WO2021117370A1 - 動的情報の更新装置、更新方法、情報提供システム、及びコンピュータプログラム - Google Patents

動的情報の更新装置、更新方法、情報提供システム、及びコンピュータプログラム Download PDF

Info

Publication number
WO2021117370A1
WO2021117370A1 PCT/JP2020/040565 JP2020040565W WO2021117370A1 WO 2021117370 A1 WO2021117370 A1 WO 2021117370A1 JP 2020040565 W JP2020040565 W JP 2020040565W WO 2021117370 A1 WO2021117370 A1 WO 2021117370A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
dynamic information
vehicle
dynamic
sensor
Prior art date
Application number
PCT/JP2020/040565
Other languages
English (en)
French (fr)
Inventor
啓貴 浅尾
裕一 谷口
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021117370A1 publication Critical patent/WO2021117370A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation

Definitions

  • the present disclosure relates to a dynamic information update device, an update method, an information providing system, and a computer program.
  • This application claims priority based on Japanese Application No. 2019-224709 filed on December 12, 2019, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 describes an information providing system that distributes dynamic information of an object included in a dynamic information map to a vehicle, a pedestrian terminal, or the like.
  • Such an information providing system includes a pedestrian terminal, a vehicle, a roadside sensor, and an edge server that collects change point information based on sensor information measured by the vehicle or roadside sensor.
  • the edge server updates the dynamic information from the collected change point information at predetermined distribution cycles, and distributes the latest dynamic information to the pedestrian terminal or the vehicle for which the distribution request has been made.
  • the device is a device that updates the dynamic information included in the dynamic information map, and transmits the storage unit that stores the dynamic information and the first information based on its own sensor information.
  • a communication unit that communicates with each of a possible first sensor device and a second sensor device that can transmit second information based on its own sensor information, and the first sensor device that the communication unit receives from the first sensor device.
  • a control unit that rewrites the dynamic information stored in the storage unit into new dynamic information based on the information is provided, and the control unit converts the dynamic information stored in the storage unit into an object.
  • the communication unit transmits a message requesting the second information to the second sensor device capable of sensing the blind spot area. To control.
  • a method is a method of updating dynamic information included in a dynamic information map, in which a step of storing the dynamic information and a first information based on own sensor information can be transmitted. Based on the steps of communicating with each of the first sensor device and the second sensor device capable of transmitting the second information based on its own sensor information, and the first information received from the first sensor device.
  • the first step capable of sensing the blind spot area when the stored dynamic information is rewritten into new dynamic information and the stored dynamic information includes dynamic information of the blind spot area caused by an object. 2.
  • the step of transmitting a message requesting the second information to the sensor device is included.
  • the program according to one aspect of the present disclosure is a computer program for operating a computer as a device for updating dynamic information included in a dynamic information map, and stores the computer in a storage for storing the dynamic information.
  • a communication unit that communicates with each of a unit, a first sensor device capable of transmitting first information based on its own sensor information, and a second sensor device capable of transmitting second information based on its own sensor information.
  • the dynamic information stored in the storage unit is made to function as a control unit for rewriting the dynamic information into new dynamic information, and the control unit stores the dynamic information in the storage unit.
  • the communication unit sends a message requesting the second information to the second sensor device capable of sensing the blind spot area. Controls the communication unit so that
  • the system is a system that provides dynamic information included in a dynamic information map, and is a first sensor device capable of transmitting first information based on its own sensor information and its own sensor.
  • a second sensor device capable of transmitting second information based on information, and an update device that updates the dynamic information based on the first information received from the first sensor device and distributes the updated dynamic information.
  • the updating device requests the second information from the second sensor device capable of sensing the blind spot area. Send a message.
  • the present invention can be realized not only as a system and an apparatus having the above-mentioned characteristic configuration, but also as a program for causing a computer to execute such a characteristic configuration. Further, the present invention can be realized as a semiconductor integrated circuit that realizes a part or all of a system and an apparatus.
  • each communication node has the order of collection of change point information ⁇ update of dynamic information ⁇ distribution of dynamic information ⁇ detection of change point information by vehicle ⁇ collection of change point information.
  • Information processing circulates. Therefore, the vehicle that requests the distribution of dynamic information always functions as a sensing device that provides change point information to the edge server.
  • the edge server may not be able to properly update the dynamic information at each distribution cycle, and the real-time property of the dynamic information map may deteriorate.
  • the sensing device is limited to some devices, there is a high possibility that a blind spot area due to an object will occur. Therefore, when an object such as a moving object exists in the blind spot area, the number of objects reflected in the dynamic information map is smaller than the actual number, and the object reflection accuracy of the dynamic information map deteriorates.
  • the present disclosure aims to achieve both the real-time property of the dynamic information map and the object reflection accuracy.
  • the device of the present embodiment is a device that updates the dynamic information included in the dynamic information map, and transmits the storage unit that stores the dynamic information and the first information based on its own sensor information.
  • a communication unit that communicates with each of a possible first sensor device and a second sensor device that can transmit second information based on its own sensor information, and the first sensor device that the communication unit receives from the first sensor device.
  • a control unit that rewrites the dynamic information stored in the storage unit into new dynamic information based on the information is provided, and the control unit converts the dynamic information stored in the storage unit into an object.
  • the communication unit transmits a message requesting the second information to the second sensor device capable of sensing the blind spot area. To control.
  • the control unit rewrites the dynamic information stored in the storage unit to new dynamic information based on the first information received by the communication unit from the first sensor device, so that the update device always rewrites the dynamic information stored in the storage unit.
  • the amount of data communication and the processing load can be reduced as compared with the case where the dynamic information is updated based on the first information and the second information. Therefore, the real-time property of the dynamic information map can be maintained regardless of the number of the second sensor devices.
  • control unit controls the communication unit so that the communication unit transmits a message requesting the second information to the second sensor device capable of sensing the blind spot area, it is a sensing result for the blind spot area. Based on the two pieces of information, it is possible to generate dynamic information of an object that may exist in the blind spot area. Therefore, the object reflection accuracy of the dynamic information map can be improved. As described above, according to the update device of the present embodiment, it is possible to achieve both the real-time property of the dynamic information map and the object reflection accuracy.
  • the control unit when the communication unit receives the second information from the second sensor device, the control unit is based on both the first information and the second information. , It is preferable to rewrite the dynamic information stored in the storage unit with new dynamic information. In this case, even if the blind spot area exists in the dynamic information based only on the first information, the dynamic information of the object that can exist in the blind spot area can be generated by the second information. Therefore, the object reflection accuracy of the dynamic information map can be improved.
  • the communication unit can deliver the dynamic information stored in the storage unit, and the control unit can use the dynamic information stored in the storage unit.
  • the control unit can use the dynamic information stored in the storage unit.
  • the communication unit distributes the dynamic information of the blind spot area together with the dynamic information of the object.
  • the communication node that receives the distribution can acquire not only the dynamic information of the object but also the dynamic information of the blind spot area. Therefore, if the acquired blind spot area is displayed on the display together with the map, the location of the blind spot area can be notified to the user.
  • the control unit stores the dynamic information of the blind spot area in a communication packet including predetermined identification information indicating that the blind spot area is located, and stores the communication packet in the communication packet. It is preferable to control the communication unit so that the communication unit delivers the information.
  • the communication node for example, the vehicle
  • the communication node that receives the distribution can immediately determine that the received communication packet includes the blind spot area. Therefore, the communication node that receives the distribution does not use the received communication packet for driving support, and can take appropriate measures such as stopping the display on the display.
  • the control unit has, with respect to the dynamic information when the object is a vehicle, any one of a plurality of types including at least the following types 1 to 3 of the vehicle. It is preferable to store the communication packet in a communication packet including predetermined identification information indicating whether or not the communication packet is to be controlled so that the communication unit delivers the communication packet.
  • Type 1 Vehicle equipped with a wireless communication device
  • Type 2 Vehicle not equipped with a wireless communication device and detected by the first sensor device
  • Type 3 Vehicle not equipped with a wireless communication device and detected by the second sensor device Vehicle
  • the communication node for example, the vehicle
  • the communication node that receives the distribution can immediately determine which of the above-mentioned type 1 to type 3 is the dynamic information of the vehicle included in the received communication packet. it can. Therefore, the communication node that receives the distribution may determine whether the dynamic information of the distributed vehicle is detected by the first or second sensor device, or whether or not there is a wireless communication device of the vehicle related to the distributed dynamic information. As a result, it is possible to take appropriate measures such as determining whether or not to execute driving support and the type of driving support.
  • the control unit sets the communication speed of the message transmission target to the communication unit. It is preferable to control the communication unit so as to limit the sensor device to a predetermined value or more. The reason is that even if the change point information is requested from the second sensor device having a low communication speed, the change point information may not arrive in time for this cycle, and the dynamic information update process may be delayed.
  • the first sensor device is one or more fixed terminals installed on the roadside
  • the second sensor device is one or more mobile terminals passing through the road. It is preferable to have.
  • the fixed terminal installed on the roadside for example, the roadside sensor
  • the first sensor device that always provides the first information to the update device.
  • the number of mobile terminals (for example, vehicles) passing through the road increases or decreases rapidly depending on the traffic condition, it is suitable as a second sensor device that provides second information in response to a request.
  • the update method of the present embodiment is an update method executed by the update device described in (1) to (7) above. Therefore, the renewal method of the present embodiment has the same effect as the renewal device described in (1) to (7) above.
  • the computer program of the present embodiment relates to a computer program for operating a computer as the update device according to the above (1) to (7). Therefore, the computer program of the present embodiment has the same effect as the update device described in (1) to (7) above.
  • the information providing system of the present embodiment is an information providing system including the updating device described in (1) to (7) above. Therefore, the information providing system of the present embodiment has the same effect as the updating device described in (1) to (7) above.
  • FIG. 1 is an overall configuration diagram showing a configuration example of a wireless communication system.
  • the wireless communication system of the present embodiment includes a plurality of communication terminals 1A to 1D capable of wireless communication, one or a plurality of base stations 2 and a base station 2 that wirelessly communicate with communication terminals 1A to 1D. It includes one or more edge servers 3 that communicate by wire or wirelessly, and one or more core servers 4 that communicate by wire or wirelessly with the edge server 3.
  • the core server 4 is installed in a core data center (DC) of a core network.
  • the edge server 3 is installed in a distributed data center (DC) of a metro network.
  • the metro network is, for example, a communication network constructed for each city. Each metro network in each region is connected to the core network.
  • the base station 2 is communicably connected to any edge server 3 of a distributed data center included in the metro network.
  • the core server 4 is communicably connected to the core network.
  • the edge server 3 is communicably connected to the metro network. Therefore, the core server 4 can communicate with the edge server 3 and the base station 2 belonging to each metro network via the core network and the metro network.
  • the base station 2 comprises at least one of a macrocell base station, a microcell base station, and a picocell base station.
  • the edge server 3 and the core server 4 are composed of general-purpose servers capable of SDN (Software-Defined Networking).
  • the relay device such as the base station 2 and the repeater (not shown) comprises a transport device capable of SDN. Therefore, by using network virtualization technology, a plurality of virtual networks (network slices) NS1 to NS4 that satisfy conflicting service requirements such as low-latency communication and large-capacity communication should be defined as physical devices of a wireless communication system. Can be done.
  • the wireless communication system of the present embodiment includes, for example, a "fifth generation mobile communication system” (hereinafter, abbreviated as “5G” (5th Generation)) whose standardization is currently in progress.
  • the above network virtualization technology is the basic concept of 5G.
  • the wireless communication system of the present embodiment may be a mobile communication system capable of defining a plurality of networks (hereinafter, also referred to as "slices") NS1 to NS4 according to predetermined service requirements such as delay time. It is not limited to 5G.
  • the layer of the slice to be defined is not limited to four layers and may be five or more layers.
  • each network slice NS1 to NS4 is defined as follows.
  • the slice NS1 is a network slice defined so that the communication terminals 1A to 1D communicate directly with each other.
  • the communication terminals 1A to 1D that directly communicate with the slice NS1 are also referred to as "node N1".
  • the slice NS2 is a network slice defined so that the communication terminals 1A to 1D communicate with the base station 2.
  • the highest communication node (base station 2 in the figure) in slice NS2 is also referred to as “node N2”.
  • the slice NS3 is a network slice defined so that the communication terminals 1A to 1D communicate with the edge server 3 via the base station 2.
  • the highest communication node (edge server 3 in the figure) in the slice NS3 is also referred to as “node N3”.
  • node N2 serves as a relay node. That is, data communication is performed by the uplink route of node N1 ⁇ node N2 ⁇ node N3 and the downlink route of node N3 ⁇ node N2 ⁇ node N1.
  • the slice NS4 is a network slice defined so that the communication terminals 1A to 1D communicate with the core server 4 via the base station 2 and the edge server 3.
  • the highest communication node (core server 4 in the figure) in the slice NS4 is also referred to as “node N4”.
  • node N2 and node N3 serve as relay nodes. That is, data communication is performed by the uplink route of node N1 ⁇ node N2 ⁇ node N3 ⁇ node N4 and the downlink route of node N4 ⁇ node N3 ⁇ node N2 ⁇ node N1.
  • slice NS4 there is a case of routing in which the edge server 3 is not used as a relay node. In this case, data communication is performed by the uplink route of node N1 ⁇ node N2 ⁇ node N4 and the downlink route of node N4 ⁇ node N2 ⁇ node N1.
  • nodes N2 When a plurality of base stations 2 (nodes N2) are included in the slice NS2, routing that follows the communication between the base stations 2 and 2 is also possible. Similarly, when a plurality of edge servers 3 (nodes N3) are included in the slice NS3, routing that traces communication between the edge servers 3 and 3 is also possible. When a plurality of core servers 4 (nodes N4) are included in the slice NS4, routing that traces communication between the core servers 4 and 4 is also possible.
  • the communication terminal 1A includes a wireless communication device mounted on the vehicle 5.
  • the vehicle 5 includes not only ordinary passenger cars but also public vehicles such as fixed-route buses and emergency vehicles.
  • the vehicle 5 may be a two-wheeled vehicle (motorcycle) as well as a four-wheeled vehicle.
  • the drive system of the vehicle 5 may be an engine drive, an electric motor drive, or a hybrid system.
  • the driving method of the vehicle 5 may be either normal driving in which the passenger performs operations such as acceleration / deceleration and steering wheel steering, or automatic driving in which the software executes the operations.
  • the communication terminal 1A of the vehicle 5 may be an existing wireless communication device in the vehicle 5 or a mobile terminal brought into the vehicle 5 by the passenger.
  • the passenger's mobile terminal temporarily becomes an in-vehicle wireless communication device by being communicably connected to the in-vehicle LAN (Local Area Network) of the vehicle 5.
  • LAN Local Area Network
  • the communication terminal 1B comprises a mobile terminal carried by the pedestrian 7.
  • the pedestrian 7 is a person who moves on foot outdoors such as a road or a parking lot, and indoors such as inside a building or an underground shopping mall.
  • the pedestrian 7 includes not only a person walking but also a person riding a bicycle or the like having no power source.
  • the communication terminal 1C includes a wireless communication device mounted on the roadside sensor 8.
  • the roadside sensor 8 includes an image-type vehicle detector installed on the road, a security camera installed outdoors or indoors, and the like.
  • the communication terminal 1D is composed of a wireless communication device 10 installed on the roadside.
  • the wireless communication device 10 is also communicably connected to the traffic signal controller 9 belonging to the traffic control system.
  • the roadside wireless communication device represented by the reference code “10” is also referred to as an “edge terminal”.
  • the traffic signal controller 9 provides the signal information of the intersection at the present time (for example, the remaining blue time for each inflow direction of the intersection) to the communication terminal 1D every predetermined time (for example, 1 second).
  • traffic information such as link travel time, traffic congestion information, traffic regulation information, and road construction information from the traffic control center (not shown), these information are also transmitted to the communication terminal 1D. provide.
  • the service requirements for slices NS1 to NS4 are as follows, for example.
  • the delay times D1 to D4 allowed for the slices NS1 to NS4 are defined so that D1 ⁇ D2 ⁇ D3 ⁇ D4.
  • D1 1 ms
  • D2 10 ms
  • D3 100 ms
  • D4 1 s.
  • the data traffic C1 to C4 per predetermined period (for example, one day) allowed for the slices NS1 to NS4 is defined so that C1 ⁇ C2 ⁇ C3 ⁇ C4.
  • C1 20GB
  • C2 100GB
  • C3 2TB
  • C4 10TB.
  • direct wireless communication with the slice NS1 for example, “vehicle-to-vehicle communication” in which the communication terminal 1A of the vehicle 5 directly communicates
  • wireless communication with the slice NS2 via the base station 2 Is possible.
  • the communication delay times D1 and D2 in the slice NS1 and the slice NS2 are smaller than the communication delay times D3 and D3 in the slice NS3 and the slice NS4.
  • the wireless communication system of FIG. 1 it is also possible to provide an information providing service to a user included in a relatively wide service area (for example, an area including a municipality or a prefecture) using the slice NS3 and the slice NS4.
  • a relatively wide service area for example, an area including a municipality or a prefecture
  • the communication delay times D3 and D4 in the slice NS3 and the slice NS4 are larger than the communication delay times D1 and D2 in the slice NS1 and the slice NS2.
  • FIG. 2 is a block diagram showing an example of the internal configuration of the edge terminal 10 and the edge server 3.
  • the edge terminal (roadside communication device) 10 includes a control unit 11 including a CPU (Central Processing Unit), a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage unit 14, and a storage unit 14. It comprises a computer device including a communication unit 15 and the like.
  • the edge terminal 10 manages a dynamic information map M1 of a predetermined service area, and has a function as an update device for dynamic information superimposed on the map M1.
  • the control unit 11 makes the computer device function as an edge terminal that communicates with the edge server 3 and the communication terminals 1A to 1C by reading one or a plurality of programs stored in advance in the ROM 12 into the RAM 13 and executing the program.
  • the RAM 13 is composed of a volatile memory element such as a SRAM (Static RAM) or a DRAM (Dynamic RAM), and temporarily stores a program executed by the control unit 11 and data necessary for the execution.
  • the storage unit 14 is composed of a flash memory, a non-volatile memory element such as EEPROM (Electrically Erasable Programmable Read Only Memory: registered trademark), or a magnetic storage device such as a hard disk.
  • the communication unit 15 includes a communication device that executes communication processing corresponding to 5G, and communicates with the edge server 3 and the communication terminals 1A to 1C via the base station 2.
  • the communication unit 15 transmits the information given by the control unit 11 to the external device via the base station 2, and gives the information received from the base station 2 to the control unit 11.
  • the storage unit 14 of the edge terminal 10 stores a dynamic information map (hereinafter, also simply referred to as “map”) M1.
  • the dynamic information map M1 is a collection of data (virtual database) in which dynamic information that changes from moment to moment is superimposed on high-definition digital map data that is static information.
  • the digital information constituting the map M1 includes the following "dynamic information", “quasi-dynamic information”, “quasi-static information”, and "static information”.
  • updating these digital information constituting the map M1 means replacing the digital information stored in the storage unit 14 with new digital information of the same type.
  • “Dynamic information” ( ⁇ 1 second) is dynamic data that requires a delay time of 1 second or less.
  • the type of moving object vehicle, pedestrian, etc.
  • position information position information
  • signal information etc.
  • ITS Intelligent Transport Systems
  • the blind spot area caused by the shadow of an object for example, a large vehicle
  • a predetermined sensing device for example, a roadside sensor 8
  • the dynamic information of the blind spot area consists of the shape and position information of the blind spot area.
  • “Semi-dynamic information” (up to 1 minute) is quasi-dynamic data that requires a delay time of 1 minute or less. For example, accident information, traffic congestion information, narrow area weather information, and the like fall under this category.
  • “Quasistatic information” ( ⁇ 1 hour) is quasi-static data to which a delay time of 1 hour or less is allowed. For example, traffic regulation information, road construction information, wide area weather information, etc. correspond to this.
  • Static information ( ⁇ 1 month) is static data that allows a delay time of up to 1 month. For example, road surface information, lane information, three-dimensional structure data, and the like fall under this category.
  • the service area of the map M1 stored in the storage unit 14 of the edge terminal 10 is composed of an area having a size within a predetermined radius (for example, 150 to 250 m) from one intersection.
  • the service area of the map M1 corresponds to an area where moving objects such as vehicles 5 and pedestrians 7 can be sensed by one or a plurality of roadside sensors 8 installed near the intersection.
