WO2021117098A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2021117098A1
WO2021117098A1 PCT/JP2019/048119 JP2019048119W WO2021117098A1 WO 2021117098 A1 WO2021117098 A1 WO 2021117098A1 JP 2019048119 W JP2019048119 W JP 2019048119W WO 2021117098 A1 WO2021117098 A1 WO 2021117098A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
circuit
operation mode
switching
power
Prior art date
Application number
PCT/JP2019/048119
Other languages
French (fr)
Japanese (ja)
Inventor
大斗 水谷
貴昭 ▲高▼原
亮太 近藤
森 修
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/048119 priority Critical patent/WO2021117098A1/en
Priority to JP2021563463A priority patent/JP7118293B2/en
Publication of WO2021117098A1 publication Critical patent/WO2021117098A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This application relates to a power conversion device.
  • This conventional power conversion device is an inverter having an impedance source booster circuit whose output voltage is a power supply voltage or a voltage obtained by boosting the power supply voltage, and a switching element capable of short-circuiting the high potential side and the low potential side of the output voltage.
  • the circuit and a control unit capable of controlling the output voltage by charging / discharging the capacitor of the impedance source booster circuit by controlling the switching element are provided, and the control unit desires the output voltage.
  • the output voltage command which is a command for setting the value of, is calculated as the product of the boost rate for specifying the voltage of the capacitor and the modulation factor used for modulating the control signal of the switching element, and the boost rate is calculated as described above. It is variably set when the output voltage command is less than the power supply voltage.
  • the impedance source network is generally used for DC / AC inverter circuits, and is used for controlling the output voltage to an AC load such as a motor.
  • an AC input power factor improving function is required. Therefore, when the voltage control of the prior art is simply substituted, the input power factor cannot be controlled, which is deteriorated, and a high peak value current flows through the switching element. As a result, there is a possibility of destruction due to a decrease in power conversion efficiency or a deterioration in loss of a specific component.
  • the present application discloses a technique for solving the above-mentioned problems, and enables high power factor control of AC input while performing a wide range of output power control to a DC load, improving power conversion efficiency and improving power conversion efficiency.
  • An object of the present invention is to provide a power conversion device capable of reducing the loss of a specific circuit component.
  • the power converter disclosed in the present application is A power conversion device that converts power between an AC power supply and a DC load.
  • An impedance source network consisting of a first rectifier circuit on the input side, a current-reducing reactor for improving the input power factor, and a smoothing capacitor for at least one constant power control, and two switching elements in series.
  • a switching circuit in which a pair of connected legs are connected in parallel to each other, an isolation transformer in which the primary winding is connected to the switching circuit, and a second winding in which the primary winding is connected to the secondary winding of the isolation transformer.
  • the control circuit controls the current output from the first rectifier circuit by adjusting the short-circuit period between the pair of legs of the switching circuit, and is a pair consisting of the two diagonal switching elements. By adjusting the mutual power transmission period, the output power to the DC load is controlled to be constant.
  • the power conversion device disclosed in the present application it is possible to control a high power factor of AC input while performing a wide range of output power control to a DC load, and it is possible to improve power conversion efficiency and reduce loss of specific circuit components. Become.
  • Embodiment 1 The power conversion device according to the first embodiment of the present application is applied to, for example, a power supply system centered on a charger of an electric vehicle, and will be described below with reference to the drawings.
  • FIG. 1 is a circuit configuration diagram of the power conversion device according to the first embodiment of the present application.
  • the power conversion device according to the first embodiment of the present application converts the AC power supplied from the AC power supply 1 into DC power while insulating it, and outputs the DC power to the DC load 8. It includes a rectifier circuit 2, an impedance source network 3, a switching circuit 4, an isolated transformer 5, a second rectifier circuit 6, an output smoothing circuit 7, and a control circuit 9.
  • the AC power supply 1 is a commercial AC system, a private power generator, or the like.
  • the DC load 8 may be composed of not only a pure resistance load but also, for example, a high-voltage battery for traveling a vehicle, a lead battery as a power source for electrical components for a vehicle, and an electric double layer capacitor (EDLC: Electric Double Layer Capacitor). Good. It is self-evident that the AC power supply 1 or the DC load 8 is not limited to the above.
  • the first rectifier circuit 2 is used for full-wave rectification of the AC input supplied from the AC power supply 1, and in FIG. 1, it has a general configuration in which the diode element 2a is fully bridge-connected. Needless to say, an active element such as a MOSFET may be used instead of the passive element such as the diode element 2a.
  • the impedance source network 3 is composed of at least one flow-reducing reactor for improving the input power factor and at least one smoothing capacitor for constant power control.
  • it is composed of a first current reducing reactor 311, a second current reducing reactor 312, a first smoothing capacitor 321 and a second smoothing capacitor 322, and a reflux diode 33 as a reflux element. ..
  • the impedance source network 3 having this configuration is defined here as "quasi-Z source network (Quasi Impedance Circuit Network) 3A".
  • the positive electrode terminal of the output bus of the first rectifier circuit 2 and the first end of the first destreaming reactor 311 are connected to each other.
  • the negative electrode terminal of the output bus of the first rectifier circuit 2 the first end of the first smoothing capacitor 321 and the negative electrode terminal of the input bus of the switching circuit 4 are connected to each other.
  • the second end of the first current reducing reactor 311, the first end of the second smoothing capacitor 322, and the first end of the reflux diode 33 are connected to each other.
  • the second end of the second smoothing capacitor 322, the first end of the second current reducing reactor 312, and the positive electrode terminal of the input bus of the switching circuit 4 are connected to each other.
  • the second end of the freewheeling diode 33, the second end of the second current reducing reactor 312, and the second end of the first smoothing capacitor 321 are connected to each other.
  • the first end of the first current reducing reactor 311 is connected to the positive electrode terminal of the output bus of the first rectifier circuit 2, and the second end of the first current reducing reactor 311 is connected to the first terminal. 2 It is connected to the intersection of the smoothing capacitor 322 and the freewheeling diode 33.
  • the current input from the AC power supply 1 can be continuously passed to the switching circuit 4, so that the harmonic component on the input side can be reduced.
  • the same operation as that of the current type converter can be performed.
  • the voltage can be made constant by the first smoothing capacitor 321 and the second smoothing capacitor 322, and the first smoothing capacitor 321 and the second smoothing capacitor 322 are treated as simulated voltage sources in the same manner as the voltage converter. Operation is possible. That is, it has a feature that the voltage type converter and the current type converter can be operated at the same time by the control by the control circuit 9.
  • the reflux diode 33 is not limited to the types of a fast recovery diode (Fast Recovery Diode) and a soft recovery diode (SBD: Soft Recovery Diode), as well as SiC (Silicon Carbide) or GaN (Gallium Nitride).
  • a material such as Ga2O3 (gallium oxide) may be used.
  • the switching circuit 4 constitutes a full bridge inverter by using four switching elements of a first switching element 411, a second switching element 412, a third switching element 413, and a fourth switching element 414.
  • the first switching element 411 and the second switching element 412 are connected in series with each other to form the first leg.
  • the third switching element 413 and the fourth switching element 414 are connected in series with each other to form the second leg.
  • the first switching element 411 to the fourth switching element 414 are not limited to IGBT (Insulated Gate Bipolar Transistor), MOSFET (Metal Oxide Semiconductor Field Effect Transistor), etc. High Electron Mobility Transistor), Ga2O3-MOSFET, or the like may be used.
  • the first end of the primary winding is connected to the connection point between the first switching element 411 and the second switching element 412, and the second end of the primary winding is the third switching element 413. Is connected to the connection point of the fourth switching element 414.
  • a full bridge type second rectifier circuit 6 composed of four first rectifier diodes 61 to a fourth rectifier diode 64 is provided on the secondary winding of the isolation transformer 5. Then, the first end of the secondary winding of the insulating transformer 5 is connected to the connection point between the first rectifier diode 61 and the second rectifier diode 62, and the second end of the secondary winding is the third rectifier diode 63. Is connected to the connection point of the fourth rectifier diode 64.
  • the first rectifier diode 61 to the fourth rectifier diode 64 are not limited to the types of fast recovery diode (Fast Recovery Diode) and soft recovery diode (SBD: Soft Recovery Diode), as well as SiC (Silicon Carbide) or GaN. , Ga2O3 (gallium oxide) and the like may be used.
  • the output smoothing circuit 7 is provided with the first current reducing reactor 311 and the second current reducing reactor 312 as simulated current sources on the input side, a capacitor input type is used.
  • the control circuit 9 switches each of the switching circuits 4 based on the detection output of the AC power supply voltage vac of the AC power supply 1, the current iL1 flowing through the first decurrent reactor 311 and the output voltage Vout and the output current Iout to the DC load 8. By outputting a gate signal for on / off control to the elements 411 to 414, the output power control to the DC load 8 and the high power rate control of the AC input are executed.
  • the output power control to the DC load 8 and the high power rate control of the AC input can be performed by converting the input voltage from the AC power supply 1 to a desired DC output voltage in one step. Can be achieved.
  • the impedance source network 3 described above is not limited to the configuration of the quasi-Z source network 3A shown in FIG. 1, and may have the configuration shown in FIG. 2 or 3, for example.
  • the impedance source network 3 shown in FIG. 2 is composed of a first current reducing reactor 311, a second current reducing reactor 312, a first smoothing capacitor 321 and a second smoothing capacitor 322, and is a quasi-Z shown in FIG. This is a method that does not use the recirculation diode 33 as in the source network 3A.
  • the impedance source network 3 having the configuration shown in FIG. 2 is defined here as "Full Impedance Circuit Network 3B".
  • the positive electrode terminal of the output bus of the first rectifier circuit 2, the first end of the first destreaming reactor 311 and the first end of the first smoothing capacitor 321 are connected to each other. Further, the second end of the first current reducing reactor 311, the first end of the second smoothing capacitor 322, and the positive electrode terminal of the input bus of the switching circuit 4 are connected to each other. Further, the negative electrode terminal of the output bus of the first rectifier circuit 2, the second end of the second smoothing capacitor 322, and the first end of the second current reducing reactor 312 are connected to each other. Further, the second end of the first smoothing capacitor 321 and the second end of the second current reducing reactor 312, and the negative electrode terminal of the input bus of the switching circuit 4 are connected to each other.
  • one end (first end or second end) of the first smoothing capacitor 321 and the second smoothing capacitor 322 is used to form the first current reducing reactor 311 and the second smoothing capacitor 311 and the second.
  • the flow-reducing reactors 312 are arranged so as to sandwich each of them. Therefore, the current type converter and the voltage type converter are controlled by the control circuit 9 as in the quasi-Z source network 3A without requiring the return diode 33 as in the quasi-Z source network 3A shown in FIG. It is possible to operate with the characteristics of.
  • the input from the AC power supply 1 becomes discontinuous. Therefore, as compared with the quasi-Z source network 3A, the number of parts can be reduced, but the harmonic component on the input side is somewhat increased.
  • the impedance source network 3 shown in FIG. 3 is composed of a first decompression reactor 311, a second decompression reactor 312, a third decompression reactor 313, a first smoothing capacitor 321 and a second smoothing capacitor 322.
  • the first declining reactor 311 is added to the positive electrode terminal side of the output bus of the first rectifier circuit 2 with respect to the full Z source network 3B shown in FIG.
  • the impedance source network 3 having the configuration shown in FIG. 3 is defined here as “Multi Impedance Circuit Network 3C”.
  • the positive electrode terminal of the output bus of the first rectifier circuit 2 and the first end of the first destreaming reactor 311 are connected to each other.
  • the second end of the first decompression reactor 311, the first end of the second decompression reactor 312, and the first end of the first smoothing capacitor 321 are connected to each other.
  • the second end of the second current reducing reactor 312, the first end of the second smoothing capacitor 322, and the positive electrode terminal of the input bus of the switching circuit 4 are connected to each other.
  • the negative electrode terminal of the output bus of the first rectifier circuit 2, the second end of the second smoothing capacitor 322, and the first end of the third current reducing reactor 313 are connected to each other.
  • the second end of the first smoothing capacitor 321 and the second end of the third current reducing reactor 313, and the negative electrode terminal of the input bus of the switching circuit 4 are connected to each other.
  • the composite Z source network 3C shown in FIG. 3 is a current type under the control of the control circuit 9, similarly to the quasi-Z source network 3A shown in FIG. 1 or the full Z source network 3B shown in FIG. It enables operation that combines the characteristics of a converter and a voltage-type converter.
  • the first decurrent current reducing reactor 311 is added to the positive electrode terminal side of the output bus of the first rectifier circuit 2 with respect to the component arrangement of the full Z source network 3B shown in FIG. Therefore, the current input from the AC power supply 1 can be continuously passed to the switching circuit 4 as in the case of the configuration of the quasi-Z source network 3A shown in FIG. It is possible to reduce the harmonic component on the side.
  • the second rectifier circuit 6 is shown as a full-bridge type rectifier circuit in which four rectifier diodes 61 to 64 are combined, but the present invention is not limited to this, and for example, the diode 60A and the diode 60A shown in FIG. 4 and It may be a center tap diode rectifier circuit having 60B, or a voltage doubler diode rectifier circuit having diodes 61A and 61B and capacitors 62A and 62B shown in FIG. Further, the rectifier diodes 61 to 64 of the second rectifier circuit 6 may be replaced with switching elements 63A to 63D as shown in FIG. 6 to form a full bridge synchronous rectifier circuit, which is further shown in FIG.
  • a center tap synchronous rectifier circuit having such switching elements 64A and 64B may be used. Furthermore, it may be a voltage doubler synchronous rectifier circuit having switching elements 65A and 65B and capacitors 66A and 66B as shown in FIG. 8, and it goes without saying that the circuit configuration is not limited to these.
  • the output smoothing circuit 7 shows a capacitor input type, but in addition to this configuration, for example, as shown in FIG. 9, it has a filter configuration in which a capacitor 71 and a reactor 72 are combined. You may.
  • the operation of the power conversion device having the configuration having the quasi-Z source network 3A shown in FIG. 1 will be described.
  • the inductances of the first decompression reactor 311 and the second decompression reactor 312 are the same value, and the capacitances of the first smoothing capacitor 321 and the second smoothing capacitor 322 are the same value.
  • FIG. 10 is a timing chart showing the operation of the power conversion device having the configuration shown in FIG.
  • the vertical axis is, in order from the top, the gate signal of the switching elements 411 and 414, the gate signal of the switching elements 412 and 413, the voltage Vtr2 between the secondary winding terminals of the isolation transformer 5, and the first current reducing reactor.
  • the current iL1 flowing through 311 is shown.
  • the gate signals of the first switching element 411 and the fourth switching element 414 are synchronized, and the gate signals of the second switching element 412 and the third switching element 413 are synchronized. That is, the same gate signals are generated for the two diagonally located switching elements 411 and 414 and the two switching elements 412 and 413.
  • four operation modes from the first operation mode to the fourth operation mode are changed during one switching cycle Tsw.
  • the contents of each operation mode will be specifically described.
  • the first operation mode starts.
  • this first operation mode all the gate signals given to the first switching element 411 to the fourth switching element 414 are turned on.
  • all of the first switching elements 411 to 414 are turned on, and both the first leg and the second leg are short-circuited.
  • the first decompression reactor 311 and the second decompression reactor 312 are excited, and the current iL1 of the first decompression reactor 311 and the current iL2 of the second decompression reactor 312 increase with a positive inclination.
  • the voltage Vdc across each leg is zero.
  • no voltage is applied to the primary winding of the isolation transformer 5. Therefore, in this first operation mode, power is not supplied to the output, and the excitation period of each of the current reduction reactors 311 and 312 is set.
  • FIG. 11 is an equivalent circuit diagram in the first operation mode. In this operation mode, 2 of the path through which the output terminal of the first rectifier circuit 2 passes through each leg and the path through which the first smoothing capacitor 321 and the second current reducing reactor 312 pass through each leg. Two current paths are constructed.
  • the voltage vL1 applied to the first current-reducing reactor 311 in the first operation mode is represented by the following equation (1)
  • the voltage vL2 applied to the second current-reducing reactor 312. Can be expressed by the following equation (2)
  • the voltage Vdc across the legs can be expressed by the following equation (3).
  • the gate signals of the second switching element 412 and the third switching element 413 are both turned off, so that the first operation mode ends and the second operation mode shifts to the second operation mode.
  • this second operation mode only the gate signals of the first switching element 411 and the fourth switching element 414 are turned on. That is, when only the two diagonal switching elements 411 and 414 are turned on, the voltage Vdc across the leg is applied to the primary winding of the isolation transformer 5.
