WO2021114946A1 - 一种微波介质陶瓷滤波器的表面处理方法 - Google Patents

一种微波介质陶瓷滤波器的表面处理方法 Download PDF

Info

Publication number
WO2021114946A1
WO2021114946A1 PCT/CN2020/125245 CN2020125245W WO2021114946A1 WO 2021114946 A1 WO2021114946 A1 WO 2021114946A1 CN 2020125245 W CN2020125245 W CN 2020125245W WO 2021114946 A1 WO2021114946 A1 WO 2021114946A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric ceramic
microwave dielectric
ceramic filter
treatment method
cleaning
Prior art date
Application number
PCT/CN2020/125245
Other languages
English (en)
French (fr)
Inventor
苏柯铭
伍隽
庞新锋
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Publication of WO2021114946A1 publication Critical patent/WO2021114946A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/007Manufacturing frequency-selective devices

Definitions

  • the invention relates to the technical field of surface treatment of microwave dielectric ceramic filters, in particular to a surface treatment method of microwave dielectric ceramic filters.
  • Microwave dielectric ceramic filter is a kind of filter made of microwave dielectric ceramic material. It has the characteristics of low loss, stable frequency temperature coefficient, small thermal expansion coefficient, high power capacity, and small size. Therefore, microwave dielectric ceramic filters are widely used Used in electronic countermeasures, navigation communications, warning radars, home satellite live TV receivers and mobile phones.
  • microwave dielectric ceramic filters subject to harsh environmental conditions during use, resulting in microwave dielectric ceramics
  • the surface of the filter is corroded, and if the surface of the microwave dielectric ceramic filter is corroded, it will affect the performance of the microwave dielectric ceramic filter, reduce the reliability of the microwave dielectric ceramic filter, and increase the occurrence of the microwave dielectric ceramic filter. Probability of failure.
  • the object of the present invention is to provide a surface treatment method for a microwave dielectric ceramic filter, which is not only easy to mass-produce and low in processing cost, but also can significantly improve the reliability of the microwave dielectric ceramic filter.
  • a surface treatment method of a microwave dielectric ceramic filter includes the following steps:
  • Metallization step metallize the surface of the microwave dielectric ceramic filter
  • Cleaning step cleaning the surface of the microwave dielectric ceramic filter that has been metalized
  • Drying step drying the surface of the microwave dielectric ceramic filter that has been cleaned
  • the step of forming a protective layer the microwave dielectric ceramic filter that has been dried is printed or sprayed to form a protective layer on its non-functional surface.
  • the surface of the microwave dielectric ceramic filter is cleaned by ultrasonic cleaning the surface of the metalized microwave dielectric ceramic filter in an ultrasonic cleaning device with a cleaning liquid.
  • the cleaning liquid is a mixed liquid of deionized water and detergent.
  • the working power of the ultrasonic cleaning equipment is 100W, and the cleaning time is 10-15min. .
  • the drying temperature when drying the surface of the microwave dielectric ceramic filter after the cleaning treatment is 100-150° C., and the drying time is 30-60 min.
  • the material of the protective layer is three-proof paint.
  • the thickness of the protective layer is 0.005-0.03 mm.
  • the surface of the microwave dielectric ceramic filter is metalized to form a metal layer on the surface of the microwave dielectric ceramic filter by printing or spraying.
  • the material of the metal layer is gold or silver.
  • the material of the metal layer is silver, and the thickness of the metal layer is 7-15 ⁇ m.
  • the present invention has the following beneficial effects:
  • the surface treatment method of the microwave dielectric ceramic filter of the present invention uses printing or spraying to form a protective layer on the non-functional surface of the microwave dielectric ceramic filter that has been dried, so that the protective layer can avoid microwaves.