  • the control unit 11 of the edge terminal 10 updates the dynamic information of the map M1 stored in the storage unit 14 at predetermined update cycles (dynamic information update processing). Specifically, the control unit 11 communicates various sensor information (in this embodiment, change point information of the sensor information) in the service area measured by the vehicle 5 and the roadside sensor 8 at predetermined update cycles. It collects from terminals 1A to 1C and updates the dynamic information of the map M1 based on the collected sensor information.
  • various sensor information in this embodiment, change point information of the sensor information
  • the control unit 11 When the control unit 11 receives the dynamic information request message from the user's communication terminals 1A and 1B, the communication unit 15 requests the latest dynamic information from the user's communication terminals 1A and 1B at each predetermined distribution cycle.
  • the communication unit 15 is controlled so as to deliver to 1B (dynamic information delivery processing).
  • the control unit 11 collects traffic information and weather information of each place in the service area from the traffic control center, the private weather business support center, etc., and based on the collected information, the quasi-dynamic information and the quasi-static information of the map M1. To update.
  • the edge server 3 includes a computer device including a control unit 31, including a CPU, a ROM 32, a RAM 33, a storage unit 34, a communication unit 35, and the like.
  • the control unit 31 makes the computer device function as an edge server 3 that communicates with the communication terminals 1A to 1D and the core server 4 by reading one or a plurality of programs stored in advance in the ROM 32 into the RAM 33 and executing the program.
  • the RAM 33 is composed of a volatile memory element such as an SRAM or a DRAM, and temporarily stores a program executed by the control unit 31 and data necessary for the execution.
  • the storage unit 34 is composed of a non-volatile memory element such as a flash memory or EEPROM, or a magnetic storage device such as a hard disk.
  • the communication unit 35 includes a communication device that executes communication processing corresponding to 5G, and communicates with the core server 4, the base station 2, and the like via the metro network.
  • the communication unit 35 transmits the information given by the control unit 31 to the external device via the metro network and the base station 2, and gives the information received via the metro network and the base station 2 to the control unit 31.
  • the storage unit 34 of the edge server 3 stores a dynamic information integrated map (hereinafter, also simply referred to as “integrated map”) M2.
  • integrated map a dynamic information integrated map
  • the data structure of the integrated map M2 (data structure including dynamic information, quasi-dynamic information, quasi-static information, and static information) is the same as that of the map M1.
  • the integrated map M2 is composed of a wide area integrated map in which each map M1 held by a plurality of edge terminals 10 is integrated.
  • the control unit 11 of the edge terminal 10 executes the update process of the dynamic information
  • the control unit 11 causes the communication unit 15 to transmit a communication packet addressed to the edge server 3 including the updated dynamic information.
  • the communication unit 35 of the edge server 3 provides the dynamic information received from the edge terminal 10 to the control unit 31 of its own device.
  • the control unit 31 of the edge server 3 superimposes the dynamic information received by the communication unit 35 on the integrated map M2 stored in the storage unit 34. Therefore, the dynamic information of the integrated map M2 is composed of the dynamic information received from each of the plurality of edge terminals 10.
  • the control unit 31 of the edge server 3 receives dynamic information from each of the plurality of edge terminals 10 and executes a distributed process of reflecting the received dynamic information in the integrated map M2. Therefore, as compared with the case where the edge server 3 collects various sensor information in the service area from the communication terminals 1A to 1C and independently updates the dynamic information of the integrated map M2 based on the collected sensor information. It is possible to suppress the load and delay of information processing required for updating the dynamic information of the integrated map M1.
  • the control unit 31 collects traffic information and weather information of each place in the service area from the traffic control center, the private weather business support center, etc., and based on the collected information, the quasi-dynamic information and the quasi-static of the integrated map M2. Update the information.
  • the control unit 31 may adopt the quasi-dynamic information and the quasi-static information of the map M1 received from the edge terminal 10 as the quasi-dynamic information and the quasi-static information of the integrated map M2 of its own device.
  • FIG. 3 is a block diagram showing an example of the internal configuration of the in-vehicle device 50.
  • the vehicle-mounted device 50 of the vehicle 5 includes a control unit (ECU: Electronic Control Unit) 51, a GPS receiver 52, a vehicle speed sensor 53, a gyro sensor 54, a storage unit 55, a display 56, a speaker 57, and an input.
  • It includes a device 58, an in-vehicle camera 59, a radar sensor 60, a communication unit 61, and the like.
  • the communication unit 61 includes the above-mentioned communication terminal 1A, that is, a wireless communication device capable of performing communication processing corresponding to, for example, 5G. Therefore, the vehicle 5 can communicate with the edge terminal 10 as a kind of mobile terminal belonging to the slice NS1 or the slice NS2.
  • the control unit 51 includes a computer device that searches the route of the vehicle 5 and controls other electronic devices 52 to 61.
  • the control unit 51 obtains the vehicle position of the own vehicle from the GPS signal periodically acquired by the GPS receiver 52.
  • the control unit 51 complements the vehicle position and direction based on the input signals of the vehicle speed sensor 53 and the gyro sensor 54, and grasps the accurate current position and direction of the vehicle 5.
  • the GPS receiver 52, the vehicle speed sensor 53, and the gyro sensor 54 are sensors that measure the current position, speed, and orientation of the vehicle 5.
  • the storage unit 55 includes a map database.
  • the map database provides road map data to the control unit 51.
  • the road map data includes link data and node data, and is stored in a recording medium such as a DVD, a CD-ROM, or an HDD.
  • the storage unit 55 reads out necessary road map data from the recording medium and provides it to the control unit 51.
  • the display 56 and the speaker 57 are output devices for notifying the user who is a passenger of the vehicle 5 of various information generated by the control unit 51. Specifically, the display 56 displays an input screen at the time of route search, a map image around the own vehicle, route information to the destination, and the like. The speaker 57 outputs an announcement or the like for guiding the vehicle 5 to the destination by voice. These output devices can also notify the passenger of the provided information received by the communication unit 61.
  • the input device 58 is a device for the passenger of the vehicle 5 to perform various input operations.
  • the input device 58 is composed of a combination of an operation switch provided on the handle, a joystick, a touch panel provided on the display 56, and the like.
  • the voice recognition device that accepts the input by the voice recognition of the passenger may be the input device 58.
  • the input signal generated by the input device 58 is transmitted to the control unit 51.
  • the in-vehicle camera 59 includes an image sensor that captures an image in front of the vehicle 5.
  • the vehicle-mounted camera 59 may be either monocular or compound eye.
  • the radar sensor 60 includes a sensor that detects an object existing in front of or around the vehicle 5 by a millimeter wave radar, a LiDAR method, or the like.
  • the control unit 51 executes driving support control such as outputting a warning to the occupant during driving to the display 56 or performing a forced braking intervention based on the measurement data by the in-vehicle camera 59 and the radar sensor 60. be able to.
  • the control unit 51 is composed of an arithmetic processing unit such as a microcomputer that executes various control programs stored in the storage unit 55.
  • the control unit 51 has a function of displaying a map image on the display 56 and a function of calculating a route from the departure point to the destination (including the position of the relay point if there is a relay point) by executing the above control program.
  • Various navigation functions such as a function of guiding the vehicle 5 to the destination according to the calculated route can be executed.
  • the control unit 51 performs an object recognition process for recognizing an object in front of or around the own vehicle and a measurement for calculating the distance to the recognized object based on the measurement data of at least one of the in-vehicle camera 59 and the radar sensor 60. Distance processing is possible.
  • the control unit 51 can calculate the position information of the object recognized by the object recognition process from the distance calculated by the distance measurement process and the sensor position of the own vehicle.
  • the control unit 51 When the control unit 51 recognizes a certain object (object), the control unit 51 can calculate the shape and position information of the blind spot area caused by the recognized object. Specifically, the control unit 51 has a blind spot area shape (planar shape or) caused by the shadow (occlusion) of the recognized object when viewed from the sensor viewpoint of the own vehicle (for example, the lens center of the vehicle-mounted camera 59). The three-dimensional shape) and the position information of the representative point of the shape are calculated.
  • the control unit 51 can execute each of the following processes in communication with the edge terminal 10. 1) Dynamic information request processing 2) Dynamic information reception processing 3) Change point information calculation processing 4) Change point information transmission processing
  • the dynamic information request process is a process of transmitting a control packet (request message) requesting the delivery of the dynamic information of the map M1 that the edge terminal 10 sequentially updates to the edge terminal 10.
  • the control packet includes the vehicle ID of the own vehicle.
  • the dynamic information reception process is a process of receiving the dynamic information delivered by the edge terminal 10 to the own device.
  • the calculation process of the change point information in the vehicle 5 is a process of calculating the amount of change between the received dynamic information and the sensor information of the own vehicle at the time of reception from the comparison result.
  • the change point information calculated by the vehicle 5 for example, the following information examples a1 to a2 can be considered.
  • Information example a1 Change point information about the recognized object
  • the control unit 51 detects the object X by its own object recognition process, although the received dynamic information does not include the object X (vehicle, pedestrian, obstacle, etc.). If so, the image data and position information of the detected object X are used as change point information. In this case, if the flat area of the blind spot area caused by the object X is equal to or larger than a predetermined value (for example, 10 m 2 ), the control unit 51 includes the shape and position information of the blind spot area in the change point information.
  • a predetermined value for example, 10 m 2
  • the control unit 51 detects the detected object X.
  • the difference value between the image data of the above and the position information of both is used as the change point information. Also in this case, if the flat area of the blind spot area caused by the object X is equal to or larger than a predetermined value, the control unit 51 includes the shape and position information of the blind spot area in the change point information.
  • Information example a2 Change point information regarding own vehicle
  • the control unit 51 deviates between the position information of the own vehicle included in the received dynamic information and the vehicle position of the own vehicle calculated by itself by a GPS signal by a predetermined threshold value or more. If so, the difference between the two is used as the change point information. If the orientation of the own vehicle included in the received dynamic information and the orientation of the own vehicle calculated by itself from the measurement data of the gyro sensor 54 deviate from each other by a predetermined threshold value or more, the control unit 51 makes a difference between the two. The value is used as the change point information.
  • the control unit 51 When the change point information is calculated as described above, the control unit 51 generates a communication packet addressed to the edge terminal 10 including the calculated change point information.
  • the control unit 51 includes the vehicle ID of the own vehicle in the communication packet.
  • the change point information transmission process is a process of transmitting the above-mentioned communication packet including the change point information in the data to the edge terminal 10. The change point information transmission process is performed within the dynamic information distribution cycle by the edge terminal 10.
  • the process of transmitting change point information by the vehicle 5 is also executed when a control packet (request message) requesting transmission of change point information is received from the edge terminal 10. Specifically, when the control unit 51 receives the request message including the predetermined terminal ID, the control unit 51 transmits the communication packet addressed to the terminal ID of the transmission source including the current change point information.
  • a control packet request message
  • the control unit 51 transmits the communication packet addressed to the terminal ID of the transmission source including the current change point information.
  • control unit 51 executes driving support control such as outputting a warning to the occupant during driving to the display 56 or performing a forced braking intervention. You can also.
  • FIG. 4 is a block diagram showing an example of the internal configuration of the pedestrian terminal 70.
  • the pedestrian terminal 70 of FIG. 4 is composed of the above-mentioned communication terminal 1B, that is, a wireless communication device capable of communication processing corresponding to, for example, 5G. Therefore, the pedestrian terminal 70 can communicate with the edge terminal 10 as a kind of mobile terminal belonging to the slice NS1 or the slice NS2.
  • the pedestrian terminal 70 includes a control unit 71, a storage unit 72, a display unit 73, an operation unit 74, and a communication unit 75.
  • the communication unit 75 includes a communication interface that wirelessly communicates with the base station 2 of the carrier that provides the 5G service.
  • the communication unit 75 converts the RF signal from the base station 2 into a digital signal and outputs it to the control unit 71, converts the digital signal input from the control unit 71 into an RF signal, and transmits the digital signal to the base station 2.
  • the control unit 71 includes a CPU, ROM, RAM, and the like.
  • the control unit 71 reads and executes the program stored in the storage unit 72, and controls the entire operation of the pedestrian terminal 70.
  • the storage unit 72 is composed of a hard disk, a non-volatile memory, or the like, and stores various computer programs and data.
  • the storage unit 72 stores the mobile ID, which is the identification information of the pedestrian terminal 70.
  • the mobile ID consists of, for example, a unique user ID or MAC address of the carrier contractor.
  • the storage unit 72 stores various application software arbitrarily installed by the user.
  • This application software includes, for example, application software for enjoying an information providing service for receiving dynamic information of the map M1 by 5G communication with the edge terminal 10.
  • the operation unit 74 is composed of various operation buttons and a touch panel function of the display unit 73.
  • the operation unit 74 outputs an operation signal corresponding to the user's operation to the control unit 71.
  • the display unit 73 comprises, for example, a liquid crystal display, and presents various types of information to the user.
  • the display unit 73 can display the image data of the dynamic information map M1 transmitted from the edge terminal 10 on the screen.
  • the control unit 71 uses a time synchronization function to acquire the current time from a GPS signal, a position detection function to measure the current position (latitude, longitude and altitude) of the own vehicle from the GPS signal, and a direction sensor to determine the direction of the pedestrian 7. It also has a measurement orientation detection function.
  • the control unit 71 can execute each of the following processes in communication with the edge terminal 10. 1) Dynamic information request processing 2) Terminal status information transmission processing 3) Dynamic information reception processing
  • the dynamic information request process is a process of transmitting a control packet (request message) requesting the delivery of the dynamic information of the map M1 that the edge terminal 10 sequentially updates to the edge terminal 10.
  • the control packet includes the mobile ID of the pedestrian terminal 70.
  • the terminal state information transmission process is a process of transmitting the state information of the pedestrian terminal 70 such as the position and orientation information of the own device to the edge terminal 10.
  • the dynamic information reception process is a process of receiving the dynamic information delivered by the edge terminal 10 to the own device.
  • FIG. 5 is a block diagram showing an example of the internal configuration of the roadside sensor 8.
  • the roadside sensor 8 includes a control unit 81, a storage unit 82, a roadside camera 83, a radar sensor 84, and a communication unit 85.
  • the communication unit 85 includes the above-mentioned communication terminal 1C, that is, a wireless communication device capable of performing communication processing corresponding to, for example, 5G. Therefore, the roadside sensor 8 can communicate with the edge terminal 10 as a kind of mobile terminal belonging to the slice NS1 or the slice NS2.
  • the control unit 81 includes a CPU, ROM, RAM, and the like.
  • the control unit 81 reads and executes the program stored in the storage unit 82, and controls the overall operation of the roadside sensor 8.
  • the storage unit 82 is composed of a hard disk, a non-volatile memory, or the like, and stores various computer programs and data.
  • the storage unit 82 stores the sensor ID, which is the identification information of the roadside sensor 8.
  • the sensor ID includes, for example, a user ID or MAC address unique to the owner of the roadside sensor 8.
  • the roadside camera 83 includes an image sensor that captures an image of a predetermined shooting area.
  • the roadside camera 83 may be monocular or compound eye.
  • the radar sensor 60 includes a sensor that detects an object existing in front of or around the own machine by a millimeter wave radar, a LiDAR method, or the like.
  • the control unit 81 transmits the captured video data and the like to the computer device of the security manager.
  • the control unit 81 transmits the captured video data or the like to the traffic control center.
  • the control unit 81 performs object recognition processing for recognizing an object in the photographing area and distance measurement processing for calculating the distance to the recognized object based on the measurement data of at least one of the roadside camera 83 and the radar sensor 84. It is possible.
  • the control unit 81 can calculate the position information of the object recognized by the object recognition process from the distance calculated by the distance measurement process and the sensor position of the own vehicle.
  • the control unit 81 When the control unit 81 recognizes a certain object (object), the control unit 81 can calculate the shape and position information of the blind spot area caused by the recognized object. Specifically, the control unit 81 has a blind spot area shape (planar shape or) caused by the shadow (occlusion) of the recognized object when viewed from the sensor viewpoint of the own vehicle (for example, the lens center of the in-vehicle camera 59). The three-dimensional shape) and the position information of the representative point of the shape are calculated.
  • the control unit 81 has a blind spot area shape (planar shape or) caused by the shadow (occlusion) of the recognized object when viewed from the sensor viewpoint of the own vehicle (for example, the lens center of the in-vehicle camera 59).
  • the three-dimensional shape) and the position information of the representative point of the shape are calculated.
  • the control unit 81 can execute each of the following processes in communication with the edge terminal 10. 1) Change point information calculation process 2) Change point information transmission process
  • the calculation process of the change point information in the roadside sensor 8 is based on the comparison result between the previous sensor information and the current sensor information for each predetermined measurement cycle (for example, the distribution cycle of dynamic information by the edge terminal 10). It is a process of calculating the amount of change between the sensor information of.
  • the change point information calculated by the roadside sensor 8 for example, the following information example b1 can be considered.
  • the control unit 81 has detected the object Y by the current object recognition process, although the object Y (vehicle, pedestrian, obstacle, etc.) is not included in the previous object recognition process. In this case, the image data and the position information of the detected object Y are used as the change point information. In this case, if the flat area of the blind spot area caused by the object Y is equal to or larger than a predetermined value (for example, 10 m 2 ), the control unit 81 includes the shape and position information of the blind spot area in the change point information.
  • a predetermined value for example, 10 m 2
  • the control unit 81 detects the detected object Y.
  • the difference value between the image data of the above and the position information of both is used as the change point information. Also in this case, if the flat area of the blind spot area caused by the object Y is equal to or larger than a predetermined value, the control unit 81 includes the shape and position information of the blind spot area in the change point information.
  • the control unit 81 When the change point information is calculated as described above, the control unit 81 generates a communication packet addressed to the edge terminal 10 including the calculated change point information.
  • the control unit 81 includes the sensor ID of its own device in the communication packet.
  • the change point information transmission process is a process of transmitting the above-mentioned communication packet including the change point information in the data to the edge terminal 10. The change point information transmission process is performed within the dynamic information distribution cycle by the edge terminal 10.
  • FIG. 6 is an overall configuration diagram showing a configuration example of the information providing system.
  • the information providing system of the present embodiment has a large number of vehicles 5, a pedestrian terminal 70, a roadside sensor 8, and an edge terminal existing in a relatively wide service area (real world) including a plurality of intersections.
  • the 10 and the edge server 3 capable of wireless communication by 5G communication or the like via the edge terminal 10 and the base station 2 are provided.
  • the edge terminal 10 collects the above-mentioned change point information at a predetermined cycle for each service area within a predetermined radius from one intersection (step S101), and moves the dynamic information map M1 based on the collected change point information. Update the target information (step S102).
  • the edge terminal 10 transmits the dynamic information to the edge server 3 every time the dynamic information is updated.
  • the edge server 3 reflects the dynamic information received from the edge terminal 10 on the dynamic information integration map M2 that covers the service area of its own device including a plurality of intersections.
  • the edge terminal 10 transmits the latest dynamic information to the requesting communication node (step S103).
  • the vehicle 5 that has received the dynamic information can utilize the dynamic information for driving support of the passenger.
  • the roadside sensor 8 and the vehicle 5 detect the change point information of the sensor information in this cycle, the roadside sensor 8 and the vehicle 5 transmit the detected change point information to the edge terminal 10 (step S104).
  • the change point information is collected (step S101) ⁇ the dynamic information is updated (step S102) ⁇ the dynamic information is distributed (step S103) ⁇ the change point information is transmitted (step).
  • Information processing at each communication node circulates in the order of S104) ⁇ collection of change point information (step S101).
  • FIG. 7 is a sequence diagram showing a comparative example of dynamic information update processing and distribution processing.
  • the execution subject is the pedestrian terminal 70, the vehicle 5, the roadside sensor 8 and the edge terminal 10, but the actual execution subject is their control units 71, 51, 81, 11. U1, U2 ...
  • FIG. 7 are dynamic information distribution cycles (for example, 100 ms).
  • the edge terminal 10 when the edge terminal 10 receives the dynamic information request message from the pedestrian terminal 70 and the vehicle 5 (step S1), the edge terminal 10 sends the latest dynamic information at the time of reception to the pedestrian terminal of the transmission source. It is delivered to 70 and vehicle 5 (step S2). If there is a request message from either the pedestrian terminal 70 or the vehicle 5 in step S1, the dynamic information is delivered only to one of the communication terminals that is the source of the request message in step S2.
  • step S2 When the vehicle 5 that has received the dynamic information in step S2 detects the change point information from the comparison result between the dynamic information and its own sensor information within the distribution cycle U1 (step S3), the detected change point information is edged. It is transmitted to the terminal 10 (step S5).
  • step S4 When the roadside sensor 8 detects the change point information of its own sensor information within the distribution cycle U1 (step S4), the roadside sensor 8 transmits the detected change point information to the edge terminal 10 (step S5).