  • the energies of the first decurrent reactor 311 and the second decurrent reactor 312 are discharged (degaussed) and descend with a negative electrode inclination. Further, a positive voltage is also induced in the secondary winding of the isolation transformer 5, and power is transmitted to the output side. Therefore, this second operation mode is the degaussing period and the power transmission period of the first current reducing reactor 311 and the second current reducing reactor 312.
  • FIG. 12 is an equivalent circuit diagram in the second operation mode.
  • the output terminal of the first rectifier circuit 2, the freewheeling diode 33, and the path passing through the first smoothing capacitor 321 in sequence, the freezing diode 33, the second current reducing reactor 312, and the second Two current paths are configured, one with a path passing through the two smoothing capacitors 322 in sequence.
  • the voltage vL1 applied to the first current-reducing reactor 311 in the second operation mode is the voltage vL2 applied to the second current-reducing reactor 312 by the following equation (4).
  • both the gate signals of the first switching element 411 and the fourth switching element 414 are turned off, so that the third operation mode ends and the process shifts to the fourth operation mode.
  • this fourth operation mode only the gate signals of the second switching element 412 and the third switching element 413 are turned on. That is, when only the two diagonally located switching elements 412 and 413 are turned on, the negative electrode property ⁇ Vdc of the voltage across the leg is applied to the primary winding of the isolation transformer 5. As a result, the energies of the first decurrent reactor 311 and the second decurrent reactor 312 are discharged (degaussed) and descend with a negative electrode inclination.
  • this fourth operation mode is the degaussing period and the power transmission period of the first decurrent reduction reactor 311 and the second current reduction reactor 312.
  • FIG. 13 is an equivalent circuit diagram in the fourth operation mode. This is because the polarity of the voltage applied to the isolation transformer 5 is different from that in the second operation mode, and the other operations are the same as in the second operation mode. Therefore, detailed description thereof will be omitted here.
  • the power conversion device having the quasi-Z source network 3A shown in FIG. 1 has been described here, the power conversion device having the full Z source network 3B shown in FIG. 2 has been described.
  • the power conversion device having the configuration provided with the composite Z source network 3C shown in FIG. 3 also has the same basic operation as the power conversion device having the configuration having the quasi-Z source network 3A shown in FIG. , Detailed explanation is omitted here.
  • the power conversion device is classified into four operation modes, of which two of the first operation mode and the third operation mode are the first flow reduction.
  • the excitation period of the reactor 311 and the second decurrent reactor 312 (hereinafter referred to as the shoot-through period), and the other two of the second operation mode and the fourth operation mode are the first deductor reactor 311 and the second deductor.
  • the shoot-through period is defined as Ds / Tsw
  • the power transmission period is defined as Da / Tsw.
  • Tsw is one switching cycle
  • Ds is the duty ratio of the shoot-through period
  • Da is the duty ratio of the power transmission period.
  • the shoot-through period exists twice in one switching cycle Tsw
  • the power transmission period exists twice in one switching cycle Tsw. That is, in one switching cycle Tsw, the total shoot-through period is 2Ds ⁇ Tsw, and the total power transmission period is 2Da ⁇ Tsw. From this, the following equation (7) can be obtained.
  • the ratio (duty ratio) at which the gate signal of one switching element is turned on during one switching cycle Tsw is defined as D.
  • the ON period of the switching element is D ⁇ Tsw, and can be expressed as the sum of one power transmission period Da ⁇ Tsw and two power transmission periods 2Ds ⁇ Tsw as shown in the following equation (8).
  • the duty ratio Ds in the shoot-through period and the duty ratio Da in the power transmission period can be expressed by the following equations (9) and (10), respectively. it can.
  • the voltage of the first smoothing capacitor 321 is obtained by using the duty ratio of each period of the above equations (9) and (10) and the voltage relational expressions of the above equations (1) to (6).
  • the vc1, the voltage vc2 of the second smoothing capacitor 322, and the average values Vdc and avg of the voltages Vdc across the first leg and the second leg can be expressed by the following equations (11) to (13). ..
  • Np is the number of turns of the primary winding of the isolation transformer 5
  • Ns is the number of turns of the secondary winding of the isolation transformer 5
  • Nps is the number of turns of the secondary winding. It is the ratio of the number of turns of the primary winding at that time.
  • the power conversion device performs high power factor control and output power control under the condition of a duty ratio of less than 75% in the control circuit 9.
  • the inductances of the deflowing reactors are the same, the currents can be treated as the same value. Therefore, only the current iL1 flowing through the first deflowing reactor 311 needs to be detected at the time of high power factor control. From this, the current iL1 of the first decurrent reactor 311 of the impedance source network 3 is adjusted to be in phase with the phase of the AC power supply voltage vac and in a sinusoidal shape based on the command value of an arbitrary input current.
  • High power factor control can be achieved.
  • the output power control can be achieved by adjusting the power transmission period so that the output power becomes constant while performing the high power factor control.
  • FIG. 14 is a circuit configuration diagram of the power conversion device according to the second embodiment of the present application.
  • the same or corresponding parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted here.
  • the power conversion device of the second embodiment When applying a power converter to a high-output application, a method of connecting two switching circuits in parallel is generally adopted in order to reduce the loss of the switching element.
  • the power conversion device of the second embodiment the power conversion device can be made even smaller by changing the operation method instead of simply connecting the switching circuits in parallel. The contents will be described below.
  • the switching circuit 4 includes the first switching circuit 41 and the second switching circuit 42 in total 2 on the premise of the configuration including the quasi-Z source network 3A described with reference to FIG. It consists of a phase full bridge inverter.
  • the first switching circuit 41 and the second switching circuit 42 are connected in parallel to the quasi-Z source network 3A, and the first switching circuit 41 and the second switching circuit 42 are connected to the isolation transformer 5-1. The next winding is provided. Then, power is transmitted from the outputs of the first switching circuit 41 and the second switching circuit 42 via the isolation transformer 5.
  • FIG. 14 assumes a configuration including the quasi-Z source network 3A shown in FIG. 1, but the configuration is not limited to this configuration, and the full Z source network 3B shown in FIG. 2 or FIG. 3 shows.
  • the composite Z source network 3C and the like shown may be provided, and the configuration of the impedance source network 3 is not limited to the configuration of the quasi-Z source network 3A.
  • the first switching circuit 41 is defined as the A phase
  • the first switching element 411 of the first switching circuit 41 is A1
  • the second switching element 412 is A2
  • the third switching element. 413 is defined as A3,
  • the fourth switching element 414 is defined as A4.
  • the second switching circuit 42 is defined as the B phase
  • the first switching element 421 of the second switching circuit 42 is B1
  • the second switching element 422 is B2
  • the third switching element 423 is B3
  • the fourth switching element. 424 is defined as B4.
  • A1 and A2 connected in series are defined as the first leg of the A phase
  • A3 and A4 connected in series are defined as the second leg of the A phase
  • B1 and B2 connected in series are defined as the first leg of the B phase
  • B3 and B4 connected in series are defined as the second leg of the B phase.
  • FIG. 15 is a timing chart showing the interleaving operation of the power conversion device according to the second embodiment of the present application.
  • the gate signals to be applied to A1 to A4 and B1 to B4 are independently generated by shifting the timing so that the operations of the A phase and the B phase are alternately performed.
  • 16 operation modes from the first operation mode to the 16th operation mode are changed during one switching cycle Tsw.
  • Tsw switching cycle
  • the first operation mode starts.
  • the gate signals of A-phase A1 and A2 and B-phase B1 and B2 are turned on.
  • A1 and A2 constituting the first leg of the A phase and B1 and B2 constituting the first leg of the B phase are both turned on, and the respective legs are short-circuited.
  • the first deceleration reactor 311 and the second decompression reactor 312 are excited via the first leg of the A phase and the first leg of the B phase, and the current iL1 and the second deflection of the first decompression reactor 311 are excited.
  • the current iL2 of the reactor 312 increases with a positive inclination.
  • the gate signals of A2, B1, and B2 are turned off, and the gate signal of A4 is turned on, so that the first operation mode ends and the second operation mode is entered.
  • this second operation mode only the A1 and A4 gate signals of the A phase are turned on.
  • only A1 and A4 located diagonally to the A phase are turned on, so that the voltage Vdc across the A phase leg is applied to the primary winding of the isolation transformer 5.
  • the energies of the first decurrent reactor 311 and the second decurrent reactor 312 are degaussed and descend with a negative electrode inclination. Further, a positive voltage is also induced in the secondary winding of the isolation transformer 5, and power is transmitted to the output side. Therefore, in this second operation mode, the degaussing period and the power transmission period of the first current reducing reactor 311 and the second current reducing reactor 312 are set.
  • this third operation mode the gate signals for A1 to A4 of the A phase are turned on, and all of the A1 to A4 of the A phase are turned on.
  • the first decompression reactor 311 and the second decompression reactor 312 are excited via the first leg and the second leg of the A phase, and the current iL1 of the first decompression reactor 311 and the second decompression reactor 312
  • the current iL2 increases with a positive gradient. Therefore, this third operation mode, like the first operation mode, does not supply electric power to the output, and is an excitation period of the first decompression reactor 311 and the second decompression reactor 312.
  • this sixth operation mode is the degaussing period and the power transmission period of the first decurrent reduction reactor 311 and the second current reduction reactor 312, as in the second operation mode and the fourth operation mode.
  • the sixth operation mode ends and the process shifts to the seventh operation mode.
  • this seventh operation mode the gate signals for B1 to B4 of B phase are turned on, and all of B1 to B4 of B phase are turned on.
  • the first decompression reactor 311 and the second decompression reactor 312 are excited via the first leg and the second leg of the B phase, and the current iL1 of the first decompression reactor 311 and the second decompression reactor 312
  • the current iL2 increases with a positive gradient. Therefore, this seventh operation mode, like the first operation mode, the third operation mode, and the fifth operation mode, does not supply power to the output, and the first decompression reactor 311 and the second decompression reactor 312 It becomes the excitation period.
  • this eighth operation mode is the degaussing period and the power transmission period of the first degassing reactor 311 and the second decompression reactor 312, similarly to the second operation mode, the fourth operation mode, and the sixth operation mode. ..
  • the gate signal of B2 is turned off and the gate signals of A3, A4 and B4 are turned on, so that the eighth operation mode ends and the process shifts to the ninth operation mode.
  • the gate signals of A-phase A3 and A4 and B-phase B3 and B4 are turned on.
  • A3 and A4 constituting the second leg of the A phase and B3 and B4 constituting the second leg of the B phase are turned on, and the respective legs are short-circuited.
  • this ninth operation mode like the first operation mode, the third operation mode, the fifth operation mode, and the seventh operation mode, does not supply power to the output and does not supply power to the output, and the first deflow reactor 311 and the second operation mode. It is the excitation period of the decurrent reactor 312.
  • the gate signals of A3, B3, and B4 are turned off, and the gate signal of A1 is turned on, so that the ninth operation mode ends and the mode shifts to the tenth operation mode.
  • this tenth operation mode only the A1 and A4 gate signals of the A phase are turned on. Since this is the same operation as the second operation mode, the tenth operation mode is the first degaussing reactor as well as the second operation mode, the fourth operation mode, the sixth operation mode, and the eighth operation mode. It is the degaussing period and the power transmission period of the 311 and the second decurrent reactor 312.
  • the tenth operation mode ends and the process shifts to the eleventh operation mode.
  • the gate signals for A1 to A4 of the A phase are turned on, and all of the A1 to A4 of the A phase are turned on. Since this is the same operation as the third operation mode, the eleventh operation mode is the same as the first operation mode, the third operation mode, the fifth operation mode, the seventh operation mode, and the ninth operation mode. No power is supplied to the output, and the excitation period is set for the first decompression reactor 311 and the second decompression reactor 312.
  • the eleventh operation mode ends and the system shifts to the twelfth operation mode.
  • this twelfth operation mode only the A2 and A3 gate signals of the A phase are turned on. Since this is the same operation as the 4th operation mode, the 12th operation mode is the same as the 2nd operation mode, the 4th operation mode, the 6th operation mode, the 8th operation mode, and the 10th operation mode. It is the degaussing period and the power transmission period of the first current reducing reactor 311 and the second current reducing reactor 312.
  • the gate signal of A3 is turned off and the gate signals of A1, B3, and B4 are turned on, so that the twelfth operation mode ends and the process shifts to the thirteenth operation mode.
  • the gate signals of A-phase A1 and A2 and B-phase B3 and B4 are turned on.
  • A1 and A2 constituting the first leg of the A phase and B3 and B4 constituting the second leg of the B phase are turned on, and the respective legs are short-circuited.
  • the first deceleration reactor 311 and the second decompression reactor 312 are excited via the first leg of the A phase and the second leg of the B phase, and the current iL1 and the second deflection of the first decompression reactor 311.
  • the current iL2 of the reactor 312 increases with a positive inclination. Therefore, this thirteenth operation mode does not supply power to the output like the first operation mode, the third operation mode, the fifth operation mode, the seventh operation mode, the ninth operation mode, and the eleventh operation mode. , The excitation period of the first decelerating reactor 311 and the second depleting reactor 312.
  • the gate signals of A1, A2, and B3 are turned off, and the gate signal of B1 is turned on, so that the thirteenth operation mode ends and the mode shifts to the fourteenth operation mode.
  • this 14th operation mode only the B-phase B1 and B4 gate signals are turned on. Since this is the same operation as the 6th operation mode, the 14th operation mode is the 2nd operation mode, the 4th operation mode, the 6th operation mode, the 8th operation mode, the 10th operation mode, and the 12th operation. Similar to the mode, the degaussing period and the power transmission period of the first degassing reactor 311 and the second decurrent reactor 312 are set.
  • the 14th operation mode ends and the process shifts to the 15th operation mode.
  • the gate signals for B1 to B4 of the B phase are turned on, and all of the B1 to B4 of the B phase are turned on. Since this is the same operation as the 7th operation mode, the 15th operation mode is the 1st operation mode, the 3rd operation mode, the 5th operation mode, the 7th operation mode, the 9th operation mode, and the 11th operation mode.
  • the 15th operation mode is the 1st operation mode, the 3rd operation mode, the 5th operation mode, the 7th operation mode, the 9th operation mode, and the 11th operation mode.
  • the gate signals of B1 and B4 are turned off, so that the fifteenth operation mode ends and the system shifts to the sixteenth operation mode.
  • this 16th operation mode only the gate signals of the B phase B2 and B3 are turned on. Since this is the same operation as the 8th operation mode, the 16th operation mode is the 2nd operation mode, the 4th operation mode, the 6th operation mode, the 8th operation mode, the 10th operation mode, and the 12th operation mode.
  • the 14th operation mode which is the degaussing period and the power transmission period of the first current reducing reactor 311 and the second current reducing reactor 312.
  • the gate signal is turned on three times, the switching loss caused by the overlap of the voltage and current at the time of switching occurs only once for both on and off in principle. Therefore, the period of a total of 16 operation modes from t0 to Tsw can be treated as one switching cycle Tsw.
  • a voltage is applied to the isolation transformer 5 at a frequency 2 fsw twice that of the switching frequency fsw, and excitation is performed on the first deducting reactor 311 and the second decurrent reactor 312 at a frequency 4 fsw four times that. Demagnetization is repeated. This makes it possible to reduce the size of each of the current reducing reactors 311 and 312 and the isolation transformer 5.
  • the operation of the power conversion device having the configuration having the quasi-Z source network 3A has been described, but the full Z source network 3B shown in FIG. 2 is provided.
  • the basic operation is the same as in the case of the configuration having the quasi-Z source network 3A of FIG. , Detailed explanation is omitted here.
  • control block included in the control circuit 9 may be configured by hardware using an arithmetic circuit, but the present invention is not limited to this, and as shown in FIG. 16, for example,
  • the control circuit 9 may be configured by software using a memory 91 for storing an arithmetic control program and a processor 92 for processing the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power conversion device for converting power between an AC power source (1) and a DC load (8), the power conversion device being equipped with: an input-side first rectification circuit (2); an impedance source circuit network (3) equipped with one or more input power factor-improving current reduction reactors (311, 312) and one or more constant power control smoothing capacitors (321, 322); a full-bridge-type switching circuit (4) equipped with switching elements (411-414); an isolation transformer (5); a second rectification circuit (6); and a control circuit (9). Therein, the control circuit (9) controls the output current of the first rectification circuit (2) by adjusting the short circuit period of one pair of legs (411 and 412, 413 and 414) of the switching circuit (4), and controls the output power to the DC load (8) so as to be constant by adjusting the mutual power transmission period of a pair comprising two switching elements (411 and 414, 412 and 413) positioned in a diagonal relationship relative to one another.

Description

電力変換装置Power converter
 本願は、電力変換装置に関するものである。 This application relates to a power conversion device.