  • the non-functional surface of the dielectric ceramic filter is corroded by the external environment during use, which obviously improves the corrosion resistance of the microwave dielectric ceramic filter, and further improves the reliability of the microwave dielectric ceramic filter.
  • the invention discloses a surface treatment method of a microwave dielectric ceramic filter, which comprises the following steps:
  • Metallization step metallize the surface of the microwave dielectric ceramic filter
  • Cleaning step cleaning the surface of the microwave dielectric ceramic filter that has been metalized
  • Drying step drying the surface of the microwave dielectric ceramic filter that has been cleaned
  • the step of forming a protective layer the microwave dielectric ceramic filter that has been dried is printed or sprayed to form a protective layer on its non-functional surface.
  • the surface of the metalized microwave dielectric ceramic filter will have impurities such as dust and oil, if it is not cleaned, these impurities will be mixed in the protective layer, thereby reducing the gap between the protective layer and the surface of the microwave dielectric ceramic filter.
  • the adhesion force of the microwave dielectric ceramic filter increases the possibility of peeling and peeling of the protective layer, which affects the durability of the microwave dielectric ceramic filter.
  • the non-functional surface of the microwave dielectric ceramic filter is the non-welded surface of the microwave dielectric ceramic filter. This is because the microwave dielectric ceramic filter needs to be welded together with other components during use.
  • cleaning the surface of the microwave dielectric ceramic filter is ultrasonic cleaning the surface of the metalized microwave dielectric ceramic filter in an ultrasonic cleaning device with a cleaning liquid.
  • the cleaning liquid is a mixed liquid of deionized water and detergent.
  • the working power of the ultrasonic cleaning equipment is 100W, and the cleaning time is 10-15min. This is because the cleaning time cannot be too short, otherwise it will affect the cleaning effect; and if the cleaning time is too long, time will be wasted.
  • the drying temperature when drying the surface of the cleaned microwave dielectric ceramic filter is 100-150°C, and the drying time is 30-60min. This is because the purpose of drying is to remove the To clean the moisture on the surface of the microwave dielectric ceramic filter, setting the drying temperature within the range of 100-150°C can vaporize the moisture on the surface of the microwave dielectric ceramic filter to achieve the purpose of drying.
  • the material of the protective layer is a three-proof paint, because the three-proof paint has good high temperature resistance, low temperature resistance, weather resistance, electrical insulation, moisture resistance, salt spray resistance, and mildew resistance.
  • the three-proof paint can be selected from acrylic three-proof paint, polyurethane three-proof paint, organic silicon three-proof paint, etc., which can be selected according to actual conditions.
  • the thickness of the protective layer is 0.005-0.03mm. This is because if the thickness of the protective layer is less than 0.005mm, the purpose of protection is basically not achieved; and if the thickness of the protective layer is greater than 0.03mm, the protective layer needs to be sprayed or printed multiple times during formation, which reduces the processing efficiency.
  • the surface of the microwave dielectric ceramic filter is metalized to form a metal layer on the surface of the dielectric ceramic filter by printing or spraying.
  • the material of the metal layer is gold or silver. This is because the conductivity of gold and silver is relatively high, and the weldability of gold and silver is good.
  • the material of the metal layer is silver, and the thickness of the metal layer is 7-15 ⁇ m.
