WO2021117447A1 - 水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システム - Google Patents

水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システム Download PDF

Info

Publication number
WO2021117447A1
WO2021117447A1 PCT/JP2020/043088 JP2020043088W WO2021117447A1 WO 2021117447 A1 WO2021117447 A1 WO 2021117447A1 JP 2020043088 W JP2020043088 W JP 2020043088W WO 2021117447 A1 WO2021117447 A1 WO 2021117447A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
formic acid
hydrogen gas
formate
aqueous solution
Prior art date
Application number
PCT/JP2020/043088
Other languages
English (en)
French (fr)
Inventor
広和 松田
誠人 平野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US17/783,730 priority Critical patent/US20230002221A1/en
Priority to CN202080085654.2A priority patent/CN114787076A/zh
Priority to KR1020227019177A priority patent/KR20220112775A/ko
Priority to EP20899139.8A priority patent/EP4074651A4/en
Publication of WO2021117447A1 publication Critical patent/WO2021117447A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/466Apparatus therefor comprising the membrane sequence BC or CB
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2669Distillation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a hydrogen storage method, a hydrogen gas production method, and a hydrogen gas production system.
  • organic hydrides are attracting attention because of their advantages such as ease of handling, high hydrogen storage density, and light weight. Since some organic hydrides are considered dangerous goods, they may be used as a low-concentration solution. Further, when hydrogen is taken out by a dehydrogenation reaction, it is necessary to separate and recover hydrogen with high efficiency. Hydrocarbon compounds such as formic acid, benzene, toluene, biphenyl, naphthalene, cyclohexane, and methylcyclohexane are known as organic hydrides. Among them, formic acid is attracting attention because it is considered to be an excellent compound as a hydrogen storage material because it requires low energy for the dehydrogenation reaction and can be easily handled.
  • formic acid When formic acid is used as a hydrogen storage material, formic acid is produced in a basic solution by contacting carbon dioxide with hydrogen or by an electrochemical reduction of carbon dioxide. However, the reaction is stopped by equilibrium, and only a low concentration formic acid solution is obtained. To reduce transportation costs, it is necessary to obtain a high concentration formic acid solution. In addition, it is necessary to separate and recover formic acid from the formic acid solution with high efficiency.
  • Patent Document 1 uses a catalyst for the purpose of producing formic acid by hydrogenation of carbon dioxide, producing hydrogen by dehydrogenation of formic acid, and storing and producing hydrogen with high efficiency and high energy efficiency.
  • the production of formic acid and / and formate and the catalytic method for producing hydrogen from formic acid and / and formate have been studied.
  • Patent Document 1 The technique described in Patent Document 1 relates to the production of formic acid and a catalyst for producing hydrogen by dehydrogenation of formic acid, and the concentration of hydrogen storage material has not been studied.
  • the present invention is a hydrogen storage method capable of storing hydrogen in an excellent handling state, concentrating it by a simple method, and producing hydrogen gas with high efficiency by using an alkali metal formate as a hydrogen storage material.
  • a method for producing hydrogen gas and a hydrogen gas production system are provided.
  • a method for producing hydrogen gas using an alkali metal formate as a hydrogen storage material The first step of concentrating the aqueous solution containing the formic acid alkali metal salt, and A method for producing hydrogen gas, which comprises a second step of protonating at least a part of the alkali metal formate formic acid by electrodialysis to generate formic acid, and a third step of decomposing the formic acid to produce the hydrogen gas. .. [2] The method for producing hydrogen gas according to [1], further comprising a step of producing the alkali metal formate in an aqueous solution using carbon dioxide in the presence of an alkali metal salt.
  • a hydrogen storage method comprising a step of producing a formic acid alkali metal salt in an aqueous solution using carbon dioxide in the presence of an alkali metal salt and a first step of concentrating the aqueous solution containing the formic acid alkali metal salt.
  • a hydrogen gas production system that uses an alkali metal formate as a hydrogen storage material.
  • a concentrator for concentrating an aqueous solution containing the alkali metal formic acid salt A hydrogen gas production system including an electrodialysis apparatus that protonates at least a part of the alkali metal formate formic acid by electrodialysis to generate formic acid, and a formic acid decomposition apparatus that decomposes the formic acid to produce hydrogen gas.
  • a hydrogen storage method, a hydrogen gas production method, and a hydrogen gas production system which can store hydrogen in a state of excellent handling, can be concentrated by a simple method, and can produce hydrogen gas with high efficiency. be able to.
  • FIG. 1 is a diagram for explaining a second step according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a hydrogen gas production system according to an embodiment of the present invention.
  • the hydrogen gas production method is a method for producing hydrogen gas using an alkali metal formate as a hydrogen storage material, the first step of concentrating an aqueous solution containing the alkali metal formate, and electricity. It includes a second step of protonating at least a part of the alkali metal formate formic acid by dialysis to produce formic acid, and a third step of decomposing the formic acid to produce hydrogen gas.
  • hydrogen can be stored in a state of excellent handling, concentrated by a simple method, and hydrogen gas can be produced with high efficiency.
  • the hydrogen gas production method further includes a step of producing a formic acid alkali metal salt in an aqueous solution using carbon dioxide in the presence of an alkali metal salt (formic acid alkali metal salt production step). May be good.
  • Hydrogen can be stored as formic acid alkali metal salt by the formic acid alkali metal salt production step.
  • the alkali metal formate has a high hydrogen storage density and can be easily handled. By using the alkali metal formate as a hydrogen storage material, it is safe and stable as a chemical substance, so that it can be stored for a long period of time. There is.
  • the aqueous alkali metal formate product produced in this step can be used in the first step.
  • an inorganic salt of alkali metal can be used.
  • the alkali metal salt may be used alone or in combination of two or more.
  • alkali metal ion constituting the cation part of the alkali metal salt examples include lithium, sodium, potassium, rubidium, and cesium ions. Among these alkali metal ions, sodium ion or potassium ion is preferable.
  • the anion portion of the alkali metal salt is not particularly limited as long as it can produce a formic acid alkali metal salt.
  • the anion portion include hydroxide ion (OH ⁇ ), chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ), iodide ion (I ⁇ ), nitrate ion (NO 3- ), and sulfate ion (NO 3-).
  • SO 4 2- phosphate ion (PO 4 2-), borate (BO 3 3-), hydrogen carbonate ions (HCO 3 -), and 2- carbonate ion (CO 3) and the like, these It is preferable to include at least one selected.
  • alkali metal salt examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium chloride, sodium chloride, potassium chloride, rubidium chloride, cesium chloride, lithium sulfate, and sulfuric acid.
  • examples thereof include sodium, potassium sulfate, rubidium sulfate, cesium sulfate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, cesium hydrogen carbonate, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.
  • Hydroxide alkali metal salts, hydrogen carbonate alkali metal salts, or alkali metal carbonates are preferable from the viewpoint that by-products are not easily mixed when the alkali metal formates are formed and the operations after the second step are not complicated.
  • Sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate are more preferred.
  • the content of the alkali metal salt used in the alkali metal formate formation step is preferably 0.05 mol / L or more, and more preferably 0.1 mol / L or more, from the viewpoint of increasing the amount of alkali metal formate produced. It is preferably 0.2 mol / L or more, and more preferably 0.2 mol / L or more. Further, from the viewpoint of resource saving, it is preferably 20 mol / L or less, more preferably 15 mol / L or less, and further preferably 10 mol / L or less.
  • the method for producing an alkali metal formate in an aqueous solution using carbon dioxide in the presence of an alkali metal salt is not particularly limited, and hydrogenation of carbon dioxide (reaction with hydrogen) is performed in the presence of an alkali metal salt.
  • Method electrolysis of carbon dioxide in the presence of alkali metal salt, reduction of carbon dioxide by photocatalyst in the presence of alkali metal salt, carbon dioxide by biological method such as enzyme in the presence of alkali metal salt
  • a method of reduction or a method of producing an alkali metal formate formic acid by performing each method in the absence of an alkali metal salt and reacting with the alkali metal salt after producing formic acid may be used.
  • the catalyst used is not particularly limited as long as formic acid can be produced.
  • the metal element include Fe, Ru, Os, Hs, Co, Rh, Ir, Mt, Ni, Pd, Pt, and Ds. From the viewpoint of catalytic performance, Ru, Ir, Fe, and Rh Is preferable, and Ru and Ir are more preferable.
  • the catalyst used in the embodiment of the present invention is preferably one that is soluble in water, an organic solvent, or the like, and more preferably a compound containing a metal element (metal element compound).
  • Metal element compounds include hydrides, oxide salts, halide salts (chloride salts, etc.), hydroxide salts, carbonates, hydrogen carbonates, sulfates, nitrates, phosphates, and hoes of metal elements.
  • Salts with inorganic acids such as acid salts, halides, perhalonates, sulphates, hypohalites, and thiocyanates; alkoxide salts, carboxylates (acetates, (meth) acrylic acids) Salts with organic acids such as salts) and sulfonates (such as trifluoromethanesulfonates); organic bases such as amide salts, sulfonamide salts, and sulfonimide salts (such as bis (trifluoromethanesulfonyl) imide salts).
  • inorganic acids such as acid salts, halides, perhalonates, sulphates, hypohalites, and thiocyanates
  • alkoxide salts carboxylates (acetates, (meth) acrylic acids)
  • Salts with organic acids such as salts
  • sulfonates such as trifluoromethanesulfonates
  • organic bases such as amide salts, sulfonamide salt
  • a halide salt, a complex containing a phosphorus compound, a complex containing a nitrogen compound, and a complex or salt containing a compound containing phosphorus and nitrogen are preferable from the viewpoint that the production efficiency of formic acid can be further increased.
  • These may be used alone or in combination of two or more.
  • metal element compound a commercially available compound can be used, and a compound produced by a known method or the like can also be used.
  • Known methods include, for example, the method described in Japanese Patent No. 5896539 and Chem. Rev. 2017, 117, 9804-9838, Chem. Rev. The methods described in 2018, 118, 372-433 and the like can be used.
  • the amount of the catalyst used is not particularly limited as long as formic acid or formic acid alkali metal salt can be produced.
  • the amount of the metal element compound used is preferably 0.1 ⁇ mol or more, preferably 0.5 ⁇ mol or more, with respect to 1 L of the solvent in order to sufficiently exhibit the catalytic function. More preferably, it is 1 ⁇ mol or more. Further, from the viewpoint of cost, it is preferably 1 mol or less, more preferably 10 mmol or less, and further preferably 1 mmol or less. When two or more kinds of metal element compounds are used, the total amount used may be within the above range.
  • the solvent used for producing formic acid or alkali metal formatic salt is not particularly limited, and water, ethylene glycol, polyethylene glycol, glycerin, methanol, ethanol, propanol, pentanol and the like can be used. However, more preferably, water, ethylene glycol, polyethylene glycol and glycerin can be used, and more preferably water can be used. Further, formic acid may be produced by using a mixed solvent of water and a solvent that is mixed with water, and then the solvent that is mixed with water is distilled off to obtain an aqueous solution of formic acid or an alkali metal formic acid.
  • the concentration of the alkali metal formate produced by the alkali metal formate formation step is preferably 0.01 mol / L or more, more preferably 0.05 mol / L or more, from the viewpoint of the concentration efficiency of the first step. It is preferably 0.1 mol / L or more, and more preferably 0.1 mol / L or more. Further, from the viewpoint of preventing the time required for the production process of formic acid or alkali metal formic acid from becoming long, it is preferably 10 mol / L or less, more preferably 5 mol / L or less, and 3 mol / L or less. Is even more preferable.