 従来技術の電力変換装置として、広い入出力電圧範囲での動作を実現するに当たり、インピーダンスソース回路網(Zソース回路網)を用いる回路方式が検討されている(例えば、下記の特許文献1参照)。 As a power conversion device of the prior art, a circuit method using an impedance source network (Z source network) has been studied in order to realize operation in a wide input / output voltage range (see, for example, Patent Document 1 below). ..
 この従来技術の電力変換装置は、電源電圧または前記電源電圧を昇圧した電圧を出力電圧とするインピーダンスソース昇圧回路と、前記出力電圧の高電位側および低電位側を短絡可能なスイッチング素子を有するインバータ回路と、前記スイッチング素子を制御することによって、前記インピーダンスソース昇圧回路が有するコンデンサを充放電させて、前記出力電圧を制御可能な制御部と、を備え、前記制御部は、前記出力電圧を所望の値とするための指令である出力電圧指令を、前記コンデンサの電圧を指定する昇圧率と前記スイッチング素子の制御信号の変調に用いられる変調率との積として演算し、前記昇圧率は、前記出力電圧指令が前記電源電圧未満である場合において可変に設定されるものである。 This conventional power conversion device is an inverter having an impedance source booster circuit whose output voltage is a power supply voltage or a voltage obtained by boosting the power supply voltage, and a switching element capable of short-circuiting the high potential side and the low potential side of the output voltage. The circuit and a control unit capable of controlling the output voltage by charging / discharging the capacitor of the impedance source booster circuit by controlling the switching element are provided, and the control unit desires the output voltage. The output voltage command, which is a command for setting the value of, is calculated as the product of the boost rate for specifying the voltage of the capacitor and the modulation factor used for modulating the control signal of the switching element, and the boost rate is calculated as described above. It is variably set when the output voltage command is less than the power supply voltage.
特開2016-52167号公報Japanese Unexamined Patent Publication No. 2016-52167
 前述のように、インピーダンスソース回路網は、一般的にDC/ACインバータ回路に使用されており、モータ等の交流負荷への出力電圧を制御するために用いられる。本方式をAC/DCコンバータ回路に適用する場合、交流入力の力率改善機能が必要となる。このため、先行技術の電圧制御を単純に代用する場合、入力力率が制御できないために悪化し、スイッチング素子に高いピーク値の電流が通流する。この結果、電力変換効率の低下、もしくは特定部品の損失悪化による破壊の可能性がある。 As described above, the impedance source network is generally used for DC / AC inverter circuits, and is used for controlling the output voltage to an AC load such as a motor. When this method is applied to an AC / DC converter circuit, an AC input power factor improving function is required. Therefore, when the voltage control of the prior art is simply substituted, the input power factor cannot be controlled, which is deteriorated, and a high peak value current flows through the switching element. As a result, there is a possibility of destruction due to a decrease in power conversion efficiency or a deterioration in loss of a specific component.
 本願は、上記のような課題を解決するための技術を開示するものであり、直流負荷へ広範囲な出力電力制御を行いつつ、交流入力の高力率制御を可能となり、電力変換効率の改善および特定回路部品の損失低減が可能な電力変換装置を提供することを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and enables high power factor control of AC input while performing a wide range of output power control to a DC load, improving power conversion efficiency and improving power conversion efficiency. An object of the present invention is to provide a power conversion device capable of reducing the loss of a specific circuit component.
 本願に開示される電力変換装置は、
 交流電源と直流負荷との間で電力変換を行う電力変換装置であって、
 入力側の第1整流回路と、少なくとも1つの入力力率改善用の減流リアクトルおよび少なくとも1つの定電力制御用の平滑コンデンサを備えて構成されるインピーダンスソース回路網と、2つのスイッチング素子が直列接続されてなるレグの一対を互いに並列接続した構成のスイッチング回路と、1次側巻線が前記スイッチング回路に接続された絶縁トランスと、前記絶縁トランスの2次側巻線に接続された第2整流回路と、制御回路とを備え、
 前記制御回路は、前記スイッチング回路の一対のレグ同士の短絡期間を調整することにより前記第1整流回路から出力される電流を制御し、かつ対角関係にある2つの前記スイッチング素子からなるペアの相互の電力伝送期間を調整することにより前記直流負荷への出力電力が一定となる制御を行うものである。
The power converter disclosed in the present application is
A power conversion device that converts power between an AC power supply and a DC load.
An impedance source network consisting of a first rectifier circuit on the input side, a current-reducing reactor for improving the input power factor, and a smoothing capacitor for at least one constant power control, and two switching elements in series. A switching circuit in which a pair of connected legs are connected in parallel to each other, an isolation transformer in which the primary winding is connected to the switching circuit, and a second winding in which the primary winding is connected to the secondary winding of the isolation transformer. Equipped with a rectifier circuit and a control circuit,
The control circuit controls the current output from the first rectifier circuit by adjusting the short-circuit period between the pair of legs of the switching circuit, and is a pair consisting of the two diagonal switching elements. By adjusting the mutual power transmission period, the output power to the DC load is controlled to be constant.
 本願に開示される電力変換装置によれば、直流負荷へ広範囲な出力電力制御を行いつつ、交流入力の高力率制御を可能となり、電力変換効率の改善および特定回路部品の損失低減が可能になる。 According to the power conversion device disclosed in the present application, it is possible to control a high power factor of AC input while performing a wide range of output power control to a DC load, and it is possible to improve power conversion efficiency and reduce loss of specific circuit components. Become.
本願の実施の形態1に係る電力変換装置の回路構成図である。It is a circuit block diagram of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の他の回路構成図である。It is another circuit block diagram of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の他の回路構成図である。It is another circuit block diagram of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の絶縁トランスの2次側の回路構成図である。It is a circuit block diagram of the secondary side of the isolation transformer of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の絶縁トランスの2次側の他の回路構成図である。It is another circuit block diagram of the secondary side of the isolation transformer of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の絶縁トランスの2次側の他の回路構成図である。It is another circuit block diagram of the secondary side of the isolation transformer of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の絶縁トランスの2次側の他の回路構成図である。It is another circuit block diagram of the secondary side of the isolation transformer of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の絶縁トランスの2次側の他の回路構成図である。It is another circuit block diagram of the secondary side of the isolation transformer of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の出力側の他の平滑回路の構成図である。It is a block diagram of another smoothing circuit on the output side of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の動作を示すタイミングチャートである。It is a timing chart which shows the operation of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の動作説明に供する等価回路図である。It is an equivalent circuit diagram which provides the operation description of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の動作説明に供する他の等価回路図である。It is another equivalent circuit diagram provided for the operation description of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1に係る電力変換装置の動作説明に供する他の等価回路図である。It is another equivalent circuit diagram provided for the operation description of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態2に係る電力変換装置の回路構成図である。It is a circuit block diagram of the power conversion apparatus which concerns on Embodiment 2 of this application. 本願の実施の形態2に係る電力変換装置の動作を示すタイミングチャートである。It is a timing chart which shows the operation of the power conversion apparatus which concerns on Embodiment 2 of this application. 本願の実施の形態1、2の制御回路の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the control circuit of Embodiments 1 and 2 of this application.
実施の形態1.
 本願の実施の形態1に係る電力変換装置は、例えば電動車両の充電器を中心とした電源システムに適用されるものであり、以下に、図面を参照して説明する。
Embodiment 1.
The power conversion device according to the first embodiment of the present application is applied to, for example, a power supply system centered on a charger of an electric vehicle, and will be described below with reference to the drawings.
 図1は、本願の実施の形態1に係る電力変換装置の回路構成図である。
 本願の実施の形態1に係る電力変換装置は、交流電源1から供給される交流電力を、絶縁しつつ直流電力に変換し、その直流電力を直流負荷8に出力するものであって、第1整流回路2、インピーダンスソース回路網3、スイッチング回路4、絶縁トランス5、第2整流回路6、出力平滑回路7、および制御回路9を備える。
FIG. 1 is a circuit configuration diagram of the power conversion device according to the first embodiment of the present application.
The power conversion device according to the first embodiment of the present application converts the AC power supplied from the AC power supply 1 into DC power while insulating it, and outputs the DC power to the DC load 8. It includes a rectifier circuit 2, an impedance source network 3, a switching circuit 4, an isolated transformer 5, a second rectifier circuit 6, an output smoothing circuit 7, and a control circuit 9.
 ここに、交流電源1は、商用交流系統または自家発電機などである。直流負荷8は、純抵抗負荷だけでなく、例えば、車両走行用の高圧バッテリ、または車用電装品の電源である鉛バッテリ、電気2重層コンデンサ(EDLC:Electric Double Layer Capacitor)で構成してもよい。なお、交流電源1または直流負荷8が上記のものに限定されるものでないことは自明である。 Here, the AC power supply 1 is a commercial AC system, a private power generator, or the like. The DC load 8 may be composed of not only a pure resistance load but also, for example, a high-voltage battery for traveling a vehicle, a lead battery as a power source for electrical components for a vehicle, and an electric double layer capacitor (EDLC: Electric Double Layer Capacitor). Good. It is self-evident that the AC power supply 1 or the DC load 8 is not limited to the above.
 第1整流回路2は、交流電源1から供給される交流入力を全波整流するために用いられ、図1ではダイオード素子2aをフルブリッジ接続した一般的な構成にしている。このダイオード素子2aのようなパッシブ素子の代わりに、MOSFET等のアクティブ素子を用いてもよいことは言うまでもない。 The first rectifier circuit 2 is used for full-wave rectification of the AC input supplied from the AC power supply 1, and in FIG. 1, it has a general configuration in which the diode element 2a is fully bridge-connected. Needless to say, an active element such as a MOSFET may be used instead of the passive element such as the diode element 2a.
 インピーダンスソース回路網3は、少なくとも1つの入力力率改善用の減流リアクトルおよび少なくとも1つの定電力制御用の平滑コンデンサから構成される。特に、図1に示す例では、第1減流リアクトル311、第2減流リアクトル312、第1平滑コンデンサ321、第2平滑コンデンサ322、および還流用素子としての還流用ダイオード33から構成されている。この構成のインピーダンスソース回路網3を、ここでは“準Zソース回路網(Quasi Impedance Circuit Network)3A”と定義する。 The impedance source network 3 is composed of at least one flow-reducing reactor for improving the input power factor and at least one smoothing capacitor for constant power control. In particular, in the example shown in FIG. 1, it is composed of a first current reducing reactor 311, a second current reducing reactor 312, a first smoothing capacitor 321 and a second smoothing capacitor 322, and a reflux diode 33 as a reflux element. .. The impedance source network 3 having this configuration is defined here as "quasi-Z source network (Quasi Impedance Circuit Network) 3A".
 この準Zソース回路網3Aは、第1整流回路2の出力母線の正極端子と第1減流リアクトル311の第1端が互いに接続されている。また、第1整流回路2の出力母線の負極端子、第1平滑コンデンサ321の第1端、およびスイッチング回路4の入力母線の負極端子が互いに接続されている。また、第1減流リアクトル311の第2端、第2平滑コンデンサ322の第1端、および還流用ダイオード33の第1端が互いに接続されている。また、第2平滑コンデンサ322の第2端、第2減流リアクトル312の第1端、およびスイッチング回路4の入力母線の正極端子が互いに接続されている。また、還流用ダイオード33の第2端、第2減流リアクトル312の第2端、および第1平滑コンデンサ321の第2端が互いに接続されている。 In this quasi-Z source network 3A, the positive electrode terminal of the output bus of the first rectifier circuit 2 and the first end of the first destreaming reactor 311 are connected to each other. Further, the negative electrode terminal of the output bus of the first rectifier circuit 2, the first end of the first smoothing capacitor 321 and the negative electrode terminal of the input bus of the switching circuit 4 are connected to each other. Further, the second end of the first current reducing reactor 311, the first end of the second smoothing capacitor 322, and the first end of the reflux diode 33 are connected to each other. Further, the second end of the second smoothing capacitor 322, the first end of the second current reducing reactor 312, and the positive electrode terminal of the input bus of the switching circuit 4 are connected to each other. Further, the second end of the freewheeling diode 33, the second end of the second current reducing reactor 312, and the second end of the first smoothing capacitor 321 are connected to each other.
 上記のように、この準Zソース回路網3Aは、第1減流リアクトル311の第1端を第1整流回路2の出力母線の正極端子に、第1減流リアクトル311の第2端を第2平滑コンデンサ322と還流用ダイオード33との交点に接続している。そうすることで、交流電源1から入力される電流を継続的にスイッチング回路4へ通流させることができるため、入力側の高調波成分を低減することが可能となる。また、第1減流リアクトル311および第2減流リアクトル312を模擬の電流源と扱うことで、電流型コンバータと同様の動作が可能である。さらに、第1平滑コンデンサ321と第2平滑コンデンサ322により、電圧を一定にすることができ、第1平滑コンデンサ321および第2平滑コンデンサ322を模擬の電圧源と扱うことで電圧型コンバータと同様の動作が可能となる。つまり、制御回路9による制御により、電圧型コンバータと電流型コンバータの動作を同時に行うことができる特徴を有する。 As described above, in this quasi-Z source network 3A, the first end of the first current reducing reactor 311 is connected to the positive electrode terminal of the output bus of the first rectifier circuit 2, and the second end of the first current reducing reactor 311 is connected to the first terminal. 2 It is connected to the intersection of the smoothing capacitor 322 and the freewheeling diode 33. By doing so, the current input from the AC power supply 1 can be continuously passed to the switching circuit 4, so that the harmonic component on the input side can be reduced. Further, by treating the first current reducing reactor 311 and the second current reducing reactor 312 as simulated current sources, the same operation as that of the current type converter can be performed. Further, the voltage can be made constant by the first smoothing capacitor 321 and the second smoothing capacitor 322, and the first smoothing capacitor 321 and the second smoothing capacitor 322 are treated as simulated voltage sources in the same manner as the voltage converter. Operation is possible. That is, it has a feature that the voltage type converter and the current type converter can be operated at the same time by the control by the control circuit 9.
 なお、ここで、還流用ダイオード33は、ファストリカバリダイオード(Fast Recovery Diode)、ソフトリカバリダイオード(SBD:Soft Recovery Diode)の種類に限定されない他、SiC(Silicon Carbide)、あるいはGaN(Gallium Nitride)、Ga2O3(酸化ガリウム)などの材料を用いてもよい。 Here, the reflux diode 33 is not limited to the types of a fast recovery diode (Fast Recovery Diode) and a soft recovery diode (SBD: Soft Recovery Diode), as well as SiC (Silicon Carbide) or GaN (Gallium Nitride). A material such as Ga2O3 (gallium oxide) may be used.
 スイッチング回路4は、第1スイッチング素子411、第2スイッチング素子412、第3スイッチング素子413、および第4スイッチング素子414の4つのスイッチング素子を用いてフルブリッジインバータを構成している。ここに、第1スイッチング素子411および第2スイッチング素子412は互いに直列接続されて第1レグを構成する。また、第3スイッチング素子413および第4スイッチング素子414は互いに直列接続されて第2レグを構成する。 The switching circuit 4 constitutes a full bridge inverter by using four switching elements of a first switching element 411, a second switching element 412, a third switching element 413, and a fourth switching element 414. Here, the first switching element 411 and the second switching element 412 are connected in series with each other to form the first leg. Further, the third switching element 413 and the fourth switching element 414 are connected in series with each other to form the second leg.
 ここで、第1スイッチング素子411~第4スイッチング素子414は、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などに限らず、SiC-MOSFET、GaN-FET、GaN-HEMT(High Electron Mobility Transistor)、あるいはGa2O3-MOSFETなどを用いてもよい。 Here, the first switching element 411 to the fourth switching element 414 are not limited to IGBT (Insulated Gate Bipolar Transistor), MOSFET (Metal Oxide Semiconductor Field Effect Transistor), etc. High Electron Mobility Transistor), Ga2O3-MOSFET, or the like may be used.
 絶縁トランス5は、その1次側巻線の第1端が第1スイッチング素子411と第2スイッチング素子412の接続点に接続され、その1次側巻線の第2端が第3スイッチング素子413と第4スイッチング素子414の接続点に接続されている。 In the isolation transformer 5, the first end of the primary winding is connected to the connection point between the first switching element 411 and the second switching element 412, and the second end of the primary winding is the third switching element 413. Is connected to the connection point of the fourth switching element 414.
 また、絶縁トランス5の2次側巻線には4つの第1整流ダイオード61~第4整流ダイオード64からなるフルブリッジ型の第2整流回路6が設けられている。そして、絶縁トランス5の2次側巻線の第1端が、第1整流ダイオード61と第2整流ダイオード62の接続点に接続され、2次側巻線の第2端が第3整流ダイオード63と第4整流ダイオード64の接続点に接続されている。 Further, a full bridge type second rectifier circuit 6 composed of four first rectifier diodes 61 to a fourth rectifier diode 64 is provided on the secondary winding of the isolation transformer 5. Then, the first end of the secondary winding of the insulating transformer 5 is connected to the connection point between the first rectifier diode 61 and the second rectifier diode 62, and the second end of the secondary winding is the third rectifier diode 63. Is connected to the connection point of the fourth rectifier diode 64.
