크린은 테플론 코팅된 실리콘 격벽(teflon coated-silicon septa)과 알루미늄 씰(aluminum seal)로 밀봉된 150ml 페니실린 병에서 수행하였다. 접종하지 않는 것을 대조군(control)로 하였다. 접종 후, 24 시간 동안 25℃에서 160rpm으로 진탕 배양하였다.
용액 A 조성
CaCl 2 x 2H 2O
이스트 추출물
0.25 g
0.25 g
여과 공정수 상층액 0.46 L
최종 조성*
용액 A
용액 C
용액 E
증류수
0.46 L
0.0095 L
0.0055 L
0.545 L
1.02 L
* 용액(Sol) A를 변형하였으며, 용액 C, E는 PFENNIG'S MEDIUM I에 준하여 제조하였다. 여과 공정수로 황(sulfur) 소스를 활용하였다.
(3) 황산이온 (SO 4 2-) 스크린 결과
1) 1차 분리 균주 스크린 결과
1차 스크린시험에서 각 균주 당 이중으로 실험을 진행하여 평균으로 제거율과 표준편차를 계산하였다. 배양시간은 24시간으로 하였다. 총 분리된 127개 균주 중 63개 균주를 스크린 시험을 실시한 결과 10 균주가 ( Halomonas alkaliphila SSJ-2, Halomonas mongoliensis SO13, Halomonas stevensii YM-7, Ochrobactrum daejeonense YM-9, Halomonas titanicae YM-24, Stappia indica YM-26, Halomonas alkaliantarctica 2SSJ-3, Halomonas alkaliantarctica 2SSJ-6, Halomonas alkaliantarctica YM-19, Halomonas alkaliantarctica 2SSJ-5) 95%이상의 제거 효율을 보였다.
2) 추가 균주 스크린 결과
추가 분리된 균주 중 성장이 좋은 19개 균주에 대해 스크린을 하였으며, 72시간, 120시간 배양 후 황산이온 (SO 4 2-)을 측정하여 결과를 도출하였다. 그러나 변화율이 크거나 제거가 된 균주가 나타나지 않았다. 그러나 공정수의 고농도의 황산이온에서 균주들이 200 mg/L에서 최대 600mg/L까지 제거하는 것으로 나타났다.
(4) 황화이온 (S 2-) 스크린 결과
1) 1차 분리 균주 스크린 결과
1차 스크린시험에서 각 균주 당 이중으로 실험을 진행하여 평균으로 제거율과 표준편차를 계산하였다. 배양시간은 24시간으로 하였다. 총 분리된 127개 균주 중 63개 균주를 스크린 시험을 실시한 결과 14개 균주가 ( Halomonas alkaliphila SSJ-2, Halomonas alkaliantarctica SSJ-1, Halomonas daqingensis 2SSJ-1, Halomonas alkaliphila SSJ-7, Halomonas mongoliensis SO13, Halomonas mongoliensis SS-102, Halomonas mongoliensis SS-201, Halomonas mongoliensis SS-202, Sphingomonas aquatilis SH-4, Sphingomonas leidyi SH-5, Methylobacterium komagatae SH-6, Microbacterium laevaniformans YM-2, Halomonas alkaliphila YM-17, Microbacterium enclense SH-7) 95% 이상의 제거 효율을 보였다.
2) 추가 균주 스크린 결과
추가 분리된 균주 중 성장이 좋은 19개 균주에 대해 스크린을 하였으며, 72시간, 120시간 배양 후 황화이온 (S 2-)을 측정하여 결과를 도출하였다. 120시간 즉, 5일이후의 최종 변화율 및 제거율을 구한 결과 16개 균주가 70% 이상의 제거율을 보였으며, Halomonas campaniensis Gbr7 (82.07%), Halomonas mongoliensis P17 (81.65%), Alkalibacterium psychrotolerans Gbr4 (80.59%), Halomonas stevensii Ar2 (80.38%), Halomonas mongoliensis Gbr9 (79.54%)이 높은 효율을 보였다.