  • the edge terminal 10 When the edge terminal 10 receives the change point information from the vehicle 5 and the roadside sensor 8 within the distribution cycle U1, the edge terminal 10 updates the change point information to the dynamic information reflecting the change point information (step S6), and then the updated dynamic. Information is distributed to the pedestrian terminal 70 and the vehicle 5 (step S7).
  • the vehicle 5 detects the change point information within the distribution cycle U1
  • only the change point information detected by the vehicle 5 in step S3 is transmitted to the edge terminal 10 (step S5), and only the change point information is reflected.
  • the dynamic information is updated (step S6).
  • step S5 When only the roadside sensor 8 detects the change point information within the distribution cycle U1, only the change point information detected by the roadside sensor 8 in step S4 is transmitted to the edge terminal 10 (step S5), and only the change point information is transmitted.
  • the dynamic information is updated to reflect the above (step S6). If neither the vehicle 5 nor the roadside sensor 8 detects the change point information within the distribution cycle U1, the processes of steps S3 to S6 are not executed, which is the same as the dynamic information (step S2) of the previous transmission. Dynamic information is delivered to the pedestrian terminal 70 and the vehicle 5 (step S7).
  • step S7 When the vehicle 5 that has received the dynamic information in step S7 detects the change point information from the comparison result between the dynamic information and its own sensor information within the distribution cycle U2 (step S8), the detected change point information is edged. It is transmitted to the terminal 10 (step S10).
  • step S9 When the roadside sensor 8 detects the change point information of its own sensor information within the distribution cycle U2 (step S9), the roadside sensor 8 transmits the detected change point information to the edge terminal 10 (step S10).
  • the edge terminal 10 When the edge terminal 10 receives the change point information from the vehicle 5 and the roadside sensor 8 within the distribution cycle U2, the edge terminal 10 updates the change point information to the dynamic information reflecting the change point information (step S11), and then the updated dynamic. Information is distributed to the pedestrian terminal 70 and the vehicle 5 (step S12). When only the vehicle 5 detects the change point information within the distribution cycle U2, only the change point information detected by the vehicle 5 in step S8 is transmitted to the edge terminal 10 (step S10), and only the change point information is reflected. The dynamic information is updated (step S11).
  • step S9 When only the roadside sensor 8 detects the change point information within the distribution cycle U2, only the change point information detected by the roadside sensor 8 in step S9 is transmitted to the edge terminal 10 (step S10), and only the change point information is transmitted.
  • the dynamic information is updated to reflect the above (step S11). If neither the vehicle 5 nor the roadside sensor 8 detects the change point information within the distribution cycle U2, the processes of steps S8 to S11 are not executed, which is the same as the dynamic information (step S7) of the previous transmission. Dynamic information is delivered to the pedestrian terminal 70 and the vehicle 5 (step S12).
  • the edge terminal 10 cannot appropriately update the dynamic information for each distribution cycle U1 and U2, and the real-time property of the map M1 deteriorates.
  • the sensing device that collects the change point information it is conceivable to limit the sensing device that collects the change point information to some devices (for example, the roadside sensor 8).
  • some devices for example, the roadside sensor 8
  • the sensing device is limited to some devices, there is a high possibility that a blind spot area due to an object will occur. Therefore, when an object such as a moving object exists in the blind spot area, the number of objects (vehicles, pedestrians, obstacles, etc.) reflected on the map M1 is smaller than the actual number, and the object reflection accuracy of the map M1 deteriorates. Will be done.
  • the dynamic information based on the change point information of the predetermined sensing device includes the dynamic information of the blind spot area, another sensing capable of sensing the blind spot area.
  • the dynamic information based on the change point information of the predetermined sensing device includes the dynamic information of the blind spot area
  • another sensing capable of sensing the blind spot area By updating the dynamic information using the change point information of the device (for example, the vehicle 5), both the real-time property of the dynamic information map M1 and the object reflection accuracy are achieved.
  • FIG. 8 is a sequence diagram showing a specific example of the dynamic information update process and the distribution process.
  • the execution subject is the pedestrian terminal 70, the vehicle 5, the roadside sensor 8 and the edge terminal 10, but the actual execution subject is their control units 71, 51, 81, 11. U1, U2 ...
  • FIG. 8 are dynamic information distribution cycles (for example, 100 ms).
  • the vehicle 5A is a vehicle to which dynamic information is distributed (hereinafter, also referred to as a “delivered vehicle”).
  • the vehicle 5B is a vehicle that provides change point information to the edge terminal 10 in response to a request from the edge terminal 10 (hereinafter, also referred to as an “information providing vehicle”).
  • the edge terminal 10 selects one or a plurality of information providing vehicles 5B capable of sensing the blind spot area from the position and the traveling direction of the vehicle 5 existing in its own service area.
  • the information providing vehicle 5B may be either a vehicle 5 different from the delivered vehicle 5A or the same vehicle 5.
  • the edge terminal 10 when the edge terminal 10 receives the dynamic information request message from the pedestrian terminal 70 and the delivered vehicle 5A (step S21), the edge terminal 10 sends the latest dynamic information at the time of reception to the walking source. It is delivered to the pedestrian terminal 70 and the delivered vehicle 5A (step S22). If there is a request message from either the pedestrian terminal 70 or the delivered vehicle 5A in step S21, the dynamic information is delivered only to one of the communication terminals that is the source of the request message in step S22. To.
  • the roadside sensor 8 When the roadside sensor 8 detects the change point information of its own sensor information within the distribution cycle U1 (step S23), the roadside sensor 8 transmits the detected change point information to the edge terminal 10 (step S24).
  • the edge terminal 10 receives the change point information from the roadside sensor 8 within the distribution cycle U1, the edge terminal 10 updates the dynamic information reflecting the change point information (step S25).
  • step S25 whether or not to request the change point information from the information providing vehicle 5B capable of sensing the blind spot area according to the existence or nonexistence of the dynamic information of the blind spot area regarding the current dynamic information. Is included in the process of determining.
  • the edge terminal 10 transmits a request message for the change point information to the information providing vehicle 5B, and the change point information is transmitted from the information providing vehicle 5B. get.
  • the edge terminal 10 does not send the request message of the change point information to the information providing vehicle 5B, and the change point of the information providing vehicle 5B. Do not use information to update dynamic information.
  • the edge terminal 10 updates the dynamic information in step S25, and then delivers the updated dynamic information to the pedestrian terminal 70 and the delivered vehicle 5A (step S26). If the roadside sensor 8 does not detect the change point information within the distribution cycle U1, the processes of steps S23 to S25 are not executed, and the same dynamic information as the dynamic information for the previous transmission (step S22) is obtained. It is delivered to the pedestrian terminal 70 and the delivered vehicle 5A (step S26).
  • the roadside sensor 8 When the roadside sensor 8 detects the change point information of its own sensor information within the distribution cycle U2 (step S27), the roadside sensor 8 transmits the detected change point information to the edge terminal 10 (step S28).
  • the edge terminal 10 receives the change point information from the roadside sensor 8 within the distribution cycle U2, the edge terminal 10 updates the dynamic information reflecting the change point information (step S29).
  • step S29 whether or not to request the change point information from the information providing vehicle 5B capable of sensing the blind spot area according to the existence or nonexistence of the dynamic information of the blind spot area regarding the current dynamic information. Is included in the process of determining.
  • the edge terminal 10 transmits a request message for the change point information to the information providing vehicle 5B, and the change point information is transmitted from the information providing vehicle 5B. get.
  • the edge terminal 10 does not send the request message of the change point information to the information providing vehicle 5B, and the change point of the information providing vehicle 5B. Do not use information to update dynamic information.
  • the edge terminal 10 updates the dynamic information in step S29, and then delivers the updated dynamic information to the pedestrian terminal 70 and the delivered vehicle 5A (step S30). If the roadside sensor 8 does not detect the change point information within the distribution cycle U2, the processes of steps S27 to S29 are not executed, and the same dynamic information as the dynamic information for the previous transmission (step S26) is obtained. It is delivered to the pedestrian terminal 70 and the delivered vehicle 5A (step S30).
  • FIG. 9 is a flowchart showing an example of a dynamic information update process including a blind spot area executed by the control unit 11 of the edge terminal 10.
  • the flowchart of FIG. 9 corresponds to the update process executed by the edge terminal 10 in steps S25 and S29 of FIG.
  • the control unit 11 of the edge terminal 10 first acquires the change point information received from the roadside sensor 8 from the RAM 13 in this cycle (step ST11).
  • the control unit 11 temporarily updates the dynamic information of the map M1 stored in the storage unit 14 based only on the change point information of the roadside sensor 8 (step ST12), and stores the updated dynamic information.
  • Store in part 14 That is, the dynamic information stored in the storage unit 14 is replaced with the updated dynamic information.
  • control unit 11 determines whether or not the dynamic information in storage based on the change point information of the roadside sensor 8 includes the dynamic information of the blind spot area (step ST13). If the determination result in step ST13 is negative, the control unit 11 performs the process without adding the change point information of the vehicle 5 (information providing vehicle 5B) to the change point information for this cycle (step ST19). finish.
  • step ST13 determines whether or not the vehicle 5 (information providing vehicle 5B) capable of sensing the blind spot area exists in its own service area (step ST14).
  • the fact that the blind spot area can be sensed means that, for example, an object that can exist inside the blind spot area is in a measurable position and direction. If the determination result in step ST14 is negative, the control unit 11 ends the process without adding the change point information of the information providing vehicle 5B to the change point information for the current cycle (step ST19).
  • step ST14 If the determination result in step ST14 is affirmative, the control unit 11 transmits a control packet (request message) requesting change point information to the information providing vehicle 5B (step ST15), and then from the information providing vehicle 5B. It is determined whether or not the change point information is received within the predetermined time (step ST16). If the determination result in step ST16 is negative, the control unit 11 ends the process without adding the change point information of the information providing vehicle 5B to the change point information for the current cycle (step ST19).
  • a control packet request message
  • step ST16 If the determination result in step ST16 is affirmative, the control unit 11 adds the change point information of the information providing vehicle 5B to the change point information for this cycle (step ST17).
  • the detection result of the moving body based on the change point information received from the information providing vehicle 5B the following three types of detection results 1 to 3 can be considered.
  • Detection result 1 Both the vehicle 5 and the pedestrian 7 are included in the blind spot area.
  • Detection result 2 The blind spot area includes the vehicle 5 and does not include the pedestrian 7.
  • Detection result 3 The blind spot area does not include the vehicle 5, but includes the pedestrian 7.
  • control unit 11 determines whether or not there are moving objects such as the vehicle 5 and the pedestrian 7 in the blind spot area depending on which of the above detection results 1 to 3 is the change point information of the information providing vehicle 5B. Can be determined. Then, the control unit 11 updates the stored dynamic information based on the change point information of the roadside sensor 8 and the information providing vehicle 5B (step ST18). That is, the dynamic information stored in the storage unit 14 is replaced with the updated dynamic information.
  • the control unit 11 updates the dynamic information of the vehicle 5 and the pedestrian 7.
  • the control unit 11 updates the dynamic information of the vehicle 5, and when the change point information by the information providing vehicle 5B is the detection result 3. Updates the dynamic information of the pedestrian 7.
  • the control unit 11 may delete the dynamic information of the blind spot area from the map M1 or leave it after the process of step ST18.
  • the control unit 11 has a blind spot area (Yes in step ST13), a vehicle 5 capable of sensing the blind spot area does not exist (No in step ST14), or the information providing vehicle 5B.
  • the change point information is not received from (No in step ST16)
  • the change point information of the vehicle 5 is not used for updating the dynamic information. Therefore, the dynamic information of the blind spot area may remain in the dynamic information updated in this cycle, and the dynamic information of the blind spot area may be stored.
  • step ST14 If there is no vehicle 5 capable of sensing the blind spot area (No in step ST14), it remains unclear whether or not there is a moving object in the blind spot area in this cycle.
  • the information providing vehicle 5B for which the change point information is requested uses the protocol to transmit the information unconditionally when the change point information is detected, the change point information is not received from the information providing vehicle 5B (step).
  • the control unit 11 can also determine that neither the vehicle 5 nor the pedestrian 7 exists in the blind spot area.
  • the control unit 11 may determine that the detection result 4 is as follows. Detection result 4: The blind spot area does not include the vehicle 5 and does not include the pedestrian 7. However, since the edge terminal 10 cannot always receive the change point information transmitted by the information providing vehicle 5B in this cycle, it is unknown whether or not there is a moving object in the blind spot area even in the above case. It may be determined as it is.
  • the control unit 11 of the edge terminal 10 causes the communication unit 15 to deliver the dynamic information of the blind spot area together with the dynamic information of the object. , Controls the communication unit 15. Therefore, the delivered vehicle 5A can acquire not only the dynamic information of the object but also the dynamic information of the blind spot area of the roadside sensor 8. Therefore, if the acquired blind spot area is displayed on the display 56 together with the map, the location of the blind spot area can be notified to the passenger.
  • the control unit 11 stores the dynamic information of the blind spot area in a communication packet including predetermined identification information (for example, an identification value written in a predetermined area of the communication packet) indicating that it is the blind spot area, and stores the communication packet. Is controlled by the communication unit 15 so that the communication unit 15 delivers the above. In this way, the delivered vehicle 5A can immediately determine that the received communication packet includes the blind spot area. Therefore, the delivered vehicle 5A does not use the received communication packet for driving support, and can take appropriate measures such as stopping the display on the display 56.
  • predetermined identification information for example, an identification value written in a predetermined area of the communication packet
  • the control unit 11 has predetermined identification information indicating which of the following types 1 to 3 the vehicle 5 is (for example, an identification value written in a predetermined area of a communication packet). Is stored in a communication packet, and the communication unit 15 is controlled so that the communication unit 15 transmits the communication packet.
  • Type 1 Vehicle with wireless communication device
  • Type 2 Vehicle without wireless communication device and detected by roadside sensor
  • Type 3 Vehicle without wireless communication device and detected by information providing vehicle 5B
  • the delivered vehicle 5A can immediately determine which of the above types 1 to 3 the dynamic information of the vehicle 5 included in the received communication packet is. Therefore, in the delivered vehicle 5A, whether the delivered dynamic information of the vehicle 5 is detected by the roadside sensor 8 or the information providing vehicle 5B, or the wireless communication device of the vehicle 5 related to the delivered dynamic information. Appropriate measures can be taken, such as determining whether or not driving support can be performed and the type of driving support, depending on the presence or absence.
  • FIG. 10 is a plan view of the intersection J for showing an example of the selection process of the information providing vehicle 5B executed by the control unit 11 of the edge terminal 10.
  • the intersection J is an intersection included in the service area of the edge terminal 10, and the roadside sensor 8 is installed on the southwest side of the intersection J.
  • the vehicle V1 is a vehicle traveling northward at the intersection J.
  • Vehicle V1 is a large vehicle such as a truck.
  • Vehicle V2 is a vehicle that turns right at intersection J from the north-facing inflow road.
  • the vehicle V3 is a vehicle traveling southward at the intersection J1
  • the vehicles V4 and V5 are vehicles following the vehicle V3.
  • Vehicles V6 and V7 are west-facing vehicles that are stopped at a red light
  • vehicles V8 and V9 are east-facing vehicles that are stopped at a red light.
  • a blind spot area BA (inside the shaded frame in FIG. 10) when viewed from the installation point P of the roadside sensor 8 is formed on the right side of the large vehicle V1 and is inside the blind spot area BA. It is assumed that vehicles V3 and V4 exist. Therefore, the dynamic information based only on the change point information of the roadside sensor 8 is based on the image data and position information of the vehicles V1, V2, V5 to V9 excluding the vehicles V3 and V4, and the plane shape and position information of the blind spot area BA. Includes blind spot information.
  • the edge terminal 10 extracts a vehicle satisfying the following conditions 1 to 3 from the vehicles V1, V2, V5 to V9 included in the dynamic information map M1.
  • Condition 1 The vehicle can communicate with its own device (vehicle equipped with the communication terminal 1A)
  • Condition 2 The vehicle has a blind spot area BA in front of the traveling direction
  • Condition 3 Blind spot area in front of the traveling direction The vehicle must have no obstacles (such as other vehicles) that interfere with the sensing of objects in the BA.
  • the edge terminal 10 sets the vehicles V1, V5, V6 to the information providing vehicle 5B, and transmits a change point information request message to the vehicles V1, V5, V6.
  • the edge terminal 10 receives the change point information from the vehicles V1, V5, V6, the edge terminal 10 updates the dynamic information within the current cycle using the received change point information.
  • the vehicles V3 and V4 existing inside the blind spot area BA are reflected in the dynamic information, and the object reflection accuracy of the dynamic information is improved.
  • the change point information of the vehicle V5 reflects the vehicle V4 in front of the vehicle V4 in the dynamic information
  • the change point information of the vehicle V6 reflects the vehicle V3 in front of the vehicle V3 in the dynamic information. Therefore, if the updated dynamic information is provided to the vehicle V2, the provided dynamic information includes the vehicles V3 and V4, so that the vehicle V2 is within the blind spot area BA and follows the vehicle V3. You will be able to detect the existence of.
  • the control unit 11 of the edge terminal 10 sets the information providing vehicle 5B to which the request message is transmitted as its own device. It is preferable to control the communication unit 15 so as to limit the communication speed (for example, bit rate, etc.) to the communication unit 15 to the vehicles V1, V5, V6 having a predetermined value or more. The reason is that even if the change point information is requested from the vehicle 5 having a low communication speed, the change point information may not arrive in time for this cycle, and the dynamic information update process may be delayed.
  • the communication speed for example, bit rate, etc.
  • the vehicles V1, V5, and V6 that have received the change point information request message stand by without transmitting the communication speed required for transmitting the change point information, and change when the communication speed is secured. It is preferable to transmit point information.
  • FIG. 11 is an explanatory diagram showing variations of a configuration example of the information providing system. As shown in FIG. 11, variations of patterns 1 to 4 can be considered as a configuration example of the information providing system of the present embodiment.
  • the information providing system of the pattern 1 is the same as the information providing system shown in FIG. 6, and includes a core server 4, an edge server 3, an edge terminal 10, a roadside sensor 8, and a vehicle 5.
  • the roadside sensor 8 and the vehicle 5 are sensing devices for objects on the road.
  • the edge terminal 10 is a dynamic information update device, and the latest dynamic information after the update is distributed to the vehicle 5 and the like.
  • the edge terminal 10 and the roadside sensor 8 may be devices housed in the same housing.
  • the information providing system of the pattern 2 includes a core server 4, an edge server 3, a roadside sensor 8, and a vehicle 5.
  • the roadside sensor 8 and the vehicle 5 are sensing devices for objects on the road.
  • the edge server 3 is a dynamic information updating device, and delivers the latest updated dynamic information to the vehicle 5 and the like.
  • the information providing system of the pattern 3 includes a core server 4, an edge server 3, and a vehicle 5.
  • the vehicle 5 is a sensing device for an object on the road.
  • the edge server 3 is a dynamic information updating device, and the latest dynamic information is distributed to the vehicle 5 and the like.
  • the edge server 3 determines one or a plurality of vehicles 5 to constantly sense the change point information, generates dynamic information, and blind spots the generated dynamic information.
  • the change point information may be requested from another vehicle 5 that complements the blind spot area BA.
  • the information providing system of the pattern 4 does not have the servers 3 and 4 on the network side, and is composed of a plurality of vehicles 5.
  • Each vehicle 5 is a sensing device for an object on the road.
  • one of the plurality of vehicles 5 is a master unit having a dynamic information updating function, and the latest dynamic information is distributed to the other vehicles 5 by vehicle-to-vehicle communication.
  • the vehicle 5 serving as the master unit determines one or a plurality of vehicles 5 to constantly sense the change point information, generates dynamic information, and generates the dynamic information.
  • the change point information may be requested from another vehicle 5 that complements the blind spot area BA.
  • the device for managing the dynamic information map M1 and updating and distributing the dynamic information is not limited to the edge terminal 10, but is an edge server. It may be another communication node such as 3 or vehicle 5.
  • the vehicle 5 and the roadside sensor 8 generate change point information and transmit the generated change point information to the edge terminal 10 (steps S24, S28, etc. in FIG. 8), but the vehicle 5 and the roadside sensor 8 May transmit the detected sensor information to the edge terminal 10 as it is.
  • the edge terminal 10 may execute the process of generating the change point information from each sensor information.
  • the sensor information of the vehicle 5 and the roadside sensor 8 includes video data and the like, the vehicle 5 and the roadside sensor 8 provide change point information with a smaller amount of data in order to reduce the communication load with the edge terminal 10. It is preferable to generate.
  • the following patterns A and B are exemplified as a combination of the detection results of the roadside sensor (first sensor device) 8 and the information providing vehicle (second sensor device) 5B based on the change point information in this cycle.
  • first sensor device the roadside sensor
  • second sensor device the information providing vehicle
  • Pattern A The first sensor device 8 detects the blind spot area BA ⁇
  • the second sensor device 5B detects a moving body in the blind spot area BA
  • Pattern B The first sensor device 8 detects the blind spot area BA ⁇
  • the second sensor device 5B does not detect the moving body in the blind spot area BA.
  • the second sensor device 5B transmits to the edge terminal (update device) 10 that no object is detected, so that the dynamic information is updated assuming that there is no object in the blind spot area BA.
  • the pattern C may be applied to the information providing system of the above-mentioned patterns 1 to 4.