 ここで、第1整流ダイオード61~第4整流ダイオード64は、ファストリカバリダイオード(Fast Recovery Diode)、ソフトリカバリダイオード(SBD:Soft Recovery Diode)の種類に限定されない他、SiC(Silicon Carbide)、あるいはGaN、Ga2O3(酸化ガリウム)など材料を用いてもよい。 Here, the first rectifier diode 61 to the fourth rectifier diode 64 are not limited to the types of fast recovery diode (Fast Recovery Diode) and soft recovery diode (SBD: Soft Recovery Diode), as well as SiC (Silicon Carbide) or GaN. , Ga2O3 (gallium oxide) and the like may be used.
 また、出力平滑回路7は、入力側に模擬の電流源となる第1減流リアクトル311および第2減流リアクトル312が設けられているので、コンデンサインプット型のものが使用されている。 Further, since the output smoothing circuit 7 is provided with the first current reducing reactor 311 and the second current reducing reactor 312 as simulated current sources on the input side, a capacitor input type is used.
 制御回路9は、交流電源1の交流電源電圧vac、第1減流リアクトル311を流れる電流iL1、直流負荷8への出力電圧Voutおよび出力電流Ioutの検出出力に基づいて、スイッチング回路4の各スイッチング素子411~414に対してオン/オフ制御用のゲート信号を出力することにより、直流負荷8への出力電力制御および交流入力の高力率制御を実行するものである。 The control circuit 9 switches each of the switching circuits 4 based on the detection output of the AC power supply voltage vac of the AC power supply 1, the current iL1 flowing through the first decurrent reactor 311 and the output voltage Vout and the output current Iout to the DC load 8. By outputting a gate signal for on / off control to the elements 411 to 414, the output power control to the DC load 8 and the high power rate control of the AC input are executed.
 このような構成にすることで、従来は力率改善用のAC/DCコンバータと出力制御用の絶縁形DC/DCコンバータの2段変換構成が必要であったのに対し、この実施の形態1の電力変換装置では、後に詳述するように、交流電源1からの入力電圧を所望の直流出力電圧に1段変換でもって、直流負荷8への出力電力制御および交流入力の高力率制御を達成することができる。 With such a configuration, conventionally, a two-stage conversion configuration of an AC / DC converter for improving the power factor and an isolated DC / DC converter for output control was required, whereas this embodiment 1 In the power conversion device of the above, as will be described in detail later, the output power control to the DC load 8 and the high power rate control of the AC input can be performed by converting the input voltage from the AC power supply 1 to a desired DC output voltage in one step. Can be achieved.
 なお、上記のインピーダンスソース回路網3は、図1に示した準Zソース回路網3Aの構成のみに限らず、例えば図2もしくは図3に示す構成であってもよい。 The impedance source network 3 described above is not limited to the configuration of the quasi-Z source network 3A shown in FIG. 1, and may have the configuration shown in FIG. 2 or 3, for example.
 図2に示すインピーダンスソース回路網3は、第1減流リアクトル311、第2減流リアクトル312、第1平滑コンデンサ321、および第2平滑コンデンサ322から構成されており、図1に示した準Zソース回路網3Aのように還流用ダイオード33を用いない方式である。この図2に示す構成のインピーダンスソース回路網3を、ここでは“フルZソース回路網(Full Impedance Circuit Network)3B”と定義する。 The impedance source network 3 shown in FIG. 2 is composed of a first current reducing reactor 311, a second current reducing reactor 312, a first smoothing capacitor 321 and a second smoothing capacitor 322, and is a quasi-Z shown in FIG. This is a method that does not use the recirculation diode 33 as in the source network 3A. The impedance source network 3 having the configuration shown in FIG. 2 is defined here as "Full Impedance Circuit Network 3B".
 このフルZソース回路網3Bは、第1整流回路2の出力母線の正極端子、第1減流リアクトル311の第1端、および第1平滑コンデンサ321の第1端が互いに接続されている。また、第1減流リアクトル311の第2端、第2平滑コンデンサ322の第1端、およびスイッチング回路4の入力母線の正極端子が互いに接続されている。また、第1整流回路2の出力母線の負極端子、第2平滑コンデンサ322の第2端、および第2減流リアクトル312の第1端が互いに接続されている。また、第1平滑コンデンサ321の第2端、第2減流リアクトル312の第2端、およびスイッチング回路4の入力母線の負極端子が互いに接続されている。 In this full Z source network 3B, the positive electrode terminal of the output bus of the first rectifier circuit 2, the first end of the first destreaming reactor 311 and the first end of the first smoothing capacitor 321 are connected to each other. Further, the second end of the first current reducing reactor 311, the first end of the second smoothing capacitor 322, and the positive electrode terminal of the input bus of the switching circuit 4 are connected to each other. Further, the negative electrode terminal of the output bus of the first rectifier circuit 2, the second end of the second smoothing capacitor 322, and the first end of the second current reducing reactor 312 are connected to each other. Further, the second end of the first smoothing capacitor 321 and the second end of the second current reducing reactor 312, and the negative electrode terminal of the input bus of the switching circuit 4 are connected to each other.
 このように、図2に示すフルZソース回路網3Bは、第1平滑コンデンサ321および第2平滑コンデンサ322のそれぞれの一端(第1端または第2端)により第1減流リアクトル311および第2減流リアクトル312をそれぞれ挟むように配置している。そのため、図1に示した準Zソース回路網3Aのような還流用ダイオード33を必要とせずに、準Zソース回路網3Aと同様に、制御回路9による制御によって、電流型コンバータかつ電圧型コンバータの特徴を併せ持った動作が可能となる。但し、第1減流リアクトル311および第2減流リアクトル312が2つの平滑コンデンサ321、322のそれぞれの一端で挟まれているため、交流電源1からの入力が不連続となる。そのため、準Zソース回路網3Aと比較して、部品点数を削減できるものの、入力側の高調波成分が幾分増加する特性を有する。 As described above, in the full Z source network 3B shown in FIG. 2, one end (first end or second end) of the first smoothing capacitor 321 and the second smoothing capacitor 322 is used to form the first current reducing reactor 311 and the second smoothing capacitor 311 and the second. The flow-reducing reactors 312 are arranged so as to sandwich each of them. Therefore, the current type converter and the voltage type converter are controlled by the control circuit 9 as in the quasi-Z source network 3A without requiring the return diode 33 as in the quasi-Z source network 3A shown in FIG. It is possible to operate with the characteristics of. However, since the first current reducing reactor 311 and the second current reducing reactor 312 are sandwiched between one ends of the two smoothing capacitors 321 and 322, the input from the AC power supply 1 becomes discontinuous. Therefore, as compared with the quasi-Z source network 3A, the number of parts can be reduced, but the harmonic component on the input side is somewhat increased.
 図3に示すインピーダンスソース回路網3は、第1減流リアクトル311、第2減流リアクトル312、第3減流リアクトル313、第1平滑コンデンサ321、および第2平滑コンデンサ322から構成されており、図2に示したフルZソース回路網3Bに対して、第1整流回路2の出力母線の正極端子側に第1減流リアクトル311を追加した構成となっている。この図3に示す構成のインピーダンスソース回路網3を、ここでは“複合Zソース回路網(Multi Impedance Circuit Network)3C”と定義する。 The impedance source network 3 shown in FIG. 3 is composed of a first decompression reactor 311, a second decompression reactor 312, a third decompression reactor 313, a first smoothing capacitor 321 and a second smoothing capacitor 322. The first declining reactor 311 is added to the positive electrode terminal side of the output bus of the first rectifier circuit 2 with respect to the full Z source network 3B shown in FIG. The impedance source network 3 having the configuration shown in FIG. 3 is defined here as “Multi Impedance Circuit Network 3C”.
 この複合Zソース回路網3Cは、第1整流回路2の出力母線の正極端子と第1減流リアクトル311の第1端とが互いに接続されている。また、第1減流リアクトル311の第2端、第2減流リアクトル312の第1端、および第1平滑コンデンサ321の第1端が互いに接続されている。また、第2減流リアクトル312の第2端、第2平滑コンデンサ322の第1端、およびスイッチング回路4の入力母線の正極端子が互い接続されている。また、第1整流回路2の出力母線の負極端子、第2平滑コンデンサ322の第2端、および第3減流リアクトル313の第1端が互いに接続されている。また、第1平滑コンデンサ321の第2端、第3減流リアクトル313の第2端、およびスイッチング回路4の入力母線の負極端子が互いに接続されている。 In this composite Z source network 3C, the positive electrode terminal of the output bus of the first rectifier circuit 2 and the first end of the first destreaming reactor 311 are connected to each other. Further, the second end of the first decompression reactor 311, the first end of the second decompression reactor 312, and the first end of the first smoothing capacitor 321 are connected to each other. Further, the second end of the second current reducing reactor 312, the first end of the second smoothing capacitor 322, and the positive electrode terminal of the input bus of the switching circuit 4 are connected to each other. Further, the negative electrode terminal of the output bus of the first rectifier circuit 2, the second end of the second smoothing capacitor 322, and the first end of the third current reducing reactor 313 are connected to each other. Further, the second end of the first smoothing capacitor 321 and the second end of the third current reducing reactor 313, and the negative electrode terminal of the input bus of the switching circuit 4 are connected to each other.
 図3に示したこの複合Zソース回路網3Cは、図1に示した準Zソース回路網3Aまたは図2に示したフルZソース回路網3Bと同様に、制御回路9による制御により、電流型コンバータかつ電圧型コンバータの特徴を併せ持った動作が可能となる。また、この複合Zソース回路網3Cは、図2に示したフルZソース回路網3Bの部品配置に対して、第1整流回路2の出力母線の正極端子側に第1減流リアクトル311を追加しているので、図1に示した準Zソース回路網3Aの構成の場合と同様に、交流電源1から入力される電流を継続的にスイッチング回路4へ通流させることができ、そのため、入力側の高調波成分を低減することが可能となる。 The composite Z source network 3C shown in FIG. 3 is a current type under the control of the control circuit 9, similarly to the quasi-Z source network 3A shown in FIG. 1 or the full Z source network 3B shown in FIG. It enables operation that combines the characteristics of a converter and a voltage-type converter. Further, in this composite Z source network 3C, the first decurrent current reducing reactor 311 is added to the positive electrode terminal side of the output bus of the first rectifier circuit 2 with respect to the component arrangement of the full Z source network 3B shown in FIG. Therefore, the current input from the AC power supply 1 can be continuously passed to the switching circuit 4 as in the case of the configuration of the quasi-Z source network 3A shown in FIG. It is possible to reduce the harmonic component on the side.
 なお、図1に示す構成において、第2整流回路6は、4つの整流ダイオード61~64を組み合わせたフルブリッジ型の整流回路として示したが、これに限らず、例えば図4に示すダイオード60Aおよび60Bを有するセンタータップダイオード整流回路であってもよく、図5に示すダイオード61Aおよび61B並びにコンデンサ62Aおよび62Bを有する倍電圧ダイオード整流回路であってもよい。また、第2整流回路6の整流ダイオード61~64を図6に示すようにスイッチング素子63A~63Dに置き換えて、フルブリッジ同期整流回路を構成したものであってもよく、さらに、図7に示すようなスイッチング素子64Aおよび64Bを有するセンタータップ同期整流回路であってもよい。さらにまた、図8に示すようなスイッチング素子65Aおよび65B並びにコンデンサ66Aおよび66Bを有する倍電圧同期整流回路であってもよく、これらの回路構成に限らないことは言うまでもない。 In the configuration shown in FIG. 1, the second rectifier circuit 6 is shown as a full-bridge type rectifier circuit in which four rectifier diodes 61 to 64 are combined, but the present invention is not limited to this, and for example, the diode 60A and the diode 60A shown in FIG. 4 and It may be a center tap diode rectifier circuit having 60B, or a voltage doubler diode rectifier circuit having diodes 61A and 61B and capacitors 62A and 62B shown in FIG. Further, the rectifier diodes 61 to 64 of the second rectifier circuit 6 may be replaced with switching elements 63A to 63D as shown in FIG. 6 to form a full bridge synchronous rectifier circuit, which is further shown in FIG. A center tap synchronous rectifier circuit having such switching elements 64A and 64B may be used. Furthermore, it may be a voltage doubler synchronous rectifier circuit having switching elements 65A and 65B and capacitors 66A and 66B as shown in FIG. 8, and it goes without saying that the circuit configuration is not limited to these.
 さらに、図1では、出力平滑回路7は、コンデンサインプット型のものを示したが、この構成以外にも、例えば図9に示すように、コンデンサ71とリアクトル72を組み合わせたフィルタの構成ものであってもよい。 Further, in FIG. 1, the output smoothing circuit 7 shows a capacitor input type, but in addition to this configuration, for example, as shown in FIG. 9, it has a filter configuration in which a capacitor 71 and a reactor 72 are combined. You may.
 次に、図1に示した準Zソース回路網3Aを有する構成の電力変換装置の動作を説明する。なお、ここでは前提条件として、第1減流リアクトル311と第2減流リアクトル312のインダクタンスは同値であり、第1平滑コンデンサ321と第2平滑コンデンサ322のキャパシタンスは同値とする。 Next, the operation of the power conversion device having the configuration having the quasi-Z source network 3A shown in FIG. 1 will be described. Here, as a precondition, the inductances of the first decompression reactor 311 and the second decompression reactor 312 are the same value, and the capacitances of the first smoothing capacitor 321 and the second smoothing capacitor 322 are the same value.
 図10は、図1に示した構成の電力変換装置の動作を示すタイミングチャートである。図10において、縦軸は上から順番に、スイッチング素子411、414のゲート信号、スイッチング素子412、413のゲート信号、絶縁トランス5の2次側巻線端子間の電圧Vtr2、第1減流リアクトル311に流れる電流iL1を示している。 FIG. 10 is a timing chart showing the operation of the power conversion device having the configuration shown in FIG. In FIG. 10, the vertical axis is, in order from the top, the gate signal of the switching elements 411 and 414, the gate signal of the switching elements 412 and 413, the voltage Vtr2 between the secondary winding terminals of the isolation transformer 5, and the first current reducing reactor. The current iL1 flowing through 311 is shown.
 図10に示すように、第1スイッチング素子411と第4スイッチング素子414のゲート信号を同期させ、第2スイッチング素子412と第3スイッチング素子413のゲート信号を同期させる。つまり、対角に位置する2つのスイッチング素子411および414、ならびに、2つのスイッチング素子412および413のゲート信号は、同一のものが生成される。これにより、1スイッチング周期Tswの間に、第1動作モードから第4動作モードまでの4つの動作モードを推移する。以下、各動作モードの内容を具体的に説明する。 As shown in FIG. 10, the gate signals of the first switching element 411 and the fourth switching element 414 are synchronized, and the gate signals of the second switching element 412 and the third switching element 413 are synchronized. That is, the same gate signals are generated for the two diagonally located switching elements 411 and 414 and the two switching elements 412 and 413. As a result, four operation modes from the first operation mode to the fourth operation mode are changed during one switching cycle Tsw. Hereinafter, the contents of each operation mode will be specifically described.
[1]初期時刻t0にて、第1動作モードが開始する。この第1動作モードでは、第1スイッチング素子411~第4スイッチング素子414に与える全てのゲート信号がオンとなる。このとき、第1スイッチング素子411~第414の全てがオン状態となり、第1レグと第2レグが共に短絡状態となる。これにより、第1減流リアクトル311と第2減流リアクトル312は励磁され、第1減流リアクトル311の電流iL1と第2減流リアクトル312の電流iL2は正極性の傾きをもって上昇していく。なお、この場合、第1レグと第2レグは短絡状態のため、それぞれのレグの両端電圧Vdcはゼロである。その結果、絶縁トランス5の1次側巻線には電圧が印加されない。そのため、この第1動作モードは、出力に電力を供給せず、各々の減流リアクトル311、312の励磁期間となる。 [1] At the initial time t0, the first operation mode starts. In this first operation mode, all the gate signals given to the first switching element 411 to the fourth switching element 414 are turned on. At this time, all of the first switching elements 411 to 414 are turned on, and both the first leg and the second leg are short-circuited. As a result, the first decompression reactor 311 and the second decompression reactor 312 are excited, and the current iL1 of the first decompression reactor 311 and the current iL2 of the second decompression reactor 312 increase with a positive inclination. In this case, since the first leg and the second leg are in a short-circuited state, the voltage Vdc across each leg is zero. As a result, no voltage is applied to the primary winding of the isolation transformer 5. Therefore, in this first operation mode, power is not supplied to the output, and the excitation period of each of the current reduction reactors 311 and 312 is set.