3) 2차 스크린 테스트 결과
황전환율 스크린에서 황산이온(SO 4 2-) 및 황화이온 (S 2-)제거율이 높은 선별된 상위 균주 22 균주에 대해 다시 2차 스크린을 하여, 24시간 배양 후 측정한 결과 황산이온(SO 4 2-)과 황화이온 (S 2-)제거율이 높은 균주에서 16S rRNA 시퀀싱 유사도로 동정한 균주가 겹치지 않는 5개 균주 Halomonas alkaliphila SSJ-2, Halomonas alkaliantarctica 2SSJ-3, Halomonas titanicae YM-24 , Halomonas mongoliensis SS-102, Halomonas stevensii YM-7를 선별하였다. 또한 1개 균주 Methylobacterium komagatae SH-6 는 예비 균주로 선정하였다.
(5) 전환율 고효율 균주 2종 선별
황산이온(SO 4 2-) 및 황화이온 (S 2-) 스크린 1, 2차 결과를 토대로 황산이온(SO 4 2-) 및 황화이온 (S 2-)에서 효율이 높은 균주를 분석하여, Halomonas mongoliensis SS-102및 Halomonas stevensii YM-7을 선정하였다. 선정된 최종 2종은 황산이온(SO 4 2-)과 황화이온 (S 2-)의 제거율이 높은 것으로 나타났다. 이렇게 획득된 Halomonas mongoliensis SS-102 균주를 국립농업과학원에 2019년 10월 21일자로 기탁을 신청하여 수탁번호 KACC 81111BP를 부여받았고, Halomonas stevensii YM-7 균주를 국립농업과학원에 2019년 10월 21일자로 기탁을 신청하여 수탁번호 KACC 81112BP를 부여받았다.
5. 황전환율 시험
회분식 실험을 통해 황전환율 및 미생물의 성장을 측정하여 최적 조건을 도출하였다. 최적 조건은 우선 공정수 생산 조건을 기준으로 pH 9, 온도 37℃는 고정하고, 호기 조건과 탄소원 아세테이트 양에 따른 조건으로 구분하여 황전환율 시험을 수행하였다.
(1) 균주 준비
황 전환율 스크린을 통해 선정된 5종 균주 ( Halomonas alkaliphila SSJ-2, Halomonas alkaliantarctica 2SSJ-3, Halomonas titanicae YM-24 , Halomonas mongoliensis SS-102, Halomonas stevensii YM-7)와 예비 1종 균주 ( Methylobacterium komagatae SH-6)를 회분식 실험 및 황전환율 시험을 위해 각 분리 균주의 배양 조건 및 분리 시 사용한 배지를 사용하여 배양하였다. 배양 조건은 온도 37℃, 호기/혐기 조건으로 하여, 각 균주를 3일간 각 액상 배지 100ml에 접종시켜 벌크업 배양(bulk up culture)을 진행하였고, OD 0.8 이상 될 때까지 배양하여 준비하였다. 배양된 각 균주를 10,000rpm으로 10분간 원심 분리하여 상층 배지는 버리고, 균주를 모아 습윤 중량을 측정하였다.
(2) 호기 조건에서의 회분식 배양 시험
호기 조건에서 황전환율 시험을 위한 회분식 배양은 황전환율 스크린에서 사용한 측정용 배지 MABM medium을 조건 별로 조정하여 90ml의 MABM에 황산이온 (5,000 mg/L (NH 4) 2SO 4)또는 황화이온 (10 mg/L Na 2S*nH 2O) 저장액(stock solution)을 10ml을 첨가하여 배지를 제작하였다. 하기 표 4는 호기 조건 회분식 배양 시험을 위한 MABM을 변형한 기본배지의 조성을 나타낸 것이다. 배지는 스크린과 동일하게 테플론 코팅된 실리콘 격벽(teflon coated-silicon septa)과 알루미늄 씰(aluminum seal)로 밀봉된 150ml 페니실린 보틀(bottle)에 넣어 외부환경과 차단하여 밀폐하였고, 각 균주의 접종량은 접종하여 초기 OD 600 값이 0.05가 되도록 (0.1g/L wet weight) 접종하였다. 배양은 37℃, 180rpm 쉐이킹 인큐베이터(shacking incubator)에서 진행하였다. 균주를 접종하지 않은 것을 대조군(control)으로 하였다.