  • the first step is a step of concentrating an aqueous solution containing an alkali metal formate.
  • the first step may include a step (concentration step) of concentrating the aqueous solution containing the formic acid alkali metal salt using a separation membrane unit provided with a reverse osmosis membrane. Further, a step of distilling water from an aqueous solution containing an alkali metal formate (distillation step) may be included.
  • the first step may include either one of the concentration step and the distillation step, or may include both.
  • the order and number of times the concentration step and the distillation step are performed are not limited, and for example, the concentration step and the distillation step may be included in this order, and the distillation step, the concentration step, and the distillation step may be included in this order. Since the energy required for the distillation step tends to increase in the region where the alkali metal formate is low in concentration, it is preferable to include the concentration step and the distillation step in this order from the viewpoint of production efficiency. Since the aqueous solution containing the alkali metal formate is concentrated by the first step and the volume is reduced, there are advantages that the cost of transportation and storage can be suppressed and the handling is excellent.
  • the formic acid alkali metal salt aqueous solution may be concentrated until a solid formic acid alkali metal salt is precipitated. Further, the precipitated alkali metal formic acid salt may be dried.
  • the first step may be a step of obtaining a solid formic acid alkali metal salt from an aqueous solution containing a formic acid alkali metal salt.
  • the concentration step is a step of concentrating an aqueous solution containing an alkali metal formate using a separation membrane unit provided with a reverse osmosis membrane.
  • the degree of concentration by the concentration step can be appropriately selected.
  • the concentration of the alkali metal formate in the aqueous solution of the alkali metal formate after concentration in the concentration step is not particularly limited as long as it is suitable for the subsequent operation, but is 0.1 mol / L from the viewpoint of energy efficiency in the distillation step. It is preferably 0.2 mol / L or more, more preferably 0.5 mol / L or more, and further preferably 0.5 mol / L or more.
  • the saturation concentration of the alkali metal formate is preferably 7 mol / L or less, more preferably 5 mol / L or less. Is even more preferable.
  • the separation membrane unit according to the embodiment of the present invention includes a reverse osmosis membrane (RO membrane (RO: Reverse Osmosis)).
  • the separation membrane unit may have a reverse osmosis membrane housed in a housing, and examples thereof include a flat membrane plate frame type, a pleated type, and a spiral type.
  • the reverse osmosis membrane is not particularly limited as long as it is difficult for formicate ions and alkali metal ions to permeate and can concentrate an aqueous solution of alkali metal formate, and the reverse osmosis membrane (RO membrane (RO: River Osmosis)) and nanofill It may be a torsion membrane (NF membrane (NF)), a microfiltration membrane (MF membrane), or an ultrafiltration membrane (UF membrane), but an RO membrane or an NF membrane is used from the viewpoint of pore size. Is preferable.
  • the pore size of the reverse osmosis membrane is preferably 1 ⁇ or more, more preferably 2 ⁇ or more, and even more preferably 5 ⁇ or more from the viewpoint of the permeation rate of the aqueous solution. Further, from the viewpoint of catalyst recovery rate, it is preferably 50 ⁇ or less, more preferably 20 ⁇ or less, and further preferably 10 ⁇ or less.
  • Reverse osmosis membrane for example, Nano-SW manufactured by Nitto Denko Corporation, PRO-XS1 manufactured by Nitto Denko Corporation, ESPA-DSF manufactured by Nitto Denko Corporation, CPA7 manufactured by Nitto Denko Corporation, and Nitto Denko Corporation.
  • SWC5-LD manufactured by Nitto Denko KK can be mentioned, and ESPA-DSF manufactured by Nitto Denko KK or CPA7 manufactured by Nitto Denko KK is preferably used.
  • the concentration step can be performed under normal pressure or pressure using, for example, a separation device equipped with a pressure-resistant container.
  • the pressure in the second step can be adjusted by introducing an inert gas such as nitrogen gas into the pressure-resistant container from a cylinder connected to the pressure-resistant container.
  • the pressure in the concentration step is more preferably 0.1 MPa or more, and even more preferably 0.3 MPa or more, from the viewpoint of the permeation rate of the solution. Further, from the viewpoint of energy cost due to membrane separation, it is preferably 10.0 MPa or less, more preferably 8 MPa or less, and further preferably 6 MPa or less.
  • the degree of concentration by the distillation step can be appropriately selected.
  • the concentration of the alkali metal formate in the aqueous solution of the alkali metal formate concentrated by the distillation step is not particularly limited as long as it is a concentration suitable for the subsequent operation. For example, it is preferably 1 mol / L or more, more preferably 3 mol / L or more, and further preferably 5 mol / L or more.
  • water may be distilled off until the alkali metal formate is precipitated, or the alkali metal formate may be evaporated to dryness until the alkali metal formate is obtained as a solid.
  • the alkali metal formate When concentrating an aqueous solution of formic acid, it is difficult to separate and concentrate by distillation because formic acid and water azeotrope, or a large amount of energy is required. It facilitates the separation of water and formic acid alkali metal salt, and formic acid alkali metal salt can be obtained in a high-concentration aqueous solution or solid.
  • the alkali metal formate is a solid, it can be used as a hydrogen storage material with lower transportation and storage costs and better handling.
  • a known method can be used as the method for distilling water.
  • a known device such as a rotary evaporator or a distillation system may be used, and the degree of decompression and the temperature at this time should be appropriately selected. Can be done.
  • the pressure in the distillation step is preferably normal pressure or less, more preferably 500 mmHg or less, and even more preferably 300 mmHg or less from the viewpoint of lowering the distillation temperature.
  • the precipitated solid may be dried to dryness. Drying is preferably carried out in combination with one or more operations selected from ventilation, heating and depressurization. Among these, it is preferable to perform drying under reduced pressure or normal pressure while heating at preferably 50 ° C. or higher, more preferably 70 ° C. or higher, preferably 200 ° C. or lower, and more preferably 170 ° C. or lower.
  • the alkali metal formate salt is preferably a sodium formate salt because it has low solubility in water and is easily precipitated in a solid, and has low deliquescent property as a solid and is excellent in handleability.
  • the aqueous alkali metal formate concentrate concentrated in the first step may be used as it is in the second step, or pure water may be added as needed to adjust the concentration.
  • the alkali metal formate formic acid is obtained as a solid by concentration, the alkali metal formate salt can be dissolved in pure water and used in the second step.
  • the second step is a step of protonating at least a part of the alkali metal formate formic acid by electrodialysis to produce formic acid.
  • a formic acid alkali metal salt aqueous solution is used in the second step.
  • at least a part of the alkali metal formate is protonated by electrodialysis by treating the aqueous solution containing the alkali metal formate concentrated in the first step with an electrodialysis machine.
  • a concentrated formic acid solution can be obtained.
  • the aqueous solution containing the alkali metal formate concentrated in the first step may be used as it is, or pure water may be added as needed to adjust the concentration.
  • an aqueous solution obtained by dissolving an alkali metal formate formic acid evaporated to dryness in the first step in pure water may be used.
  • the concentration of the alkali metal formate in the aqueous alkali metal formate used for electrodialysis is preferably 0.5 mol / L or more, more preferably 1.0 mol / L or more, from the viewpoint of dialysis efficiency. It is more preferably 5.5 mol / L or more, more preferably 10 mol / L or less, more preferably 7 mol / L or less, and further preferably 7 mol / L or less.
  • the proportion of the alkali metal formate protonated by the second step is the amount of formic acid in the third step relative to the initial molar amount of the alkali metal formate in the alkali metal formate aqueous solution. From the viewpoint of decomposition rate, 10% or more is preferably protonated, 20% or more is more preferably protonated, and 30% or more is more preferably protonated.
  • FIG. 1 is a schematic view showing an example of an electrodialysis apparatus.
  • the electrodialysis apparatus shown in FIG. 1 is provided with a plurality of bipolar membranes and cation exchange membranes, and these bipolar membranes and cation exchange membranes are alternately arranged between the anode and the cathode, and each bipolar membrane is used.
  • a salt chamber is formed between the cation exchange membrane arranged on the cathode side
  • an alkali chamber is formed between each bipolar membrane and the cation exchange membrane arranged on the anode side.
  • the alkali metal formate formic acid that is circulated and supplied to the salt chamber while generating alkali metal hydroxide in the alkali chamber is converted to formic acid.
  • the formic acid alkali metal salt can be protonated by a simple method in the second step to obtain a formic acid solution, which can be used in the third step.
  • a simple method in the second step to obtain a formic acid solution, which can be used in the third step.
  • the third step is a step of decomposing formic acid to produce hydrogen gas.
  • the formic acid solution obtained in the second step can be used in the third step.
  • the reaction for decomposing formic acid to produce hydrogen gas may be a reaction for producing a mixed gas containing hydrogen and carbon dioxide from formic acid using a catalyst.
  • the reaction conditions are not particularly limited and can be appropriately adjusted according to the concentration of the formic acid solution and the type of catalyst. The reaction conditions can be changed as appropriate during the reaction process.
  • the form of the reaction vessel used for the reaction is also not particularly limited.
  • the catalyst used may be either a homogeneous catalyst or a heterogeneous catalyst.
  • the catalyst used in the embodiment of the present invention is an organic metal complex containing at least one transition metal selected from iridium, rhodium, ruthenium, cobalt, osminium, nickel, iron, palladium, platinum, and gold, or a salt of these complexes. It is preferably present, and more preferably it contains iridium.
  • organometallic complexes containing a transition metal its counter ion is not particularly limited, as the anion, for example, hexafluorophosphate ion (PF 6 -), tetrafluoroborate ion (BF 4 -), hydroxide ions (OH -), acetate ion, carbonate ion, phosphate ion, sulfate ion, nitrate ion, halide ion (e.g.
  • hypohalous acid ion e.g. hypofluorite ion, hypochlorite ion, hypobromous acid ion, hypoiodous ion
  • nitrous Halote ions eg, chlorofluorous acid ion, chlorite ion, bromine acid ion, iuite ion, etc.
  • halogenate ion eg, fluorous acid ion, chlorate ion, bromine ion, iodate ion, etc.
  • perhalogenated acid ion e.g., perfluorinated acid ion, perchloric acid ion, perbromic acid ion, periodic acid ion, etc.
  • trifluoromethanesulfonate ion OSO 2 CF 3
  • a commercially available catalyst can be used, or a catalyst produced by a known method or the like can also be used.
  • Known methods include, for example, the method described in Japanese Patent Application Laid-Open No. 2018-114495, Yuichiro Himeda; Nobuko Onozawa- Komatsuzaki; Satoru Miyazawa; Hideki Sugihara; Taka. Chem. Euro. J. The method described in 2008, 14, 11076-11081 and the like can be used.
  • the amount of the catalyst used is not particularly limited as long as hydrogen can be produced. From the viewpoint of the rate of the dehydrogenation reaction, it is preferably 0.00035% by mass or more, more preferably 0.0035% by mass or more, and 0.035% by mass or more with respect to the solvent of the formic acid solution. It is more preferable to have.
  • the amount of the catalyst used is preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass or less, based on the solvent of the formic acid solution, from the viewpoint of catalyst durability. Is even more preferable. When two or more types of catalysts are used, the total amount used may be within the above range.