 図11は、第1動作モードにおける等価回路図である。
 この動作モードでは、第1整流回路2の出力端子から各レグを介して通流する経路、および第1平滑コンデンサ321と第2減流リアクトル312とが各レグを介して通流する経路の2つの電流経路が構成される。
FIG. 11 is an equivalent circuit diagram in the first operation mode.
In this operation mode, 2 of the path through which the output terminal of the first rectifier circuit 2 passes through each leg and the path through which the first smoothing capacitor 321 and the second current reducing reactor 312 pass through each leg. Two current paths are constructed.
 キルヒホッフの法則を用いることで、第1動作モードにて第1減流リアクトル311に印加される電圧vL1は、次の式(1)で示され、第2減流リアクトル312に印加される電圧vL2は、次の式(2)で示され、また各レグの両端電圧Vdcは、次の式(3)で示されることができる。 By using Kirchhoff's law, the voltage vL1 applied to the first current-reducing reactor 311 in the first operation mode is represented by the following equation (1), and the voltage vL2 applied to the second current-reducing reactor 312. Can be expressed by the following equation (2), and the voltage Vdc across the legs can be expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
[2]次に、時刻t1にて、第2スイッチング素子412と第3スイッチング素子413のゲート信号が共にオフとなることで、第1動作モードが終了し、第2動作モードへ移行する。この第2動作モードでは、第1スイッチング素子411と第4スイッチング素子414のゲート信号のみがオンとなる。つまり、対角に位置する2つのスイッチング素子411、414のみがオン状態なることで、絶縁トランス5の1次側巻線にはレグの両端電圧Vdcが印加される。これにより、第1減流リアクトル311と第2減流リアクトル312のエネルギが放電(消磁)され、負極性の傾きをもって下降する。さらに、正極性の電圧が絶縁トランス5の2次側巻線にも誘起され、出力側へ電力が伝送される。そのため、この第2動作モードは第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [2] Next, at time t1, the gate signals of the second switching element 412 and the third switching element 413 are both turned off, so that the first operation mode ends and the second operation mode shifts to the second operation mode. In this second operation mode, only the gate signals of the first switching element 411 and the fourth switching element 414 are turned on. That is, when only the two diagonal switching elements 411 and 414 are turned on, the voltage Vdc across the leg is applied to the primary winding of the isolation transformer 5. As a result, the energies of the first decurrent reactor 311 and the second decurrent reactor 312 are discharged (degaussed) and descend with a negative electrode inclination. Further, a positive voltage is also induced in the secondary winding of the isolation transformer 5, and power is transmitted to the output side. Therefore, this second operation mode is the degaussing period and the power transmission period of the first current reducing reactor 311 and the second current reducing reactor 312.
 図12は、第2動作モードにおける等価回路図である。
 第2動作モードでは、第1整流回路2の出力端子、還流用ダイオード33、および第1平滑コンデンサ321を順次介して通流する経路と、還流用ダイオード33、第2減流リアクトル312、および第2平滑コンデンサ322を順次介して通流する経路との2つの電流経路が構成される。
FIG. 12 is an equivalent circuit diagram in the second operation mode.
In the second operation mode, the output terminal of the first rectifier circuit 2, the freewheeling diode 33, and the path passing through the first smoothing capacitor 321 in sequence, the freezing diode 33, the second current reducing reactor 312, and the second Two current paths are configured, one with a path passing through the two smoothing capacitors 322 in sequence.
 同様にキルヒホッフの法則を用いることで、第2動作モードにて第1減流リアクトル311に印加される電圧vL1は、次の式(4)で、第2減流リアクトル312に印加される電圧vL2は、次の式(5)で、各レグの両端電圧Vdcは、次の式(6)でそれぞれ表すことができる。 Similarly, by using Kirchhoff's law, the voltage vL1 applied to the first current-reducing reactor 311 in the second operation mode is the voltage vL2 applied to the second current-reducing reactor 312 by the following equation (4). Can be expressed by the following equation (5), and the voltage Vdc across the legs can be expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
[3]次に、時刻t2にて、第2スイッチング素子412と第3スイッチング素子413のゲート信号が共にオンとなることで、第2動作モードが終了し、第3動作モードへ移行する。この第3動作モードでは、第1スイッチング素子411~第4スイッチング素子414の全てのゲート信号がオンとなる。したがって、この第3動作モードは、第1動作モードと同様の動作となるため、ここでは詳細な説明は省略する。 [3] Next, at time t2, when both the gate signals of the second switching element 412 and the third switching element 413 are turned on, the second operation mode ends and the process shifts to the third operation mode. In this third operation mode, all the gate signals of the first switching element 411 to the fourth switching element 414 are turned on. Therefore, since this third operation mode is the same operation as the first operation mode, detailed description thereof will be omitted here.
[4]次に、時刻t3にて、第1スイッチング素子411と第4スイッチング素子414のゲート信号が共にオフとなることで、第3動作モードが終了し、第4動作モードへ移行する。この第4動作モードでは、第2スイッチング素子412と第3スイッチング素子413のゲート信号のみがオンとなる。つまり、対角に位置する2つのスイッチング素子412、413のみがオン状態なることで、絶縁トランス5の1次側巻線にはレグの両端電圧の負極性の―Vdcが印加される。これにより、第1減流リアクトル311と第2減流リアクトル312のエネルギが放電(消磁)され、負極性の傾きをもって下降する。さらに、負極性の電圧が絶縁トランス5の2次側巻線にも誘起され、出力側へ電力が伝送される。そのため、この第4動作モードは第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [4] Next, at time t3, both the gate signals of the first switching element 411 and the fourth switching element 414 are turned off, so that the third operation mode ends and the process shifts to the fourth operation mode. In this fourth operation mode, only the gate signals of the second switching element 412 and the third switching element 413 are turned on. That is, when only the two diagonally located switching elements 412 and 413 are turned on, the negative electrode property −Vdc of the voltage across the leg is applied to the primary winding of the isolation transformer 5. As a result, the energies of the first decurrent reactor 311 and the second decurrent reactor 312 are discharged (degaussed) and descend with a negative electrode inclination. Further, a negative voltage is also induced in the secondary winding of the isolation transformer 5, and power is transmitted to the output side. Therefore, this fourth operation mode is the degaussing period and the power transmission period of the first decurrent reduction reactor 311 and the second current reduction reactor 312.
 図13は、第4動作モードにおける等価回路図である。これは、絶縁トランス5に印加される電圧の極性が第2動作モードの場合と異なるだけで、その他の動作は第2動作モードと同様となるため、ここでは詳細な説明は省略する。 FIG. 13 is an equivalent circuit diagram in the fourth operation mode. This is because the polarity of the voltage applied to the isolation transformer 5 is different from that in the second operation mode, and the other operations are the same as in the second operation mode. Therefore, detailed description thereof will be omitted here.
[5]続いて、時刻Tswにて、第1スイッチング素子411と第4スイッチング素子414のゲート信号が共にオンとなることで、第4動作モードが終了し、再度、第1動作モードへ移行する。 [5] Subsequently, at time Tsw, the gate signals of the first switching element 411 and the fourth switching element 414 are both turned on, so that the fourth operation mode ends and the process shifts to the first operation mode again. ..
 以上が図1に示した構成の電力変換装置の1スイッチング周期Tswの間における動作説明である。したがって、第1動作モードと第3動作モードでは、第1減流リアクトル311および第2減流リアクトル312を励磁し、第2動作モードと第4動作モードでは第1減流リアクトル311および第2減流リアクトル312の放電(消磁)期間となることから、1スイッチング周波数fswに対して、第1減流リアクトル311および第2減流リアクトル312にはその2倍の周波数(2fsw)で電圧が印加される。そのため、一般的な力率改善コンバータと比較して、より小型化を達成することができる。 The above is an explanation of the operation of the power conversion device having the configuration shown in FIG. 1 during one switching cycle Tsw. Therefore, in the first operation mode and the third operation mode, the first deducting reactor 311 and the second deducting reactor 312 are excited, and in the second operation mode and the fourth operation mode, the first deducting reactor 311 and the second depleting are performed. Since the discharge (degaussing) period of the flow reactor 312 is reached, a voltage is applied to the first current reducing reactor 311 and the second current reducing reactor 312 at twice the frequency (2 fsw) with respect to one switching frequency fsw. To. Therefore, it is possible to achieve more miniaturization as compared with a general power factor improving converter.
 なお、ここでは、図1に示した準Zソース回路網3Aを有する構成の電力変換装置の動作について説明したが、図2に示したフルZソース回路網3Bを備えた構成の電力変換装置、あるいは図3に示した複合Zソース回路網3Cを備えた構成の電力変換装置についても、基本的な動作は、図1の準Zソース回路網3Aを有する構成の電力変換装置と同様であるので、ここでは詳しい説明は省略する。 Although the operation of the power conversion device having the quasi-Z source network 3A shown in FIG. 1 has been described here, the power conversion device having the full Z source network 3B shown in FIG. 2 has been described. Alternatively, the power conversion device having the configuration provided with the composite Z source network 3C shown in FIG. 3 also has the same basic operation as the power conversion device having the configuration having the quasi-Z source network 3A shown in FIG. , Detailed explanation is omitted here.
 ところで、このようなインピーダンスソース回路網3を有する本願の電力変換装置は、スイッチング回路4に与える各ゲート信号のオン期間を1スイッチング周期Tswに対して75%未満に抑制する必要がある。その理由を次に説明する。 By the way, in the power conversion device of the present application having such an impedance source network 3, it is necessary to suppress the on period of each gate signal given to the switching circuit 4 to less than 75% with respect to one switching cycle Tsw. The reason will be explained below.
 図10に示したように、本願の実施の形態1に係る電力変換装置は、4つの動作モードに分類され、その内の第1動作モードおよび第3動作モードの2つは、第1減流リアクトル311および第2減流リアクトル312の励磁期間(以下、シュートスルー期間という)であり、他の第2動作モードおよび第4動作モードの2つは、第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間(以下、単に電力伝送期間という)である。 As shown in FIG. 10, the power conversion device according to the first embodiment of the present application is classified into four operation modes, of which two of the first operation mode and the third operation mode are the first flow reduction. The excitation period of the reactor 311 and the second decurrent reactor 312 (hereinafter referred to as the shoot-through period), and the other two of the second operation mode and the fourth operation mode are the first deductor reactor 311 and the second deductor. This is the degaussing period and the power transmission period (hereinafter, simply referred to as the power transmission period) of the reactor 312.
 いま、シュートスルー期間をDs・Tswと定義し、また電力伝送期間をDa・Tswと定義する。ここで、Tswは1スイッチング周期であり、Dsはシュートスルー期間のデューティ比であり、Daは電力伝送期間のデューティ比である。そして、シュートスルー期間は1スイッチング周期Tsw中に2回存在し、また、電力伝送期間は1スイッチング周期Tsw中に2回存在する。つまり、1スイッチング周期Tswにおいて、合計のシュートスルー期間は2Ds・Tswであり、合計の電力伝送期間は2Da・Tswとなる。このことから、次の式(7)が得られる。 Now, the shoot-through period is defined as Ds / Tsw, and the power transmission period is defined as Da / Tsw. Here, Tsw is one switching cycle, Ds is the duty ratio of the shoot-through period, and Da is the duty ratio of the power transmission period. The shoot-through period exists twice in one switching cycle Tsw, and the power transmission period exists twice in one switching cycle Tsw. That is, in one switching cycle Tsw, the total shoot-through period is 2Ds · Tsw, and the total power transmission period is 2Da · Tsw. From this, the following equation (7) can be obtained.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 4つのスイッチング素子411~414の内、ある1つのスイッチング素子のゲート信号が1スイッチング周期Tsw中にオンする比率(デューティ比)をDとする。このとき、当該スイッチング素子のオン期間はD・Tswとなり、次の式(8)のように、1つの電力伝送期間Da・Tswと2つの電力伝送期間2Ds・Tswの和として表すことができる。 Of the four switching elements 411 to 414, the ratio (duty ratio) at which the gate signal of one switching element is turned on during one switching cycle Tsw is defined as D. At this time, the ON period of the switching element is D · Tsw, and can be expressed as the sum of one power transmission period Da · Tsw and two power transmission periods 2Ds · Tsw as shown in the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記の式(7)と式(8)を整理することで、シュートスルー期間のデューティ比Dsと電力伝送期間のデューティ比Daは、次の式(9)および式(10)でそれぞれ表すことができる。 By arranging the above equations (7) and (8), the duty ratio Ds in the shoot-through period and the duty ratio Da in the power transmission period can be expressed by the following equations (9) and (10), respectively. it can.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 上記の式(9)と式(10)の各期間のそれぞれのデューティ比と、前述の式(1)~式(6)の各電圧関係式とを用いることにより、第1平滑コンデンサ321の電圧vc1と、第2平滑コンデンサ322の電圧vc2と、第1レグと第2レグの両端電圧Vdcの平均値Vdc,avgは、次の式(11)から式(13)のように表すことができる。 The voltage of the first smoothing capacitor 321 is obtained by using the duty ratio of each period of the above equations (9) and (10) and the voltage relational expressions of the above equations (1) to (6). The vc1, the voltage vc2 of the second smoothing capacitor 322, and the average values Vdc and avg of the voltages Vdc across the first leg and the second leg can be expressed by the following equations (11) to (13). ..
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 シュートスルー期間Ds・Tswにおいて、各レグの両端電圧に、ある一定の電圧Vdc,peakが印加されるとしたとき、その時の電圧は、次の式(14)で表される。 When a certain constant voltage Vdc, peak is applied to the voltage across each leg in the shoot-through period Ds · Tsw, the voltage at that time is expressed by the following equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 また、次の式(15)で示される絶縁トランス5の電圧変換の原理式と、上記の式(14)から、次の式(16)が得られる。ここで、Npは絶縁トランス5の1次側巻線の巻き数であり、Nsは絶縁トランス5の2次側巻線の巻き数であり、Npsは2次側巻線の巻き数を1としたときの1次側巻線の巻き数の比率である。 Further, the following equation (16) can be obtained from the principle equation of voltage conversion of the isolation transformer 5 represented by the following equation (15) and the above equation (14). Here, Np is the number of turns of the primary winding of the isolation transformer 5, Ns is the number of turns of the secondary winding of the isolation transformer 5, and Nps is the number of turns of the secondary winding. It is the ratio of the number of turns of the primary winding at that time.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 式(16)から、デューティ比Dが3/4未満(つまり75%未満)で、かつ(3-4D)が1以上の場合、つまり、デューティ比Dが0.5より小さいときには降圧動作となる。また、デューティ比Dが3/4未満(つまり75%未満)で、かつ(3-4D)が1未満の場合、つまり、デューティ比Dが0.5より大きいときには昇圧動作となる。一方、デューティ比Dが3/4以上(つまり75%以上)の場合、式(16)の分母がゼロもしくは負極性となり、原理的に動作不可となる。
 これらのことから、本願の実施の形態1に係る電力変換装置は、デューティ比Dを3/4未満、つまり75%未満に抑制して動作する必要がある。
From the formula (16), when the duty ratio D is less than 3/4 (that is, less than 75%) and (3-4D) is 1 or more, that is, when the duty ratio D is less than 0.5, the step-down operation is performed. .. Further, when the duty ratio D is less than 3/4 (that is, less than 75%) and (3-4D) is less than 1, that is, when the duty ratio D is larger than 0.5, the boosting operation is performed. On the other hand, when the duty ratio D is 3/4 or more (that is, 75% or more), the denominator of the equation (16) becomes zero or negative electrode, and in principle, it becomes inoperable.
From these facts, the power conversion device according to the first embodiment of the present application needs to operate with the duty ratio D suppressed to less than 3/4, that is, less than 75%.
 以上のように、本願の実施の形態1に係る電力変換装置は、制御回路9にて、75%未満のデューティ比の条件のもと、高力率制御と出力電力制御を行う。なお、各々の減流リアクトルのインダクタンスが同値の場合、電流も同値として扱うことができるため、高力率制御の際には第1減流リアクトル311に流れる電流iL1のみを検出すればよい。このことから、インピーダンスソース回路網3の第1減流リアクトル311の電流iL1が、ある任意の入力電流の指令値に基づき、交流電源電圧vacの位相と同位相かつ正弦波状になるよう調整することで高力率制御を達成できる。さらに、高力率制御を行いながら、出力電力が一定になるように電力伝送期間を調整することで出力電力制御を達成することができる。 As described above, the power conversion device according to the first embodiment of the present application performs high power factor control and output power control under the condition of a duty ratio of less than 75% in the control circuit 9. When the inductances of the deflowing reactors are the same, the currents can be treated as the same value. Therefore, only the current iL1 flowing through the first deflowing reactor 311 needs to be detected at the time of high power factor control. From this, the current iL1 of the first decurrent reactor 311 of the impedance source network 3 is adjusted to be in phase with the phase of the AC power supply voltage vac and in a sinusoidal shape based on the command value of an arbitrary input current. High power factor control can be achieved. Further, the output power control can be achieved by adjusting the power transmission period so that the output power becomes constant while performing the high power factor control.