화합물
Na 2CO 3
NaHCO 3
NaCl
K 2HPO 4
KH 2PO 4
Na-acetate
SL-6
증류수(Distilled Water)
10.6g
4.2g
60g
0.15g
0.08g
10mM
1ml
1000ml
pH 9.8
* 황산이온(SO 4 2-)과 황화이온 (S 2-)은 각각 최종 500 mg/L, 1 mg/L로 하였으며, 5,000mg/L의 (NH 4) 2SO 4와 10 mg/L의 황화이온은 Na 2S*nH 2O로 사용하여 여과 멸균하여 첨가 최종 농도를 맞춤.
(3) 혐기 조건에서의 회분식 배양 시험
혐기 조건에서 황전환율 시험을 위한 회분식 배양은 하기 표 5와 같이 황전환율 스크린에서 사용한 측정용 배지 MABM medium를 측정 시 정확성을 높이기 위해 CO 3 2- 이온 성분을 제외하여 제조하였다. CO 3 2- 이온은 황산이온(SO 4 2-, sulfate)/황화이온 (S 2-, sulfide)측정 시 저해요소로 작용되는 것을 확인하였다. 이에 혐기조건부터 배제하고 수행하였다. 90ml의 MABM에 황산이온 (5,000 mg/L (NH 4) 2SO 4)또는 황화이온의 경우 ㈜에코바이오홀딩스로부터 제공받은 H 2S 가스(20,000 mg/L)를 사용하여 100ml을 실린지로 첨가하여 배지를 제작하였다. 혐기 조건은 N 2 기체를 8psi로 3분간 버블링하여 페니실린 병 내에 산소를 제거하고 N 2가스를 채워주었다. 호기 조건과 동일하게 테플론 코팅된 실리콘 격벽(teflon coated-silicon septa)과 알루미늄 씰(aluminum seal)로 밀봉된 150ml 페니실린 병에 배지를 넣어 외부환경과 차단하여 밀폐하였고, 각 균주의 접종량은 접종하여 초기 OD 600 값이 0.05가 되도록 (0.1g/L wet weight) 접종하였다. 배양은 37℃, 180 rpm 세이킹 인큐베이터에서 진행하였다. 또한 혐기 조건의 회분식 배양 시험부터 1차 회분식 실험에서 5종 균주 중 성장이 보이지 않은 3종의 균주는 제외하고 2종 ( Halomonas mongoliensis SS-102, Halomonas stevensii YM-7)만을 접종하여 수행하였으며, 균주를 접종하지 않은 것을 대조군(control)로 하였다.
화합물
NaCl
K 2HPO 4
KH 2PO 4
Na-acetate
SL-6
Distilled Water
60g
0.15g
0.08g
10mM
1ml
1000ml
pH 9.8
* 황산이온(SO 4 2-)과 황화이온 (S 2-)은 각각 최종 500 mg/L, 1 mg/L로 하였으며, 5,000mg/L의 (NH 4) 2SO 4와 황화이온은 H 2S(g)로 사용하여 여과 멸균하여 첨가 최종 농도를 맞춤.
(4) 탄소원 농도에 따른 회분식 배양 시험
탄소원 농도 별 황전환율 시험을 위한 회분식 배양은 표 6과 같이 MABM medium을 제조하였으며, 기본배지에서 탄소원인 Na-아세테이트의 농도를 10mM과 20mM로 제조하여 조건을 구분하여 회분식 배양 시험을 실시하였다. 측정 시 정확성을 높이기 위해 CO 3 2- 이온 성분을 제외하여 제조하였다. 또한, 90ml의 MABM에 황산이온 (5,000 mg/L (NH 4) 2SO 4)또는 황화이온의 경우 ㈜에코바이오홀딩스로부터 제공받은 H 2S 가스(20,000 mg/L)를 사용하여 동일하게 100ml을 실린지로 첨가하였다. 혐기 조건은 N 2 gas를 8psi로 3분간 버블링하여 페니실린 병 내에 산소를 제거하고 N 2 가스를 채워주었다. 동일하게 테플론 코팅된 실리콘 격벽(teflon coated-silicon septa)과 알루미늄 씰(aluminum seal)로 밀봉된 150ml 페니실린 병에 배지를 넣어 외부환경과 차단하여 밀폐하였고, 각 균주의 접종량은 접종하여 초기 OD 600 값이 0.05가 되도록 (0.1g/L wet weight) 접종하였다. 배양은 37℃, 180 rpm 셰이킹 인큐베이터에서 진행하였다. 또한 5종 균주 중 성장이 보이지 않은 3종의 균주는 제외하고 2종 ( Halomonas mongoliensis SS-102, Halomonas stevensii YM-7)만을 접종하여 수행하였으며, 균주를 접종하지 않은 것을 대조군(control)로 하였다.