  • a solvent may be used in the third step according to the embodiment of the present invention.
  • the solvent is preferably a solvent that dissolves the catalyst to make it uniform, and is not particularly limited, but water, ethylene glycol, polyethylene glycol, glycerin, methanol, ethanol, propanol, pentanol, tetrahydrofuran, dimethylformamide and the like can be used. Although it can be used, more preferably water, ethylene glycol, polyethylene glycol, glycerin, and more preferably water can be used.
  • the reaction temperature is not particularly limited, but is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, and even more preferably 60 ° C. or higher in order to allow the reaction to proceed efficiently. Further, from the viewpoint of energy efficiency, it is preferably 200 ° C. or lower, more preferably 100 ° C. or lower, and even more preferably 90 ° C. or lower.
  • the reaction time is not particularly limited, but is preferably 0.5 hours or more, more preferably 1 hour or more, and further preferably 2 hours or more, for example, from the viewpoint of sufficiently securing the amount of hydrogen produced. preferable. Further, from the viewpoint of cost, it is preferably 24 hours or less, more preferably 12 hours or less, and further preferably 6 hours or less.
  • the pressure in the reaction is not particularly limited, but is preferably 0.1 MPa or more from the viewpoint of ensuring a sufficient amount of hydrogen production, for example. Further, from the viewpoint of the durability of the hydrogen storage tank, it is preferably 100 MPa or less, more preferably 85 MPa or less, and further preferably 70 MPa or less.
  • the method for introducing the solution, catalyst, solvent, etc. obtained in the second step used in the reaction into the reaction vessel is not particularly limited, but all the raw materials may be introduced at once, and some or all of them may be introduced.
  • the raw materials of the above may be introduced stepwise, or some or all of the raw materials may be continuously introduced. Further, an introduction method combining these methods may be used.
  • the mixed gas produced in the third step can be separated into a gas containing hydrogen gas and carbon dioxide.
  • Purification of the mixed gas is not particularly limited, and examples thereof include gas separation membrane, gas-liquid separation, and purification by PSA (Pressure. Swing Adsorption) method.
  • the hydrogen storage method according to the embodiment of the present invention is It includes a step of forming an alkali metal formate formic acid in an aqueous solution using carbon dioxide in the presence of the alkali metal formate, and a first step of concentrating the aqueous solution containing the alkali metal formate.
  • the first step may be a step of obtaining a solid formic acid alkali metal salt by the concentration.
  • the step of producing the alkali metal formate and the first step in the hydrogen storage method according to the embodiment of the present invention are the same as those described above in the hydrogen gas production method.
  • the hydrogen gas production system is a hydrogen gas production system using an alkali metal formate as a hydrogen storage material, and comprises a concentrator for concentrating an aqueous solution containing the alkali metal formate, and electrodialysis. It includes an electrodialysis apparatus that protonates at least a part of an alkali metal formate to produce formic acid, and a formic acid decomposition apparatus that decomposes the formic acid to produce hydrogen gas.
  • the hydrogen gas production system according to the embodiment of the present invention may include a formic acid alkali metal salt production apparatus that produces the formic acid alkali metal salt in an aqueous solution using carbon dioxide in the presence of an alkali metal salt.
  • the hydrogen gas production system may be provided with a concentrating device 20, an electrodialysis device 30, and a formic acid decomposition device 40, and the products obtained by each device may be transported or stored. It may be supplied to other devices.
  • FIG. 3 is a diagram showing an example of a hydrogen gas production system according to an embodiment of the present invention.
  • the hydrogen gas production system 100 shown in FIG. 3 includes a concentration device 20, an electrodialysis device 30, and a fornic acid decomposition device 40, and further concentrates the formic acid alkali metal salt production device 10 and the formate alkali metal salt solution.
  • a liquid feeding pump 60 for feeding the liquid to the apparatus 20 and a cylinder 70 for adjusting the pressure in the concentrating apparatus 20 may be provided. The pressure can be adjusted by the valve 3 provided in the flow path L8.
  • the formic acid alkali metal salt solution is supplied to the flow path L1 for flowing the formic acid alkali metal salt solution to the liquid feed pump 60 and the reactor provided by the liquid feed pump 60 to the concentrator 20.
  • L2 a flow path L3 for supplying the formic acid alkali metal salt solution concentrated by the concentrator 20 to the electrodialysis device 30, and a flow path L3 for supplying the formic acid solution obtained by electrodialysis to the formic acid decomposition device 40.
  • It may be provided with L4 and a flow path L5 for recovering hydrogen gas generated by decomposition of formic acid.
  • the concentrator 20 may be provided with a flow path L6 for discharging water, a permeate, and the like. Each flow path may include a valve.
  • hydrogen is stored in a state of excellent handling by concentrating the alkali metal formate solution in a simple method, and hydrogen gas can be produced with high efficiency.
  • a production method and a hydrogen gas production system can be provided.
  • Example 1 330 mL of a 2.5 mass% potassium formate aqueous solution was prepared. As shown in FIG. 2, the concentration step was performed using the separation device 200 provided with the pressure-resistant container 41. ESPA-DSF (manufactured by Nitto Denko KK) was installed as an RO film 42 under the pressure resistant container 41 to which the nitrogen cylinder 70 was connected. A 330 mL potassium formate aqueous solution was put into the liquid inlet 43 of the pressure-resistant container 41, and the valve 2 of the liquid inlet 43 was closed. The valve 3 of the nitrogen cylinder 70 was opened, pressure was applied with nitrogen gas of 4 MPa, and the solution was extruded through the RO membrane 42.
  • ESPA-DSF manufactured by Nitto Denko KK
  • the separation device 200 may include a flow path L7 for collecting the permeated liquid.
  • the permeate 45 can be recovered by the flow path L7.
  • Example 2 An experiment was carried out in the same manner as in Example 1 except that the RO membrane was changed from ESPA-DSF to CPA7 (manufactured by Nitto Denko KK).
  • Table 1 shows the results of Examples 1 and 2.
  • the potassium formate aqueous solution could be concentrated by the first step.
  • the first step it is possible to similarly concentrate the aqueous alkali metal salt solution other than potassium.
  • Example 3 10 g of potassium formate and 90 g of ion-exchanged water were placed in a 200 mL eggplant flask to dissolve potassium formate. Water was volatilized by using a water bath heated to 70 ° C. and an evaporator. After 50 minutes, when the content reached 12 g, the evaporator was stopped and the aqueous solution remaining in the eggplant flask was immersed in ice water. Then a powder was produced. The powder was transferred to a Teflon® petri dish and dried in an oven at 100 ° C. for 2 hours. The dried powder weighed 6.3 g, and the recovery rate after concentration was 63%.
  • Example 4 10 g of sodium formate and 90 g of ion-exchanged water were placed in a 200 mL eggplant flask to dissolve sodium formate. Water was volatilized by using a water bath heated to 70 ° C. and an evaporator. After 30 minutes, when the content reached 15 g, powder was produced and the evaporator was stopped. The powder was transferred to a Teflon® petri dish and dried in an oven at 100 ° C. for 2 hours. The dried powder weighed 10.0 g, and the recovery rate after concentration was 100%.
  • water could be distilled off from the formic acid alkali metal salt aqueous solution by the first step, and the formic acid alkali metal salt could be recovered in high yield.
  • the amount of the solution (salt solution) in the salt tank after the completion of dialysis was 468 mL, and the amount of the solution (base solution) in the base tank was 524 mL.
  • 0.58 mol / L formic acid was produced, which was 92 with respect to the initial molar amount of potassium formate. It was found that 0.4% was protonated.
  • the base solution maleic acid was used as an external standard, heavy water was used as a deuterated solvent, and potassium formate was quantified by 1 H NMR.
  • 5% formic acid anion (HCO 2 -) it was found to be moved to the base fluid side.
  • Example 6 522 mL of a 1 mol / L potassium hydroxide aqueous solution was placed in the base tank. 480 mL of a 10 mass% potassium formate aqueous solution was charged into the salt tank.
  • the electrodialysis machine was started, the voltage was 19.3V and the current was 4.41A. The voltage gradually increased and the current decreased, and dialysis was completed 25 minutes later. At that time, the voltage was 28.0 V and the current was 4.16 A.
  • the amount of the solution (salt solution) in the salt tank after the completion of dialysis was 432 mL, and the amount of the solution (base solution) in the base tank was 560 mL.
  • Example 7 502 mL of a 1 mol / L potassium hydroxide aqueous solution was placed in the base tank. 428 mL of a 30 mass% potassium formate aqueous solution was put into the salt tank.
  • the electrodialysis machine was started, the voltage was 19.4V and the current was 4.41A. The voltage gradually increased, and dialysis was completed after 70 minutes. At that time, the voltage was 22.1V and the current was 4.41A.
  • the amount of the solution (salt solution) in the salt tank after the completion of dialysis was 342 mL, and the amount of the solution (base solution) in the base tank was 584 mL.
  • Example 8 502 mL of a 1 mol / L potassium hydroxide aqueous solution was placed in the base tank. 378 mL of a 50 mass% potassium formate aqueous solution was charged into the salt tank.
  • the electrodialysis machine was started, the voltage was 21.3V and the current was 4.41A. The voltage gradually increased, and dialysis was completed after 140 minutes. At that time, the voltage was 27.0 V and the current was 4.41 A.
  • the amount of the solution (salt solution) in the salt tank after the completion of dialysis was 258 mL, and the amount of the solution (base solution) in the base tank was 622 mL.
  • the formic acid loss rate is a value calculated by the percentage of the molar amount of formate detected in the base tank by 1 H NMR with respect to the molar amount of formate initially put into the salt tank.
  • the solution formic acid concentration is the concentration of formic acid in the salt tank.
  • the electric energy was calculated by reading the fluctuations of the voltage and current displayed on the device and integrating the electric energy (kWh).
  • Example 7 Comparing the amount of electric power required for electrodialysis in Examples 5 to 8, it was found that the amount of electric power required for producing 1 g of formic acid was the lowest in Example 7 and could be efficiently protonated.
  • Example 9 500 mL of a 1 mol / L sodium hydroxide aqueous solution was placed in the base tank. 436 mL of a 24 mass% sodium formate aqueous solution was put into the salt tank.
  • the electrodialysis machine was started, the voltage was 20.8V and the current was 4.41A. The voltage gradually increased, and dialysis was completed after 80 minutes. At that time, the voltage was 24.3V and the current was 4.41A.
  • the amount of the solution (salt solution) in the salt tank after the completion of dialysis was 340 mL, and the amount of the solution (base solution) in the base tank was 582 mL.
  • Example 10 formic acid decomposition was carried out using a solution obtained by protonating a 50 mass% potassium formate aqueous solution to formic acid by electrodialysis.
  • Formic acid was decomposed by putting 25 mL of the solution in a 100 mL eggplant flask, 7.7 mg of the catalyst synthesized above, and heating to 60 ° C.
  • the amount of gas generated was measured with W-NK-0.5B (product number) manufactured by Shinagawa.
  • the amount of gas generated after 23.7 hours was 10.65 mL, and the TOF (Turnover Frequency; the amount of hydrogen gas generated per hour with respect to the molar amount of the catalyst) was 1572.
  • the hydrogen storage method, hydrogen gas production method, and hydrogen gas production system according to the embodiment of the present invention can store hydrogen in a state of excellent handling, can be concentrated by a simple method, and can produce hydrogen gas with high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本発明は、ギ酸アルカリ金属塩を含む水溶液を濃縮する第一の工程と、電気透析により前記ギ酸アルカリ金属塩の少なくとも一部をプロトン化してギ酸を生成させる第二の工程と、前記ギ酸を分解して水素ガスを製造する第三の工程を含む、水素ガスの製造方法に関する。