実施の形態2.
 図14は本願の実施の形態2に係る電力変換装置の回路構成図である。なお、図1に示した実施の形態1の構成と同一または相当する部分には、同一の参照符号を付してここでは詳しい説明は省略する。
Embodiment 2.
FIG. 14 is a circuit configuration diagram of the power conversion device according to the second embodiment of the present application. The same or corresponding parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted here.
 電力変換装置を高出力なアプリケーションに適用する場合、スイッチング素子の損失を低減するために、スイッチング回路を2並列接続する手法が一般的に採られる。この実施の形態2の電力変換装置は、単純にスイッチング回路を並列接続するのではなく、動作手法も変更することで、電力変換装置をより一層小型にすることができる。以下、その内容について説明する。 When applying a power converter to a high-output application, a method of connecting two switching circuits in parallel is generally adopted in order to reduce the loss of the switching element. In the power conversion device of the second embodiment, the power conversion device can be made even smaller by changing the operation method instead of simply connecting the switching circuits in parallel. The contents will be described below.
 この実施の形態2に係る電力変換装置は、図1で説明した準Zソース回路網3Aを備えた構成を前提として、スイッチング回路4が、第1スイッチング回路41および第2スイッチング回路42の計2相のフルブリッジインバータで構成されている。そして、第1スイッチング回路41および第2スイッチング回路42は、準Zソース回路網3Aに対して互いに並列接続されると共に、第1スイッチング回路41および第2スイッチング回路42には、絶縁トランス5の1次側巻線が設けられている。そして、第1スイッチング回路41および第2スイッチング回路42の出力から絶縁トランス5を介して電力伝送を行う。 In the power conversion device according to the second embodiment, the switching circuit 4 includes the first switching circuit 41 and the second switching circuit 42 in total 2 on the premise of the configuration including the quasi-Z source network 3A described with reference to FIG. It consists of a phase full bridge inverter. The first switching circuit 41 and the second switching circuit 42 are connected in parallel to the quasi-Z source network 3A, and the first switching circuit 41 and the second switching circuit 42 are connected to the isolation transformer 5-1. The next winding is provided. Then, power is transmitted from the outputs of the first switching circuit 41 and the second switching circuit 42 via the isolation transformer 5.
 なお、図14では、図1に示した準Zソース回路網3Aを備えた構成を前提しているが、この構成に限らず、図2に示したフルZソース回路網3B、あるいは図3に示した複合Zソース回路網3Cなどの構成を備えたものであってもよく、インピーダンスソース回路網3の構成が準Zソース回路網3Aの構成に限定されるものではない。 Note that FIG. 14 assumes a configuration including the quasi-Z source network 3A shown in FIG. 1, but the configuration is not limited to this configuration, and the full Z source network 3B shown in FIG. 2 or FIG. 3 shows. The composite Z source network 3C and the like shown may be provided, and the configuration of the impedance source network 3 is not limited to the configuration of the quasi-Z source network 3A.
 ここで、説明の簡易化のために、第1スイッチング回路41をA相と定義し、この第1スイッチング回路41の第1スイッチング素子411をA1、第2スイッチング素子412をA2、第3スイッチング素子413をA3、第4スイッチング素子414をA4と定義する。同様に、第2スイッチング回路42をB相と定義し、この第2スイッチング回路42の第1スイッチング素子421をB1、第2スイッチング素子422をB2、第3スイッチング素子423をB3、第4スイッチング素子424をB4と定義する。さらに、A相において、直列接続されるA1とA2をA相の第1レグ、直列接続されるA3とA4をA相の第2レグと定義する。同様に、B相において、直列接続されるB1とB2をB相の第1レグ、直列接続されるB3とB4をB相の第2レグと定義する。 Here, for simplification of the description, the first switching circuit 41 is defined as the A phase, the first switching element 411 of the first switching circuit 41 is A1, the second switching element 412 is A2, and the third switching element. 413 is defined as A3, and the fourth switching element 414 is defined as A4. Similarly, the second switching circuit 42 is defined as the B phase, the first switching element 421 of the second switching circuit 42 is B1, the second switching element 422 is B2, the third switching element 423 is B3, and the fourth switching element. 424 is defined as B4. Further, in the A phase, A1 and A2 connected in series are defined as the first leg of the A phase, and A3 and A4 connected in series are defined as the second leg of the A phase. Similarly, in the B phase, B1 and B2 connected in series are defined as the first leg of the B phase, and B3 and B4 connected in series are defined as the second leg of the B phase.
 A相とB相を同じタイミングで動作させる場合には、単純にスイッチング素子を2並列接続した場合と同様の動作となる。これに対して、A相とB相の動作を交互に行うようにタイミングをずらして動作させることで、第1減流リアクトル311と第2減流リアクトル312、および絶縁トランス5に対して電圧が印加される回数、つまり周波数を増加させることができ、装置の小型化を達成できる。このような制御動作をインターリーブ動作と定義する。以下、このインターリーブ動作の内容について説明する。 When the A phase and the B phase are operated at the same timing, the operation is the same as when two switching elements are simply connected in parallel. On the other hand, by shifting the timing so that the A-phase and B-phase operations are alternately performed, the voltage is applied to the first current-reducing reactor 311 and the second current-reducing reactor 312, and the isolation transformer 5. The number of times of application, that is, the frequency can be increased, and the miniaturization of the device can be achieved. Such a control operation is defined as an interleave operation. The contents of this interleaving operation will be described below.
 図15は、本願の実施の形態2に係る電力変換装置のインターリーブ動作を示すタイミングチャートである。 FIG. 15 is a timing chart showing the interleaving operation of the power conversion device according to the second embodiment of the present application.
 図15では、A相とB相の動作を交互に行うように、A1~A4およびB1~B4に加える各々のゲート信号を、タイミングをずらして独立して生成している。この場合、1スイッチング周期Tswの間に、第1動作モードから第16動作モードまでの16の動作モードを推移する。以下、各動作モードの内容を具体的に説明する。 In FIG. 15, the gate signals to be applied to A1 to A4 and B1 to B4 are independently generated by shifting the timing so that the operations of the A phase and the B phase are alternately performed. In this case, 16 operation modes from the first operation mode to the 16th operation mode are changed during one switching cycle Tsw. Hereinafter, the contents of each operation mode will be specifically described.
[1]初期時刻t0にて、第1動作モードが開始する。この第1動作モードでは、A相のA1とA2、およびB相のB1とB2のゲート信号がオンとなる。このとき、A相の第1レグを構成するA1とA2、およびB相の第1レグを構成するB1とB2が共にオン状態となり、それぞれのレグが短絡状態となる。これにより、A相の第1レグとB相の第1レグを介して第1減流リアクトル311と第2減流リアクトル312は励磁され、第1減流リアクトル311の電流iL1と第2減流リアクトル312の電流iL2は正極性の傾きをもって上昇していく。なお、このとき、A相とB相のいずれの第1レグも短絡状態のため、それぞれのレグの両端電圧Vdcはゼロである。その結果、絶縁トランス5の1次側には電圧が印加されない。そのため、この第1動作モードは、出力に電力を供給せず、第1減流リアクトル311および第2減流リアクトル312の励磁期間となる。 [1] At the initial time t0, the first operation mode starts. In this first operation mode, the gate signals of A-phase A1 and A2 and B-phase B1 and B2 are turned on. At this time, A1 and A2 constituting the first leg of the A phase and B1 and B2 constituting the first leg of the B phase are both turned on, and the respective legs are short-circuited. As a result, the first deceleration reactor 311 and the second decompression reactor 312 are excited via the first leg of the A phase and the first leg of the B phase, and the current iL1 and the second deflection of the first decompression reactor 311 are excited. The current iL2 of the reactor 312 increases with a positive inclination. At this time, since both the first legs of the A phase and the B phase are in a short-circuited state, the voltage Vdc across each leg is zero. As a result, no voltage is applied to the primary side of the isolation transformer 5. Therefore, in this first operation mode, power is not supplied to the output, and the excitation period of the first decompression reactor 311 and the second decompression reactor 312 is set.
[2]時刻t1にて、A2、B1、およびB2のゲート信号がオフとなり、A4のゲート信号がオンとなることで、第1動作モードが終了し、第2動作モードへ移行する。この第2動作モードでは、A相のA1とA4のゲート信号のみがオンとなる。このとき、A相の対角に位置するA1とA4のみがオン状態となることで、絶縁トランス5の1次側巻線にはA相のレグの両端電圧Vdcが印加される。これにより、第1減流リアクトル311と第2減流リアクトル312のエネルギが消磁され、負極性の傾きをもって下降する。さらに、正極性の電圧が絶縁トランス5の2次側巻線にも誘起され、出力側へ電力が伝送される。そのため、この第2動作モードでは第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [2] At time t1, the gate signals of A2, B1, and B2 are turned off, and the gate signal of A4 is turned on, so that the first operation mode ends and the second operation mode is entered. In this second operation mode, only the A1 and A4 gate signals of the A phase are turned on. At this time, only A1 and A4 located diagonally to the A phase are turned on, so that the voltage Vdc across the A phase leg is applied to the primary winding of the isolation transformer 5. As a result, the energies of the first decurrent reactor 311 and the second decurrent reactor 312 are degaussed and descend with a negative electrode inclination. Further, a positive voltage is also induced in the secondary winding of the isolation transformer 5, and power is transmitted to the output side. Therefore, in this second operation mode, the degaussing period and the power transmission period of the first current reducing reactor 311 and the second current reducing reactor 312 are set.
[3]時刻t2にて、A2とA3のゲート信号がオンとなることで、第2動作モードが終了し、第3動作モードへ移行する。この第3動作モードでは、A相のA1~A4に対するゲート信号がオンとなり、A相のA1~A4の全てがオンとなる。このとき、A相の第1レグと第2レグを介して第1減流リアクトル311と第2減流リアクトル312は励磁され、第1減流リアクトル311の電流iL1と第2減流リアクトル312の電流iL2は正極性の傾きをもって上昇していく。そのため、この第3動作モードは、第1動作モードと同様に、出力に電力を供給せず、第1減流リアクトル311および第2減流リアクトル312の励磁期間となる。 [3] At time t2, when the gate signals of A2 and A3 are turned on, the second operation mode ends and the process shifts to the third operation mode. In this third operation mode, the gate signals for A1 to A4 of the A phase are turned on, and all of the A1 to A4 of the A phase are turned on. At this time, the first decompression reactor 311 and the second decompression reactor 312 are excited via the first leg and the second leg of the A phase, and the current iL1 of the first decompression reactor 311 and the second decompression reactor 312 The current iL2 increases with a positive gradient. Therefore, this third operation mode, like the first operation mode, does not supply electric power to the output, and is an excitation period of the first decompression reactor 311 and the second decompression reactor 312.
[4]時刻t3にて、A1とA4のゲート信号がオフとなることで、第3動作モードが終了し、第4動作モードへ移行する。この第4動作モードでは、A2とA3のゲート信号のみがオンとなる。このとき、A相の対角に位置するA2、A3のみがオン状態となることで、絶縁トランス5の1次側巻線にはA相のレグの負極性の両端電圧-Vdcが印加される。これにより、第1減流リアクトル311と第2減流リアクトル312のエネルギが消磁され、負極性の傾きをもって下降する。さらに、負極性の電圧が絶縁トランス5の2次側巻線にも誘起され、出力側へ電力が伝送される。そのため、この第4動作モードは、第2動作モードと同様に、第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [4] At time t3, when the gate signals of A1 and A4 are turned off, the third operation mode ends and the fourth operation mode is entered. In this fourth operation mode, only the gate signals of A2 and A3 are turned on. At this time, only A2 and A3 located diagonally to the A phase are turned on, so that the negative electrode voltage across the A phase leg −Vdc is applied to the primary winding of the isolation transformer 5. .. As a result, the energies of the first decurrent reactor 311 and the second decurrent reactor 312 are degaussed and descend with a negative electrode inclination. Further, a negative voltage is also induced in the secondary winding of the isolation transformer 5, and power is transmitted to the output side. Therefore, this fourth operation mode is the degaussing period and the power transmission period of the first degassing reactor 311 and the second decurrent reactor 312, as in the second operation mode.
[5]時刻t4にて、A2のゲート信号がオフとなり、A4、B1、およびB2のゲート信号がオンとなることで、第4動作モードが終了し、第5動作モードへ移行する。この第5動作モードでは、A相の第2レグを構成するA3、A4、およびB相の第1レグを構成するB1、B2がオン状態となり、それぞれのレグが短絡状態となる。このとき、A相の第2レグとB相の第1レグを介して第1減流リアクトル311と第2減流リアクトル312は励磁され、第1減流リアクトル311の電流iL1と第2減流リアクトル312の電流iL2は正極性の傾きをもって上昇していく。そのため、この第5動作モードは、第1動作モードおよび第3動作モードと同様に、出力に電力を供給せず、第1減流リアクトル311および第2減流リアクトル312の励磁期間となる。 [5] At time t4, the gate signal of A2 is turned off and the gate signals of A4, B1 and B2 are turned on, so that the fourth operation mode ends and the process shifts to the fifth operation mode. In this fifth operation mode, A3 and A4 constituting the second leg of the A phase and B1 and B2 constituting the first leg of the B phase are turned on, and the respective legs are short-circuited. At this time, the first deceleration reactor 311 and the second decompression reactor 312 are excited via the second leg of the A phase and the first leg of the B phase, and the current iL1 and the second deflection of the first decompression reactor 311. The current iL2 of the reactor 312 increases with a positive inclination. Therefore, this fifth operation mode, like the first operation mode and the third operation mode, does not supply electric power to the output, and is an excitation period of the first current reduction reactor 311 and the second current reduction reactor 312.
[6]時刻t5にて、A3、A4およびB2のゲート信号がオフとなり、B4のゲート信号がオンとなることで、第5動作モードが終了し、第6動作モードへ移行する。この第6動作モードでは、B相のB1とB4のゲート信号のみがオンとなる。このとき、B相の対角に位置するB1、B4のみがオン状態となることで、絶縁トランス5の1次側巻線にはB相のレグの両端電圧Vdcが印加される。そのため、この第6動作モードは、第2動作モードおよび第4動作モードと同様に、第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [6] At time t5, the gate signals of A3, A4, and B2 are turned off, and the gate signal of B4 is turned on, so that the fifth operation mode ends and the sixth operation mode is entered. In this sixth operation mode, only the B-phase B1 and B4 gate signals are turned on. At this time, only B1 and B4 located diagonally to the B phase are turned on, so that the voltage Vdc across the leg of the B phase is applied to the primary winding of the isolation transformer 5. Therefore, this sixth operation mode is the degaussing period and the power transmission period of the first decurrent reduction reactor 311 and the second current reduction reactor 312, as in the second operation mode and the fourth operation mode.
[7]時刻t6にて、B2とB3のゲート信号がオンとなることで、第6動作モードが終了し、第7動作モードへ移行する。この第7動作モードでは、B相のB1~B4に対するゲート信号がオンとなり、B相のB1~B4の全てがオンとなる。このとき、B相の第1レグと第2レグを介して第1減流リアクトル311と第2減流リアクトル312は励磁され、第1減流リアクトル311の電流iL1と第2減流リアクトル312の電流iL2は正極性の傾きをもって上昇していく。そのため、この第7動作モードは、第1動作モード、第3動作モード、および第5動作モードと同様に、出力に電力を供給せず、第1減流リアクトル311および第2減流リアクトル312の励磁期間となる。 [7] At time t6, when the gate signals of B2 and B3 are turned on, the sixth operation mode ends and the process shifts to the seventh operation mode. In this seventh operation mode, the gate signals for B1 to B4 of B phase are turned on, and all of B1 to B4 of B phase are turned on. At this time, the first decompression reactor 311 and the second decompression reactor 312 are excited via the first leg and the second leg of the B phase, and the current iL1 of the first decompression reactor 311 and the second decompression reactor 312 The current iL2 increases with a positive gradient. Therefore, this seventh operation mode, like the first operation mode, the third operation mode, and the fifth operation mode, does not supply power to the output, and the first decompression reactor 311 and the second decompression reactor 312 It becomes the excitation period.