  • sample 1 three sets of microwave dielectric ceramic filter samples with specifications of 50mm*20mm*6mm, namely sample 2, and sample 3 are prepared, and then the surfaces of the above three sets of samples are processed, which includes the following steps:
  • a silver layer is formed on the surface of the microwave dielectric ceramic filter by printing, and the thickness of the silver layer is 7 ⁇ m.
  • Cleaning step place the microwave dielectric ceramic filter processed by the metallization step in the cleaning liquid of the ultrasonic cleaning equipment for ultrasonic cleaning, where: the cleaning liquid is composed of a liquid detergent containing sodium alkyl sulfonate and deionized water in a volume ratio of 1 :Mixed in a ratio of 10, the working power of the ultrasonic cleaning equipment is 100W.
  • the cleaning liquid is composed of a liquid detergent containing sodium alkyl sulfonate and deionized water in a volume ratio of 1 :Mixed in a ratio of 10, the working power of the ultrasonic cleaning equipment is 100W.
  • Drying step drying the surface of the microwave dielectric ceramic filter processed by the cleaning step, the drying temperature is 140°C, and the drying time is 60min;
  • the step of forming a protective layer the non-functional surface of the microwave dielectric ceramic filter processed by the drying step is uniformly printed with acrylic tri-proof paint as a protective layer by a printing device.
  • A, B and C in Table 1 correspond to different cleaning effects, where: A means that there is no visible and obvious residue of dirt on the surface; B means that there is a small amount of visible residue on the surface; C means that there is obvious visible dirt on the surface ⁇ residues.
  • the cleaning time is preferably 15 minutes.
  • three sets of microwave dielectric ceramic filter samples with specifications of 50mm*20mm*6mm are prepared, namely sample 4, sample 5 and sample 6, and then the surfaces of the above three sets of samples are processed, which includes the following steps:
  • Metallization step forming a silver layer on the surface of the above three sets of samples by printing, and the thickness of the silver layer is 15 ⁇ m.
  • Cleaning step place the three groups of samples processed by the metallization step in the cleaning solution of the ultrasonic cleaning equipment for ultrasonic cleaning, where: the cleaning solution is made of liquid detergent containing sodium alkyl sulfonate and deionized water in a volume ratio of 1:20 Mixed together, the working power of the ultrasonic cleaning equipment is 100W, and the cleaning time is 15min.
  • the cleaning solution is made of liquid detergent containing sodium alkyl sulfonate and deionized water in a volume ratio of 1:20 Mixed together, the working power of the ultrasonic cleaning equipment is 100W, and the cleaning time is 15min.
  • Drying step Dry the three groups of samples processed by the cleaning step at a temperature of 150°C and a drying time of 60 minutes;
  • the step of forming a protective layer using spraying equipment to uniformly spray the surface of the sample 5 and the sample 6 processed in step (4) with acrylic tri-proof paint of different thicknesses as a protective layer.
  • the inventor carried out the salt spray test and the aging test on the above three sets of samples.
  • the specific experimental methods are as follows:
  • Salt spray deposition rate (1.0 ⁇ 2.0)/(80cm ⁇ 2*h)
  • a in Table 2 indicates that there is no local discoloration on the surface; B indicates that there is local discoloration on the surface; C indicates that the surface is not corroded by salt spray: D indicates that the surface is locally corroded by salt spray .
  • the thickness of the protective layer is less than 0.009mm, the protective layer basically has no protective effect; when the thickness of the protective layer is greater than 0.03mm, it requires multiple printing or spraying, which significantly reduces the processing efficiency. Therefore, in this embodiment, the thickness of the protective layer is 0.009-0.03 mm.