Description

水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システム
 本発明は、水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システムに関する。
 地球温暖化、化石燃料枯渇の問題などから、次世代エネルギーとして水素エネルギーに高い期待が寄せられている。水素エネルギー社会を実現するためには、水素の製造、貯蔵、利用の各技術が必要であるが、水素貯蔵には貯蔵、輸送、安全性、サイクル、コスト等の様々な課題がある。
 そして、水素貯蔵材料として、水素貯蔵合金、有機ハイドライド、無機ハイドライド、有機金属錯体、多孔質炭素材料等の、各種材料の開発が検討されている。
 有機ハイドライドは、取扱いの簡便さや、水素貯蔵密度が高く軽量であるといった利点を有し注目されている。有機ハイドライドは危険物とされているものもあるため、低濃度の溶液として用いられる場合がある。また、脱水素化反応により水素を取り出す際には水素を高効率で分離・回収する必要がある。
 有機ハイドライドとしては、ギ酸、ベンゼン、トルエン、ビフェニル、ナフタレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素化合物が知られている。中でもギ酸は、脱水素化反応に必要なエネルギーが低く、簡便な取扱いが可能であるため、水素貯蔵材料として優れた化合物と考えられており注目されている。
 ギ酸を水素貯蔵材料として用いる場合、塩基性溶液中で、二酸化炭素と水素とを接触させる、又は二酸化炭素を電気化学的に還元する反応等によりギ酸を生成させる。しかし、反応が平衡により停止し、低濃度のギ酸溶液しか得られない。輸送コストの削減には、高濃度のギ酸溶液を得ることが必要である。また、ギ酸溶液からギ酸を高効率で分離・回収する必要がある。
 そこで、特許文献1には、二酸化炭素の水素化によるギ酸の製造、ギ酸の脱水素化による水素の製造、水素の貯蔵及び製造を高効率・高エネルギー効率で行うことを目的とし、触媒を用いてギ酸または/およびギ酸塩の生成と、触媒を用いてギ酸または/およびギ酸塩から水素を製造する方法が検討されている。
日本国特許第5812290号公報
 特許文献1に記載の技術は、ギ酸の製造、及びギ酸の脱水素化による水素を製造する触媒に関するものであり、水素貯蔵材料の濃縮については検討がされていない。
 そこで、本発明は、水素貯蔵材料としてギ酸アルカリ金属塩を用いることにより、水素を取り扱いに優れた状態で貯蔵し、簡便な方法で濃縮でき、水素ガスを高効率で製造し得る水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システムを提供する。
 前記課題を解決するための手段は、以下の通りである。
〔1〕
 ギ酸アルカリ金属塩を水素貯蔵材料として用いる水素ガスの製造方法であって、
前記ギ酸アルカリ金属塩を含む水溶液を濃縮する第一の工程と、
電気透析により前記ギ酸アルカリ金属塩の少なくとも一部をプロトン化してギ酸を生成させる第二の工程と、前記ギ酸を分解して前記水素ガスを製造する第三の工程を含む、水素ガスの製造方法。
〔2〕
 更に、アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中に前記ギ酸アルカリ金属塩を生成させる工程を含む、〔1〕に記載の水素ガスの製造方法。
〔3〕
 前記第一の工程は、前記ギ酸アルカリ金属塩を含む水溶液を、逆浸透膜を備えた分離膜ユニットを用いて濃縮する工程を含む、〔1〕又は〔2〕に記載の水素ガスの製造方法。
〔4〕
 前記第一の工程は、前記ギ酸アルカリ金属塩を含む水溶液より水を留去する工程を含む、〔1〕~〔3〕のいずれか一項に記載の水素ガスの製造方法。
〔5〕
 前記ギ酸アルカリ金属塩は、ギ酸ナトリウム塩である〔1〕~〔4〕のいずれか一項に記載の水素ガスの製造方法。
〔6〕
 アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中にギ酸アルカリ金属塩を生成させる工程と、前記ギ酸アルカリ金属塩を含む水溶液を濃縮する第一の工程とを含む、水素貯蔵方法。
〔7〕
 前記第一の工程は、前記濃縮により前記ギ酸アルカリ金属塩の固体を得る工程である、〔6〕に記載の水素貯蔵方法。
〔8〕
 ギ酸アルカリ金属塩を水素貯蔵材料として用いる水素ガス製造システムであって、
前記ギ酸アルカリ金属塩を含む水溶液を濃縮する濃縮装置と、
電気透析により前記ギ酸アルカリ金属塩の少なくとも一部をプロトン化してギ酸を生成させる電気透析装置と、前記ギ酸を分解して水素ガスを製造するギ酸分解装置を含む、水素ガス製造システム。
〔9〕
 更に、アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中に前記ギ酸アルカリ金属塩を生成させるギ酸アルカリ金属塩製造装置を含む〔8〕に記載の水素ガス製造システム。
 本発明によれば、水素を取り扱いに優れた状態で貯蔵し、簡便な方法で濃縮でき、水素ガスを高効率で製造し得る水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システムを提供することができる。
図1は、本発明の実施形態に係る第二の工程を説明するための図である。 図2は、本発明の実施例を説明するための図である。 図3は、本発明の実施形態に係る水素ガス製造システムの一例を示す図である。
 以下、本発明の実施形態について、詳細に説明する。
 本発明の実施形態に係る水素ガス製造方法は、ギ酸アルカリ金属塩を水素貯蔵材料として用いる水素ガスの製造方法であって、前記ギ酸アルカリ金属塩を含む水溶液を濃縮する第一の工程と、電気透析により前記ギ酸アルカリ金属塩の少なくとも一部をプロトン化してギ酸を生成させる第二の工程と、前記ギ酸を分解して水素ガスを製造する第三の工程を含む。
 本発明の実施形態に係る水素ガス製造方法により、水素を取り扱いに優れた状態で貯蔵し、簡便な方法で濃縮でき、水素ガスを高効率で製造することができる。
〔ギ酸アルカリ金属塩生成工程〕
 本発明の実施形態に係る水素ガス製造方法は、更に、アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中にギ酸アルカリ金属塩を生成させる工程(ギ酸アルカリ金属塩生成工程)を含んでいてもよい。
 ギ酸アルカリ金属塩生成工程により、水素をギ酸アルカリ金属塩として貯蔵することができる。ギ酸アルカリ金属塩は水素貯蔵密度が高く、簡便な取り扱いが可能であり、ギ酸アルカリ金属塩を水素貯蔵材料として用いることにより、安全で、化学物質として安定であることから長期に貯蔵が可能という利点がある。この工程により生成したギ酸アルカリ金属塩水溶液は、第一の工程に供することができる。
 本発明の実施形態にかかるアルカリ金属塩は、アルカリ金属の無機塩を用いることができる。アルカリ金属塩は1種を単独でまたは複数を併用することができる。
 アルカリ金属塩のカチオン部を構成するアルカリ金属イオンとしては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムの各イオンが挙げられる。これらアルカリ金属イオンのなかでもナトリウムイオン、又はカリウムイオンが好ましい。
 アルカリ金属塩のアニオン部は、ギ酸アルカリ金属塩を生成できるものであれば特に制限はない。アニオン部としては、例えば、水酸化物イオン(OH)、塩化物イオン(Cl)、臭化物イオン(Br)、ヨウ化物イオン(I)、硝酸イオン(NO3-)、硫酸イオン(SO 2-)、リン酸イオン(PO 2-)、ホウ酸イオン(BO 3-)、炭酸水素イオン(HCO )、および炭酸イオン(CO 2-)が挙げられ、これらから選ばれる少なくとも1つを含むことが好ましい。
 アルカリ金属塩としては、具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化ルビジウム、塩化セシウム、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸ルビジウム、硫酸セシウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウムなどが挙げられる。ギ酸アルカリ金属塩が生成した際に副生成物が混ざりにくく、第二工程以降の操作が煩雑にならない観点から、水酸化物アルカリ金属塩、炭酸水素アルカリ金属塩、又は炭酸アルカリ金属塩が好ましく、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウムがさらに好ましい。
 ギ酸アルカリ金属塩生成工程に用いるアルカリ金属塩の含有量は、ギ酸アルカリ金属塩の生成量を稼ぐ観点から0.05mol/L以上であることが好ましく、0.1mol/L以上であることがより好ましく、0.2mol/L以上であることがさらに好ましい。また、資源節約の観点から20mol/L以下であることが好ましく、15mol/L以下であることがより好ましく、10mol/L以下であることがさらに好ましい。
 アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中にギ酸アルカリ金属塩を生成させる方法としては、特に制限はなく、アルカリ金属塩の存在下で二酸化炭素の水素化(水素との反応)する方法、アルカリ金属塩の存在下で二酸化炭素を電解する方法、アルカリ金属塩の存在下で光触媒によって二酸化炭素を還元する方法、アルカリ金属塩の存在下で酵素等の生物学的手法によって二酸化炭素を還元する方法、又は各方法をアルカリ金属塩の非存在下で行い、ギ酸を生成した後にアルカリ金属塩と反応させることでギ酸アルカリ金属塩を生成する方法であってもよい。
 アルカリ金属塩の存在下で二酸化炭素の水素化反応については、用いる触媒は、ギ酸を製造できる限り、特に限定されない。例えば、周期表第8族、第9族、及び第10族に属する金属からなる群から選ばれる少なくとも1種の金属元素(以下単に金属元素と称する場合がある)を含有することが好ましい。金属元素としては、具体的には、Fe、Ru、Os、Hs、Co、Rh、Ir、Mt、Ni、Pd、Pt、Dsが挙げられるが、触媒性能の観点からRu、Ir、Fe及びRhが好ましく、Ru及びIrがより好ましい。
 本発明の実施形態に用いる触媒は、水や有機溶媒等に溶解するものが好ましく、金属元素を含有する化合物(金属元素化合物)であることがより好ましい。