[8]時刻t7にて、B1とB4のゲート信号がオフとなることで、第7動作モードが終了し、第8動作モードへ移行する。この第8動作モードでは、B相のB2とB3のゲート信号のみがオンとなる。このとき、B相の対角に位置するB2、B3のみがオン状態となることで、絶縁トランス5の1次側巻線にはB相のレグの負極性の両端電圧-Vdcが印加される。そのため、この第8動作モードは、第2動作モード、第4動作モード、および第6動作モードと同様に、第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [8] At time t7, when the gate signals of B1 and B4 are turned off, the seventh operation mode ends and the process shifts to the eighth operation mode. In this eighth operation mode, only the B-phase B2 and B3 gate signals are turned on. At this time, only B2 and B3 located diagonally to the B phase are turned on, so that the negative electrode voltage across the B phase leg −Vdc is applied to the primary winding of the isolation transformer 5. .. Therefore, this eighth operation mode is the degaussing period and the power transmission period of the first degassing reactor 311 and the second decompression reactor 312, similarly to the second operation mode, the fourth operation mode, and the sixth operation mode. ..
[9]時刻t8にて、B2のゲート信号がオフとなり、A3、A4およびB4のゲート信号がオンとなることで第8動作モードが終了し、第9動作モードへ移行する。この第9動作モードでは、A相のA3とA4、およびB相のB3とB4のゲート信号がオンとなる。このとき、A相の第2レグを構成するA3とA4、およびB相の第2レグを構成するB3とB4がオン状態となり、それぞれのレグが短絡状態となる。このとき、A相の第2レグとB相の第2レグを介して第1減流リアクトル311と第2減流リアクトル312は励磁され、第1減流リアクトル311の電流iL1と第2減流リアクトル312の電流iL2は正極性の傾きをもって上昇していく。そのため、この第9動作モードは、第1動作モード、第3動作モード、第5動作モード、および第7動作モードと同様に、出力に電力を供給せず、第1減流リアクトル311および第2減流リアクトル312の励磁期間となる。 [9] At time t8, the gate signal of B2 is turned off and the gate signals of A3, A4 and B4 are turned on, so that the eighth operation mode ends and the process shifts to the ninth operation mode. In this ninth operation mode, the gate signals of A-phase A3 and A4 and B-phase B3 and B4 are turned on. At this time, A3 and A4 constituting the second leg of the A phase and B3 and B4 constituting the second leg of the B phase are turned on, and the respective legs are short-circuited. At this time, the first deceleration reactor 311 and the second decompression reactor 312 are excited via the second leg of the A phase and the second leg of the B phase, and the current iL1 and the second deflection of the first decompression reactor 311. The current iL2 of the reactor 312 increases with a positive inclination. Therefore, this ninth operation mode, like the first operation mode, the third operation mode, the fifth operation mode, and the seventh operation mode, does not supply power to the output and does not supply power to the output, and the first deflow reactor 311 and the second operation mode. It is the excitation period of the decurrent reactor 312.
[10]時刻t9にて、A3、B3およびB4のゲート信号がオフとなり、A1のゲート信号がオンとなることで第9動作モードが終了し、第10動作モードへ移行する。この第10動作モードでは、A相のA1とA4のゲート信号のみがオンとなる。これは第2動作モードと同様の動作となるため、この第10動作モードは、第2動作モード、第4動作モード、第6動作モード、および第8動作モードと同様に、第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [10] At time t9, the gate signals of A3, B3, and B4 are turned off, and the gate signal of A1 is turned on, so that the ninth operation mode ends and the mode shifts to the tenth operation mode. In this tenth operation mode, only the A1 and A4 gate signals of the A phase are turned on. Since this is the same operation as the second operation mode, the tenth operation mode is the first degaussing reactor as well as the second operation mode, the fourth operation mode, the sixth operation mode, and the eighth operation mode. It is the degaussing period and the power transmission period of the 311 and the second decurrent reactor 312.
[11]時刻t10にて、A2とA3のゲート信号がオンとなることで、第10動作モードが終了し、第11動作モードへ移行する。この第11動作モードでは、A相のA1~A4に対するゲート信号がオンとなり、A相のA1~A4の全てがオンとなる。これは第3動作モードと同様の動作となるため、この第11動作モードは、第1動作モード、第3動作モード、第5動作モード、第7動作モード、および第9動作モードと同様に、出力に電力を供給せず、第1減流リアクトル311および第2減流リアクトル312の励磁期間となる。 [11] At time t10, when the gate signals of A2 and A3 are turned on, the tenth operation mode ends and the process shifts to the eleventh operation mode. In this eleventh operation mode, the gate signals for A1 to A4 of the A phase are turned on, and all of the A1 to A4 of the A phase are turned on. Since this is the same operation as the third operation mode, the eleventh operation mode is the same as the first operation mode, the third operation mode, the fifth operation mode, the seventh operation mode, and the ninth operation mode. No power is supplied to the output, and the excitation period is set for the first decompression reactor 311 and the second decompression reactor 312.
[12]時刻t11にて、A1とA4のゲート信号がオフとなることで、第11動作モードが終了し、第12動作モードへ移行する。この第12動作モードでは、A相のA2とA3のゲート信号のみがオンとなる。これは第4動作モードと同様の動作となるため、この第12動作モードは、第2動作モード、第4動作モード、第6動作モード、第8動作モード、および第10動作モードと同様に、第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [12] At time t11, when the gate signals of A1 and A4 are turned off, the eleventh operation mode ends and the system shifts to the twelfth operation mode. In this twelfth operation mode, only the A2 and A3 gate signals of the A phase are turned on. Since this is the same operation as the 4th operation mode, the 12th operation mode is the same as the 2nd operation mode, the 4th operation mode, the 6th operation mode, the 8th operation mode, and the 10th operation mode. It is the degaussing period and the power transmission period of the first current reducing reactor 311 and the second current reducing reactor 312.
[13]時刻t12にて、A3のゲート信号がオフとなり、A1、B3、およびB4のゲート信号がオンとなることで第12動作モードが終了し、第13動作モードへ移行する。この第13動作モードでは、A相のA1とA2、およびB相のB3とB4のゲート信号がオンとなる。このとき、A相の第1レグを構成するA1とA2、およびB相の第2レグを構成するB3とB4がオン状態となり、それぞれのレグが短絡状態となる。このとき、A相の第1レグとB相の第2レグを介して第1減流リアクトル311と第2減流リアクトル312は励磁され、第1減流リアクトル311の電流iL1と第2減流リアクトル312の電流iL2は正極性の傾きをもって上昇していく。そのため、この第13動作モードは、第1動作モード、第3動作モード、第5動作モード、第7動作モード、第9動作モード、および第11動作モードと同様に、出力に電力を供給せず、第1減流リアクトル311および第2減流リアクトル312の励磁期間となる。 [13] At time t12, the gate signal of A3 is turned off and the gate signals of A1, B3, and B4 are turned on, so that the twelfth operation mode ends and the process shifts to the thirteenth operation mode. In this thirteenth operation mode, the gate signals of A-phase A1 and A2 and B-phase B3 and B4 are turned on. At this time, A1 and A2 constituting the first leg of the A phase and B3 and B4 constituting the second leg of the B phase are turned on, and the respective legs are short-circuited. At this time, the first deceleration reactor 311 and the second decompression reactor 312 are excited via the first leg of the A phase and the second leg of the B phase, and the current iL1 and the second deflection of the first decompression reactor 311. The current iL2 of the reactor 312 increases with a positive inclination. Therefore, this thirteenth operation mode does not supply power to the output like the first operation mode, the third operation mode, the fifth operation mode, the seventh operation mode, the ninth operation mode, and the eleventh operation mode. , The excitation period of the first decelerating reactor 311 and the second depleting reactor 312.
[14]時刻t13にて、A1とA2とB3のゲート信号がオフとなり、B1のゲート信号がオンとなることで第13動作モードが終了し、第14動作モードへ移行する。この第14動作モードでは、B相のB1とB4のゲート信号のみがオンとなる。これは第6動作モードと同様の動作となるため、この第14動作モードは、第2動作モード、第4動作モード、第6動作モード、第8動作モード、第10動作モード、および第12動作モードと同様に、第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [14] At time t13, the gate signals of A1, A2, and B3 are turned off, and the gate signal of B1 is turned on, so that the thirteenth operation mode ends and the mode shifts to the fourteenth operation mode. In this 14th operation mode, only the B-phase B1 and B4 gate signals are turned on. Since this is the same operation as the 6th operation mode, the 14th operation mode is the 2nd operation mode, the 4th operation mode, the 6th operation mode, the 8th operation mode, the 10th operation mode, and the 12th operation. Similar to the mode, the degaussing period and the power transmission period of the first degassing reactor 311 and the second decurrent reactor 312 are set.
[15]時刻t14にて、B2とB3のゲート信号がオンとなることで、第14動作モードが終了し、第15動作モードへ移行する。第15動作モードでは、B相のB1~B4に対するゲート信号がオンとなり、B相のB1~B4の全てがオンとなる。これは第7動作モードと同様の動作となるため、この第15動作モードは、第1動作モード、第3動作モード、第5動作モード、第7動作モード、第9動作モード、第11動作モード、および第13モードと同様に、出力に電力を供給せず、第1減流リアクトル311および第2減流リアクトル312の励磁期間となる。 [15] At time t14, when the gate signals of B2 and B3 are turned on, the 14th operation mode ends and the process shifts to the 15th operation mode. In the fifteenth operation mode, the gate signals for B1 to B4 of the B phase are turned on, and all of the B1 to B4 of the B phase are turned on. Since this is the same operation as the 7th operation mode, the 15th operation mode is the 1st operation mode, the 3rd operation mode, the 5th operation mode, the 7th operation mode, the 9th operation mode, and the 11th operation mode. , And, as in the thirteenth mode, no power is supplied to the output, and the excitation period of the first decompression reactor 311 and the second decompression reactor 312 is reached.
[16]時刻t15にて、B1とB4のゲート信号がオフとなることで、第15動作モードが終了し、第16動作モードへ移行する。この第16動作モードでは、B相のB2とB3のゲート信号のみがオンとなる。これは第8動作モードと同様の動作となるため、この第16動作モードは、第2動作モード、第4動作モード、第6動作モード、第8動作モード、第10動作モード、第12動作モード、および第14動作モードと同様に、第1減流リアクトル311および第2減流リアクトル312の消磁期間かつ電力伝送期間となる。 [16] At time t15, the gate signals of B1 and B4 are turned off, so that the fifteenth operation mode ends and the system shifts to the sixteenth operation mode. In this 16th operation mode, only the gate signals of the B phase B2 and B3 are turned on. Since this is the same operation as the 8th operation mode, the 16th operation mode is the 2nd operation mode, the 4th operation mode, the 6th operation mode, the 8th operation mode, the 10th operation mode, and the 12th operation mode. , And the 14th operation mode, which is the degaussing period and the power transmission period of the first current reducing reactor 311 and the second current reducing reactor 312.
[17]時刻Tswにて、B4のゲート信号がオフとなり、A1、A2、およびB1のゲート信号がオフとなることで第16動作モードが終了し、第1動作モードへ戻る。 [17] At time Tsw, the gate signal of B4 is turned off, and the gate signals of A1, A2, and B1 are turned off, so that the 16th operation mode ends and the process returns to the 1st operation mode.
 以上から、第1動作モードから第16動作モードの期間中に、A1~A4、およびB1~B4に対するゲート信号を各々3回ずつオンすることで、絶縁トランス5に対しては正負の電圧が4回ずつそれぞれ印加され、また、第1減流リアクトル311および第2減流リアクトル312に対しては8回ずつ励磁と消磁がそれぞれ繰り返される。 From the above, during the period from the first operation mode to the 16th operation mode, by turning on the gate signals for A1 to A4 and B1 to B4 three times each, the positive and negative voltages for the isolation transformer 5 are 4 Each application is applied once, and excitation and demagnetization are repeated eight times for the first decompression reactor 311 and the second decompression reactor 312, respectively.
 なお、ゲート信号を3回オンしつつも、スイッチング時の電圧と電流が重なることにより生じるスイッチング損失はオンとオフともに1回ずつしか原理的に生じない。このため、t0~Tswまでの計16動作モードの期間を1スイッチング周期Tswとして扱うことができる。その結果、スイッチング周波数fswに対して、絶縁トランス5にはその2倍の周波数2fswで電圧が印加され、第1減流リアクトル311および第2減流リアクトル312には4倍の周波数4fswで励磁と消磁が繰り返される。これにより、各々の減流リアクトル311、312および絶縁トランス5の小型化が可能となる。 Although the gate signal is turned on three times, the switching loss caused by the overlap of the voltage and current at the time of switching occurs only once for both on and off in principle. Therefore, the period of a total of 16 operation modes from t0 to Tsw can be treated as one switching cycle Tsw. As a result, with respect to the switching frequency fsw, a voltage is applied to the isolation transformer 5 at a frequency 2 fsw twice that of the switching frequency fsw, and excitation is performed on the first deducting reactor 311 and the second decurrent reactor 312 at a frequency 4 fsw four times that. Demagnetization is repeated. This makes it possible to reduce the size of each of the current reducing reactors 311 and 312 and the isolation transformer 5.
 なお、この実施の形態2では、図14に示したように、準Zソース回路網3Aを有する構成の電力変換装置の動作について説明したが、図2に示したフルZソース回路網3Bを備えた構成の場合、あるいは図3に示した複合Zソース回路網3Cを備えた構成の場合も、基本的な動作は、図14の準Zソース回路網3Aを有する構成の場合と同様であるので、ここでは詳しい説明は省略する。 In the second embodiment, as shown in FIG. 14, the operation of the power conversion device having the configuration having the quasi-Z source network 3A has been described, but the full Z source network 3B shown in FIG. 2 is provided. In the case of the above configuration, or in the case of the configuration including the composite Z source network 3C shown in FIG. 3, the basic operation is the same as in the case of the configuration having the quasi-Z source network 3A of FIG. , Detailed explanation is omitted here.
 なお、上記の実施の形態1、2において、制御回路9に含まれる制御ブロックは、演算回路を用いてハードウェアで構成してもよいが、これに限らず、例えば図16に示すように、制御回路9を、演算制御プログラムを記憶するメモリ91、およびプログラムを処理するプロセッサ92を用いてソフトウェア的に構成してもよい。 In the above-described first and second embodiments, the control block included in the control circuit 9 may be configured by hardware using an arithmetic circuit, but the present invention is not limited to this, and as shown in FIG. 16, for example, The control circuit 9 may be configured by software using a memory 91 for storing an arithmetic control program and a processor 92 for processing the program.
 なお、本願において、各々の実施の形態1、2に記載された様々な特徴、態様、および機能は、特定の実施の形態の適用に限られるものではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。 In the present application, the various features, aspects, and functions described in the respective embodiments 1 and 2 are not limited to the application of the specific embodiment, and may be performed alone or in various combinations. It is applicable to the form of.
 したがって、例示されていない無数の変形例が、この出願に開示される技術の範囲内において想定される。例えば、少なくとも一つの構成要素を変形する場合、追加する場合、または省略する場合、さらには、少なくとも一つの構成要素を抽出して他の実施の形態の構成要素と組み合わせる場合が含まれものとする。 Therefore, a myriad of variants not illustrated are envisioned within the scope of the technology disclosed in this application. For example, it includes the case of transforming, adding, or omitting at least one component, and further, the case of extracting at least one component and combining it with the component of another embodiment. ..
1 交流電源、2 第1整流回路、3 インピーダンスソース回路網、3A 準Zソース回路網、3B フルZソース回路網、3C 複合Zソース回路網、311 第1減流リアクトル、312 第2減流リアクトル、313 第3減流リアクトル、321 第1平滑コンデンサ、322 第2平滑コンデンサ、33 還流用ダイオード、4 スイッチング回路、41 第1スイッチング回路、42 第2スイッチング回路、5 絶縁トランス、6 第2整流回路、7 出力平滑回路、8 直流負荷、9 制御回路。 1 AC power supply, 2 1st rectifier circuit, 3 Impedance source circuit network, 3A quasi-Z source circuit network, 3B full Z source circuit network, 3C composite Z source circuit network, 311 1st current deceleration reactor, 312 2nd current decompression reactor , 313 3rd current reduction reactor, 321 1st smoothing capacitor, 322 2nd smoothing capacitor, 33 freewheeling diode, 4 switching circuit, 41 1st switching circuit, 42 2nd switching circuit, 5 isolation transformer, 6 2nd rectifier circuit , 7 Output smoothing circuit, 8 DC load, 9 Control circuit.