화합물
NaCl
K 2HPO 4
KH 2PO 4
Na-acetate
SL-6
Distilled Water
60g
0.15g
0.08g
10mM/20 mM
1ml
1000ml
pH 9.8
* 황산이온(SO 4 2-)과 황화이온 (S 2-)은 각각 최종 500 mg/L, 1 mg/L로 하였으며, 5,000mg/L의 (NH 4) 2SO 4와 황화이온은 H 2S(g)로 사용하여 여과 멸균하여 첨가 최종 농도를 맞춤.
(5) 측정 및 분석 방법
1) 미생물 생장 측정
각 조건에서의 회분식 실험에서 초기 접종 후, 미생물의 생장을 시간 별로 시료를 채취하여 HACH DR 6000 분광 광도계를 활용하여 OD 600에서 측정하였다. 시료는 배양하고 있는 각 시료에서 5 ml을 주사기를 사용하여 채취하였다. 그 후 12ml 측정용 바이알(vial)에 넣어 단일파장 (600nm)에서 최초 기본배지를 블랭크(blank)로 하고 시료들을 측정하였다. 배양됨에 따라 측정되는 수치를 추적하여 측정하였으며, 각 균주 별 생장율을 계산하였다.
2) 황산이온 및 황화이온 측정
측정방법은 "Standard method for examination of water and wastewater" (4500-S)에 기반한 HACH kit를 활용하여 DR 6000 분광 광도계로 황전환 스크린 시험과 같이 동일하게 측정하였다. 각 시료 5 ml를 채취하여 0.2㎛ 실린지 필터로 여과하여 여과된 것을 황산이온 및 황화이온을 측정하였다.
① 황산이온 (SO 4 2-)은 측정은 USEPA (375.4 method)에서 인정한 방법으로 HACH 8051 방법을 사용하였다. 이는 파워 필로우(Power Pillows)를 적용하여 분광계에서 발현을 측정하는 방법이다. 시료 10ml를 측정에 사용하며, 본 실험시 1/2희석 또는 원액으로 측정하였다. 시료 자체를 Blank(영점)로 하여 SulfaVer 4 Reagent Powder Pillow(21067-69)를 넣고 흔들어 혼합하였다. 그 후 5분간 반응시간을 두고 발현된 시료를 450nm 파장에서 측정하였다. 측정을 진행하는 동한 배지에 있는 CO 3 2- 이온 성분이 측정 수치에 저해하는 요소로 작용하는 것으로 나타나 배지에서 CO 3 2- 이온 성분을 제외하고 배지를 제조하였다.
② 황화이온 (S 2-)은 측정은 USEPA (376.2 method)에서 인정한 방법으로 HACH 8131 Methylene blue method를 사용하였다. 이는 황화물 시약(Sulfide Reagent) 1, 황화물 시약(Sulfide Reagent) 2를 적용하여 분광계(spectrometer)에서 발현을 측정하는 방법이다. 방법에서는 탈이온수(DI water, deionized water)를 블랭크(blank)로 하여 측정하였으나, 본 연구에서 연속 희석 후 측정한 결과 사용한 배지를 사용한 경우와 다르게 측정이 되어 사용한 기본 배지를 블랭크로 하여 측정하였다. 0.2㎛ 실린지 필터로 여과된 시료 10 ml를 측정에 사용하였으며, 시료에 황화물 시약 1, 황화물 시약 2를 0.5 ml씩 각각 순차적으로 넣고 흔들어서 5분간 반응시간을 두고 발현된 시료를 665nm 파장에서 측정하였다. 그 결과 황화이온이 높은 경우 푸른색 계열의 농도가 짙게 나타났다.