 金属元素化合物としては、金属元素の、水素化塩、酸化物塩、ハロゲン化物塩(塩化物塩など)、水酸化物塩、炭酸塩、炭酸水素塩、硫酸塩、硝酸塩、リン酸塩、ホウ酸塩、ハロゲン酸塩、過ハロゲン酸塩、亜ハロゲン酸塩、次亜ハロゲン酸塩、およびチオシアン酸塩などの無機酸との塩;アルコキシド塩、カルボン酸塩(酢酸塩、(メタ)アクリル酸塩など)、およびスルホン酸塩(トリフルオロメタンスルホン酸塩など)などの有機酸との塩;アミド塩、スルホンアミド塩、およびスルホンイミド塩(ビス(トリフルオロメタンスルホニル)イミド塩など)などの有機塩基との塩;アセチルアセトン塩、ヘキサフルオロアセチルアセトン塩、ポルフィリン塩、フタロシアニン塩、およびシクロペンタジエン塩などの錯塩;鎖状アミン、環状アミン、芳香族アミンなどを含む窒素化合物、リン化合物、リン及び窒素を含む化合物、硫黄化合物、一酸化炭素、二酸化炭素、および水などのうちの一つあるいは複数を含む錯体又は塩が挙げられる。これらの化合物は、水和物および無水物のいずれでもよく、特に限定されない。これらの中でも、ギ酸の生成効率をより高めることができる点から、ハロゲン化物塩、リン化合物を含む錯体、窒素化合物を含む錯体、およびリン及び窒素を含む化合物を含む錯体又は塩が好ましい。
 これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 金属元素化合物は、市販されているものを使用することができ、公知の方法などにより製造したものを使用することもできる。公知の方法としては、例えば、日本国特許第5896539号公報に記載の方法や、Chem.Rev.2017,117,9804-9838、Chem.Rev.2018,118,372-433に記載の方法等を用いることができる。
 触媒の使用量は、ギ酸あるいはギ酸アルカリ金属塩を製造できる限り、特に限定されない。触媒として、金属元素化合物を用いる場合、金属元素化合物の使用量は、触媒機能を十分に発現させるために、溶媒1Lに対し0.1μmol以上であることが好ましく、0.5μmol以上であることがより好ましく、1μmol以上であることがさらに好ましい。また、コストの観点から1mol以下であることが好ましく、10mmol以下であることがより好ましく、1mmol以下であることがさらに好ましい。なお、金属元素化合物を2種以上用いる場合、それらの合計の使用量が上記範囲内であればよい。
 本発明の実施形態において、ギ酸あるいはギ酸アルカリ金属塩の製造に用いる溶媒としては、特に制限は無く、水、エチレングリコール、ポリエチレングリコール、グリセリン、メタノール、エタノール、プロパノール、ペンタノール等を用いることができるが、より好適には、水、エチレングリコール、ポリエチレングリコール、グリセリンを用いることができ、更に好適には水を用いることができる。また、水と、水と混和する溶媒との混合溶媒によってギ酸の製造を行ったのち、水と混和する溶媒を留去することでギ酸あるいはギ酸アルカリ金属塩の水溶液としてもよい。
 ギ酸アルカリ金属塩生成工程により生成するギ酸アルカリ金属塩の濃度は、第一の工程の濃縮効率の観点から0.01mol/L以上であることが好ましく、0.05mol/L以上であることがより好ましく、0.1mol/L以上であることがさらに好ましい。また、ギ酸あるいはギ酸アルカリ金属塩の製造工程にかかる時間が長くなるのを防ぐ観点から10mol/L以下であることが好ましく、5mol/L以下であることがより好ましく、3mol/L以下であることがさらに好ましい。
〔第一の工程〕
 第一の工程は、ギ酸アルカリ金属塩を含む水溶液を濃縮する工程である。
 第一の工程は、前記ギ酸アルカリ金属塩を含む水溶液を、逆浸透膜を備えた分離膜ユニットを用いて濃縮する工程(濃縮工程)を含んでいてもよい。また、ギ酸アルカリ金属塩を含む水溶液より水を留去する工程(留去工程)を含んでいてもよい。第一の工程は、濃縮工程及び留去工程のいずれか一方を含んでもよく、両方を含んでも良い。
 濃縮工程及び留去工程を行う順序及び回数に限定はなく、例えば、濃縮工程、留去工程をこの順で含んでもよく、留去工程、濃縮工程、留去工程をこの順で含んでもよい。ギ酸アルカリ金属塩が低濃度の領域では留去工程にかかるエネルギーが多くなる傾向があるため、製造効率の観点から、濃縮工程、留去工程をこの順で含むことが好ましい。
 第一の工程によりギ酸アルカリ金属塩を含む水溶液が濃縮され、体積が小さくなるため輸送や保管のコストが抑えられ、かつ、取り扱いに優れるという利点がある。そのため、ギ酸アルカリ金属塩水溶液は、ギ酸アルカリ金属塩の固体が析出するまで濃縮してもよい。また、析出したギ酸アルカリ金属塩は乾固してもよい。
 第一の工程は、ギ酸アルカリ金属塩を含む水溶液よりギ酸アルカリ金属塩の固体を得る工程であってもよい。
(濃縮工程)
 濃縮工程は、ギ酸アルカリ金属塩を含む水溶液を、逆浸透膜を備えた分離膜ユニットを用いて濃縮する工程である。
 濃縮工程による濃縮の程度は、適宜選択することができる。濃縮工程による濃縮後のギ酸アルカリ金属塩水溶液中におけるギ酸アルカリ金属塩の濃度は、その後の操作に適した濃度であれば特に限定されないが、留去工程におけるエネルギー効率の観点から0.1mol/L以上であることが好ましく、0.2mol/L以上であることがより好ましく、0.5mol/L以上であることがさらに好ましい。また、ギ酸アルカリ金属塩が析出することによる濃縮工程における不具合を防ぐ観点からギ酸アルカリ金属塩の飽和濃度以下であることが好ましく、7mol/L以下であることがより好ましく、5mol/L以下であることがさらに好ましい。
 本発明の実施形態に係る分離膜ユニットは、逆浸透膜(RO膜(RO:Reverse Osmosis))を備える。
 分離膜ユニットは、逆浸透膜を筐体に納めたものであってもよく、その形態としては、平膜のプレートフレーム型、プリーツ型およびスパイラル型等が挙げられる。
 逆浸透膜は、ギ酸イオン及びアルカリ金属イオンを透過させ難く、ギ酸アルカリ金属塩水溶液を濃縮し得るものであれば特に制限はなく、逆浸透膜(RO膜(RO:Reverse Osmosis))、ナノフィルトレーション膜(NF膜(NF:Nano Filtration))、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)であってもよいが、孔径のサイズの観点からRO膜又はNF膜を用いることが好ましい。
 逆浸透膜の孔径は水溶液の透過速度の観点から1Å以上であることが好ましく、2Å以上であることがより好ましく、5Å以上であることがさらに好ましい。また、触媒回収率の観点から50Å以下であることが好ましく、20Å以下であることがより好ましく、10Å以下であることがさらに好ましい。
 逆浸透膜は市販品を用いることができ、例えば、日東電工株式会社製Nano-SW、日東電工株式会社製PRO-XS1、日東電工株式会社製ESPA-DSF、日東電工株式会社製CPA7、日東電工株式会社製SWC5-LDを挙げることができ、日東電工株式会社製ESPA-DSF又は日東電工株式会社製CPA7を使用することが好ましい。
 濃縮工程は、例えば、耐圧容器を備えた分離装置を用いて、常圧又は加圧下で行うことができる。第二の工程における圧力は、耐圧容器につないだボンベより、例えば窒素ガス等の不活性ガスを耐圧容器に導入することにより調整することができる。
 濃縮工程における圧力は、溶液の透過速度の観点から0.1MPa以上であることがより好ましく、0.3MPa以上であることがさらに好ましい。また、膜分離によるエネルギーコストの観点から10.0MPa以下であることが好ましく、8MPa以下であることがより好ましく、6MPa以下であることがさらに好ましい。
(留去工程)
 留去工程による濃縮の程度は、適宜選択することができる。留去工程により濃縮したギ酸アルカリ金属塩水溶液中におけるギ酸アルカリ金属塩の濃度は、その後の操作に適した濃度であれば特に限定されない。例えば、1mol/L以上であることが好ましく、3mol/L以上であることがより好ましく、5mol/L以上であることがさらに好ましい。
 また、ギ酸アルカリ金属塩が析出するまで水を留去してもよく、ギ酸アルカリ金属塩が固体として得られるまで蒸発乾固してもよい。
 ギ酸水溶液を濃縮する場合、ギ酸と水とは共沸するため蒸留による分離及び濃縮は困難、あるいは多大なエネルギーを要するが、ギ酸アルカリ金属塩を水素貯蔵材料として用いることにより、水の留去による水とギ酸アルカリ金属塩との分離を容易にし、ギ酸アルカリ金属塩を高濃度の水溶液や固体で得ることができる。
 ギ酸アルカリ金属塩が固体である場合、より輸送や保管のコストが抑えられ、かつ、より取り扱いに優れた水素貯蔵材料として用いることができる。
 水の留去方法としては公知の方法を用いることができ、例えば、ロータリーエバポレータ、蒸留システム等、公知の装置を使用して行えばよく、このときの減圧度及び温度は応じて適宜選択することができる。
 留去工程における圧力は、留去温度を下げる観点から常圧以下であることが好ましく、500mmHg以下であることがより好ましく、300mmHg以下であることがさらに好ましい。
 ギ酸アルカリ金属塩の固体を得た場合は、析出した固体を乾燥により乾固してもよい。乾燥は、送風、加熱及び減圧から選択される一種又は二種以上の操作を併用して行うことが好ましい。これらの中でも、好ましくは50℃以上、より好ましくは70℃以上、好ましくは200℃以下、より好ましくは170℃以下で加熱しながら、減圧又は常圧で乾燥を行うことが好ましい。
 ギ酸アルカリ金属塩は、水への溶解度が低いことから固体に析出させやすく、また固体としての潮解性も低くハンドリング性に優れるため、ギ酸ナトリウム塩であることが好ましい。
 第一の工程により濃縮されたギ酸アルカリ金属塩水溶液は、第二の工程にそのまま用いてもよく、必要に応じ純水を加えて濃度を調整してもよい。
 濃縮によりギ酸アルカリ金属塩を固体として得た場合は、ギ酸アルカリ金属塩を純水に溶解させ第二の工程に供することができる。
〔第二の工程〕
 第二の工程は、電気透析により上記ギ酸アルカリ金属塩の少なくとも一部をプロトン化してギ酸を生成させる工程である。
 第二の工程には、ギ酸アルカリ金属塩水溶液を用いる。
 本発明の実施形態においては、第一の工程により濃縮したギ酸アルカリ金属塩を含む水溶液を、電気透析装置を用いて処理することにより、電気透析により上記ギ酸アルカリ金属塩の少なくとも一部をプロトン化してギ酸を生成することができる。
 第一の工程で濃縮したギ酸アルカリ金属塩溶液を第二の工程に供することにより、濃縮されたギ酸溶液を得ることができる。
 第二の工程には、上述したとおり、第一の工程により濃縮したギ酸アルカリ金属塩を含む水溶液を、そのまま用いてもよく、必要に応じ純水を加えて濃度を調整してもよい。また、第一の工程により蒸発乾固したギ酸アルカリ金属塩を純水に溶解した水溶液を用いてもよい。