Abstract

本发明公开了一种微波介质陶瓷滤波器的表面处理方法,其利用印刷或喷涂的方式在经过烘干处理的微波介质陶瓷滤波器的非功能面形成防护层,从而通过所述防护层可以避免微波介质陶瓷滤波器在使用的过程中其非功能面受到外部环境的侵蚀,明显提高了微波介质陶瓷滤波器的耐腐蚀性能等,进而提高了微波介质陶瓷滤波器的可靠性。

Description

一种微波介质陶瓷滤波器的表面处理方法 技术领域
本发明涉及微波介质陶瓷滤波器的表面处理技术领域,尤其涉及一种微波介质陶瓷滤波器的表面处理方法。
背景技术
微波介质陶瓷滤波器是一种利用微波介质陶瓷材料制成的滤波器,具有低损耗、频率温度系数稳定、热膨胀系数小、功率容量高、体积小等特点,因此,微波介质陶瓷滤波器被广泛应用于电子对抗、导航通讯、警戒雷达、家用卫星直播电视接收机和移动电话等设备中。
但是,电子对抗、导航通讯、警戒雷达、家用卫星直播电视接收机和移动电话等设备中往往处于户外,使得微波介质陶瓷滤波器在使用的过程中会遭受严苛的环境条件,造成微波介质陶瓷滤波器的表面发生腐蚀,而且,如果微波介质陶瓷滤波器的表面被侵蚀,将会对微波介质陶瓷滤波器的性能产生影响,降低微波介质陶瓷滤波器的可靠性,提高微波介质陶瓷滤波器发生失效的概率。
发明内容
本发明的目的在于提供一种微波介质陶瓷滤波器的表面处理方法,其不仅易于大规模生产、处理成本低,而且还可以明显提高微波介质陶瓷滤波器的可靠性。
为解决上述技术问题,本发明所采用的技术方案内容具体如下:
一种微波介质陶瓷滤波器的表面处理方法,包括如下步骤:
金属化步骤:对微波介质陶瓷滤波器表面进行金属化处理;
清洗步骤:对经过金属化处理的微波介质陶瓷滤波器的表面进行清洗;
烘干步骤:对经过清洗处理的微波介质陶瓷滤波器的表面进行烘干;
形成防护层步骤:对经过烘干处理的微波介质陶瓷滤波器利用印刷或喷涂的方式在其非功能面形成防护层。
作为上述方案的优选,对微波介质陶瓷滤波器的表面进行清洗为用清洗液 在超声波清洗设备中对经过金属化处理的微波介质陶瓷滤波器的表面进行超声波清洗。
作为上述方案的优选,所述清洗液为去离子水和洗涤剂的混合液。
作为上述方案的优选,用去离子水和洗涤剂的混合液对经过成金属化处理的微波介质陶瓷滤波器的表面进行超声波清洗时,超声波清洗设备的工作功率为100W,清洗时间为10-15min。
作为上述方案的优选,对经过清洗处理的微波介质陶瓷滤波器的表面进行烘干时的烘干温度为100-150℃,烘干时间为30~60min。
作为上述方案的优选,所述防护层的材质为三防漆。
作为上述方案的优选,所述防护层的厚度为0.005-0.03mm。
作为上述方案的优选,对微波介质陶瓷滤波器表面进行金属化处理为利用印刷或喷涂的方式在微波介质陶瓷滤波器表面形成金属层。
作为上述方案的优选,所述金属层的材质为金或银。
作为上述方案的优选,所述金属层的材质为银,且金属层的厚度为7~15μm。
与现有技术相比,本发明的有益效果在于:
本发明所述的微波介质陶瓷滤波器的表面处理方法,其利用印刷或喷涂的方式在经过烘干处理的微波介质陶瓷滤波器的非功能面形成防护层,从而通过所述防护层可以避免微波介质陶瓷滤波器在使用的过程中其非功能面受到外部环境的侵蚀,明显提高了微波介质陶瓷滤波器的耐腐蚀性能,进而提高了微波介质陶瓷滤波器的可靠性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,详细说明如下。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下:
本发明公开了一种微波介质陶瓷滤波器的表面处理方法,包括如下步骤:
金属化步骤:对微波介质陶瓷滤波器表面进行金属化处理;
清洗步骤:对经过金属化处理的微波介质陶瓷滤波器的表面进行清洗;
烘干步骤:对经过清洗处理的微波介质陶瓷滤波器的表面进行烘干;
形成防护层步骤:对经过烘干处理的微波介质陶瓷滤波器利用印刷或喷涂的方式在其非功能面形成防护层。
由于经过金属化处理的微波介质陶瓷滤波器的表面会存在灰尘、油污等杂质,如不进行清洗,这些杂质会混杂在所述防护层中,从而降低防护层与微波介质陶瓷滤波器表面之间的附着力大小,使得防护层发生脱落、起皮等的可能性增大,进而影响微波介质陶瓷滤波器的耐久性。
需要说明的是,在本发明中,微波介质陶瓷滤波器的非功能面为微波介质陶瓷滤波器的非焊接面,这是由于微波介质陶瓷滤波器使用时需要与其他部件焊接在一起。
作为上述方案的优选,对微波介质陶瓷滤波器的表面进行清洗为用清洗液在超声波清洗设备中对经过金属化处理的微波介质陶瓷滤波器的表面进行超声波清洗。
作为上述方案的优选,所述清洗液为去离子水和洗涤剂的混合液。
作为上述方案的优选,用去离子水和洗涤剂的混合液对经过金属化处理的微波介质陶瓷滤波器的表面进行超声波清洗时,超声波清洗设备的工作功率为100W,清洗时间为10-15min,这是由于清洗时间不能过短,否则会影响清洗效果;而清洗时间过长,则会浪费时间。
作为上述方案的优选,对经过清洗处理的微波介质陶瓷滤波器的表面进行烘干时的烘干温度为100-150℃,烘干时间为30~60min,这是由于烘干的目的是清除经过清洗处理的微波介质陶瓷滤波器表面的水分,将烘干温度设置在100-150℃的范围内,可以使微波介质陶瓷滤波器表面的水分发生气化,以实现烘干的目的。
作为上述方案的优选,所述防护层的材质为三防漆,这是因为三防漆具有较好的耐高温、耐低温、耐候性能、电绝缘性、防潮、防盐雾以及防霉等性能。而且,所述三防漆可选用丙烯酸酯三防漆、聚氨酯三防漆和有机硅三防漆等,具体可根据实际情况进行选择。
作为上述方案的优选,所述防护层的厚度为0.005-0.03mm,这是由于如果所述防护层的厚度小于0.005mm,则基本起不到防护的目的;而如果所述防护层的厚度大于0.03mm,则所述防护层在形成时需要多次喷涂或印刷,降低了加 工效率。
作为上述方案的优选,对微波介质陶瓷滤波器表面进行金属化处理为利用印刷或喷涂的方式在介质陶瓷滤波器表面形成金属层。
作为上述方案的优选,所述金属层的材质为金或银,这是由于金和银的导电率相对较高,且金和银的焊接性好。
作为上述方案的优选,所述金属层的材质为银,且金属层的厚度为7~15μm。
以下为本发明具体的实施例。
实施例一
在本实施例中,准备三组规格为50mm*20mm*6mm的微波介质陶瓷滤波器样品,即样品1、样品2和样品3,然后对上述三组样品的表面进行处理,其包括如下步骤:
金属化步骤:利用印刷的方式在微波介质陶瓷滤波器表面形成银层,且银层的厚度为7μm。
清洗步骤:将经过金属化步骤处理的微波介质陶瓷滤波器放置于超声波清洗设备的清洗液中进行超声波清洗,其中:清洗液由含烷基磺酸钠液体洗涤剂和去离子水按体积比1:10的比例混合而成,超声波清洗设备的工作功率为100W。
烘干步骤:将经过清洗步骤处理的微波介质陶瓷滤波器的表面进行烘干,烘干温度为140℃,烘干时间为60min;
形成防护层步骤:利用印刷设备在经过烘干步骤处理的微波介质陶瓷滤波器的非功能面均匀印刷丙烯酸酯三防漆作为防护层。
在本实施例中,为了确定超声波清洗时间对经过金属化步骤处理的微波介质陶瓷滤波器表面清洗效果的影响,发明人针对三组样品进行了清洗实验,然后分别记录三组样品在经过不同的清洗时间清洗后的表面清洁度,具体实验结果如表1所示:
表1 清洗时间对清洗效果的影响
Figure PCTCN2020125245-appb-000001
Figure PCTCN2020125245-appb-000002
备注:表1中的A、B和C分别对应不同的清洗效果,其中:A表示表面无可见明显的污物残留;B表示表面有少量可见的污物残留;C表示表面有明显可见的污物残留。
从表1中可以看出,当清洗时间小于12min时,样品1的表面无可见明显的污物残留,样品2和样品3表面有少量可见的污物残留;当清洗时间大于等于15min,样品1、样品2以及样品3的表面均无可见明显的污物残留,但是,清洗时间过长,会浪费时间,因此,在本实施例中,清洗时间优选为15min。
实施例二
在本实施例中,准备三组规格为50mm*20mm*6mm的微波介质陶瓷滤波器样品,即样品4、样品5和样品6,然后对上述三组样品的表面进行处理,其包括如下步骤:
金属化步骤:利用印刷的方式在上述三组样品的表面形成银层,且银层的厚度为15μm。
清洗步骤:将经过金属化步骤处理的三组样品放置于超声波清洗设备的清洗液中进行超声波清洗,其中:清洗液由含烷基磺酸钠液体洗涤剂和去离子水按体积比1:20混合而成,超声波清洗设备的工作功率为100W,清洗时间为15min。
烘干步骤:将经过清洗步骤处理的三组样品进行烘干,烘干温度为150℃,烘干时间为60min;
形成防护层步骤:利用喷涂设备向将经过步骤(4)处理的样品5和样品6的表面均匀喷涂不同厚度的丙烯酸酯三防漆作为防护层。
在本实施例中,为了确定防护层厚度对微波介质陶瓷滤波器性能的影响,发明人分别对上述三组样品进行了盐雾试验和老化试验,具体实验方法为:
(1)盐雾试验
标准参考:GB/T 2423.17
具体条件为:
盐液浓度:(5±1)%;
试验箱温度:(35±2)℃
PH值(25℃):6.5~7.2;
盐雾沉降率:(1.0~2.0)/(80cm^2*h)
(2)老化实验
标准参考:JESD22
具体条件为:
温度:130℃
湿度:85RH%
时间:96H
上述三组样品的试验结果分别如表2所示:
表2 防护层厚度对微波介质陶瓷滤波器性能的影响
Figure PCTCN2020125245-appb-000003
备注:表2中的A表示表面未出现局部变色的现象;B表示表面出现了局部变色的现象;C表示表面未出现被盐雾侵蚀的现象:D表示表面出现了局部被盐雾侵蚀的现象。
从表2中可以看出,所述微波介质陶瓷滤波器在进行盐雾试验时,当防护层的厚度小于0.005mm或无防护层时,所述微波介质陶瓷滤波器的表面将会出现被侵蚀的现象;当防护层的厚度大于0.09mm时,所述微波介质陶瓷滤波器在进行盐雾试验时,其表面未出现被盐雾侵蚀的现象;另外,所述微波介质陶瓷滤波器在进行老化试验时,当防护层的厚度小于0.005mm时或无防护层时,所述微波介质陶瓷滤波器的表面将会出现局部变色的现象;当防护层的厚度大于0.05mm时,所述微波介质陶瓷滤波器在进行老化试验时,其表面未出现局部变色的现象。
由此可以确定,当防护层的厚度小于0.009mm时,所述防护层基本不具备 防护作用;当防护层的厚度大于0.03mm时,则需要经过多次印刷或喷涂,明显降低了加工效率,因此,在本实施例中,所述防护层的厚度为0.009-0.03mm。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种微波介质陶瓷滤波器的表面处理方法,其特征在于,包括如下步骤:
    金属化步骤:对微波介质陶瓷滤波器表面进行金属化处理;
    清洗步骤:对经过金属化处理的微波介质陶瓷滤波器的表面进行清洗;
    烘干步骤:对经过清洗处理的微波介质陶瓷滤波器的表面进行烘干;
    形成防护层步骤:对经过烘干处理的微波介质陶瓷滤波器利用印刷或喷涂的方式在其非功能面形成防护层。
  2. 根据权利要求1所述的微波介质陶瓷滤波器的表面处理方法,其特征在于,对微波介质陶瓷滤波器的表面进行清洗为用清洗液在超声波清洗设备中对经过金属化处理的微波介质陶瓷滤波器的表面进行超声波清洗。
  3. 根据权利要求2所述的微波介质陶瓷滤波器的表面处理方法,其特征在于,所述清洗液为去离子水和洗涤剂的混合液。
  4. 根据权利要求3所述的微波介质陶瓷滤波器的表面处理方法,其特征在于,用去离子水和洗涤剂的混合液对经过金属化处理的微波介质陶瓷滤波器的表面进行超声波清洗时,超声波清洗设备的工作功率为100W,清洗时间为10-15min。
  5. 根据权利要求1所述的微波介质陶瓷滤波器的表面处理方法,其特征在于,对经过清洗处理的微波介质陶瓷滤波器的表面进行烘干时的烘干温度为100-150℃,烘干时间为30~60min。
  6. 根据权利要求1所述的微波介质陶瓷滤波器的表面处理方法,其特征在于,所述防护层的材质为三防漆。
  7. 根据权利要求1所述的微波介质陶瓷滤波器的表面处理方法,其特征在于,所述防护层的厚度为0.005-0.030mm。
  8. 根据权利要求1-7任何一项所述的微波介质陶瓷滤波器的表面处理方法,其特征在于,对微波介质陶瓷滤波器表面进行金属化处理为利用印刷或喷涂的方式在微波介质陶瓷滤波器表面形成金属层。
  9. 根据权利要求8所述的微波介质陶瓷滤波器的表面处理方法,其特征在于,所述金属层的材质为金或银。
  10. 根据权利要求9所述的微波介质陶瓷滤波器的表面处理方法,其特征在于,所述金属层的材质为银,且金属层的厚度为7~15μm。
PCT/CN2020/125245 2019-12-10 2020-10-30 一种微波介质陶瓷滤波器的表面处理方法 WO2021114946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911257919.8A CN111009713A (zh) 2019-12-10 2019-12-10 一种微波介质陶瓷滤波器的表面处理方法
CN201911257919.8 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021114946A1 true WO2021114946A1 (zh) 2021-06-17