Claims (10)

  1.  交流電源と直流負荷との間で電力変換を行う電力変換装置であって、
     入力側の第1整流回路と、少なくとも1つの入力力率改善用の減流リアクトルおよび少なくとも1つの定電力制御用の平滑コンデンサを備えて構成されるインピーダンスソース回路網と、2つのスイッチング素子が直列接続されてなるレグの一対を互いに並列接続した構成のスイッチング回路と、1次側巻線が前記スイッチング回路に接続された絶縁トランスと、前記絶縁トランスの2次側巻線に接続された第2整流回路と、制御回路とを備え、
     前記制御回路は、前記スイッチング回路の一対のレグ同士の短絡期間を調整することにより前記第1整流回路から出力される電流を制御し、かつ対角関係にある2つの前記スイッチング素子からなるペアの相互の電力伝送期間を調整することにより前記直流負荷への出力電力が一定となる制御を行う、電力変換装置。
    A power conversion device that converts power between an AC power supply and a DC load.
    An impedance source network consisting of a first rectifier circuit on the input side, a current-reducing reactor for improving the input power factor, and a smoothing capacitor for at least one constant power control, and two switching elements in series. A switching circuit in which a pair of connected legs are connected in parallel to each other, an isolation transformer in which the primary winding is connected to the switching circuit, and a second winding in which the primary winding is connected to the secondary winding of the isolation transformer. Equipped with a rectifier circuit and a control circuit,
    The control circuit controls the current output from the first rectifier circuit by adjusting the short-circuit period between the pair of legs of the switching circuit, and is a pair of the two switching elements that are diagonally related to each other. A power conversion device that controls the output power to the DC load to be constant by adjusting the mutual power transmission period.
  2.  前記スイッチング素子が1スイッチング周期中にオンするデューティ比は、前記短絡期間のデューティ比と前記電力伝送期間のデューティ比との和が0.75未満である、請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the duty ratio that the switching element turns on in one switching cycle is a sum of the duty ratio of the short-circuit period and the duty ratio of the power transmission period of less than 0.75.
  3.  前記制御回路は、電圧型コンバータと電流型コンバータとの動作制御を並行して行う、請求項1または請求項2に記載の電力変換装置。 The power conversion device according to claim 1 or 2, wherein the control circuit controls the operation of the voltage type converter and the current type converter in parallel.
  4.  前記制御回路は、前記短絡期間では前記減流リアクトルのエネルギを励磁する前記電流型コンバータの動作制御を、前記電力伝送期間では、前記平滑コンデンサで前記スイッチング回路の入力母線電圧を一定にする前記電圧型コンバータの動作制御を行う、請求項3に記載の電力変換装置。 The control circuit controls the operation of the current converter that excites the energy of the current-reducing reactor during the short-circuit period, and the smoothing capacitor keeps the input bus voltage of the switching circuit constant during the power transmission period. The power conversion device according to claim 3, which controls the operation of the type converter.
  5.  前記インピーダンスソース回路網は、還流用素子、第1減流リアクトル、第2減流リアクトル、第1平滑コンデンサ、および第2平滑コンデンサを備えており、
     前記第1整流回路の出力母線の正極端子と前記第1減流リアクトルの第1端とが互いに接続され、
     前記第1整流回路の出力母線の負極端子、前記第1平滑コンデンサの第1端、および前記スイッチング回路の入力母線の負極端子が互いに接続され、
     前記第1減流リアクトルの第2端、前記第2平滑コンデンサの第1端、および前記還流用素子の第1端が互いに接続され、
     前記第2平滑コンデンサの第2端、前記第2減流リアクトルの第1端、および前記スイッチング回路の入力母線の正極端子が接続され、
     前記還流用素子の第2端、前記第2減流リアクトルの第2端、および前記第1平滑コンデンサの第2端が互いに接続されている、請求項1から請求項4のいずれか1項に記載の電力変換装置。
    The impedance source network includes a reflux element, a first decompression reactor, a second decompression reactor, a first smoothing capacitor, and a second smoothing capacitor.
    The positive electrode terminal of the output bus of the first rectifier circuit and the first end of the first current reducing reactor are connected to each other.
    The negative electrode terminal of the output bus of the first rectifier circuit, the first end of the first smoothing capacitor, and the negative electrode terminal of the input bus of the switching circuit are connected to each other.
    The second end of the first current reducing reactor, the first end of the second smoothing capacitor, and the first end of the reflux element are connected to each other.
    The second end of the second smoothing capacitor, the first end of the second decurrent reactor, and the positive electrode terminal of the input bus of the switching circuit are connected.
    The second end of the reflux element, the second end of the second decurrent current reactor, and the second end of the first smoothing capacitor are connected to each other, according to any one of claims 1 to 4. The power converter described.
  6.  前記インピーダンスソース回路網は、第1減流リアクトル、第2減流リアクトル、第1平滑コンデンサ、および第2平滑コンデンサを備えており、
     前記第1整流回路の出力母線の正極端子、前記第1減流リアクトルの第1端、および前記第1平滑コンデンサの第1端が互いに接続され、
     前記第1減流リアクトルの第2端、前記第2平滑コンデンサの第1端、および前記スイッチング回路の入力母線の正極端子が互いに接続され、
     前記第1整流回路の出力母線の負極端子、前記第2平滑コンデンサの第2端、および前記第2減流リアクトルの第1端が互いに接続され、
     前記第1平滑コンデンサの第2端、前記第2減流リアクトルの第2端、および前記スイッチング回路の入力母線の負極端子が互いに接続されている、請求項1から請求項4のいずれか1項に記載の電力変換装置。
    The impedance source network includes a first decompression reactor, a second decompression reactor, a first smoothing capacitor, and a second smoothing capacitor.
    The positive electrode terminal of the output bus of the first rectifier circuit, the first end of the first decurrent reactor, and the first end of the first smoothing capacitor are connected to each other.
    The second end of the first decurrent reactor, the first end of the second smoothing capacitor, and the positive electrode terminal of the input bus of the switching circuit are connected to each other.
    The negative electrode terminal of the output bus of the first rectifier circuit, the second end of the second smoothing capacitor, and the first end of the second current reducing reactor are connected to each other.
    Any one of claims 1 to 4, wherein the second end of the first smoothing capacitor, the second end of the second decurrent reactor, and the negative electrode terminal of the input bus of the switching circuit are connected to each other. The power converter described in.
  7.  前記インピーダンスソース回路網は、第1減流リアクトル、第2減流リアクトル、第3減流リアクトル、第1平滑コンデンサ、および第2平滑コンデンサを備えており、
     前記第1整流回路の出力母線の正極端子と前記第1減流リアクトルの第1端とが互いに接続され、
     前記第1減流リアクトルの第2端、前記第2減流リアクトルの第1端、および前記第1平滑コンデンサの第1端が互いに接続され、
     前記第2減流リアクトルの第2端、前記第2平滑コンデンサの第1端、および前記スイッチング回路の入力母線の正極端子が互いに接続され、
     前記第1整流回路の出力母線の負極端子、前記第2平滑コンデンサの第2端、および第3減流リアクトルの第1端が互いに接続され、
     前記第1平滑コンデンサの第2端、前記第3減流リアクトルの第2端、および前記スイッチング回路の入力母線の負極端子が互いに接続されている、請求項1から請求項4のいずれか1項に記載の電力変換装置。
    The impedance source network includes a first decompression reactor, a second decompression reactor, a third decompression reactor, a first smoothing capacitor, and a second smoothing capacitor.
    The positive electrode terminal of the output bus of the first rectifier circuit and the first end of the first current reducing reactor are connected to each other.
    The second end of the first decompression reactor, the first end of the second decompression reactor, and the first end of the first smoothing capacitor are connected to each other.
    The second end of the second decurrent reactor, the first end of the second smoothing capacitor, and the positive electrode terminal of the input bus of the switching circuit are connected to each other.
    The negative electrode terminal of the output bus of the first rectifier circuit, the second end of the second smoothing capacitor, and the first end of the third current reducing reactor are connected to each other.
    Any one of claims 1 to 4, wherein the second end of the first smoothing capacitor, the second end of the third decurrent reactor, and the negative electrode terminal of the input bus of the switching circuit are connected to each other. The power converter described in.
  8.  前記スイッチング回路は、第1スイッチング回路と第2スイッチング回路とが並列接続されて構成されており、
     前記制御回路は、前記第1スイッチング回路と前記第2スイッチング回路を交互にインターリーブ動作させつつ、前記第1整流回路から出力される電流の制御および前記直流負荷への出力電力が一定となる制御を行う、請求項1から請求項7のいずれか1項に記載の電力変換装置。
    The switching circuit is configured by connecting a first switching circuit and a second switching circuit in parallel.
    The control circuit controls the current output from the first rectifier circuit and controls the output power to the DC load to be constant while alternately interleaving the first switching circuit and the second switching circuit. The power conversion device according to any one of claims 1 to 7.
  9.  前記インターリーブ動作は、
     前記第1スイッチング回路と前記第2スイッチング回路との少なくとも一方のレグを構成する直列接続された2つの前記スイッチング素子をオン状態とする第1動作モードと、
     前記第1スイッチング回路の対角関係にある2つの前記スイッチング素子からなる一方のペアがオン状態となることで負荷側へ電力伝送を行う第2動作モードと、
     前記第1スイッチング回路の全ての前記スイッチング素子がオン状態となる第3動作モードと、
     前記第1スイッチング回路の対角関係にある2つの前記スイッチング素子からなる他方のペアがオン状態となることで負荷側へ電力伝送を行う第4動作モードと、
     前記第1スイッチング回路と前記第2スイッチング回路との少なくとも一方のレグを構成する直列接続された2つの前記スイッチング素子をオン状態とする第5動作モードと、
     前記第2スイッチング回路の対角関係にある2つのスイッチング素子からなる一方のペアがオン状態となることで負荷側へ電力伝送を行う第6動作モードと、
     前記第2スイッチング回路の全てのスイッチング素子がオン状態となる第7動作モードと、
     前記第2スイッチング回路の対角関係にある2つの前記スイッチング素子からなる他方のペアがオン状態となることで負荷側へ電力伝送を行う第8動作モードと、
     が順次選択されて動作するものである、請求項8に記載の電力変換装置。
    The interleave operation is
    A first operation mode in which the two switching elements connected in series constituting at least one leg of the first switching circuit and the second switching circuit are turned on, and
    A second operation mode in which power is transmitted to the load side when one pair of the two diagonal switching elements of the first switching circuit is turned on.
    A third operation mode in which all the switching elements of the first switching circuit are turned on, and
    A fourth operation mode in which power is transmitted to the load side when the other pair of the two diagonal switching elements of the first switching circuit is turned on.
    A fifth operation mode in which the two switching elements connected in series constituting at least one leg of the first switching circuit and the second switching circuit are turned on, and a fifth operation mode.
    A sixth operation mode in which power is transmitted to the load side by turning on one pair of two switching elements diagonally related to the second switching circuit.
    The seventh operation mode in which all the switching elements of the second switching circuit are turned on, and
    An eighth operation mode in which power is transmitted to the load side when the other pair of the two diagonal switching elements of the second switching circuit is turned on.
    The power conversion device according to claim 8, wherein the power conversion device is sequentially selected and operated.
  10.  前記第1動作モードでは、前記第1スイッチング回路の一方のレグを構成する直列接続された2つの前記スイッチング素子をオン状態とし、前記第2スイッチング回路の一方のレグを構成する直列接続された2つの前記スイッチング素子をオン状態とするとき、前記第5動作モードでは、第1スイッチング回路の他方のスイッチングレグを構成する直列接続された2つの前記スイッチング素子をオン状態とし、前記第2スイッチング回路の他方のスイッチングレグを構成する直列接続された2つの前記スイッチング素子をオン状態とする、請求項9に記載の電力変換装置。 In the first operation mode, the two switching elements connected in series forming one leg of the first switching circuit are turned on, and the two connected in series forming one leg of the second switching circuit are turned on. When one of the switching elements is turned on, in the fifth operation mode, the two series-connected switching elements constituting the other switching leg of the first switching circuit are turned on, and the second switching circuit of the second switching circuit is turned on. The power conversion device according to claim 9, wherein the two switching elements connected in series constituting the other switching leg are turned on.
PCT/JP2019/048119 2019-12-09 2019-12-09 Power conversion device WO2021117098A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/048119 WO2021117098A1 (en) 2019-12-09 2019-12-09 Power conversion device
JP2021563463A JP7118293B2 (en) 2019-12-09 2019-12-09 power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048119 WO2021117098A1 (en) 2019-12-09 2019-12-09 Power conversion device

Publications (1)

Publication Number Publication Date
WO2021117098A1 true WO2021117098A1 (en) 2021-06-17

Family

ID=76328921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048119 WO2021117098A1 (en) 2019-12-09 2019-12-09 Power conversion device

Country Status (2)

Country Link
JP (1) JP7118293B2 (en)
WO (1) WO2021117098A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389460A (en) * 2022-01-21 2022-04-22 中国石油大学(华东) Mixed bridge type DC/DC converter based on quasi-Z source structure
CN114944262A (en) * 2022-07-25 2022-08-26 宁波兴隆磁性技术有限公司 Direct-current constant-voltage magnetizing and demagnetizing control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784996A (en) * 2022-04-28 2022-07-22 中国科学院电工研究所 Low-voltage high-current wireless charging system and cooperative control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015623A1 (en) * 2013-08-01 2015-02-05 株式会社日立製作所 Semiconductor device and power conversion device
JP2016052167A (en) * 2014-08-29 2016-04-11 東洋電機製造株式会社 Power conversion device
WO2018043480A1 (en) * 2016-09-01 2018-03-08 国立大学法人筑波大学 Load driving circuit, load driving system, and load driving method
WO2019073904A1 (en) * 2017-10-13 2019-04-18 ナブテスコ株式会社 Ac-ac converter circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015623A1 (en) * 2013-08-01 2015-02-05 株式会社日立製作所 Semiconductor device and power conversion device
JP2016052167A (en) * 2014-08-29 2016-04-11 東洋電機製造株式会社 Power conversion device
WO2018043480A1 (en) * 2016-09-01 2018-03-08 国立大学法人筑波大学 Load driving circuit, load driving system, and load driving method
WO2019073904A1 (en) * 2017-10-13 2019-04-18 ナブテスコ株式会社 Ac-ac converter circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389460A (en) * 2022-01-21 2022-04-22 中国石油大学(华东) Mixed bridge type DC/DC converter based on quasi-Z source structure
CN114944262A (en) * 2022-07-25 2022-08-26 宁波兴隆磁性技术有限公司 Direct-current constant-voltage magnetizing and demagnetizing control method

Also Published As

Publication number Publication date
JP7118293B2 (en) 2022-08-15
JPWO2021117098A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US8861238B2 (en) Isolated soft-switch single-stage AC-DC converter
US11451139B2 (en) Three-phase single-stage soft-switching AC-DC converter with power factor correction
EP3734828B1 (en) Power conversion device
JP6624729B2 (en) Insulated bidirectional DC / DC converter and control method therefor
WO2021117098A1 (en) Power conversion device
US20080094860A1 (en) Bidirectional battery power inverter
Siwakoti et al. Power electronics converters—An overview
US11296607B2 (en) DC-DC converter
CN112436741B (en) Simple multi-pulse rectifier based on double-switch power electronic phase-shifting transformer
US11303214B2 (en) Power conversion device and power supply device
US20050141248A1 (en) Novel efficient and reliable DC/AC converter for fuel cell power conditioning
WO2006027744A2 (en) Primary paralleled three-phase full-bridge dc-dc converter
CN109842182B (en) Power supply system
Okutani et al. Analysis and comparison of series resonant converter with embedded filters for high power density DCX of solid-state transformer
JP2002233150A (en) Resonance-type dc-to-dc converter
Akbar et al. Single-Phase Virtual-Ground Transformerless Buck–Boost Inverters
Chen et al. A new hybrid Si/SiC CCM totem pole bridgeless PFC design towards optimal performance and cost tradeoff
Seragi et al. Review on Z-Source Inverter
Jang et al. Interleaved PFC boost converter with intrinsic voltage-doubler characteristic
Ahmed et al. Three-Level Unipolar/Bipolar Buck-Boost AC-AC Converters with Less Active Switches and No Commutation Issues
Abbasi et al. An interchangeable soft-switched voltage boosting circuit for a multi-mode LLC step-up converter module in medium voltage applications
Reddivari et al. Differential mode gamma source inverter with reduced switching stresses
Esmaeili et al. Dual winding magnetically coupled impedance-source inverters with DC-rail voltage clamping circuits
JP2009165272A (en) Controller, power conversion apparatus and control method
Parihar et al. Optimal control path for dual active bridge based solid-state transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955691

Country of ref document: EP

Kind code of ref document: A1