 電気透析に用いるギ酸アルカリ金属塩水溶液中のギ酸アルカリ金属塩の濃度は、透析効率の観点から0.5mol/L以上であることが好ましく、1.0mol/L以上であることがより好ましく、1.5mol/L以上であることがさらに好ましく、また、ギ酸アルカリ金属塩の飽和濃度以下であることが好ましく、10mol/L以下であることがより好ましく、7mol/L以下であることがさらに好ましい。
 本発明の実施形態においては、第二の工程によりギ酸アルカリ金属塩がプロトン化される割合は、ギ酸アルカリ金属塩水溶液中の初期のギ酸アルカリ金属塩のモル量に対し、第三の工程におけるギ酸分解速度の観点から、10%以上がプロトン化されることが好ましく、20%以上がプロトン化されることがより好ましく、30%以上がプロトン化されることがさらに好ましい。
 図1は、電気透析装置の一例を示す概略図である。図1に示す電気透析装置は、それぞれ複数枚のバイポーラ膜とカチオン交換膜とを備え、陽極と陰極との間に、これらのバイポーラ膜とカチオン交換膜とが交互に配置され、各バイポーラ膜とその陰極側に配置されたカチオン交換膜との間にそれぞれ塩室が形成され、且つ各バイポーラ膜とその陽極側に配置されたカチオン交換膜との間にそれぞれアルカリ室が形成されているものであり、通電しながら該塩室に有機酸塩水溶液を循環供給することにより、アルカリ室にアルカリ金属水酸化物を生成しながら該塩室に循環供給されているギ酸アルカリ金属塩がギ酸に転換されていく。
 第二の工程によりギ酸アルカリ金属塩を簡便な方法によりプロトン化してギ酸溶液を得ることができ、第三の工程に供することができる。ギ酸アルカリ金属塩から水素を得る際は、一部あるいは全てをプロトン化して溶液を酸性にしておくことが好ましい。ギ酸分解の中間生成物であるギ酸分解触媒金属のヒドリド錯体から水素を生成する際にプロトンが必要となるからである。
〔第三の工程〕
 第三の工程は、ギ酸を分解して水素ガスを製造する工程である。
 第三の工程には、第二の工程で得られたギ酸溶液を用いることができる。
 ギ酸を分解して水素ガスを製造する際の反応は、触媒を用いて、ギ酸から水素と二酸化炭素を含む混合ガスを生成させる反応であってもよい。反応条件は、特に限定されず、ギ酸溶液の濃度や触媒の種類に応じて適宜調整することができる。反応過程で反応条件を適宜変更することもできる。反応に用いる反応容器の形態も特に限定されない。
 第三の工程に触媒を用いる場合、用いる触媒は、均一系触媒、不均一系触媒のいずれであってもよい。
 また、本発明の実施形態に用いる触媒は、イリジウム、ロジウム、ルテニウム、コバルト、オスミニウム、ニッケル、鉄、パラジウム、白金、金から選ばれる少なくとも一種の遷移金属を含む有機金属錯体またはこれら錯体の塩であることが好ましく、イリジウムを含むことがより好ましい。
 遷移金属を含む有機金属錯体(遷移金属錯体)において、そのカウンターイオンは、特に限定されないが、陰イオンとしては、例えば、六フッ化リン酸イオン(PF )、テトラフルオロほう酸イオン(BF )、水酸化物イオン(OH)、酢酸イオン、炭酸イオン、リン酸イオン、硫酸イオン、硝酸イオン、ハロゲン化物イオン(例えばフッ化物イオン(F)、塩化物イオン(Cl)、臭化物イオン(Br)、ヨウ化物イオン(I)等)、次亜ハロゲン酸イオン(例えば次亜フッ素酸イオン、次亜塩素酸イオン、次亜臭素酸イオン、次亜ヨウ素酸イオン等)、亜ハロゲン酸イオン(例えば亜フッ素酸イオン、亜塩素酸イオン、亜臭素酸イオン、亜ヨウ素酸イオン等)、ハロゲン酸イオン(例えばフッ素酸イオン、塩素酸イオン、臭素酸イオン、ヨウ素酸イオン等)、過ハロゲン酸イオン(例えば過フッ素酸イオン、過塩素酸イオン、過臭素酸イオン、過ヨウ素酸イオン等)、トリフルオロメタンスルホン酸イオン(OSOCF )、テトラキスペンタフルオロフェニルボレートイオン(B(C)等が挙げられる。
 本発明の実施形態に用いる触媒は、市販されているものを使用することができ、公知の方法などにより製造したものを使用することもできる。公知の方法としては、例えば、日本国特開2018-114495号公報に記載の方法や、Yuichiro Himeda;Nobuko Onozawa-Komatsuzaki;Satoru Miyazawa;Hideki Sugihara;Takuji Hirose;Kazuyuki Kasuga.Chem.Eur.J.2008,14,11076-11081に記載の方法等を用いることができる。
 触媒の使用量は、水素を製造できる限り、特に限定されない。脱水素化反応の速度の観点から、ギ酸溶液の溶媒に対して、0.00035質量%以上であることが好ましく、0.0035質量%以上であることがより好ましく、0.035質量%以上であることがさらに好ましい。また、触媒の使用量は、触媒の耐久性の観点からギ酸溶液の溶媒に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましい。
 なお、触媒を2種以上用いる場合、それらの合計の使用量が上記範囲内であればよい。
 本発明の実施形態に係る第三の工程において、溶媒を用いてもよい。溶媒としては、触媒を溶解して均一となる溶媒であることが好ましく、特に制限は無いが、水、エチレングリコール、ポリエチレングリコール、グリセリン、メタノール、エタノール、プロパノール、ペンタノール、テトラヒドロフラン、ジメチルホルムアミド等を用いることができるが、より好適には、水、エチレングリコール、ポリエチレングリコール、グリセリン、更に好適には水を用いることができる。
 反応温度は、特に限定されないが、反応を効率よく進行させるため、50℃以上であることが好ましく、55℃以上であることがより好ましく、60℃以上であることがさらに好ましい。また、エネルギー効率の観点から200℃以下であることが好ましく、100℃以下であることがより好ましく、90℃以下であることがさらに好ましい。
 反応時間は、特に限定されないが、例えば、水素生成量を十分に確保する観点から0.5時間以上であることが好ましく、1時間以上であることがより好ましく、2時間以上であることがさらに好ましい。また、コストの観点から24時間以下であることが好ましく、12時間以下であることがより好ましく、6時間以下であることがさらに好ましい。
 反応における圧力は、特に限定されないが、例えば、水素生成量を十分に確保する観点から0.1MPa以上であることが好ましい。また、水素貯蔵タンクの耐久性の観点から100MPa以下であることが好ましく、85MPa以下であることがより好ましく、70MPa以下であることがさらに好ましい。
 反応に用いる第二の工程で得られた溶液や触媒及び溶媒などの反応容器内への導入方法については、特に制限されないが、すべての原料などを一括で導入してもよく、一部またはすべての原料などを段階的に導入してもよく、一部またはすべての原料などを連続的に導入してもよい。また、これらの方法を組み合わせた導入方法でもよい。
 第三の工程により生成した混合ガスから、水素ガスを含むガスと、二酸化炭素とに分離することができる。
 混合ガスの精製は、特に制限されないが、例えば、ガス分離膜、気液分離、PSA(Pressure. Swing Adsorption)法等による精製が挙げられる。
〔水素貯蔵方法〕
 本発明の実施形態に係る水素貯蔵方法は、
 アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中にギ酸アルカリ金属塩を生成させる工程と、前記ギ酸アルカリ金属塩を含む水溶液を濃縮する第一の工程とを含む。
 本発明の実施形態に係る水素貯蔵方法において、前記第一の工程は、前記濃縮によりギ酸アルカリ金属塩の固体を得る工程であってもよい。
 本発明の実施形態に係る水素貯蔵方法における、上記ギ酸アルカリ金属塩を生成させる工程及び第一の工程については、水素ガス製造方法において上述したものと同様である。
〔水素ガス製造システム〕
 本発明の実施形態に係る水素ガス製造システムは、ギ酸アルカリ金属塩を水素貯蔵材料として用いる水素ガス製造システムであって、前記ギ酸アルカリ金属塩を含む水溶液を濃縮する濃縮装置と、電気透析により前記ギ酸アルカリ金属塩の少なくとも一部をプロトン化してギ酸を生成させる電気透析装置と、前記ギ酸を分解して水素ガスを製造するギ酸分解装置を含む。
 本発明の実施形態に係る水素ガス製造システムは、アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中に前記ギ酸アルカリ金属塩を生成させるギ酸アルカリ金属塩製造装置含んでいてもよい。
 本発明の実施形態に係る水素ガス製造システムは、濃縮装置20と、電気透析装置30と、ギ酸分解装置40を備えるものであればよく、各装置により得られた生成物を輸送や保存の後に他の装置に供給してもよい。
 図3は、本発明の実施形態に係る水素ガス製造システムの一例を示す図である。
 図3に示される水素ガス製造システム100は、濃縮装置20と、電気透析装置30と、ギ酸分解装置40とを備えており、更にギ酸アルカリ金属塩製造装置10と、ギ酸アルカリ金属塩溶液を濃縮装置20に送液する送液ポンプ60と、濃縮装置20における圧力を調整するボンベ70を備えていても良い。圧力は流路L8に備えるバルブ3により調整することができる。
 また、図3に示される水素ガス製造システム100は、ギ酸アルカリ金属塩溶液を送液ポンプ60に流通させる流路L1と、送液ポンプ60から濃縮装置20が備える反応器にギ酸アルカリ金属塩溶液を供給する流路L2と、濃縮装置20により濃縮したギ酸アルカリ金属塩溶液を電気透析装置30に供給する流路L3と、電気透析により得られたギ酸溶液をギ酸分解装置40に供給する流路L4と、ギ酸の分解により生成した水素ガスを回収する流路L5を備えていてもよい。また、濃縮装置20により水、透過液等を排出する流路L6を備えていてもよい。各流路はバルブを備えていてもよい。
 本実施形態によれば、ギ酸アルカリ金属塩溶液を簡便な方法により濃縮することにより、水素を取り扱いに優れた状態で貯蔵し、高効率で水素ガスを製造し得る、水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システムを提供することができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。
<RO膜によるギ酸カリウムの濃縮>
〔実施例1〕
 2.5質量%のギ酸カリウム水溶液330mLを準備した。
 図2に示すように、耐圧容器41を備えた分離装置200を用いて濃縮工程を行った。窒素ボンベ70をつないだ耐圧容器41の下部にRO膜42としてESPA-DSF(日東電工株式会社製)を設置した。耐圧容器41の液投入口43から330mLのギ酸カリウム水溶液を入れて、液投入口43のバルブ2を閉めた。窒素ボンベ70のバルブ3を開け、4MPaの窒素ガスにて、圧力をかけ、溶液をRO膜42を通して押し出した。