Family

ID=70114260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125245 WO2021114946A1 (zh) 2019-12-10 2020-10-30 一种微波介质陶瓷滤波器的表面处理方法

Country Status (2)

Country Link
CN (1) CN111009713A (zh)
WO (1) WO2021114946A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009713A (zh) * 2019-12-10 2020-04-14 深圳顺络电子股份有限公司 一种微波介质陶瓷滤波器的表面处理方法
CN112615124B (zh) * 2020-12-28 2023-06-20 京信射频技术(广州)有限公司 介质陶瓷银层加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050056360A1 (en) * 2003-09-17 2005-03-17 Kug Sun Hong Phosphate-based ceramic compositions with low dielectric constant and method for manufacturing dielectric substrate using the same
CN102664055A (zh) * 2012-04-11 2012-09-12 深圳市大富科技股份有限公司 导电银浆及其制备方法、微波介质陶瓷的表面金属化方法
US20150171501A1 (en) * 2013-12-18 2015-06-18 Skyworks Solutions, Inc. Tunable resonators using high dielectric constant ferrite rods
CN108950496A (zh) * 2018-08-22 2018-12-07 广州鸿葳科技股份有限公司 一种基于5g通信技术用陶瓷谐振体的表面处理方法及其应用
CN110492215A (zh) * 2019-09-04 2019-11-22 曹祖峰 一种5g基站陶瓷滤波器生产工艺
CN111009713A (zh) * 2019-12-10 2020-04-14 深圳顺络电子股份有限公司 一种微波介质陶瓷滤波器的表面处理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103533767B (zh) * 2013-10-23 2016-08-17 国电南瑞三能电力仪表(南京)有限公司 一种利用超声波进行电路板三防处理的方法
CN104974564A (zh) * 2015-06-30 2015-10-14 苏州洋杰电子有限公司 一种集成电路板耐高温绝缘涂料及其制备方法
CN110105867A (zh) * 2019-04-20 2019-08-09 无锡天杨电子有限公司 一种陶瓷覆铜板高耐温阻焊的配方及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050056360A1 (en) * 2003-09-17 2005-03-17 Kug Sun Hong Phosphate-based ceramic compositions with low dielectric constant and method for manufacturing dielectric substrate using the same
CN102664055A (zh) * 2012-04-11 2012-09-12 深圳市大富科技股份有限公司 导电银浆及其制备方法、微波介质陶瓷的表面金属化方法
US20150171501A1 (en) * 2013-12-18 2015-06-18 Skyworks Solutions, Inc. Tunable resonators using high dielectric constant ferrite rods
CN108950496A (zh) * 2018-08-22 2018-12-07 广州鸿葳科技股份有限公司 一种基于5g通信技术用陶瓷谐振体的表面处理方法及其应用
CN110492215A (zh) * 2019-09-04 2019-11-22 曹祖峰 一种5g基站陶瓷滤波器生产工艺
CN111009713A (zh) * 2019-12-10 2020-04-14 深圳顺络电子股份有限公司 一种微波介质陶瓷滤波器的表面处理方法

Also Published As

Publication number Publication date
CN111009713A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2021114946A1 (zh) 一种微波介质陶瓷滤波器的表面处理方法
CN103370445A (zh) 一种增强pcb镀层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法
CN105256342B (zh) 一种基于铜的超疏水表面及其制备方法
WO1983000704A1 (en) Copper-containing articles with a corrosion inhibitor coating and methods of producing the coating
CN103614754A (zh) 一种片式铁氧体产品在电镀前的处理方法
CN101205621B (zh) 一种铝材料零件的清洗方法
CN104629510A (zh) 剥离氮化硼防腐涂料的制备方法及其得到的涂料,涂料的应用
CN107731434A (zh) 一种热敏电阻铜电极多功能防护膜层及其制备方法
CN103756504A (zh) 一种多功能防锈涂膜剂及其制备方法
CN102418098A (zh) 一种工业铝箔超疏水表面的低损伤制备方法
CN103327735B (zh) 高导热绝缘金属基印刷电路板
CN100484666C (zh) 一种粘接钕铁硼磁体无机封孔和阴极电泳复合表面防护技术
KR20160115715A (ko) 식각액 조성물 및 액정표시장치용 어레이 기판의 제조방법
CN103668132B (zh) 一种活化溶液及其在镁合金化学镀镍层中的应用
CN105331992A (zh) 一种铝表面脱脂除油剂
WO2024040671A1 (zh) 一种ito蚀刻液及其使用方法
CN101945544A (zh) 一种挠性电路板的制造方法
CN111744870A (zh) 一种半导体器件金锡焊接后的清洗方法
TWI828146B (zh) 陶瓷件清洗方法
CN100526511C (zh) 一种金属防腐蚀用纳米Sb2O5/TiO2复合涂层的制备方法
CN103866316B (zh) 一种铍材化学钝化处理方法
CN106086835A (zh) 一种铝及铝合金超疏水表面的制备方法
JP2012017465A (ja) ポリイミド除去用洗浄剤組成物
CN113038734B (zh) 一种有机金属保焊剂及有机金属保焊膜的制备方法与应用
CN108117269B (zh) 一种玻封连接器绝缘防潮表面处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20897876

Country of ref document: EP

Kind code of ref document: A1