Abstract

本開示の一態様に係る装置は、動的情報マップに含まれる動的情報を更新する装置であって、前記動的情報を記憶する記憶部と、自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置、及び、自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置の、各々と通信する通信部と、前記第1センサ装置から前記通信部が受信した前記第1情報に基づいて、前記記憶部に記憶された前記動的情報を新しい動的情報に書き換える制御部と、を備え、前記制御部は、前記記憶部に記憶された前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に対して前記第2情報を要求するメッセージを前記通信部が送信するように、前記通信部を制御する。

Description

動的情報の更新装置、更新方法、情報提供システム、及びコンピュータプログラム
 本開示は、動的情報の更新装置、更新方法、情報提供システム、及びコンピュータプログラムに関する。
 本出願は、2019年12月12日出願の日本出願第2019-224709号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、動的情報マップに含まれる物体の動的情報を、車両及び歩行者端末などに配信する情報提供システムが記載されている。
 かかる情報提供システムは、歩行者端末と、車両と、路側センサと、車両や路側センサが計測したセンサ情報に基づく変化点情報を収集するエッジサーバと、を備える。エッジサーバは、収集した変化点情報から動的情報を所定の配信周期ごとに更新し、配信要求のあった歩行者端末又は車両に最新の動的情報を配信する。
国際公開第2018/146882号
 本開示の一態様に係る装置は、動的情報マップに含まれる動的情報を更新する装置であって、前記動的情報を記憶する記憶部と、自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置、及び、自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置の、各々と通信する通信部と、前記第1センサ装置から前記通信部が受信した前記第1情報に基づいて、前記記憶部に記憶された前記動的情報を新しい動的情報に書き換える制御部と、を備え、前記制御部は、前記記憶部に記憶された前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に対して前記第2情報を要求するメッセージを前記通信部が送信するように、前記通信部を制御する。
 本開示の一態様に係る方法は、動的情報マップに含まれる動的情報を更新する方法であって、前記動的情報を記憶するステップと、自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置、及び、自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置の、各々と通信するステップと、前記第1センサ装置から受信した前記第1情報に基づいて、記憶された前記動的情報を新しい動的情報に書き換えるステップと、記憶された前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に対して前記第2情報を要求するメッセージを送信するステップと、を含む。
 本開示の一態様に係るプログラムは、動的情報マップに含まれる動的情報を更新する装置として、コンピュータを機能させるためのコンピュータプログラムであって、前記コンピュータを、前記動的情報を記憶する記憶部、自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置、及び、自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置の、各々と通信する通信部、及び、前記第1センサ装置から受信した前記第1情報に基づいて、前記記憶部に記憶された前記動的情報を新しい動的情報に書き換える制御部として機能させ、前記制御部は、前記記憶部に記憶された前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に対して前記第2情報を要求するメッセージを前記通信部が送信するように、前記通信部を制御する。
 本開示の一態様に係るシステムは、動的情報マップに含まれる動的情報を提供するシステムであって、自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置と、自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置と、前記第1センサ装置から受信した前記第1情報に基づいて前記動的情報を更新し、更新した前記動的情報を配信する更新装置と、を備え、前記更新装置は、前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に前記第2情報を要求するメッセージを送信する。
 本発明は、上記のような特徴的な構成を備えるシステム及び装置として実現できるだけでなく、かかる特徴的な構成をコンピュータに実行させるためのプログラムとして実現することができる。
 また、本発明は、システム及び装置の一部又は全部を実現する半導体集積回路として実現することができる。
無線通信システムの構成例を示す全体構成図である。 エッジ端末及びエッジサーバの内部構成の一例を示すブロック図である。 車載装置の内部構成の一例を示すブロック図である。 歩行者端末の内部構成の一例を示すブロック図である。 路側センサの内部構成の一例を示すブロック図である。 情報提供システムの構成例を示す全体構成図である。 動的情報の更新処理及び配信処理の比較例を示すシーケンス図である。 動的情報の更新処理及び配信処理の具体例を示すシーケンス図である。 死角エリアを含む動的情報の更新処理の一例を示すフローチャートである。 情報提供車両の選択処理の一例を示すための交差点の平面図である。 情報提供システムの構成例のバリエーションを示す説明図である。
<本開示が解決しようとする課題>
 特許文献1に記載の情報提供システムでは、変化点情報の収集→動的情報の更新→動的情報の配信→車両による変化点情報の検出→変化点情報の収集の順で、各通信ノードにおける情報処理が循環する。
 従って、動的情報の配信を要求した車両は、常に、エッジサーバに変化点情報を提供するセンシングデバイスとして機能する。
 このため、サービスエリアに含まれる車両の台数によっては、エッジサーバのデータ通信量及び処理負荷が過大となり得る。従って、エッジサーバが配信周期ごとに動的情報を適切に更新できなくなり、動的情報マップのリアルタイム性が悪化する可能性がある。
 かかる不都合を解消するには、変化点情報を収集するセンシングデバイスを路側センサなどの一部のデバイスに限定することが考えられる。
 しかし、センシングデバイスを一部のデバイスに限定すると、物体に起因する死角エリアが発生する可能性が高くなる。このため、死角エリアに移動体などの物体が存在する場合には、動的情報マップに反映される物体が実際よりも少なくなり、動的情報マップの物体反映精度が悪化することになる。
 本開示は、かかる従来の問題点に鑑み、動的情報マップのリアルタイム性と物体反映精度を両立させることを目的とする。
<本開示の効果>
 本開示によれば、動的情報マップのリアルタイム性と物体反映精度を両立させることができる。
<本発明の実施形態の概要>
 以下、本発明の実施形態の概要を列記して説明する。
 (1) 本実施形態の装置は、動的情報マップに含まれる動的情報を更新する装置であって、前記動的情報を記憶する記憶部と、自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置、及び、自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置の、各々と通信する通信部と、前記第1センサ装置から前記通信部が受信した前記第1情報に基づいて、前記記憶部に記憶された前記動的情報を新しい動的情報に書き換える制御部と、を備え、前記制御部は、前記記憶部に記憶された前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に対して前記第2情報を要求するメッセージを前記通信部が送信するように、前記通信部を制御する。
 本実施形態の更新装置によれば、制御部が、第1センサ装置から通信部が受信した第1情報に基づいて、記憶部に記憶された動的情報を新しい動的情報に書き換えるので、常に第1情報及び第2情報に基づいて、動的情報を更新する場合に比べて、データ通信量及び処理負荷を低減できる。このため、第2センサ装置の多寡に関係なく、動的情報マップのリアルタイム性を維持できる。
 また、制御部が、死角エリアをセンシング可能な第2センサ装置に対して第2情報を要求するメッセージを通信部が送信するように、通信部を制御するので、死角エリアに対するセンシング結果である第2情報に基づいて、死角エリアに存在し得る物体の動的情報を生成できる。このため、動的情報マップの物体反映精度を高めることができる。
 このように、本実施形態の更新装置によれば、動的情報マップのリアルタイム性と物体反映精度を両立させることができる。
 (2) 本実施形態の更新装置において、前記制御部は、前記第2センサ装置から前記通信部が前記第2情報を受信した場合に、前記第1情報及び前記第2情報の双方に基づいて、前記記憶部に記憶された前記動的情報を新しい動的情報に書き換えることが好ましい。
 この場合、第1情報のみに基づく動的情報では死角エリアが存在する場合でも、第2情報によって死角エリアに存在し得る物体の動的情報を生成できる。このため、動的情報マップの物体反映精度を高めることができる。
 (3) 本実施形態の更新装置において、前記通信部は、前記記憶部に記憶された前記動的情報を配信可能であり、前記制御部は、前記記憶部に記憶された前記動的情報に前記死角エリアの動的情報が含まれる場合に、前記物体の動的情報とともに前記死角エリアの動的情報を前記通信部が配信するように、前記通信部を制御することが好ましい。
 このようにすれば、配信を受ける通信ノードは、物体の動的情報だけでなく、死角エリアの動的情報を取得することができる。従って、取得した死角エリアをディスプレイに地図とともに表示すれば、死角エリアの場所をユーザに報知することができる。
 (4) 本実施形態の更新装置において、前記制御部は、前記死角エリアの動的情報については、前記死角エリアである旨の所定の識別情報を含む通信パケットに格納し、前記通信パケットを前記通信部が配信するように、前記通信部を制御することが好ましい。
 このようにすれば、配信を受ける通信ノード(例えば車両)は、受信した通信パケットに死角エリアが含まれることを即座に判断できる。従って、配信を受ける通信ノードは、受信した通信パケットを運転支援には利用せず、ディスプレイの表示に止めるなど、適切な対処が可能となる。
 (5) 本実施形態の更新装置において、前記制御部は、前記物体が車両である場合の動的情報については、前記車両が少なくとも下記の種別1から種別3を含む複数の種別のうちのいずれであるかを表す所定の識別情報を含む通信パケットに格納し、前記通信パケットを前記通信部が配信するように、前記通信部を制御することが好ましい。
 種別1:無線通信機が搭載された車両
 種別2:無線通信機が非搭載でかつ前記第1センサ装置により検出された車両
 種別3:無線通信機が非搭載でかつ前記第2センサ装置により検出された車両
 このようにすれば、配信を受ける通信ノード(例えば車両)は、受信した通信パケットに含まれる車両の動的情報が、上記の種別1から種別3のいずれであるかを即座に判断することができる。
 従って、配信を受ける通信ノードは、配信された車両の動的情報が第1及び第2センサ装置のいずれで検出されたか、或いは、配信された動的情報に係る車両の無線通信機の有無などにより、運転支援の実行可否や種類を決定するなど、適切な対処が可能となる。
 (6) 本実施形態の更新装置において、前記制御部は、前記死角エリアをセンシング可能な前記第2センサ装置の候補が複数存在する場合は、前記メッセージの送信対象を前記通信部に対する通信速度が所定値以上であるセンサ装置に限定するように、前記通信部を制御することが好ましい。
 その理由は、通信速度が低い第2センサ装置に変化点情報を要求しても、変化点情報の到着が今回周期に間に合わず、動的情報の更新処理が遅れる可能性があるからである。
 (7) 本実施形態の更新装置において、前記第1センサ装置は、路側に設置された1又は複数の固定端末であり、前記第2センサ装置は、道路を通行する1又は複数の移動端末であることが好ましい。
 その理由は、路側に設置された固定端末(例えば、路側センサ)はセンシング範囲が広いため、更新装置に常に第1情報を提供する第1センサ装置として相応しいからである。また、道路を通行する移動端末(例えば、車両)は、交通状況に応じて台数の増減が激しいので、要求に応じて第2情報を提供する第2センサ装置として相応しいからである。
 (8) 本実施形態の更新方法は、上述の(1)~(7)に記載の更新装置が実行する更新方法である。
 従って、本実施形態の更新方法は、上述の(1)~(7)に記載の更新装置と同様の作用効果を奏する。
 (9) 本実施形態のコンピュータプログラムは、上述の(1)~(7)に記載の更新装置として、コンピュータを機能させるためのコンピュータプログラムに関する。
 従って、本実施形態のコンピュータプログラムは、上述の(1)~(7)に記載の更新装置と同様の作用効果を奏する。
 (10) 本実施形態の情報提供システムは、上述の(1)~(7)に記載の更新装置を含む情報提供システムである。
 従って、本実施形態の情報提供システムは、上述の(1)~(7)に記載の更新装置と同様の作用効果を奏する。
<本発明の実施形態の詳細>
 以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 〔無線通信システムの全体構成〕
 図1は、無線通信システムの構成例を示す全体構成図である。
 図1に示すように、本実施形態の無線通信システムは、無線通信が可能な複数の通信端末1A~1D、通信端末1A~1Dと無線通信する1又は複数の基地局2、基地局2と有線又は無線で通信する1又は複数のエッジサーバ3、及び、エッジサーバ3と有線又は無線で通信する1又は複数のコアサーバ4などを備える。
 コアサーバ4は、コアネットワークのコアデータセンタ(DC)に設置されている。エッジサーバ3は、メトロネットワークの分散データセンタ(DC)に設置されている。
 メトロネットワークは、例えば都市ごとに構築された通信ネットワークである。各地のメトロネットワークは、それぞれコアネットワークに接続されている。
 基地局2は、メトロネットワークに含まれる分散データセンタのいずれかのエッジサーバ3に通信可能に接続されている。
 コアサーバ4は、コアネットワークに通信可能に接続されている。エッジサーバ3は、メトロネットワークに通信可能に接続されている。従って、コアサーバ4は、コアネットワーク及びメトロネットワークを介して、各地のメトロネットワークに属するエッジサーバ3及び基地局2と通信可能である。
 基地局2は、マクロセル基地局、マイクロセル基地局、及びピコセル基地局のうちの少なくとも1つよりなる。
 本実施形態の無線通信システムにおいて、エッジサーバ3及びコアサーバ4は、SDN(Software-Defined Networking)が可能な汎用サーバよりなる。基地局2及び図示しないリピータなどの中継装置は、SDNが可能なトランスポート機器よりなる。
 従って、ネットワーク仮想化技術により、低遅延通信と大容量通信などの相反するサービス要求条件を満足する複数の仮想的なネットワーク(ネットワークスライス)NS1~NS4を、無線通信システムの物理機器に定義することができる。
 本実施形態の無線通信システムは、例えば、現時点で規格化が進行中の「第5世代移動通信システム」(以下、「5G」(5th Generation)と略記する。)よりなる。上記のネットワーク仮想化技術は、5Gの基本コンセプトである。
 もっとも、本実施形態の無線通信システムは、遅延時間などの所定のサービス要求条件に応じて複数のネットワーク(以下、「スライス」ともいう。)NS1~NS4を定義可能な移動通信システムであればよく、5Gに限定されるものではない。また、定義するスライスの階層は、4階層に限らず5階層以上であってもよい。
 図1では、各ネットワークスライスNS1~NS4は、次のように定義されている。
 スライスNS1は、通信端末1A~1Dが、直接通信するように定義されたネットワークスライスである。スライスNS1で直接通信する通信端末1A~1Dを、「ノードN1」ともいう。
 スライスNS2は、通信端末1A~1Dが、基地局2と通信するように定義されたネットワークスライスである。スライスNS2における最上位の通信ノード(図例では基地局2)を、「ノードN2」ともいう。
 スライスNS3は、通信端末1A~1Dが、基地局2を経由してエッジサーバ3と通信するように定義されたネットワークスライスである。スライスNS3における最上位の通信ノード(図例ではエッジサーバ3)を、「ノードN3」ともいう。
 スライスNS3では、ノードN2が中継ノードとなる。すなわち、ノードN1→ノードN2→ノードN3のアップリンク経路と、ノードN3→ノードN2→ノードN1のダウンリンク経路によりデータ通信が行われる。
 スライスNS4は、通信端末1A~1Dが、基地局2及びエッジサーバ3を経由してコアサーバ4と通信するように定義されたネットワークスライスである。スライスNS4における最上位の通信ノード(図例ではコアサーバ4)を、「ノードN4」ともいう。
 スライスNS4では、ノードN2及びノードN3が中継ノードとなる。すなわち、ノードN1→ノードN2→ノードN3→ノードN4のアップリンク経路と、ノードN4→ノードN3→ノードN2→ノードN1のダウンリンク経路によりデータ通信が行われる。