 130mLの液が透過したところで、圧を開放し、試験を終了した。
 分離装置200は、透過液を回収する流路L7を備えていてもよい。
 RO膜42を透過した液(透過液45)、及び透過しなかった液(残液)44のギ酸カリウム濃度を測定することで、ギ酸カリウムを濃縮できたかどうかを確認した。透過液45は流路L7により回収することができる。
〔実施例2〕
 RO膜をESPA-DSFから、CPA7(日東電工株式会社製)に変えた以外は実施例1と同様に実験を行った。
 実施例1及び2の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記のとおり、第一の工程によりギ酸カリウム塩水溶液を濃縮することができた。第一の工程により、カリウム以外のアルカリ金属塩水溶液についても、同様に濃縮することが可能である。
<エバポレーターを使ったギ酸アルカリ塩溶液の濃縮>
〔実施例3〕
 200mLナスフラスコに、ギ酸カリウム10gとイオン交換水90gを入れ、ギ酸カリウムを溶解した。これを、70℃に加温した水浴とエバポレーターを用い、水を揮発させた。50分後、内容量が12gになったところで、エバポレーターを停止させ、ナスフラスコ内に残った水溶液を氷水に浸けた。すると粉末が生成した。この粉末を、テフロン(登録商標)製のシャーレに移し、100℃のオーブンで2時間乾燥した。乾燥させた粉末は6.3gであり、濃縮後の回収率は63%となった。
〔実施例4〕
 200mLナスフラスコに、ギ酸ナトリウム10gとイオン交換水90gを入れ、ギ酸ナトリウムを溶解した。これを、70℃に加温した水浴とエバポレーターを用い、水を揮発させた。30分後、内容量が15gになったところ、粉末が生成しており、エバポレーターを停止させた。この粉末を、テフロン(登録商標)製のシャーレに移し、100℃のオーブンで2時間乾燥した。乾燥させた粉末は10.0gであり、濃縮後の回収率は100%となった。
 上記のとおり、第一の工程によりギ酸アルカリ金属塩水溶液から水を留去することができ、高収率でギ酸アルカリ金属塩を回収できた。
<電気透析によるギ酸アルカリ塩溶液の濃縮>
 電気透析装置は、アストム社製のアシライザーEX3Bを使用した。
〔実施例5〕
 塩基槽に、1mol/Lの水酸化カリウム水溶液を500mL入れた。
 塩槽に、5質量%のギ酸カリウム水溶液492mLを投入した。
 電気透析装置をスタートさせると、電圧20.4V、電流4.41Aとなった。
 次第に電圧が上がるとともに電流が下がり、15分後に透析が終了した。そのときの電圧28.0V、電流3.28Aであった。透析終了後の塩槽の溶液(塩液)量は、468mLになっており、塩基槽の液(塩基液)は、524mLとなっていた。
 透析終了後の塩液のギ酸濃度を、0.05mol/L水酸化ナトリウム水溶液で滴定したところ、0.58mol/Lのギ酸が生成しており、初期のギ酸カリウムのモル量に対して、92.4%がプロトン化されていることが分かった。
 塩基液は、マレイン酸を外部標準とし、重溶媒として重水を用い、H NMRにてギ酸カリウムの定量を行った。その結果、初期のギ酸カリウムのモル量に対して、5%のギ酸アニオン(HCO )が塩基液側に移動していることが分かった。
〔実施例6〕
 塩基槽に、1mol/Lの水酸化カリウム水溶液を522mL入れた。
 塩槽に、10質量%のギ酸カリウム水溶液480mLを投入した。
 電気透析装置をスタートさせると、電圧19.3V、電流4.41Aとなった。
 次第に電圧が上がるとともに電流が下がり、25分後に透析が終了した。そのときの電圧28.0V、電流4.16Aであった。透析終了後の塩槽の溶液(塩液)量は、432mLになっており、塩基槽の液(塩基液)は、560mLとなっていた。
 透析終了後の塩液のギ酸濃度を、0.05mol/L水酸化ナトリウム水溶液で滴定したところ、1.23mol/Lのギ酸が生成しており、初期のギ酸カリウムのモル量に対して、88.7%がプロトン化されていることが分かった。
 塩基液は、マレイン酸を外部標準とし、重溶媒として重水を用い、H NMRにてギ酸カリウムの定量を行った。その結果、初期のギ酸カリウムのモル量に対して、6%のギ酸アニオン(HCO )が塩基液側に移動していることが分かった。
〔実施例7〕
 塩基槽には、1mol/Lの水酸化カリウム水溶液を502mL入れた。
 塩槽に、30質量%のギ酸カリウム水溶液428mLを投入した。
 電気透析装置をスタートさせると、電圧19.4V、電流4.41Aとなった。
 次第に電圧が上がり、70分後に透析が終了した。そのときの電圧22.1V、電流4.41Aであった。透析終了後の塩槽の溶液(塩液)量は、342mLになっており、塩基槽の液(塩基液)は、584mLとなっていた。
 透析終了後の塩液のギ酸濃度を、0.05mol/L水酸化ナトリウム水溶液で滴定したところ、3.92mol/Lのギ酸が生成しており、初期のギ酸カリウムのモル量に対して、86.4%がプロトン化されていることが分かった。
 塩基液は、マレイン酸を外部標準とし、重溶媒として重水を用い、H NMRにてギ酸カリウムの定量を行った。その結果、初期のギ酸カリウムのモル量に対して、7%のギ酸アニオン(HCO )が塩基液側に移動していることが分かった。
〔実施例8〕
 塩基槽には、1mol/Lの水酸化カリウム水溶液を502mL入れた。
 塩槽に、50質量%のギ酸カリウム水溶液378mLを投入した。
 電気透析装置をスタートさせると、電圧21.3V、電流4.41Aとなった。
 次第に電圧が上がり、140分後に透析が終了した。そのときの電圧27.0V、電流4.41Aであった。透析終了後の塩槽の溶液(塩液)量は、258mLになっており、塩基槽の液(塩基液)は、622mLとなっていた。
 透析終了後の塩液のギ酸濃度を、0.05mol/L水酸化ナトリウム水溶液で滴定したところ、8.21mol/Lのギ酸が生成しており、初期のギ酸カリウムのモル量に対して、71.0%がプロトン化されていることが分かった。
 塩基液は、マレイン酸を外部標準とし、重溶媒として重水を用い、H NMRにてギ酸カリウムの定量を行った。その結果、初期のギ酸カリウムのモル量に対して、15%のギ酸アニオン(HCO )が塩基液側に移動していることが分かった。
 実施例5~8における結果を表2に示す。
 表中、ギ酸ロス率は初期に塩槽に投入したギ酸塩のモル量に対する、H NMRにて塩基槽に検出されたギ酸塩のモル量の百分率により算出した値である。また、溶液ギ酸濃度は、塩槽中のギ酸の濃度である。
 電力量は装置に表示されている電圧、電流の変動を読みとり、電力量(kWh)を積算することにより算出した。
Figure JPOXMLDOC01-appb-T000002
 実施例5~8における電気透析に必要な電力量を比較すると、1gのギ酸生成に必要な電力量は実施例7が最も低く、効率よくプロトン化できることが判明した。
〔実施例9〕
 塩基槽には、1mol/Lの水酸化ナトリウム水溶液を500mL入れた。
 塩槽に、24質量%のギ酸ナトリウム水溶液436mLを投入した。
 電気透析装置をスタートさせると、電圧20.8V、電流4.41Aとなった。
 次第に電圧が上がり、80分後に透析が終了した。そのときの電圧24.3V、電流4.41Aであった。透析終了後の塩槽の溶液(塩液)量は、340mLになっており、塩基槽の液(塩基液)は、582mLとなっていた。
 透析終了後の塩液のギ酸濃度を、0.05mol/L水酸化ナトリウム水溶液で滴定したところ、4.31mol/Lのギ酸が生成しており、初期のギ酸ナトリウムのモル量に対して、82%がプロトン化されていることが分かった。
 塩基液は、マレイン酸を外部標準とし、重溶媒として重水を用い、H NMRにてギ酸ナトリウムの定量を行った。その結果、初期のギ酸ナトリウムのモル量に対して、8%のギ酸アニオン(HCO )が塩基液側に移動していることが分かった。
<ギ酸分解>
(イリジウム触媒合成)
 200mLナスフラスコに、[Cp*Ir(HO)](SO)を0.81g、4,4’-dihydroxy-2,2’-bipyridineを0.82g、水を60mL入れた。40℃の水浴で、1晩(12時間)撹拌した。
 黒い粉体をろ過にて取り除き、ろ液をエバポレーターにて、濃縮して水を飛ばすことで、黄色粉末1.00gを得た。
〔実施例10〕
 実施例8にて、50質量%ギ酸カリウム水溶液を電気透析にてギ酸へプロトン化した溶液を使い、ギ酸分解を行った。
 100mLナスフラスコに、溶液を25mL入れ、上記で合成した触媒を7.7mg入れて、60℃に加温することで、ギ酸を分解した。発生したガス量は、シナガワ社製のW-NK-0.5B(品番)にて測定した。23.7時間後のガス発生量は10.65mLであり、TOF(TurnOver Frequency;触媒のモル量に対して、1時間あたりに発生した水素ガスのモル量)は1572となった。
〔比較例1〕
 比較として、50質量%ギ酸カリウム水溶液(電気透析を実施していないもの)のギ酸分解を行った。
 100mLナスフラスコに、溶液を25mL入れ、上記で合成した触媒を7.7mg入れて、60℃に加温することで、ギ酸を分解した。発生したガス量は、シナガワ社製のW-NK-0.5B(品番)にて測定した。3.2時間後のガス発生量は0.012mLであり、TOF(触媒のモル量に対して、1時間あたりに発生した水素ガスのモル量)は0となった。
 実施例1~10の結果から、高効率で、ギ酸アルカリ金属塩を含む水溶液を濃縮し、電気透析によりギ酸アルカリ金属塩をプロトン化し、ギ酸を分解して水素ガスを製造できることが明らかとなった。一方、ギ酸アルカリ金属塩をプロトン化しなかった比較例1ではギ酸の分解により水素ガスを製造することができなかった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2019年12月9日出願の日本特許出願(特願2019-222351)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の実施形態に係る水素貯蔵方法、水素ガス製造方法及び水素ガス製造システムは、水素を取り扱いに優れた状態で貯蔵し、簡便な方法で濃縮でき、水素ガスを高効率で製造し得る。
 2、3 バルブ
 10 ギ酸アルカリ金属塩製造装置
 20 濃縮装置
 30 電気透析装置
 40 ギ酸分解装置
 41 耐圧容器
 42 RO膜
 43 液投入口
 44 残液
 45 透過液
 60 送液ポンプ
 70 窒素ボンベ
 100 水素ガス製造システム
 200 分離装置
 L1、L2、L3、L4、L5、L6、L7、L8 流路