(6) 회분식 실험 결과
1) 미생물 생장
1차 회분식 실험은 호기 조건에서 동일하게 선정된 5개 균주와 예비 1개 균주에 대해 우선 미생물의 생장을 측정하였다. 배양 시간별로 각 균주의 OD를 측정하여 도 2와 같이 나타났다. 5개 균주 및 예비 1개 균주 총 6개 균주 Halomonas alkaliphila SSJ-2, Halomonas alkaliantarctica 2SSJ-3, Halomonas titanicae YM-24, Halomonas mongoliensis SS-102, Halomonas stevensii YM-7, Methylobacterium komagatae SH-6 에서 2개 균주 Halomonas mongoliensis SS-102, Halomonas stavensii YM-7만이 미생물을 성장을 보였다. 특히, Halomonas mongoliensis SS-102의 경우 10시간까지 지수적인 성장(exponential growth)을 보였으며, 이후 조금씩 유지 및 감소되는 경향을 보였다. Halomonas stavensii YM-7의 경우, 24시간까지 성장을 보이지 않다가 48시간 이후 급속한 성장을 보였다. 본 결과를 토대로 1개 균주를 선정하는 데 있어서 6개 균주 중 2개의 균주를 선정하였다.
1차 호기 조건 회분식 실험에서 생장율이 좋았던 2개의 균주 Halomonas mongoliensis SS-102, Halomonas stavensii YM-7에 대해서 이후의 회분식 실험을 계속적으로 진행하였다. 또한, 1차에서 기본배지 성분 중 CO 3 2- 이온 성분이 황산이온(SO 4 2-) 및 황화이온 (S 2-)분석에 저해하는 요소로 작용하는 것으로 나타나 CO 3 2- 이온을 배제한 조건으로 다시 회분식실험을 수행하였다. 2개의 균주 Halomonas mongoliensis SS-102, Halomonas stavensii YM-7에 대해서 2,3차에 걸쳐 호기 조건에서 회분식 실험을 수행한 결과 도 3과 같이 나타났으며, 1차보다 더욱 생장된 것을 확인하였다. 12시간까지 지수 성장을 진행하였고, 이후 21시간까지 성장률이 감소하였으며, 21시간이후는 OD 수치가 크게 증가하지 않는 것으로 나타나 생장 정체기(stationary phase)로 들어선 것으로 사료되었다. 한편, 혐기 조건에서는 호기 조건에 비해서 성장이 낮았다.
2) 황전환율 측정
① 황산이온(SO 4 2-)
호기 조건 회분식 실험에서 선정 5개 균주의 성장률을 조사한 결과 2개의 균주가 가장 좋았기 때문에 황산이온(SO 4 2-)의 프로파일에서는 균주의 생장율이 좋았던 2개의 균주 Halomonas mongoliensis SS-102, Halomonas stavensii YM-7를 시험하였다. 호기 조건의 회분식 실험에서 황산이온(SO 4 2-)의 변화를 측정한 결과 도 4와 같이 나타났다. 황산이온(SO 4 2-)의 경우 두 균주 모두 48시간 이후 최초 300 mg/L 황산이온(SO 4 2-)에서 45%의 제거율을 보였다. 두 균주 모두 6시간까지 급속하게 제거되는 양상이 나타났으며, Halomonas mongoliensis SS-102는 7시간에는 60%의 제거율이 보였다. 전체적으로 황산이온(SO 4 2-)의 경우 감소되었지만, 시간별로 감소와 증가되는 것이 보였다.혐기 조건의 경우, 황산이온(SO 4 2-)의 변화를 측정한 결과 두 균주 모두 90시간까지 큰 변화를 보이지 않았다.