 スライスNS4において、エッジサーバ3を中継ノードとしないルーティングの場合もある。この場合、ノードN1→ノードN2→ノードN4のアップリンク経路と、ノードN4→ノードN2→ノードN1のダウンリンク経路によりデータ通信が行われる。
 スライスNS2において、複数の基地局2(ノードN2)が含まれる場合は、基地局2,2間の通信を辿るルーティングも可能である。
 同様に、スライスNS3において、複数のエッジサーバ3(ノードN3)が含まれる場合は、エッジサーバ3,3間の通信を辿るルーティングも可能である。スライスNS4において、複数のコアサーバ4(ノードN4)が含まれる場合は、コアサーバ4,4間の通信を辿るルーティングも可能である。
 通信端末1Aは、車両5に搭載された無線通信機よりなる。車両5には、通常の乗用車だけでなく、路線バスや緊急車両などの公共車両も含まれる。車両5は、四輪車だけでなく、二輪車(バイク)であってもよい。
 車両5の駆動方式は、エンジン駆動、電気モータ駆動、及びハイブリッド方式のいずれでもよい。車両5の運転方式は、搭乗者が加減速やハンドル操舵などの操作を行う通常運転、及びその操作をソフトウェアが実行する自動運転のいずれでもよい。
 車両5の通信端末1Aは、車両5に既設の無線通信機であってもよいし、搭乗者が車両5に持ち込んだ携帯端末であってもよい。
 搭乗者の携帯端末は、車両5の車内LAN(Local Area Network)に通信可能に接続されることにより、一時的に車載の無線通信機となる。
 通信端末1Bは、歩行者7が携帯する携帯端末よりなる。歩行者7は、道路や駐車場などの屋外、及び建物内や地下街などの屋内を徒歩で移動する人間である。歩行者7には、徒歩だけでなく、動力源を有しない自転車などに搭乗する人間も含まれる。
 通信端末1Cは、路側センサ8に搭載された無線通信機よりなる。路側センサ8は、道路に設置された画像式車両感知器、及び屋外又は屋内に設置された防犯カメラなどよりなる。
 通信端末1Dは、路側に設置された無線通信機10よりなる。無線通信機10は、交通管制システムに属する交通信号制御機9とも通信可能に接続されている。以下、参照符号「10」で表される路側の無線通信機(路側通信機)を、「エッジ端末」ともいう。
 交通信号制御機9は、現時点における交差点の信号情報(例えば、交差点の流入方向ごとの青残り時間など)を、所定時間(例えば1秒)ごとに通信端末1Dに提供する。
 交通信号制御機9は、交通管制センター(図示せず)からリンク旅行時間、渋滞情報、交通規制情報及び道路工事情報などの交通情報を受信した場合には、これらの情報についても通信端末1Dに提供する。
 スライスNS1~NS4のサービス要求条件は、例えば次の通りである。
 スライスNS1~NS4に許容される遅延時間D1~D4は、D1<D2<D3<D4となるように定義されている。例えば、D1=1ms、D2=10ms、D3=100ms、D4=1sである。
 スライスNS1~NS4に許容される所定期間(例えば1日)当たりのデータ通信量C1~C4は、C1<C2<C3<C4となるように定義されている。例えば、C1=20GB、C2=100GB、C3=2TB、C4=10TBである。
 図1の無線通信システムでは、スライスNS1での直接的な無線通信(例えば、車両5の通信端末1Aが直接通信する「車車間通信」など)、及び基地局2を経由するスライスNS2の無線通信が可能である。
 上記の通り、スライスNS1及びスライスNS2における通信の遅延時間D1,D2は、スライスNS3及びスライスNS4における通信の遅延時間D3,D3よりも小さい。
 図1の無線通信システムでは、スライスNS3及びスライスNS4を利用する、比較的広域のサービスエリア(例えば、市町村や都道府県を包含するエリア)に含まれるユーザに対する情報提供サービスも可能である。
 上記の通り、スライスNS3及びスライスNS4における通信の遅延時間D3,D4は、スライスNS1及びスライスNS2における通信の遅延時間D1,D2よりも大きい。
 〔エッジ端末及びエッジサーバの内部構成〕
 図2は、エッジ端末10とエッジサーバ3の内部構成の一例を示すブロック図である。
 図2に示すように、エッジ端末(路側通信機)10は、CPU(Central Processing Unit)を含む制御部11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、記憶部14、及び通信部15などを備えるコンピュータ装置よりなる。エッジ端末10は、所定のサービスエリアの動的情報マップM1を管理しており、マップM1に重畳される動的情報の更新装置としての機能を有する。
 制御部11は、ROM12に予め記憶された1又は複数のプログラムをRAM13に読み出して実行することにより、エッジサーバ3及び通信端末1A~1Cなどと通信するエッジ端末として、コンピュータ装置を機能させる。
 RAM13は、SRAM(Static RAM)又はDRAM(Dynamic RAM)などの揮発性のメモリ素子で構成され、制御部11が実行するプログラム及びその実行に必要なデータが一時的に記憶される。
 記憶部14は、フラッシュメモリ若しくはEEPROM(Electrically Erasable Programmable Read Only Memory:登録商標)などの不揮発性のメモリ素子、又は、ハードディスクなどの磁気記憶装置などにより構成されている。
 通信部15は、5G対応の通信処理を実行する通信装置よりなり、基地局2を介してエッジサーバ3及び通信端末1A~1Cと通信する。通信部15は、制御部11から与えられた情報を、基地局2を介して外部装置に送信するとともに、基地局2から受信した情報を制御部11に与える。
 図2に示すように、エッジ端末10の記憶部14は、動的情報マップ(以下、単に「マップ」ともいう。)M1を記憶している。
 動的情報マップM1は、静的情報である高精細のデジタル地図データに対して、時々刻々と変化する動的情報を重畳させたデータの集合体(仮想的なデータベース)である。マップM1を構成するデジタル情報には、下記の「動的情報」、「准動的情報」、「准静的情報」、及び「静的情報」が含まれる。なお、本願明細書において、マップM1を構成するこれらのデジタル情報の更新とは、記憶部14に記憶された当該デジタル情報を同種の新しいデジタル情報に置き換えることをいう。
 「動的情報」(~1秒)は、1秒以内の遅延時間が要求される動的なデータである。例えば、ITS(Intelligent Transport Systems)先読み情報として活用される、移動体の種別(車両及び歩行者など)と位置情報、及び信号情報などがこれに該当する。
 本実施形態では、所定のセンシングデバイス(例えば、路側センサ8)から見た場合の移動体などの物体(例えば、大型車両)の影に起因する死角エリアも、動的情報の対象とする。死角エリアの動的情報は、当該死角エリアの形状及び位置情報よりなる。
 「准動的情報」(~1分)は、1分以内の遅延時間が要求される准動的なデータである。例えば、事故情報、渋滞情報、及び狭域気象情報などがこれに該当する。
 「准静的情報」(~1時間)は、1時間以内の遅延時間が許容される准静的なデータである。例えば、交通規制情報、道路工事情報、及び広域気象情報などがこれに該当する。
 「静的情報」(~1カ月)は、1カ月以内の遅延時間が許容される静的なデータである。例えば、路面情報、車線情報、及び3次元構造物データなどがこれに該当する。
 本実施形態では、エッジ端末10の記憶部14に格納されたマップM1のサービスエリアは、1つの交差点から所定半径(例えば、150~250m)以内の大きさのエリアよりなる。
 マップM1のサービスエリアは、交差点の近傍に設置された1又は複数の路側センサ8により、車両5及び歩行者7などの移動体をセンシング可能なエリアに対応する。
 エッジ端末10の制御部11は、記憶部14に格納されたマップM1の動的情報を、所定の更新周期ごとに更新する(動的情報の更新処理)。
 具体的には、制御部11は、所定の更新周期ごとに、車両5や路側センサ8などが計測したサービスエリア内の各種のセンサ情報(本実施形態では、センサ情報の変化点情報)を通信端末1A~1Cから収集し、収集したセンサ情報に基づいてマップM1の動的情報を更新する。
 制御部11は、ユーザの通信端末1A,1Bから動的情報の要求メッセージを受信すると、所定の配信周期ごとに、通信部15が最新の動的情報を要求メッセージの送信元の通信端末1A,1Bに配信するように当該通信部15を制御する(動的情報の配信処理)。
 制御部11は、交通管制センター及び民間気象業務支援センターなどからサービスエリア内の各地の交通情報及び気象情報を収集し、収集した情報に基づいて、マップM1の准動的情報及び准静的情報を更新する。
 図2に示すように、エッジサーバ3は、CPUなどを含む制御部31、ROM32、RAM33、記憶部34、及び通信部35などを備えるコンピュータ装置よりなる。
 制御部31は、ROM32に予め記憶された1又は複数のプログラムをRAM33に読み出して実行することにより、通信端末1A~1D及びコアサーバ4などと通信するエッジサーバ3として、コンピュータ装置を機能させる。
 RAM33は、SRAM又はDRAMなどの揮発性のメモリ素子で構成され、制御部31が実行するプログラム及びその実行に必要なデータが一時的に記憶される。
 記憶部34は、フラッシュメモリ若しくはEEPROMなどの不揮発性のメモリ素子、又は、ハードディスクなどの磁気記憶装置などにより構成されている。
 通信部35は、5G対応の通信処理を実行する通信装置よりなり、メトロネットワークを介してコアサーバ4や基地局2などと通信する。通信部35は、制御部31から与えられた情報を、メトロネットワーク及び基地局2を介して外部装置に送信するとともに、メトロネットワーク及び基地局2を介して受信した情報を制御部31に与える。
 図2に示すように、エッジサーバ3の記憶部34は、動的情報統合マップ(以下、単に「統合マップ」ともいう。)M2を記憶している。
 統合マップM2のデータ構造(動的情報、准動的情報、准静的情報、及び静的情報を含むデータ構造)は、マップM1の場合と同様である。統合マップM2は、複数のエッジ端末10が保持する各マップM1を統合した、広域の統合マップよりなる。
 エッジ端末10の制御部11は、動的情報の更新処理を実行すると、更新後の動的情報を含むエッジサーバ3宛ての通信パケットを通信部15に送信させる。エッジサーバ3の通信部35は、エッジ端末10から受信した動的情報を自装置の制御部31に提供する。
 エッジサーバ3の制御部31は、通信部35が受信した動的情報を、記憶部34に格納された統合マップM2に重畳させる。従って、統合マップM2の動的情報は、複数のエッジ端末10からそれぞれ受信した動的情報よりなる。
 このように、エッジサーバ3の制御部31は、複数のエッジ端末10からそれぞれ動的情報を受信し、受信した動的情報を統合マップM2に反映させる分散処理を実行する。
 このため、エッジサーバ3が、サービスエリア内の各種のセンサ情報を通信端末1A~1Cから収集し、収集したセンサ情報に基づいて統合マップM2の動的情報を独自に更新する場合に比べて、統合マップM1の動的情報の更新に必要となる情報処理の負荷及び遅延を抑制することができる。
 制御部31は、交通管制センター及び民間気象業務支援センターなどからサービスエリア内の各地の交通情報及び気象情報を収集し、収集した情報に基づいて、統合マップM2の准動的情報及び准静的情報を更新する。
 制御部31は、エッジ端末10から受信したマップM1の准動的情報及び准静的情報を、自装置の統合マップM2の准動的情報及び准静的情報として採用してもよい。
 〔車載装置の内部構成〕
 図3は、車載装置50の内部構成の一例を示すブロック図である。
 図3に示すように、車両5の車載装置50は、制御部(ECU:Electronic Control Unit)51、GPS受信機52、車速センサ53、ジャイロセンサ54、記憶部55、ディスプレイ56、スピーカ57、入力デバイス58、車載カメラ59、レーダセンサ60、及び通信部61などを備える。
 通信部61は、前述の通信端末1A、すなわち、例えば5G対応の通信処理が可能な無線通信機よりなる。
 従って、車両5は、スライスNS1又はスライスNS2に属する移動端末の一種として、エッジ端末10と通信することができる。
 制御部51は、車両5の経路探索及び他の電子機器52~61の制御などを行うコンピュータ装置よりなる。制御部51は、GPS受信機52が定期的に取得するGPS信号により自車両の車両位置を求める。
 制御部51は、車速センサ53及びジャイロセンサ54の入力信号に基づいて、車両位置及び方位を補完し、車両5の正確な現在位置及び方位を把握する。
 GPS受信機52、車速センサ53及びジャイロセンサ54は、車両5の現在位置、速度及び向きを計測するセンサ類である。
 記憶部55は、地図データベースを備える。地図データベースは、制御部51に道路地図データを提供する。道路地図データは、リンクデータやノードデータを含み、DVD、CD-ROM、又はHDDなどの記録媒体に格納されている。記憶部55は、記録媒体から必要な道路地図データを読み出して制御部51に提供する。
 ディスプレイ56とスピーカ57は、制御部51が生成した各種情報を車両5の搭乗者であるユーザに通知するための出力装置である。
 具体的には、ディスプレイ56は、経路探索の際の入力画面、自車周辺の地図画像及び目的地までの経路情報などを表示する。スピーカ57は、車両5を目的地に誘導するためのアナウンスなどを音声出力する。これらの出力装置は、通信部61が受信した提供情報を搭乗者に通知することもできる。
 入力デバイス58は、車両5の搭乗者が各種の入力操作を行うためデバイスである。入力デバイス58は、ハンドルに設けた操作スイッチ、ジョイスティック、及びディスプレイ56に設けたタッチパネルなどの組み合わせよりなる。
 搭乗者の音声認識によって入力を受け付ける音声認識装置を、入力デバイス58とすることもできる。入力デバイス58が生成した入力信号は、制御部51に送信される。
 車載カメラ59は、車両5の前方の映像を取り込む画像センサよりなる。車載カメラ59は、単眼又は複眼のいずれでもよい。レーダセンサ60は、ミリ波レーダやLiDAR方式などにより車両5の前方や周囲に存在する物体を検出するセンサよりなる。
 制御部51は、車載カメラ59及びレーダセンサ60による計測データに基づいて、運転中の搭乗者に対する注意喚起をディスプレイ56に出力させたり、強制的なブレーキ介入を行ったりする運転支援制御を実行することができる。
 制御部51は、記憶部55に格納された各種の制御プログラムを実行する、マイクロコンピュータなどの演算処理装置により構成されている。
 制御部51は、上記の制御プログラムを実行することにより、ディスプレイ56に地図画像を表示させる機能、出発地から目的地までの経路(中継地がある場合はその位置を含む。)を算出する機能、算出した経路に従って車両5を目的地まで誘導する機能など、各種のナビゲーション機能を実行可能である。
 制御部51は、車載カメラ59及びレーダセンサ60のうちの少なくとも1つの計測データに基づいて、自車両の前方又は周囲の物体を認識する物体認識処理と、認識した物体までの距離を算出する測距処理が可能である。
 制御部51は、測距処理により算出した距離と、自車両のセンサ位置とから、物体認識処理によって認識した物体の位置情報を算出することができる。
 制御部51は、ある物体(オブジェクト)を認識した場合には、認識した物体に起因する死角エリアの形状及び位置情報を算出可能である。
 具体的には、制御部51は、自車両のセンサ視点(例えば、車載カメラ59のレンズ中心)から見た場合の、認識した物体の影(オクルージョン)に起因する死角エリアの形状(平面形状又は立体形状)と、当該形状の代表点の位置情報を算出する。
 制御部51は、エッジ端末10との通信において、以下の各処理を実行可能である。
 1)動的情報の要求処理
 2)動的情報の受信処理
 3)変化点情報の算出処理
 4)変化点情報の送信処理
 動的情報の要求処理とは、エッジ端末10が逐次更新するマップM1の動的情報の配信を要求する制御パケット(要求メッセージ)を、エッジ端末10に送信する処理のことである。制御パケットには、自車両の車両IDが含まれる。
 エッジ端末10は、所定の車両IDを含む要求メッセージを受信すると、送信元の車両IDを有する車両5の通信端末1A宛てに、動的情報を所定の配信周期で配信する。
 動的情報の受信処理とは、自装置に宛ててエッジ端末10が配信した動的情報を、受信する処理のことである。
 車両5における変化点情報の算出処理とは、受信した動的情報と、受信時点における自車両のセンサ情報との比較結果から、それらの情報間の変化量を算出する処理である。車両5が算出する変化点情報としては、例えば、次の情報例a1~a2が考えられる。
 情報例a1:認識物体に関する変化点情報
 制御部51は、受信した動的情報には物体X(車両、歩行者及び障害物など)が含まれないが、自身の物体認識処理により物体Xを検出した場合は、検出した物体Xの画像データと位置情報を変化点情報とする。
 この場合、制御部51は、物体Xに起因する死角エリアの平面積が所定値(例えば10m)以上ならば、死角エリアの形状と位置情報を変化点情報に含める。
 制御部51は、受信した動的情報に含まれる物体Xの位置情報と、自身の物体認識処理により求めた物体Xの位置情報とが、所定の閾値以上ずれている場合は、検出した物体Xの画像データと、両者の位置情報の差分値を変化点情報とする。
 この場合も、制御部51は、物体Xに起因する死角エリアの平面積が所定値以上ならば、死角エリアの形状と位置情報を変化点情報に含める。
 情報例a2:自車両に関する変化点情報
 制御部51は、受信した動的情報に含まれる自車両の位置情報と、GPS信号により自身が算出した自車両の車両位置とが、所定の閾値以上ずれている場合は、両者の差分値を変化点情報とする。
 制御部51は、受信した動的情報に含まれる自車両の方位と、ジャイロセンサ54の計測データから自身が算出した自車両の方位とが、所定の閾値以上ずれている場合は、両者の差分値を変化点情報とする。