Claims (9)

  1.  ギ酸アルカリ金属塩を水素貯蔵材料として用いる水素ガスの製造方法であって、
    前記ギ酸アルカリ金属塩を含む水溶液を濃縮する第一の工程と、
    電気透析により前記ギ酸アルカリ金属塩の少なくとも一部をプロトン化してギ酸を生成させる第二の工程と、前記ギ酸を分解して前記水素ガスを製造する第三の工程を含む、水素ガスの製造方法。
  2.  更に、アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中に前記ギ酸アルカリ金属塩を生成させる工程を含む、請求項1に記載の水素ガスの製造方法。
  3.  前記第一の工程は、前記ギ酸アルカリ金属塩を含む水溶液を、逆浸透膜を備えた分離膜ユニットを用いて濃縮する工程を含む、請求項1又は2に記載の水素ガスの製造方法。
  4.  前記第一の工程は、前記ギ酸アルカリ金属塩を含む水溶液より水を留去する工程を含む、請求項1~3のいずれか一項に記載の水素ガスの製造方法。
  5.  前記ギ酸アルカリ金属塩は、ギ酸ナトリウム塩である請求項1~4のいずれか一項に記載の水素ガスの製造方法。
  6.  アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中にギ酸アルカリ金属塩を生成させる工程と、前記ギ酸アルカリ金属塩を含む水溶液を濃縮する第一の工程とを含む、水素貯蔵方法。
  7.  前記第一の工程は、前記濃縮により前記ギ酸アルカリ金属塩の固体を得る工程である、請求項6に記載の水素貯蔵方法。
  8.  ギ酸アルカリ金属塩を水素貯蔵材料として用いる水素ガス製造システムであって、
    前記ギ酸アルカリ金属塩を含む水溶液を濃縮する濃縮装置と、
    電気透析により前記ギ酸アルカリ金属塩の少なくとも一部をプロトン化してギ酸を生成させる電気透析装置と、前記ギ酸を分解して水素ガスを製造するギ酸分解装置を含む、水素ガス製造システム。
  9.  更に、アルカリ金属塩の存在下、二酸化炭素を用いて水溶液中に前記ギ酸アルカリ金属塩を生成させるギ酸アルカリ金属塩製造装置を含む請求項8に記載の水素ガス製造システム。
PCT/JP2020/043088 2019-12-09 2020-11-18 水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システム WO2021117447A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/783,730 US20230002221A1 (en) 2019-12-09 2020-11-18 Hydrogen storage method, hydrogen gas production method and hydrogen gas production system
CN202080085654.2A CN114787076A (zh) 2019-12-09 2020-11-18 储氢方法、氢气的制造方法及氢气制造系统
KR1020227019177A KR20220112775A (ko) 2019-12-09 2020-11-18 수소 저장 방법, 수소 가스의 제조 방법 및 수소 가스 제조 시스템
EP20899139.8A EP4074651A4 (en) 2019-12-09 2020-11-18 HYDROGEN STORAGE PROCESS, HYDROGEN GAS PRODUCTION PROCESS AND HYDROGEN GAS PRODUCTION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222351A JP7372130B2 (ja) 2019-12-09 2019-12-09 水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システム
JP2019-222351 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021117447A1 true WO2021117447A1 (ja) 2021-06-17

Family

ID=76311684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043088 WO2021117447A1 (ja) 2019-12-09 2020-11-18 水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システム

Country Status (7)

Country Link
US (1) US20230002221A1 (ja)
EP (1) EP4074651A4 (ja)
JP (1) JP7372130B2 (ja)
KR (1) KR20220112775A (ja)
CN (1) CN114787076A (ja)
TW (1) TW202132208A (ja)
WO (1) WO2021117447A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026860A1 (ja) * 2021-08-24 2023-03-02 日東電工株式会社 水素の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812290B2 (ja) 1980-03-22 1983-03-07 東芝ケミカル株式会社 注型用樹脂組成物
JP2002068702A (ja) * 2000-08-31 2002-03-08 Toyota Central Res & Dev Lab Inc 水素発生装置
WO2013111860A1 (ja) * 2012-01-27 2013-08-01 独立行政法人産業技術総合研究所 ギ酸の脱水素化触媒、水素製造方法、重水素ガスまたは重水素化水素の製造方法
WO2015053317A1 (ja) * 2013-10-11 2015-04-16 独立行政法人産業技術総合研究所 ギ酸の脱水素化に用いる触媒、ギ酸の脱水素化方法、水素製造方法
WO2015076156A1 (ja) * 2013-11-19 2015-05-28 独立行政法人産業技術総合研究所 ギ酸の脱水素化に用いる触媒、ギ酸の脱水素化方法、水素製造方法
JP2017500272A (ja) * 2013-11-06 2017-01-05 イッサム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム・リミテッド 水素の貯蔵および放出方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795827A (en) * 1980-12-04 1982-06-14 Rasa Kogyo Kk Manufacture of high purity lithium carbonate
RO112848B1 (ro) * 1995-06-15 1998-01-30 Sc Chimcomplex Sa Borzesti PROCEDEU Șl INSTALAȚIE PENTRU OBȚINEREA FORMIATULUI DE SODIU SOLID
WO2004000857A1 (ja) * 2002-06-19 2003-12-31 Kurita Water Industries Ltd. 水素貯蔵方法、水素包接化合物及びその製造方法
EP2319799B1 (en) * 2008-07-28 2013-08-14 Nakahara, Masaru Process for production of hydrogen
JP5812290B2 (ja) 2012-03-19 2015-11-11 国立研究開発法人産業技術総合研究所 二酸化炭素の水素化またはギ酸の脱水素化に用いる触媒、該触媒を用いる二酸化炭素の水素化方法、ギ酸の脱水素化方法、水素の貯蔵および製造方法
JP5871218B1 (ja) * 2014-04-11 2016-03-01 エコモ・インターナショナル株式会社 水素発生ユニット
CN107848794B (zh) * 2015-05-13 2021-08-24 耶路撒冷希伯来大学伊萨姆研究开发有限公司 用于储存和释放氢的方法和装置
US10183864B2 (en) * 2015-10-09 2019-01-22 Sabic Global Technologies B.V. Production of hydrogen gas and calcium carbonate from formaldehyde
US20210188631A1 (en) * 2016-02-26 2021-06-24 Sabic Global Technologies B.V. Carbon mediated water-splitting using formaldehyde
CN105771974A (zh) * 2016-05-03 2016-07-20 中国科学院大学 一种室温催化甲酸盐分解产氢的催化剂
TWI622428B (zh) * 2017-03-31 2018-05-01 財團法人工業技術研究院 電透析模組及電透析系統

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812290B2 (ja) 1980-03-22 1983-03-07 東芝ケミカル株式会社 注型用樹脂組成物
JP2002068702A (ja) * 2000-08-31 2002-03-08 Toyota Central Res & Dev Lab Inc 水素発生装置
WO2013111860A1 (ja) * 2012-01-27 2013-08-01 独立行政法人産業技術総合研究所 ギ酸の脱水素化触媒、水素製造方法、重水素ガスまたは重水素化水素の製造方法
JP5896539B2 (ja) 2012-01-27 2016-03-30 国立研究開発法人産業技術総合研究所 ギ酸の脱水素化触媒、水素製造方法、重水素ガスまたは重水素化水素の製造方法
WO2015053317A1 (ja) * 2013-10-11 2015-04-16 独立行政法人産業技術総合研究所 ギ酸の脱水素化に用いる触媒、ギ酸の脱水素化方法、水素製造方法
JP2018114495A (ja) 2013-10-11 2018-07-26 国立研究開発法人産業技術総合研究所 ギ酸の脱水素化に用いる触媒、ギ酸の脱水素化方法、水素製造方法
JP2017500272A (ja) * 2013-11-06 2017-01-05 イッサム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム・リミテッド 水素の貯蔵および放出方法
WO2015076156A1 (ja) * 2013-11-19 2015-05-28 独立行政法人産業技術総合研究所 ギ酸の脱水素化に用いる触媒、ギ酸の脱水素化方法、水素製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEM.REV., vol. 117, 2017, pages 9804 - 9838
CHEM.REV., vol. 118, 2018, pages 372 - 433
See also references of EP4074651A4

Also Published As

Publication number Publication date
EP4074651A4 (en) 2024-01-10
JP2021091567A (ja) 2021-06-17
JP7372130B2 (ja) 2023-10-31
CN114787076A (zh) 2022-07-22
EP4074651A1 (en) 2022-10-19
US20230002221A1 (en) 2023-01-05
KR20220112775A (ko) 2022-08-11
TW202132208A (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
Guo et al. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design
Chatterjee et al. Enabling storage and utilization of low-carbon electricity: power to formic acid
Al Obeidli et al. Recent advancements in MOFs synthesis and their green applications
Wang et al. Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective
EP3762522A1 (en) Method for electrochemically reducing carbon dioxide
US9303323B2 (en) Extraction of carbon dioxide and hydrogen from seawater and hydrocarbon production therefrom
RU2479558C2 (ru) Электрохимический способ получения азотных удобрений
Jaroszek et al. Ion-exchange membranes in chemical synthesis–a review
US20180023198A1 (en) Reduction Method And Electrolysis System For Electrochemical Carbon Dioxide Utilization
Achilleos et al. Selective molecularly mediated pseudocapacitive separation of ionic species in solution
WO2017014635A1 (en) Method and reactor for electrochemically reducing carbon dioxide
KR20110033212A (ko) 물의 전기분해를 위한 촉매 물질, 전극 및 시스템, 및 다른 전기화학 기술
US11174532B1 (en) Processes for producing lithium compounds using reverse osmosis
WO2015139136A1 (en) Co2 electro-reduction process
WO2021117447A1 (ja) 水素貯蔵方法、水素ガスの製造方法及び水素ガス製造システム
US20240009623A1 (en) Method of Capturing a Target Species From a Gas
WO2020035607A1 (en) Novel catalytic materials
WO2021060215A1 (ja) 水素ガス製造方法及び水素ガス製造システム
WO2021187057A1 (ja) ギ酸塩の製造方法及びギ酸塩製造システム
Ogura Catalytic conversion of carbon monoxide and carbon dioxide into methanol with photocells
IL299145A (en) A method for binding, transferring, converting, storing and releasing water-soluble gases
WO2022226589A1 (en) Electrochemical capture of carbon dioxide and production of carbonate mineral
WO2024059990A1 (en) Methods and apparatus for indirect production of hydrogen peroxide using amyl-anthraquinone for hydrogen transport
US20240240340A1 (en) Separators for Liquid Products in Oxocarbon Electrolyzers
Chen Electrifying the chemical industry: Towards sustainable ammonia production from dinitrogen and nitrogen-containing wastes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020899139

Country of ref document: EP

Effective date: 20220711