② 황화이온(S 2-)
호기 조건 회분식 실험에서 황화이온(S 2-)의 프로파일 시험에서 선정 5개 균주 중 1개의 균주 Halomonas alkaliphila SSJ-2가 성장이 전혀 보이지 않아 제외한 4개의 균주만을 시험하였다. 도 5와 같이 4개 균주 모두 4시간까지 황산이온(SO 4 2-)의 감소가 급격하게 보였다. 호기 조건의 회분식 실험에서 황화이온(S 2-)의 변화를 측정한 결과 황화이온(S 2-)이 최종적으로 SS-102, YM-7, YM-24, SH-6 균주들이 각각 98.6%, 96.7%, 98.1%, 97.5%의 제거율을 보였다. 혐기 조건 회분식 실험에서 황화이온(S 2-)의 프로파일 시험에서 황화이온(S 2-)이 최종적으로 SS-102, YM-7, YM-24, SH-6 균주들이 각각 98.3%, 97.3%, 97.2%, 98.0%의 제거율을 보였다.
3) 탄소 농도에 따른 회분식 실험 결과
호기, 혐기 조건의 회분식 실험 결과 균주의 성장은 호기 조건에서 높게 나타났다. 그에 따라 탄소원 Na2-아세테이트 농도(10mM/ 20mM)에 따라 호기 조건에서 가장 생장율이 좋은 SS-102, YM-7 균주에 대하여 미생물의 생장을 측정하였다. 배양 시간별로 각 균주의 OD를 측정하여 도 6 및 도 7과 같이 나타내었으며, Halomonas mongoliensis SS-102와 Halomonas stevensii YM-7모두 24시간까지 지수적인 성장(exponential growth)을 보였으며, 이후 조금씩 유지되는 경향을 보였다. 또한 탄소원 아세테이트 농도에 따라 성장률이 증가되는 것을 보였다.
다만, 아세테이트 10mM의 낮은 농도에서 SS-102 균주가 YM-7 균주보다 성장률이 좀 더 빠르게 좋아지는 것을 확인하였고, 시간이 지남에 따라 TM-7균주는 균주의 성장이 유지되었지만, SS-102 균주는 감소되는 경향을 보였다. 그러나 혐기 조건에서는 두 균주 모두 뚜렷한 성장을 보이지 않았다.
황전환율 측정은 탄소원 농도 별로 2개의 균주 Halomonas mongoliensis SS-102, Halomonas stavensii YM-7를 시험한 결과, 황산이온(SO 4 2-)는 호기/혐기 조건에서 변화율이 크게 나타나지 않았으나. 회분식 실험에서 황화이온(S 2-)의 경우 최종 24시간에 제거가 모든 조건에서 됨을 확인하였고, 초기 4시간까지 탄소원 농도가 높았을 때 2배 이상 제거가 더 많이 되는 것을 확인하였다.
황전환 스크린 테스트에서 우수한 5개 균주 및 예비 1개 균주 총 6개 균주 H alomonas alkaliphila SSJ-2, Halomonas alkaliantarctica 2SSJ-3, Halomonas titanicae YM-24, Halomonas mongoliensis SS-102, Halomonas stevensii YM-7, Methylobacterium komagatae SH-6를 회분식 실험을 실시하였다. 회분식 실험한 결과 2개 균주 Halomonas mongoliensis SS-102, Halomonas stavensii YM-7가 가장 좋은 미생물 성장과 황전환 효율을 보였다. SS-102와 YM-7균주가 호기조건에서 혐기 조건에서보다 황전환에 높은 것으로 나타났고, 황산이온 보다 황화이온 를 이용하여 황전환을 하는 것으로 나타났다. 또한, 탄소원으로서 아세테이트(Na-Acetate)의 농도가 높을수록 황화이온의 황전환을 높게 이루어짐을 확인하였다. 회분식 실험 결과를 토대로, Halomonas mongoliensis SS-102, Halomonas stavensii YM-7가 바이오황 생산 공정수내의 미생물 중에서 가장 효율적인 균주로 나타났으며 황전환하기 위한 최적 조건으로 온도37℃, pH 9.8, NaCl농도 6%, 탄소원 아세테이트 농도 20mM에서 호기 조건에서 황전환율이 높은 것으로 나타났다. 또한, 이때의 미생물 성장이 가장 좋은 것으로 나타났다. 미생물 성장은 탄소원 아세테이트 농도와 황화이온(S 2-) 농도와 비례하는 것으로 나타났다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
[미생물 기탁]
기탁기관명: 농업생명공학연구원
수탁번호: KACC81111BP
수탁일자: 2019.10.21
기탁기관명: 농업생명공학연구원
수탁번호: KACC81112BP
수탁일자: 2019.10.21
Figure PCTKR2020018093-appb-img-000001
Figure PCTKR2020018093-appb-img-000002

Claims (12)

  1. 할로모나스 몽골리엔시스( Halomonas mongoliensis), 할로모나스 스타벤시( Halomonas stavensii) 또는 이들의 조합인, 할로모나스 속 황 생산 미생물.
  2. 제1항에 있어서, 상기 할로모나스 몽골리엔시스( Halomonas mongoliensis)는 할로모나스 몽골리엔시스( Halomonas mongoliensis) SS-102(KACC 81111BP)인, 할로모나스 속 황 생산 미생물.
  3. 제1항에 있어서, 상기 할로모나스 몽골리엔시스( Halomonas mongoliensis)는 할로모나스 스타벤시( Halomonas stavensii) YM-7(KACC 81112BP)인, 할로모나스 속 황 생산 미생물.
  4. 제1항 내지 제3항 중 어느 한 항의 할로모나스 속 황 생산 미생물을 이용한, 황의 생산 방법.
  5. 제4항에 있어서, 상기 할로모나스 속 황 생산 미생물을 황산이온(SO 4 2-), 황화이온(S 2-) 또는 이들의 조합을 포함하는 조건 하에서 배양하는 단계를 포함하는, 황의 생산 방법.
  6. 제5항에 있어서, 상기 황산이온(SO 4 2-) 농도는 100 내지 500 mg/L 범위인, 황의 생산 방법.
  7. 제5항에 있어서, 상기 황화이온(S 2-) 농도는 1.0 내지 10 mg/L 범위인, 황의 생산 방법.
  8. 제4항에 있어서, 상기 할로모나스 속 황 생산 미생물을 36-40℃, pH 8-10.5, NaCl 농도 4-8%, 탄소원 아세테이트 농도 15-30mM의 호기 조건 또는 혐기 조건에서 배양하는 단계를 포함하는, 황의 생산 방법.
  9. 제1항 내지 제3항 중 어느 한 항의 할로모나스 속 황 생산 미생물을 이용한, 황화 수소의 제거 방법.
  10. 제9항에 있어서, 황화수소가 용해된 물에 상기 할로모나스 속 황 생산 미생물을 투입하여 배양하는 단계를 포함하는, 황화 수소의 제거 방법.
  11. 제10항에 있어서, 상기 황화수소가 용해된 물은 하수, 폐수, 오수 또는 이들의 조합인, 황화 수소의 제거 방법.
  12. 제10항에 있어서, 상기 배양하는 단계는 36-40℃, pH 8-10.5, NaCl 농도 4-8%, 탄소원 아세테이트 농도 15-30mM의 호기 조건 또는 혐기 조건에서 수행되는, 황화 수소의 제거 방법.
PCT/KR2020/018093 2019-12-12 2020-12-10 황 생산 미생물 및 이를 이용한 황의 생산 방법 WO2021118276A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190165352A KR20210074556A (ko) 2019-12-12 2019-12-12 황 생산 미생물 및 이를 이용한 황의 생산 방법
KR10-2019-0165352 2019-12-12

Publications (2)

Publication Number Publication Date
WO2021118276A2 true WO2021118276A2 (ko) 2021-06-17
WO2021118276A3 WO2021118276A3 (ko) 2021-08-05

Family

ID=76330835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018093 WO2021118276A2 (ko) 2019-12-12 2020-12-10 황 생산 미생물 및 이를 이용한 황의 생산 방법

Country Status (2)

Country Link
KR (2) KR20210074556A (ko)
WO (1) WO2021118276A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044494A (zh) * 2021-10-29 2022-02-15 雅邦绿色过程与新材料研究院南京有限公司 一种提高生物硫颗粒中硫含量的系统及方法
CN114958687A (zh) * 2022-06-24 2022-08-30 广州金鹏环保工程有限公司 一种耐碱的史蒂文斯盐单胞菌及其在处理硫化氢废气中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129224B (zh) * 2019-05-14 2022-03-18 中国科学院生态环境研究中心 一种耐盐反硝化菌及其菌剂的制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301437A (ja) * 2006-05-09 2007-11-22 Eco World:Kk 硫化水素低減方法及び硫化水素低減装置
US9096449B1 (en) * 2012-05-23 2015-08-04 Flex-Chem, LLC Method for treating flowback water from hydraulic fracturing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044494A (zh) * 2021-10-29 2022-02-15 雅邦绿色过程与新材料研究院南京有限公司 一种提高生物硫颗粒中硫含量的系统及方法
CN114044494B (zh) * 2021-10-29 2024-06-04 中国科学院过程工程研究所 一种提高生物硫颗粒中硫含量的系统及方法
CN114958687A (zh) * 2022-06-24 2022-08-30 广州金鹏环保工程有限公司 一种耐碱的史蒂文斯盐单胞菌及其在处理硫化氢废气中的应用
CN114958687B (zh) * 2022-06-24 2023-06-02 广州金鹏环保工程有限公司 一种耐碱的史蒂文斯盐单胞菌及其在处理硫化氢废气中的应用

Also Published As

Publication number Publication date
WO2021118276A3 (ko) 2021-08-05
KR102564256B1 (ko) 2023-08-08
KR20210074556A (ko) 2021-06-22
KR20220006131A (ko) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2021118276A2 (ko) 황 생산 미생물 및 이를 이용한 황의 생산 방법
Ding et al. Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp. UKM4 and Chlorella pyrenoidosa UKM7
Jalandoni-Buan et al. Characterization and identification of Congo red decolorizing bacteria from monocultures and consortia
CN101096644B (zh) 一株施氏假单胞菌及其在有机磷农药降解中的应用
CN109055282B (zh) 一株肺炎克雷伯氏菌新菌株及其分离方法和应用
CN111676147A (zh) 一种富集和分离四氯乙烯脱氯菌的方法及应用
Fang et al. Generation of zero valent sulfur from dissimilatory sulfate reduction under methanogenic conditions
CN108060101B (zh) 海洋迪茨氏菌W02-3a及其在脱氮中的应用
JP5608725B2 (ja) 新規微生物、セレン酸化合物還元製剤、セレン酸化合物の還元方法、セレン酸化合物の除去方法、及び金属セレンの製造方法
CN111378592B (zh) 地衣芽孢杆菌及该菌处理恶臭有机废水净化水体的方法
WO2020153607A1 (ko) 황화수소 제거용 미생물 군집 및 이의 용도
KR20180061642A (ko) 미세조류 및 박테리아를 이용한 코크스 폐수의 처리방법
CN112980763A (zh) 一种苯胺废水优势菌的驯化及筛选方法
KR100828566B1 (ko) 탈질 성능이 우수한 슈도모나스 플루오레센스 k4 균주
CN113862180B (zh) 一种恶臭假单胞菌及其在降解白酒废水中总氮的应用
Liu et al. Induction conditions and kinetic properties of quinoline biodegradation by a newly isolated bacterial strain
KR20100048352A (ko) 탈질 활성이 우수한 크렙시엘라 뉴모니애 kc-101
CN110964652B (zh) 一种二硝基甲苯磺酸钠降解菌及其筛选方法与应用
WO2022065539A1 (ko) 다환 방향족 탄화수소 분해 활성을 갖는 신규한 피그멘티파가 쿨라이 균주 및 이의 용도
CN110004085A (zh) 分离自喷漆废水底泥的短单胞杆菌lm-r及其应用
CN115725455B (zh) 一株α-萘酚降解细菌及其应用
CN115851516B (zh) 一株耐高温高盐好氧反硝化菌及培养方法和应用
CN114703086B (zh) 分离自冶炼厂土壤的类芽孢杆菌lyx-1及其应用
CN114032197B (zh) 一种Pseudocitrobacter faecalis B3-1及应用
CN112553105A (zh) 一种异养硝化-好氧反硝化菌及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899166

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899166

Country of ref document: EP

Kind code of ref document: A2