 制御部51は、上記のようにして変化点情報を算出すると、算出した変化点情報を含むエッジ端末10宛の通信パケットを生成する。制御部51は、その通信パケットに自車両の車両IDを含める。
 変化点情報の送信処理とは、変化点情報をデータに含む上記の通信パケットを、エッジ端末10宛てに送信する処理のことである。変化点情報の送信処理は、エッジ端末10による動的情報の配信周期内に行われる。
 車両5による変化点情報の送信処理は、変化点情報の送信を要求する制御パケット(要求メッセージ)を、エッジ端末10から受信した場合にも実行される。
 具体的には、制御部51は、所定の端末IDを含む要求メッセージを受信すると、送信元の端末ID宛ての通信パケットに現時点の変化点情報を含めて送信する。
 制御部51は、エッジ端末10から受信した動的情報に基づいて、運転中の搭乗者に対する注意喚起をディスプレイ56に出力させたり、強制的なブレーキ介入を行ったりする運転支援制御を実行することもできる。
 〔歩行者端末の内部構成〕
 図4は、歩行者端末70の内部構成の一例を示すブロック図である。
 図4の歩行者端末70は、前述の通信端末1B、すなわち、例えば5G対応の通信処理が可能な無線通信機よりなる。
 従って、歩行者端末70は、スライスNS1又はスライスNS2に属する移動端末の一種として、エッジ端末10と通信することができる。
 図4に示すように、歩行者端末70は、制御部71、記憶部72、表示部73、操作部74、及び通信部75を備える。
 通信部75は、5Gサービスを提供するキャリアの基地局2と無線通信する通信インターフェースよりなる。通信部75は、基地局2からのRF信号をデジタル信号に変換して制御部71に出力し、制御部71から入力されたデジタル信号をRF信号に変換して、基地局2に送信する。
 制御部71は、CPU、ROM及びRAMなどを含む。制御部71は、記憶部72に記憶されたプログラムを読み出して実行し、歩行者端末70の全体の動作を制御する。
 記憶部72は、ハードディスクや不揮発性のメモリなどより構成され、各種のコンピュータプログラムやデータを記憶する。記憶部72は、歩行者端末70の識別情報である携帯IDを記憶している。携帯IDは、例えば、キャリア契約者の固有のユーザIDやMACアドレスなどよりなる。
 記憶部72は、ユーザが任意にインストールした各種のアプリケーションソフトを記憶している。
 このアプリケーションソフトには、例えば、エッジ端末10との5G通信により、マップM1の動的情報などを受信する情報提供サービスを享受するためのアプリケーションソフトなどが含まれる。
 操作部74は、各種の操作ボタンや表示部73のタッチパネル機能により構成されている。操作部74は、ユーザの操作に応じた操作信号を制御部71に出力する。
 表示部73は、例えば液晶ディスプレイよりなり、各種の情報をユーザに提示する。例えば、表示部73は、エッジ端末10から送信された動的情報マップM1の画像データなどを画面表示することができる。
 制御部71は、GPS信号から現在時刻を取得する時刻同期機能と、GPS信号から自車両の現在位置(緯度、経度及び高度)を計測する位置検出機能と、方位センサによって歩行者7の向きを計測する方位検出機能なども有する。
 制御部71は、エッジ端末10との通信において、以下の各処理を実行可能である。
 1)動的情報の要求処理
 2)端末状態情報の送信処理
 3)動的情報の受信処理
 動的情報の要求処理とは、エッジ端末10が逐次更新するマップM1の動的情報の配信を要求する制御パケット(要求メッセージ)を、エッジ端末10に送信する処理のことである。制御パケットには、歩行者端末70の携帯IDが含まれる。
 エッジ端末10は、所定の携帯IDを含む要求メッセージを受信すると、送信元の携帯IDを有する歩行者7の通信端末1B宛てに、動的情報を所定の配信周期で配信する。
 端末状態情報の送信処理とは、自装置の位置及び方位情報などの歩行者端末70の状態情報を、エッジ端末10に送信する処理のことである。
 動的情報の受信処理とは、自装置に宛ててエッジ端末10が配信した動的情報を、受信する処理のことである。
 〔路側センサの内部構成〕
 図5は、路側センサ8の内部構成の一例を示すブロック図である。
 図5に示すように、路側センサ8は、制御部81、記憶部82、路側カメラ83、レーダセンサ84、及び通信部85を備える。
 通信部85は、前述の通信端末1C、すなわち、例えば5G対応の通信処理が可能な無線通信機よりなる。
 従って、路側センサ8は、スライスNS1又はスライスNS2に属する移動端末の一種として、エッジ端末10と通信することができる。
 制御部81は、CPU、ROM及びRAMなどを含む。制御部81は、記憶部82に記憶されたプログラムを読み出して実行し、路側センサ8の全体の動作を制御する。
 記憶部82は、ハードディスクや不揮発性のメモリなどより構成され、各種のコンピュータプログラムやデータを記憶する。記憶部82は、路側センサ8の識別情報であるセンサIDを記憶している。センサIDは、例えば、路側センサ8の所有者固有のユーザIDやMACアドレスなどよりなる。
 路側カメラ83は、所定の撮影エリアの映像を取り込む画像センサよりなる。路側カメラ83は、単眼又は複眼のいずれでもよい。レーダセンサ60は、ミリ波レーダやLiDAR方式などにより自機の前方や周囲に存在する物体を検出するセンサよりなる。
 路側センサ8が防犯カメラである場合、制御部81は、取り込んだ映像データなどを防犯管理者のコンピュータ装置に送信する。路側センサ8が画像式車両感知器である場合、制御部81は、取り込んだ映像データなどを交通管制センターに送信する。
 制御部81は、路側カメラ83及びレーダセンサ84のうちの少なくとも1つの計測データに基づいて、撮影エリア内の物体を認識する物体認識処理と、認識した物体までの距離を算出する測距処理が可能である。
 制御部81は、測距処理により算出した距離と、自車両のセンサ位置とから、物体認識処理によって認識した物体の位置情報を算出することができる。
 制御部81は、ある物体(オブジェクト)を認識した場合には、認識した物体に起因する死角エリアの形状及び位置情報を算出可能である。
 具体的には、制御部81は、自車両のセンサ視点(例えば、車載カメラ59のレンズ中心)から見た場合の、認識した物体の影(オクルージョン)に起因する死角エリアの形状(平面形状又は立体形状)と、当該形状の代表点の位置情報を算出する。
 制御部81は、エッジ端末10との通信において、以下の各処理を実行可能である。
 1)変化点情報の算出処理
 2)変化点情報の送信処理
 路側センサ8における変化点情報の算出処理とは、所定の計測周期(例えば、エッジ端末10による動的情報の配信周期)ごとの、前回のセンサ情報と今回のセンサ情報との比較結果から、それらのセンサ情報間の変化量を算出する処理である。路側センサ8が算出する変化点情報としては、例えば、次の情報例b1が考えられる。
 情報例b1:認識物体に関する変化点情報
 制御部81は、前回の物体認識処理では物体Y(車両、歩行者及び障害物など)が含まれないが、今回の物体認識処理により物体Yを検出した場合は、検出した物体Yの画像データと位置情報を変化点情報とする。
 この場合、制御部81は、物体Yに起因する死角エリアの平面積が所定値(例えば10m)以上ならば、死角エリアの形状と位置情報を変化点情報に含める。
 制御部81は、前回の物体認識処理により求めた物体Yの位置情報と、今回の物体認識処理により求めた物体Yの位置情報とが、所定の閾値以上ずれている場合は、検出した物体Yの画像データと、両者の位置情報の差分値を変化点情報とする。
 この場合も、制御部81は、物体Yに起因する死角エリアの平面積が所定値以上ならば、死角エリアの形状と位置情報を変化点情報に含める。
 制御部81は、上記のようにして変化点情報を算出すると、算出した変化点情報を含むエッジ端末10宛の通信パケットを生成する。制御部81は、その通信パケットに自装置のセンサIDを含める。
 変化点情報の送信処理とは、変化点情報をデータに含む上記の通信パケットを、エッジ端末10宛てに送信する処理のことである。変化点情報の送信処理は、エッジ端末10による動的情報の配信周期内に行われる。
 〔情報提供システムの全体構成〕
 図6は、情報提供システムの構成例を示す全体構成図である。
 図6に示すように、本実施形態の情報提供システムは、複数の交差点を含む比較的広範囲のサービスエリア(現実世界)に存在する多数の車両5、歩行者端末70、路側センサ8及びエッジ端末10と、エッジ端末10と基地局2を介した5G通信などによる無線通信が可能なエッジサーバ3とを備える。
 エッジ端末10は、1つの交差点から所定半径以内のサービスエリアごとに、前述の変化点情報を所定周期で収集し(ステップS101)、収集した変化点情報に基づいて、動的情報マップM1の動的情報を更新する(ステップS102)。
 エッジ端末10は、動的情報を更新するごとに当該動的情報をエッジサーバ3に送信する。エッジサーバ3は、エッジ端末10から受信した動的情報を、複数の交差点を含む自装置のサービスエリアをカバーする動的情報統合マップM2に反映させる。
 エッジ端末10は、車両5又は歩行者端末70から要求があれば、最新の動的情報を要求元の通信ノードに送信する(ステップS103)。これにより、例えば動的情報を受信した車両5は、搭乗者の運転支援などに動的情報を活用することができる。
 路側センサ8及び車両5は、今回周期においてセンサ情報の変化点情報を検出すると、検出した変化点情報をエッジ端末10に送信する(ステップS104)。
 このように、本実施形態の情報提供システムでは、変化点情報の収集(ステップS101)→動的情報の更新(ステップS102)→動的情報の配信(ステップS103)→変化点情報の送信(ステップS104)→変化点情報の収集(ステップS101)の順で、各通信ノードにおける情報処理が循環する。
 〔動的情報の更新処理及び配信処理の比較例〕
 図7は、動的情報の更新処理及び配信処理の比較例を示すシーケンス図である。
 以下の説明では、実行主体が歩行者端末70、車両5、路側センサ8及びエッジ端末10となっているが、実際の実行主体は、それらの制御部71,51,81,11である。図7中のU1,U2……は、動的情報の配信周期(例えば100ms)である。
 図7に示すように、エッジ端末10は、歩行者端末70及び車両5から動的情報の要求メッセージを受信すると(ステップS1)、受信時点において最新の動的情報を、送信元の歩行者端末70及び車両5に配信する(ステップS2)。
 ステップS1において、歩行者端末70及び車両5のいずれか一方から要求メッセージがあった場合には、ステップS2において、要求メッセージの送信元である一方の通信端末のみに動的情報が配信される。
 ステップS2の動的情報を受信した車両5は、配信周期U1内に、動的情報と自身のセンサ情報との比較結果から変化点情報を検出すると(ステップS3)、検出した変化点情報をエッジ端末10に送信する(ステップS5)。
 路側センサ8は、配信周期U1内に、自身のセンサ情報の変化点情報を検出すると(ステップS4)、検出した変化点情報をエッジ端末10に送信する(ステップS5)。
 エッジ端末10は、配信周期U1内に、車両5及び路側センサ8から変化点情報を受信すると、それらの変化点情報を反映した動的情報に更新したあと(ステップS6)、更新後の動的情報を歩行者端末70及び車両5に配信する(ステップS7)。
 配信周期U1内に、車両5のみが変化点情報を検出した場合は、ステップS3で車両5が検出した変化点情報のみがエッジ端末10に送信され(ステップS5)、その変化点情報のみを反映した動的情報の更新が行われる(ステップS6)。
 配信周期U1内に、路側センサ8のみが変化点情報を検出した場合は、ステップS4で路側センサ8が検出した変化点情報のみがエッジ端末10に送信され(ステップS5)、その変化点情報のみを反映した動的情報の更新が行われる(ステップS6)。
 配信周期U1内に、車両5及び路側センサ8の双方が変化点情報を検出しなかった場合は、ステップS3~S6の処理が実行されず、前回送信分の動的情報(ステップS2)と同じ動的情報が歩行者端末70及び車両5に配信される(ステップS7)。
 ステップS7の動的情報を受信した車両5は、配信周期U2内に、動的情報と自身のセンサ情報との比較結果から変化点情報を検出すると(ステップS8)、検出した変化点情報をエッジ端末10に送信する(ステップS10)。
 路側センサ8は、配信周期U2内に、自身のセンサ情報の変化点情報を検出すると(ステップS9)、検出した変化点情報をエッジ端末10に送信する(ステップS10)。
 エッジ端末10は、配信周期U2内に、車両5及び路側センサ8から変化点情報を受信すると、それらの変化点情報を反映した動的情報に更新したあと(ステップS11)、更新後の動的情報を歩行者端末70及び車両5に配信する(ステップS12)。
 配信周期U2内に、車両5のみが変化点情報を検出した場合は、ステップS8で車両5が検出した変化点情報のみがエッジ端末10に送信され(ステップS10)、その変化点情報のみを反映した動的情報の更新が行われる(ステップS11)。
 配信周期U2内に、路側センサ8のみが変化点情報を検出した場合は、ステップS9で路側センサ8が検出した変化点情報のみがエッジ端末10に送信され(ステップS10)、その変化点情報のみを反映した動的情報の更新が行われる(ステップS11)。
 配信周期U2内に、車両5及び路側センサ8の双方が変化点情報を検出しなかった場合は、ステップS8~S11の処理が実行されず、前回送信分の動的情報(ステップS7)と同じ動的情報が歩行者端末70及び車両5に配信される(ステップS12)。
 その後、歩行者端末70及び車両5の双方から、動的情報の配信停止の要求メッセージを受信するか、或いは、歩行者端末70及び車両5の通信が遮断されるまで、上記と同様のシーケンスが繰り返される。
 〔車両が常にセンシングする場合の問題点と解決策〕
 図7の比較例では、車両5は、エッジ端末10から動的情報を受信するごとに(ステップS2,S7)、配信周期U1,U2内に変化点情報を検出し(ステップS3,S8)、検出した変化点情報をエッジ端末10に送信する(ステップS5,S10)。
 従って、動的情報の配信を要求した車両5は、常に、エッジ端末10に変化点情報を提供するセンシングデバイスとして機能する。
 このため、エッジ端末10のサービスエリアに含まれる車両5の台数によっては、エッジ端末10のデータ通信量及び処理負荷が過大となり、エッジ端末10による通信及び情報処理が遅延する可能性がある。
 この場合、エッジ端末10が配信周期U1,U2ごとに動的情報を適切に更新できなくなり、マップM1のリアルタイム性が悪化することになる。
 かかる不都合を解消するには、変化点情報を収集するセンシングデバイスを一部のデバイス(例えば、路側センサ8)に限定することが考えられる。
 しかし、センシングデバイスを一部のデバイスに限定すると、物体に起因する死角エリアが発生する可能性が高くなる。このため、死角エリアに移動体などの物体が存在する場合には、マップM1に反映される物体(車両、歩行者及び障害物など)が実際よりも少なくなり、マップM1の物体反映精度が悪化することになる。
 そこで、本実施形態では、所定のセンシングデバイス(例えば、路側センサ8)の変化点情報に基づく動的情報に死角エリアの動的情報が含まれる場合に、当該死角エリアをセンシング可能な他のセンシングデバイス(例えば、車両5)の変化点情報を用いて動的情報を更新することにより、動的情報マップM1のリアルタイム性と物体反映精度の両立を図るようにした。以下、上記の解決策に則った、動的情報の更新処理及び配信処理の具体例を説明する。
 〔動的情報の更新処理及び配信処理の具体例〕
 図8は、動的情報の更新処理及び配信処理の具体例を示すシーケンス図である。
 以下の説明では、実行主体が歩行者端末70、車両5、路側センサ8及びエッジ端末10となっているが、実際の実行主体は、それらの制御部71,51,81,11である。図8中のU1,U2……は、動的情報の配信周期(例えば100ms)である。
 図8において、車両5Aは、動的情報が配信される車両(以下、「被配信車両」ともいう。)である。車両5Bは、エッジ端末10の要求に応じて変化点情報をエッジ端末10に提供する車両(以下、「情報提供車両」ともいう。)である。
 エッジ端末10は、自身のサービスエリアに存在する車両5の位置及び進行方向などから、死角エリアをセンシング可能な1又は複数の情報提供車両5Bを選択する。情報提供車両5Bは、被配信車両5Aと異なる車両5又は同じ車両5のいずれでもよい。
 図8に示すように、エッジ端末10は、歩行者端末70及び被配信車両5Aから動的情報の要求メッセージを受信すると(ステップS21)、受信時点において最新の動的情報を、送信元の歩行者端末70及び被配信車両5Aに配信する(ステップS22)。
 ステップS21において、歩行者端末70及び被配信車両5Aのいずれか一方から要求メッセージがあった場合には、ステップS22において、要求メッセージの送信元である一方の通信端末のみに動的情報が配信される。
 路側センサ8は、配信周期U1内に、自身のセンサ情報の変化点情報を検出すると(ステップS23)、検出した変化点情報をエッジ端末10に送信する(ステップS24)。
 エッジ端末10は、配信周期U1内に、路側センサ8から変化点情報を受信すると、その変化点情報を反映した動的情報に更新する(ステップS25)。
 ステップS25の動的情報の更新処理には、現時点の動的情報に関する死角エリアの動的情報の存否に応じて、死角エリアをセンシング可能な情報提供車両5Bに変化点情報を要求するか否かを判定する処理が含まれる。
 すなわち、現時点の動的情報に死角エリアの動的情報が存在する場合には、エッジ端末10は、変化点情報の要求メッセージを情報提供車両5Bに送信し、情報提供車両5Bから変化点情報を取得する。
 逆に、現時点の動的情報に死角エリアの動的情報が存在しない場合には、エッジ端末10は、変化点情報の要求メッセージを情報提供車両5Bに送信せず、情報提供車両5Bの変化点情報を動的情報の更新に使用しない。
 エッジ端末10は、ステップS25の動的情報の更新処理を行ったあと、更新した動的情報を歩行者端末70及び被配信車両5Aに配信する(ステップS26)。
 配信周期U1内に、路側センサ8が変化点情報を検出しなかった場合には、ステップS23~S25の処理が実行されず、前回送信分の動的情報(ステップS22)と同じ動的情報が歩行者端末70及び被配信車両5Aに配信される(ステップS26)。
 路側センサ8は、配信周期U2内に、自身のセンサ情報の変化点情報を検出すると(ステップS27)、検出した変化点情報をエッジ端末10に送信する(ステップS28)。
 エッジ端末10は、配信周期U2内に、路側センサ8から変化点情報を受信すると、その変化点情報を反映した動的情報に更新する(ステップS29)。
 ステップS29の動的情報の更新処理には、現時点の動的情報に関する死角エリアの動的情報の存否に応じて、死角エリアをセンシング可能な情報提供車両5Bに変化点情報を要求するか否かを判定する処理が含まれる。
 すなわち、現時点の動的情報に死角エリアの動的情報が存在する場合には、エッジ端末10は、変化点情報の要求メッセージを情報提供車両5Bに送信し、情報提供車両5Bから変化点情報を取得する。
 逆に、現時点の動的情報に死角エリアの動的情報が存在しない場合には、エッジ端末10は、変化点情報の要求メッセージを情報提供車両5Bに送信せず、情報提供車両5Bの変化点情報を動的情報の更新に使用しない。
 エッジ端末10は、ステップS29の動的情報の更新処理を行ったあと、更新した動的情報を歩行者端末70及び被配信車両5Aに配信する(ステップS30)。
 配信周期U2内に、路側センサ8が変化点情報を検出しなかった場合には、ステップS27~S29の処理が実行されず、前回送信分の動的情報(ステップS26)と同じ動的情報が歩行者端末70及び被配信車両5Aに配信される(ステップS30)。
 その後、歩行者端末70及び被配信車両5Aの双方から、動的情報の配信停止の要求メッセージを受信するか、或いは、歩行者端末70及び被配信車両5Aの通信が遮断されるまで、上記と同様のシーケンスが繰り返される。
 〔死角エリアを含む動的情報の更新処理〕
 図9は、エッジ端末10の制御部11が実行する、死角エリアを含む動的情報の更新処理の一例を示すフローチャートである。
 図9のフローチャートは、図8のステップS25,S29においてエッジ端末10が実行する更新処理に該当する。
 図9に示すように、エッジ端末10の制御部11は、まず、今回周期に路側センサ8から受信した変化点情報をRAM13から取得する(ステップST11)。
 次に、制御部11は、路側センサ8の変化点情報のみに基づいて、記憶部14に格納されたマップM1の動的情報をいったん更新し(ステップST12)、更新後の動的情報を記憶部14に記憶させる。すなわち、記憶部14に記憶させる動的情報を更新後の動的情報に置き換える。
 次に、制御部11は、路側センサ8の変化点情報に基づく記憶中の動的情報に、死角エリアの動的情報が含まれるか否かを判定する(ステップST13)。
 ステップST13の判定結果が否定的である場合には、制御部11は、車両5(情報提供車両5B)の変化点情報を今回周期分の変化点情報に加えずに(ステップST19)、処理を終了する。
 ステップST13の判定結果が肯定的である場合には、制御部11は、死角エリアをセンシング可能な車両5(情報提供車両5B)が自身のサービスエリアに存在するか否かを判定する(ステップST14)。死角エリアをセンシング可能とは、例えば、死角エリアの内部に存在し得る物体を計測可能な位置及び方向にあることを意味する。
 ステップST14の判定結果が否定的である場合には、制御部11は、情報提供車両5Bの変化点情報を今回周期分の変化点情報に加えずに(ステップST19)、処理を終了する。
 ステップST14の判定結果が肯定的である場合には、制御部11は、変化点情報を要求する制御パケット(要求メッセージ)を情報提供車両5Bに送信したあと(ステップST15)、情報提供車両5Bから所定時間内に変化点情報を受信したか否かを判定する(ステップST16)。
 ステップST16の判定結果が否定的である場合には、制御部11は、情報提供車両5Bの変化点情報を今回周期分の変化点情報に加えずに(ステップST19)、処理を終了する。
 ステップST16の判定結果が肯定的である場合には、制御部11は、情報提供車両5Bの変化点情報を今回周期分の変化点情報に加える(ステップST17)。
 情報提供車両5Bから受信する変化点情報による移動体の検出結果としては、次の3種類の検出結果1~3が考えられる。
 検出結果1:死角エリアに車両5及び歩行者7の双方が含まれる。
 検出結果2:死角エリアに車両5は含まれ、歩行者7は含まれない。
 検出結果3:死角エリアに車両5が含まれず、歩行者7が含まれる。
 従って、制御部11は、情報提供車両5Bの変化点情報が上記の検出結果1~3のいずれであるかにより、死角エリア内に車両5及び歩行者7などの移動体が存在するか否かを判定することができる。
 そして、制御部11は、路側センサ8及び情報提供車両5Bの変化点情報に基づいて、記憶された動的情報を更新する(ステップST18)。すなわち、記憶部14に記憶させる動的情報を更新後の動的情報に置き換える。
 具体的には、制御部11は、情報提供車両5Bによる変化点情報が検出結果1である場合は、車両5及び歩行者7の動的情報を更新する。
 同様に、制御部11は、情報提供車両5Bによる変化点情報が検出結果2である場合は、車両5の動的情報を更新し、情報提供車両5Bによる変化点情報が検出結果3である場合は、歩行者7の動的情報を更新する。
 これにより、死角エリアに車両5及び歩行者7などの移動体が含まれていても、情報提供車両5Bの変化点情報により当該移動体の動的情報がマップM1に反映される。
 従って、マップM1の動的情報の物体反映精度が高まる。なお、制御部11は、ステップST18の処理後に、死角エリアの動的情報をマップM1から削除してもよいし、残存させることにしてもよい。
 図9に示す通り、制御部11は、死角エリアが存在する場合(ステップST13でYes)でも、死角エリアをセンシング可能な車両5が存在しない場合(ステップST14でNo)、或いは、情報提供車両5Bから変化点情報を受信しない場合(ステップST16でNo)には、車両5の変化点情報を動的情報の更新に使用しない。
 従って、今回周期で更新した動的情報に死角エリアの動的情報が残存し、死角エリアの動的情報が記憶される場合がある。
 死角エリアをセンシング可能な車両5が存在しない場合(ステップST14でNo)は、今回周期では、死角エリアに移動体が存在するか否かは不明のままとなる。
 一方、変化点情報を要求された情報提供車両5Bが、変化点情報を検出すると無条件で当該情報を送信するプロトコルとする場合には、情報提供車両5Bから変化点情報を受信しない場合(ステップST16でNo)は、制御部11は、死角エリアに車両5及び歩行者7の双方が存在しないと判断することもできる。
 従って、制御部11は、情報提供車両5Bから変化点情報を受信しない場合(ステップST16でNo)は、下記の検出結果4であると判定することにしてもよい。
 検出結果4:死角エリアに車両5が含まれず、歩行者7も含まれない。
 もっとも、情報提供車両5Bが送信した変化点情報を、エッジ端末10が必ず今回周期に受信できるとは限らないので、上記の場合にも、死角エリアに移動体が存在するか否かは不明のままと判定することにしてもよい。
 エッジ端末10の制御部11は、記憶された動的情報に死角エリアの動的情報が含まれる場合には、物体の動的情報とともに死角エリアの動的情報を通信部15が配信するように、通信部15を制御する。
 このため、被配信車両5Aは、物体の動的情報だけでなく、路側センサ8の死角エリアの動的情報を取得することができる。従って、取得した死角エリアをディスプレイ56に地図とともに表示すれば、死角エリアの場所を搭乗者に報知することができる。
 制御部11は、死角エリアの動的情報については、死角エリアである旨の所定の識別情報(例えば、通信パケットの所定領域に記される識別値)を含む通信パケットに格納し、当該通信パケットを通信部15が配信するように、通信部15を制御する。
 このようにすれば、被配信車両5Aは、受信した通信パケットに死角エリアが含まれることを即座に判断できる。従って、被配信車両5Aは、受信した通信パケットを運転支援には利用せず、ディスプレイ56の表示に止めるなど、適切な対処が可能となる。
 制御部11は、車両5の動的情報については、車両5が下記の種別1から種別3のいずれであるかを表す所定の識別情報(例えば、通信パケットの所定領域に記される識別値)を通信パケットに格納し、当該通信パケットを通信部15が送信するように、通信部15を制御する。
 種別1:無線通信機が搭載された車両
 種別2:無線通信機が非搭載でかつ路側センサ8により検出された車両
 種別3:無線通信機が非搭載でかつ情報提供車両5Bにより検出された車両
 このようにすれば、被配信車両5Aは、受信した通信パケットに含まれる車両5の動的情報が、上記の種別1~種別3のいずれであるかを即座に判断できる。
 従って、被配信車両5Aは、配信された車両5の動的情報が路側センサ8又は情報提供車両5Bのいずれで検出されたか、或いは、配信された動的情報に係る車両5の無線通信機の有無などにより、運転支援の実行可否や種類を決定するなど、適切な対処が可能となる。
 〔情報提供車両の選択処理〕
 図10は、エッジ端末10の制御部11が実行する、情報提供車両5Bの選択処理の一例を示すための交差点Jの平面図である。
 図10において、交差点Jは、エッジ端末10のサービスエリアに含まれる交差点であり、路側センサ8は交差点Jの西南側に設置されている。
 図10に示す車両V1~V9のうち、車両V1は、交差点Jを北向きに走行中の車両である。車両V1は、トラックなどの大型車両である。車両V2は、北向きの流入路から交差点Jを右折する車両である。ここでは、車両V2が、被配信車両5Aであるとする。
 車両V3は、交差点J1を南向きに走行中の車両であり、車両V4,V5は車両V3の後続車両である。車両V6,V7は、赤信号で停止中の西向きの車両であり、車両V8,V9は、赤信号で停止中の東向きの車両である。
 図10に示すように、大型車両V1の右側には、路側センサ8の設置点Pから見た場合の死角エリアBA(図10の斜線枠内)が生じており、この死角エリアBAの内部に車両V3,V4が存在するとする。
 従って、路側センサ8の変化点情報のみに基づく動的情報には、車両V3,V4を除く車両V1,V2,V5~V9の画像データ及び位置情報と、死角エリアBAの平面形状及び位置情報よりなる死角情報とが含まれる。
 かかる状況下において、エッジ端末10は、動的情報マップM1に含まれる車両V1,V2,V5~V9の中から次の条件1~3に適合する車両を抽出する。
 条件1:自装置と通信可能な車両(通信端末1Aを搭載した車両)であること
 条件2:進行方向の前方に死角エリアBAが存在する車両であること
 条件3:進行方向の前方に死角エリアBA内の物体のセンシングを阻害する障害物(他車両など)が存在しない車両であること
 ここでは、条件1~3を満たす車両は車両V1,V5,V6であるとする。この場合、エッジ端末10は、車両V1,V5,V6を情報提供車両5Bに設定し、当該車両V1,V5,V6宛てに変化点情報の要求メッセージを送信する。
 エッジ端末10は、車両V1,V5,V6から変化点情報を受信すると、受信した変化点情報を用いて今回周期内に動的情報を更新する。これにより、死角エリアBAの内部に存在する車両V3,V4が動的情報に反映され、動的情報の物体反映精度が高まる。
 例えば、車両V5の変化点情報により、その前方の車両V4が動的情報に反映され、車両V6の変化点情報により、その前方の車両V3が動的情報に反映される。
 従って、更新後の動的情報を車両V2に提供すれば、提供された動的情報に車両V3,V4が含まれることにより、車両V2は、死角エリアBA内でかつ車両V3に後続する車両V4の存在を事前に察知できるようになる。
 上記のように、情報提供車両5Bの候補となる車両V1,V5,V6が複数存在する場合は、エッジ端末10の制御部11は、要求メッセージの送信対象とする情報提供車両5Bを、自装置の通信部15に対する通信速度(例えばビットレートなど)が所定値以上である車両V1,V5,V6に限定するように、通信部15を制御することが好ましい。
 その理由は、通信速度が低い車両5に変化点情報を要求しても、変化点情報の到着が今回周期に間に合わず、動的情報の更新処理が遅れる可能性があるからである。
 なお、変化点情報の要求メッセージを受信した車両V1,V5,V6は、変化点情報の送信に必要な通信速度が確保されない間は未送信のまま待機し、通信速度が確保された時点で変化点情報を送信することが好ましい。
 〔情報提供システムの変形例〕
 図11は、情報提供システムの構成例のバリエーションを示す説明図である。
 図11に示すように、本実施形態の情報提供システムの構成例としては、パターン1~4のバリエーションが考えられる。
 パターン1の情報提供システムは、図6に示す情報提供システムと同様であり、コアサーバ4、エッジサーバ3、エッジ端末10、路側センサ8、及び車両5を備える。路側センサ8と車両5は、路上の物体のセンシングデバイスである。
 パターン1の情報提供システムでは、エッジ端末10が動的情報の更新装置であり、更新後の最新の動的情報を車両5などに配信する。パターン1において、エッジ端末10と路側センサ8は、同じ筐体に収容された装置であってもよい。
 パターン2の情報提供システムは、コアサーバ4、エッジサーバ3、路側センサ8、及び車両5を備える。路側センサ8と車両5は、路上の物体のセンシングデバイスである。
 パターン2の情報提供システムでは、エッジサーバ3が動的情報の更新装置であり、更新後の最新の動的情報を車両5などに配信する。
 パターン3の情報提供システムは、コアサーバ4、エッジサーバ3、及び車両5を備える。車両5は、路上の物体のセンシングデバイスである。
 パターン3の情報提供システムでは、エッジサーバ3が動的情報の更新装置であり、最新の動的情報を車両5などに配信する。
 路側センサ8が含まれないパターン3の場合には、エッジサーバ3は、変化点情報を常にセンシングさせる1又は複数の車両5を決定して動的情報を生成し、生成した動的情報に死角エリアBAが含まれる場合に、死角エリアBAを補完な他の車両5に変化点情報を要求すればよい。
 パターン4の情報提供システムは、ネットワーク側のサーバ3,4が存在せず、複数の車両5から構成される。各車両5は、路上の物体のセンシングデバイスである。
 パターン4の情報提供システムでは、複数の車両5のうちの1つが動的情報の更新機能を有する親機であり、最新の動的情報を車車間通信により他の車両5に配信する。
 路側センサ8が含まれないパターン4の場合も、親機となる車両5は、変化点情報を常にセンシングさせる1又は複数の車両5を決定して動的情報を生成し、生成した動的情報に死角エリアBAが含まれる場合に、死角エリアBAを補完な他の車両5に変化点情報を要求すればよい。
 図11に示すように、本実施形態の情報提供システムにおいて、動的情報マップM1の管理と、動的情報の更新及び配信を行う装置は、エッジ端末10に限定されるものではなく、エッジサーバ3又は車両5などのその他の通信ノードであってもよい。
 〔その他の変形例〕
 今回開示した実施形態(変形例を含む。)はすべての点で例示であって制限的なものではない。本発明の権利範囲は、上述の実施形態に限定されるものではなく、請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。
 上述の実施形態では、車両5及び路側センサ8が変化点情報を生成し、生成した変化点情報をエッジ端末10に送信するが(図8のステップS24,S28など)、車両5及び路側センサ8は、検出したセンサ情報をそのままエッジ端末10に送信してもよい。
 この場合、各センサ情報から変化点情報を生成する処理を、エッジ端末10が実行することにすればよい。
 もっとも、車両5及び路側センサ8のセンサ情報には映像データなどが含まれることから、エッジ端末10との通信負荷を軽減するため、よりデータ量の少ない変化点情報を車両5及び路側センサ8が生成することが好ましい。
 上述の実施形態では、路側センサ(第1センサ装置)8と情報提供車両(第2センサ装置)5Bの今回周期における変化点情報による検出結果の組み合わせとして、次のパターンA及びパターンBを例示したが、これに限らない。
 パターンA:
 第1センサ装置8が死角エリアBAを検出→第2センサ装置5Bが死角エリアBAの移動体を検出
 パターンB:
 第1センサ装置8が死角エリアBAを検出→第2センサ装置5Bが死角エリアBAの移動体を非検出
 例えば、パターンBについては、第2センサ装置5Bが物体を非検出であることをエッジ端末(更新装置)10に送信することで、死角エリアBAには物体がないとして動的情報を更新する構成としてもよい(パターンC)。また、パターンCを、上述のパターン1~4の情報提供システムに適用してもよい。
 1A~1D 通信端末
 2 基地局
 3 エッジサーバ
 4 コアサーバ
 5 車両(第2センサ装置、移動端末)
 5A 被配信車両
 5B 情報提供車両(第2センサ装置、移動端末)
 7 歩行者
 8 路側センサ(第1センサ装置、固定端末)
 9 交通信号制御機
 10 エッジ端末(更新装置)
 11 制御部
 12 ROM
 13 RAM
 14 記憶部
 15 通信部
 31 制御部
 32 ROM
 33 RAM
 34 記憶部
 35 通信部
 50 車載装置
 51 制御部
 52 GPS受信機(電子機器)
 53 車速センサ(電子機器)
 54 ジャイロセンサ(電子機器)
 55 記憶部(電子機器)
 56 ディスプレイ(電子機器)
 57 スピーカ(電子機器)
 58 入力デバイス(電子機器)
 59 車載カメラ(電子機器)
 60 レーダセンサ(電子機器)
 61 通信部(電子機器)
 70 歩行者端末
 71 制御部
 72 記憶部
 73 表示部
 74 操作部
 75 通信部
 81 制御部
 82 記憶部
 83 路側カメラ
 84 レーダセンサ
 85 通信部
 NS1~NS4 ネットワークスライス
 N1~N4 通信ノード
 V1~V9 車両

Claims (10)

  1.  動的情報マップに含まれる動的情報を更新する装置であって、
     前記動的情報を記憶する記憶部と、
     自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置、及び、自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置の、各々と通信する通信部と、
     前記第1センサ装置から前記通信部が受信した前記第1情報に基づいて、前記記憶部に記憶された前記動的情報を新しい動的情報に書き換える制御部と、を備え、
     前記制御部は、
     前記記憶部に記憶された前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に対して前記第2情報を要求するメッセージを前記通信部が送信するように、前記通信部を制御する動的情報の更新装置。
  2.  前記制御部は、
     前記第2センサ装置から前記通信部が前記第2情報を受信した場合に、前記第1情報及び前記第2情報の双方に基づいて、前記記憶部に記憶された前記動的情報を新しい動的情報に書き換える請求項1に記載の動的情報の更新装置。
  3.  前記通信部は、
     前記記憶部に記憶された前記動的情報を配信可能であり、
     前記制御部は、
     前記記憶部に記憶された前記動的情報に前記死角エリアの動的情報が含まれる場合に、前記物体の動的情報とともに前記死角エリアの動的情報を前記通信部が配信するように、前記通信部を制御する請求項1又は請求項2に記載の動的情報の更新装置。
  4.  前記制御部は、
     前記死角エリアの動的情報については、前記死角エリアである旨の所定の識別情報を含む通信パケットに格納し、前記通信パケットを前記通信部が配信するように、前記通信部を制御する請求項3に記載の動的情報の更新装置。
  5.  前記制御部は、
     前記物体が車両である場合の動的情報については、前記車両が少なくとも下記の種別1から種別3を含む複数の種別のうちのいずれであるかを表す所定の識別情報を含む通信パケットに格納し、前記通信パケットを前記通信部が配信するように、前記通信部を制御する請求項3又は請求項4に記載の動的情報の更新装置。
     種別1:無線通信機が搭載された車両
     種別2:無線通信機が非搭載でかつ前記第1センサ装置により検出された車両
     種別3:無線通信機が非搭載でかつ前記第2センサ装置により検出された車両
  6.  前記制御部は、
     前記死角エリアをセンシング可能な前記第2センサ装置の候補が複数存在する場合は、前記メッセージの送信対象を前記通信部に対する通信速度が所定値以上であるセンサ装置に限定するように、前記通信部を制御する請求項1から請求項5のいずれか1項に記載の動的情報の更新装置。
  7.  前記第1センサ装置は、
     路側に設置された1又は複数の固定端末であり、
     前記第2センサ装置は、
     道路を通行する1又は複数の移動端末である請求項1から請求項6のいずれか1項に記載の動的情報の更新装置。
  8.  動的情報マップに含まれる動的情報を更新する方法であって、
     前記動的情報を記憶するステップと、
     自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置、及び、自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置の、各々と通信するステップと、
     前記第1センサ装置から受信した前記第1情報に基づいて、記憶された前記動的情報を新しい動的情報に書き換えるステップと、
     記憶された前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に対して前記第2情報を要求するメッセージを送信するステップと、を含む動的情報の更新方法。
  9.  動的情報マップに含まれる動的情報を更新する装置として、コンピュータを機能させるためのコンピュータプログラムであって、前記コンピュータを、
     前記動的情報を記憶する記憶部、
     自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置、及び、自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置の、各々と通信する通信部、及び、
     前記第1センサ装置から受信した前記第1情報に基づいて、前記記憶部に記憶された前記動的情報を新しい動的情報に書き換える制御部として機能させ、
     前記制御部は、
     前記記憶部に記憶された前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に対して前記第2情報を要求するメッセージを前記通信部が送信するように、前記通信部を制御するコンピュータプログラム。
  10.  動的情報マップに含まれる動的情報を提供するシステムであって、
     自己のセンサ情報に基づく第1情報を送信可能な第1センサ装置と、
     自己のセンサ情報に基づく第2情報を送信可能な第2センサ装置と、
     前記第1センサ装置から受信した前記第1情報に基づいて前記動的情報を更新し、更新した前記動的情報を配信する更新装置と、を備え、
     前記更新装置は、
     前記動的情報に物体に起因する死角エリアの動的情報が含まれる場合に、前記死角エリアをセンシング可能な前記第2センサ装置に前記第2情報を要求するメッセージを送信する情報提供システム。
PCT/JP2020/040565 2019-12-12 2020-10-29 動的情報の更新装置、更新方法、情報提供システム、及びコンピュータプログラム WO2021117370A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019224709 2019-12-12
JP2019-224709 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021117370A1 true WO2021117370A1 (ja) 2021-06-17

Family

ID=76329730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040565 WO2021117370A1 (ja) 2019-12-12 2020-10-29 動的情報の更新装置、更新方法、情報提供システム、及びコンピュータプログラム

Country Status (1)

Country Link
WO (1) WO2021117370A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026009A (ja) * 2016-08-10 2018-02-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 動的地図構成方法、動的地図構成システム及び移動端末
JP2018206359A (ja) * 2017-06-01 2018-12-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通信方法、路側機および通信システム
JP2019175089A (ja) * 2018-03-28 2019-10-10 住友電気工業株式会社 センサ提供システム、車載装置、センサ共有サーバ、及びコンピュータプログラム
US20190339082A1 (en) * 2018-05-02 2019-11-07 Blackberry Limited Method and system for hybrid collective perception and map crowdsourcing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026009A (ja) * 2016-08-10 2018-02-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 動的地図構成方法、動的地図構成システム及び移動端末
JP2018206359A (ja) * 2017-06-01 2018-12-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通信方法、路側機および通信システム
JP2019175089A (ja) * 2018-03-28 2019-10-10 住友電気工業株式会社 センサ提供システム、車載装置、センサ共有サーバ、及びコンピュータプログラム
US20190339082A1 (en) * 2018-05-02 2019-11-07 Blackberry Limited Method and system for hybrid collective perception and map crowdsourcing

Similar Documents

Publication Publication Date Title
JP7031612B2 (ja) 情報提供システム、サーバ、移動端末、及びコンピュータプログラム
WO2018220971A1 (ja) 通信制御装置、通信制御方法、及びコンピュータプログラム
EP3451312B1 (en) Providing a confidence-based road event message
EP3496064B1 (en) Method and apparatus for publishing road event messages
CN114255606B (zh) 辅助驾驶提醒、地图辅助驾驶提醒方法、装置和地图
US9373255B2 (en) Method and system for producing an up-to-date situation depiction
CN111724616B (zh) 基于人工智能的数据获取及共享的方法与装置
US11803184B2 (en) Methods for generating maps using hyper-graph data structures
US11804136B1 (en) Managing and tracking scouting tasks using autonomous vehicles
JP2020027645A (ja) サーバ、無線通信方法、コンピュータプログラム、及び車載装置
US11945472B2 (en) Trajectory planning of vehicles using route information
US11568741B2 (en) Communication device, control method thereof, and communication system including the same
CN111693055B (zh) 道路网络变化检测和所检测的变化的本地传播
US20220222597A1 (en) Timing of pickups for autonomous vehicles
WO2020071072A1 (ja) 情報提供システム、移動端末、情報提供方法、及びコンピュータプログラム
WO2019198449A1 (ja) 情報提供システム、移動端末、情報提供装置、情報提供方法、及びコンピュータプログラム
JP2020091614A (ja) 情報提供システム、サーバ、移動端末、及びコンピュータプログラム
JP2020091652A (ja) 情報提供システム、サーバ、及びコンピュータプログラム
CN111619577B (zh) 服务器、车辆控制系统
JP2019079453A (ja) 情報生成システム、情報生成装置、情報生成方法およびコンピュータプログラム
US11705000B2 (en) Information generation device, information generation method, and program for information generation device
WO2021117370A1 (ja) 動的情報の更新装置、更新方法、情報提供システム、及びコンピュータプログラム
JP2019079454A (ja) 車両制御システム、機能通知装置、機能通知方法およびコンピュータプログラム
JP2020091612A (ja) 情報提供システム、サーバ、及びコンピュータプログラム
WO2019239757A1 (ja) 通信制御装置、通信制御方法、コンピュータプログラム、及び車載通信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP