WO2021114556A1 - 电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备 - Google Patents

电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备 Download PDF

Info

Publication number
WO2021114556A1
WO2021114556A1 PCT/CN2020/088702 CN2020088702W WO2021114556A1 WO 2021114556 A1 WO2021114556 A1 WO 2021114556A1 CN 2020088702 W CN2020088702 W CN 2020088702W WO 2021114556 A1 WO2021114556 A1 WO 2021114556A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bottom electrode
gap
resonator
substrate
Prior art date
Application number
PCT/CN2020/088702
Other languages
English (en)
French (fr)
Inventor
徐洋
庞慰
班圣光
孔庆路
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Priority to EP20899387.3A priority Critical patent/EP4092910A4/en
Publication of WO2021114556A1 publication Critical patent/WO2021114556A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type

Definitions

  • the embodiments of the present invention relate to the field of semiconductors, and in particular to a bulk acoustic wave resonator and a manufacturing method thereof, a filter having the resonator, and an electronic device having the resonator or the filter.
  • FBAR Film Bulk Acoustic Resonator
  • BAW Bulk Acoustic Wave Resonator
  • SAW surface acoustic wave
  • the main structure of the film bulk acoustic wave resonator is a "sandwich" structure composed of electrode-piezoelectric film-electrode, that is, a layer of piezoelectric material is sandwiched between two metal electrode layers.
  • FBAR uses the inverse piezoelectric effect to convert the input electrical signal into mechanical resonance, and then uses the piezoelectric effect to convert the mechanical resonance into electrical signal output.
  • the frequency of the 5G communication band is 3GHz-6GHz, which is higher than 4G and other communication technologies.
  • the high operating frequency means that the film thickness, especially the film thickness of the electrode, must be further reduced; however, the main negative effect brought about by the reduction of the electrode film thickness is the resonator Q caused by the increase in electrical loss. The value decreases, especially the Q value near the series resonance point and its frequency.
  • the performance of the high-frequency bulk acoustic wave filter also deteriorates greatly as the Q value of the bulk acoustic wave resonator decreases.
  • the filter also has the need to increase the power capacity and reduce the size of the filter.
  • a bulk acoustic wave resonator including:
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • the bottom electrode is a gap electrode, the gap electrode has a gap layer, and in the thickness direction of the gap electrode, the gap layer is at a distance from the top and bottom surfaces of the gap electrode, and the gap layer forms the resonance
  • the acoustic mirror cavity of the device or the acoustic mirror structure is arranged in the gap layer;
  • the substrate is provided with at least one electrical connection through hole, one end of the through hole is connected to the bottom electrode, and the other end is adapted to be connected to a pad located on the lower side of the substrate.
  • the embodiment of the present invention also relates to a filter including the above-mentioned bulk acoustic wave resonator.
  • the embodiment of the present invention also relates to a method for manufacturing a bulk acoustic wave resonator, including the steps:
  • the conductive vias passing through the substrate are etched, and conductive pads electrically connected to the conductive vias are formed on the underside of the substrate.
  • the embodiment of the present invention also relates to an electronic device including the above-mentioned filter or the above-mentioned resonator or the bulk acoustic wave resonator manufactured according to the above-mentioned method.
  • Fig. 1 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • Fig. 1A is a schematic cross-sectional view taken along the A-A direction in Fig. 1 according to an exemplary embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view taken along the A-A direction similar to that in FIG. 1 according to another exemplary embodiment of the present invention, in which a plurality of conductive vias are shown;
  • Fig. 3 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • Fig. 3A is a schematic cross-sectional view taken along the A-B direction in Fig. 3 according to an exemplary embodiment of the present invention
  • Fig. 4 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • Fig. 4A is a schematic cross-sectional view taken along the A-A direction in Fig. 4 according to an exemplary embodiment of the present invention
  • 5A-5I are schematic diagrams of a manufacturing process of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • FIG. 6A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which a gap seed layer is provided on the upper side of the gap layer, and a barrier layer is provided on the lower side;
  • FIG. 6B is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which a gap seed layer is provided on the upper side of the gap layer, and a barrier layer is provided on the lower side;
  • 6C is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which a gap seed layer is provided on the upper side of the gap layer, and a barrier layer is provided on the lower side;
  • FIGS. 7A-7I are schematic diagrams of a manufacturing process of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • Fig. 1 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • Fig. 1A is a schematic cross-sectional view taken along the line A-A in Fig. 1 according to an exemplary embodiment of the present invention.
  • the reference signs are as follows:
  • Substrate, optional materials are monocrystalline silicon, gallium arsenide, sapphire, quartz, etc.
  • the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium, or their alloys.
  • Acoustic mirror which can be a cavity, or Bragg reflector and other equivalent forms.
  • Piezoelectric film layer which can be selected from materials such as aluminum nitride, zinc oxide, PZT, and contains rare earth element doped materials with a certain atomic ratio of the above materials.
  • Top electrode the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium, or a combination of the above metals or their alloys.
  • a through hole (via, also called a via) etched in the substrate can be single or multiple.
  • the bondpad from which the electrical signal is drawn can be used for later packaging and can be used to supply power to the bottom electrode as a part of the bottom electrode pin.
  • Crystal orientation seed layer which can be AlN.
  • Crystal orientation seed layer which can be AlN.
  • the air gap constitutes the void layer.
  • the void layer may be a vacuum gap layer, or a void layer filled with another gas medium, in addition to the air gap layer.
  • an acoustic mirror structure such as a Bragg reflection layer may also be provided in the void layer.
  • crystal orientation seed layers 110 and 111 and the passivation layer 108 in the above structure can be omitted.
  • the conductive via 106 is located at the geometric center of the void layer.
  • the setting at the geometric center here includes the adjacent geometric center, for example, in the range with the geometric center as the center and the radius of 10 ⁇ m.
  • the conductive via 106 may also be provided in other positions.
  • the bottom electrode contains a void layer, and this method of moving the acoustic reflection layer to the inside of the electrode allows the bottom electrode to be in full contact with the substrate.
  • the electrical signal can be directly derived from the bottom electrode of the resonator through the through hole.
  • the filter product composed of the resonator based on the present invention does not require an additional signal derivation structure (such as a pad), so that the size of such products can be reduced.
  • the thickness of the gap layer is In the range.
  • the height of the void layer is made greater than the typical amplitude of the resonator (about 10 nm), and correspondingly, the height of the void layer is This facilitates the decoupling of acoustic energy between the top electrode and the resonant cavity (in this embodiment, a composite structure composed of a top electrode, a piezoelectric layer, and a bottom electrode) when the resonator is working at high power.
  • Fig. 2 is a schematic cross-sectional view taken along the A-A direction similar to Fig. 1 according to another exemplary embodiment of the present invention, in which a plurality of conductive vias are shown. In the embodiment of FIG. 2, a plurality of conductive vias are electrically connected to the same conductive pad.
  • Fig. 3 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • Fig. 3A is a schematic cross-sectional view taken along the A-B direction in Fig. 3 according to an exemplary embodiment of the present invention.
  • the bottom electrode also extends laterally so as to have an extension.
  • the bottom electrode 104 extends to the effective length of the resonator. Outside the area.
  • the extension can be connected to the bottom electrode of other resonators.
  • the location of the conductive via 106 is at the geometric center of the void layer.
  • the setting at the geometric center here includes the adjacent geometric center, for example, in the range with the geometric center as the center and the radius of 10 ⁇ m.
  • the conductive via 106 may also be provided in other positions.
  • Fig. 4 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • Fig. 4A is a schematic cross-sectional view taken along the line A-A in Fig. 4 according to an exemplary embodiment of the present invention.
  • a pillar structure 109 is provided in the void layer.
  • the pillar structure can be the same material as the bottom electrode, or it can be a different material.
  • the pillar structure 109 is supported and connected between the upper and lower sides of the void layer.
  • the pillar structure can prevent the upper and lower electrode layers of the gap layer from sticking together due to stress and other factors; on the other hand, it can accelerate the heat transfer of the resonator to the substrate.
  • the height of the pillar structure 109 can also be smaller than the height of the void in the void layer, which can also prevent the upper and lower electrode layers of the void layer from sticking together due to stress and other factors.
  • the pillar structure may be set at the geometric center of the void layer, where set at the geometric center includes an adjacent geometric center, for example, in a range with the geometric center as the center and a radius of 10 ⁇ m.
  • the conductive via 106 and the pillar structure 109 do not overlap in the thickness direction of the resonator, but the present invention is not limited to this.
  • the conductive via overlaps with the pillar structure in the projection of the resonator along the thickness direction.
  • the overlap here includes not only the partial overlap and full overlap of the two projections, but also The lateral distance between the projection centers of the two does not exceed 10 ⁇ m.
  • a conductive via 106 is located at the geometric center of the void layer.
  • the setting at the geometric center here includes the adjacent geometric center, for example, in the range with the geometric center as the center and the radius of 10 ⁇ m.
  • 5A-5I are schematic diagrams of a manufacturing process of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the manufacturing process of the bulk acoustic wave resonator will be exemplarily described below with reference to FIGS. 5A-5I.
  • a first seed layer 110, a first bottom electrode layer 102, and a sacrificial layer 112 are deposited on the substrate 101.
  • the sacrificial layer 112 is patterned.
  • a second seed layer 111 is deposited.
  • the second seed layer 111 is patterned.
  • the second bottom electrode layer 102 is deposited.
  • the first bottom electrode layer and the second bottom electrode layer are patterned to form the final bottom electrode.
  • the piezoelectric layer 104, the top electrode 105 and the passivation layer 108 are deposited, which includes the patterning of the top electrode.
  • the sacrificial layer 112 is released to form a void layer, which can serve as an acoustic mirror cavity of the resonator.
  • a conductive via 106 is etched on the underside of the substrate, and a conductive pad is deposited and patterned.
  • the first seed layer and/or the second seed layer may not be provided, or the passivation layer 108 may not be provided.
  • the order of the above steps can also be exchanged based on actual conditions. For example, after the through holes are etched and the conductive pads are formed, the sacrificial layer 112 may be released. For another example, after the first seed layer is formed (if there is such a step), or if the first seed layer is not provided, the conductive vias 106 and the conductive pads 107 can be provided first, and then the first bottom electrode layer Of deposition. These are all within the protection scope of the present invention.
  • FIG. 6A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which a gap seed layer is provided on the upper side of the gap layer, a barrier layer is provided on the lower side, and a through hole is shown in the figure.
  • Fig. 6B is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which a gap seed layer is provided on the upper side of the gap layer, and a barrier layer is provided on the lower side, and three communication channels are shown in the figure. hole.
  • Fig. 6A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which a gap seed layer is provided on the upper side of the gap layer, and a barrier layer is provided on the lower side, and three communication channels are shown in the figure. hole.
  • 6C is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which a gap seed layer is provided on the upper side of the gap layer, and a barrier layer is provided on the lower side, and a pillar structure is shown in the figure.
  • FIGS. 6A-6C are similar to FIGS. 3A, 2 and 4A, respectively. The difference is that in FIGS. 6A-6C, a gap seed layer 111 and a barrier layer 113 are provided, while in FIGS. 3A, 2 and 4A only Void seed layer 111.
  • FIGS. 7A-7I are schematic diagrams of a manufacturing process of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • the manufacturing process of the bulk acoustic wave resonator will be exemplarily described below with reference to FIGS. 7A-7I.
  • a first seed layer 110, a first bottom electrode layer 102, a barrier layer 113, and a sacrificial layer 112 are deposited on the substrate 101.
  • the sacrificial layer 112 and the barrier layer 113 are patterned.
  • a void seed layer 111 is deposited.
  • the gap seed layer 111 is patterned.
  • the second bottom electrode layer 102 is deposited.
  • the first bottom electrode layer, the second bottom electrode layer, and the first seed layer 110 are patterned to form the final bottom electrode.
  • the piezoelectric layer 104, the top electrode 105 and the passivation layer 108 are deposited, which includes the patterning of the top electrode.
  • the sacrificial layer 112 is released to form a void layer 103, which can serve as an acoustic mirror cavity of the resonator.
  • a conductive via 106 is etched on the underside of the substrate, and a conductive pad 107 is deposited and patterned.
  • the order of the above steps can also be exchanged based on actual conditions. For example, after the through holes are etched and the conductive pads are formed, the sacrificial layer 112 may be released. For another example, the conductive via 106 and the conductive pad 107 can be provided first, and then the first bottom electrode layer is deposited. These are all within the protection scope of the present invention.
  • the void layer in the bottom electrode is used as the acoustic mirror, thereby eliminating the CMP (Chemical Mechanical Polishing Process) process of forming the cavity of the acoustic mirror in the substrate.
  • CMP Chemical Mechanical Polishing Process
  • the present invention uses the through holes 106 provided on the substrate to directly electrically connect with the bottom electrode without requiring an additional metal connection structure, so that a smaller signal transmission loss and a smaller electrical connection resistance can be obtained.
  • the above-mentioned method of the present invention may include the following steps: forming a pillar structure on the upper side of the substrate before forming a patterned sacrificial layer on the first bottom electrode layer; In the step of forming a patterned sacrificial layer, the height of the pillar structure is not greater than the thickness of the sacrificial layer.
  • the above method of forming the pillar structure 109 is the method of sinking film (compared to the CMP process, the film sinking process has excellent on-chip uniformity, and the deposition rate does not change with the pattern density), so there is no need to deliberately increase the gap to accommodate the error of the CMP process Layer thickness.
  • the structure of this invention can obtain a pillar structure with a larger aspect ratio, that is, a stronger pillar structure.
  • the height of the pillar structure 109 can be effectively controlled, and the fixed connection between the pillar structure 109 and the upper and lower sides can be easily realized.
  • the arrangement of the pillar structure does not have to be before the formation of the sacrificial layer, but can also be after. For example, after the sacrificial layer is deposited, a small hole can be dug in the middle of the sacrificial layer when it is patterned, and then when the second bottom electrode such as Mo metal is deposited, the Mo metal will form a small pillar of Mo metal in the small hole , That is, the pillar structure.
  • the effective area of the resonator is the overlap region of the top electrode, the bottom electrode, the piezoelectric layer, and the void layer of the bottom electrode in the thickness direction of the resonator.
  • the mentioned numerical range can be not only the endpoint value, but also the median value between the endpoint values or other values, all of which fall within the protection scope of the present invention.
  • the bottom electrode of the present invention is directly arranged on the substrate to facilitate heat transmission. At the same time, the air cavity becomes thinner, and the heat of the resonator body is easily radiated to the bottom electrode.
  • the pillar structure When the pillar structure is installed, it is beneficial to improve the heat conduction effect. These are conducive to improving heat dissipation and meeting the power enhancement requirements of the device.
  • the bulk acoustic wave resonator according to the present invention can be used to form a filter.
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • the bottom electrode is a gap electrode, the gap electrode has a gap layer, and in the thickness direction of the gap electrode, the gap layer is at a distance from the top and bottom surfaces of the gap electrode, and the gap layer forms the resonance
  • the acoustic mirror cavity of the device or the acoustic mirror structure is arranged in the gap layer;
  • the substrate is provided with at least one electrical connection through hole, one end of the through hole is connected to the bottom electrode, and the other end is adapted to be connected to a pad located on the lower side of the substrate.
  • the gap layer is an air gap layer or a vacuum gap layer.
  • the thickness of the void layer is In the range.
  • the thickness of the void layer is In the range.
  • the bottom electrode is entirely located on the upper surface of the substrate.
  • At least one of the through holes is provided below the bottom electrode to directly connect with the bottom electrode in the thickness direction of the resonator;
  • At least one of the through holes is located within the effective area of the resonator.
  • a first crystal orientation seed layer is arranged between the bottom electrode and the substrate, and the through hole penetrates the first crystal orientation seed layer.
  • a pillar structure is arranged in the void layer.
  • the pillar structure connects the upper and lower sides of the gap layer.
  • the pillar structure is a thermally conductive structure.
  • the pillar structure is arranged at the geometric center of the void layer.
  • One of the at least one electrical connection through hole overlaps the pillar structure in the projection of the resonator in the thickness direction.
  • the bottom electrode has a bottom electrode extension that extends laterally beyond the effective area of the resonator.
  • a barrier layer is provided on the underside of the gap layer, and the barrier layer defines the boundary of the underside of the gap layer; and/or
  • the upper side of the gap layer is provided with a gap seed layer, and the gap seed layer defines the boundary of the upper side of the gap layer.
  • a filter comprising the bulk acoustic wave resonator according to any one of 1-14.
  • the filter includes two bulk acoustic wave resonators according to 13, and bottom electrodes of the two bulk acoustic wave resonators are electrically connected to each other via the bottom electrode extension.
  • a method for manufacturing a bulk acoustic wave resonator including the steps:
  • the conductive vias passing through the substrate are etched, and conductive pads electrically connected to the conductive vias are formed on the underside of the substrate.
  • the method further includes the step of depositing and patterning a first crystal orientation seed layer on the upper side of the substrate, wherein the first bottom electrode layer is deposited to cover the first crystal orientation seed layer ;
  • the conductive via passes through the first crystal orientation seed layer.
  • the method further includes the steps of: forming a pillar structure on the upper side of the substrate;
  • the height of the pillar structure is not greater than the thickness of the sacrificial layer.
  • the method further includes disposing and patterning a barrier layer on the first bottom electrode layer, and the step of "forming a patterned sacrificial layer on the first bottom electrode layer” "Sacrificial layer” includes a patterned sacrificial layer formed on the barrier layer; and/or
  • the method further includes disposing and patterning a void seed layer on the sacrificial layer, and the step “depositing the second bottom electrode layer” includes depositing the second bottom electrode layer on the void seed layer.
  • An electronic device comprising the filter according to 15 or 16, or the resonator according to any one of 1-14 or a resonator manufactured according to the method according to any one of 17-20.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及一种体声波谐振器及其制造方法。所述谐振器包括:基底;底电极;顶电极;和压电层,设置在底电极与顶电极之间,其中:底电极为间隙电极,所述间隙电极具有空隙层,在所述间隙电极的厚度方向上,所述空隙层与所述间隙电极的顶面与底面均存在距离,所述空隙层形成所述谐振器的声学镜空腔或者所述空隙层内设置有声学镜结构;所述基底设置有至少一个电连接通孔,所述通孔一端连接到所述底电极,另一端适于连接到位于基底的下侧的焊盘。本发明还涉及一种具有上述谐振器的滤波器以及具有该滤波器或谐振器的电子设备。

Description

电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器及其制造方法、一种具有该谐振器的滤波器,以及一种具有该谐振器或者该滤波器的电子设备。
背景技术
电子器件作为电子设备的基本元素,已经被广泛应用,其应用范围包括移动电话、汽车、家电设备等。此外,未来即将改变世界的人工智能、物联网、5G通讯等技术仍然需要依靠电子器件作为基础。
电子器件根据不同工作原理可以发挥不同的特性与优势,在所有电子器件中,利用压电效应(或逆压电效应)工作的器件是其中很重要一类,压电器件有着非常广泛的应用情景。薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR,又称为体声波谐振器,也称BAW)作为压电器件的重要成员正在通信领域发挥着重要作用,特别是FBAR滤波器在射频滤波器领域市场占有份额越来越大,FBAR具有尺寸小、谐振频率高、品质因数高、功率容量大、滚降效应好等优良特性,其滤波器正在逐步取代传统的声表面波(SAW)滤波器和陶瓷滤波器,在无线通信射频领域发挥巨大作用,其高灵敏度的优势也能应用到生物、物理、医学等传感领域。
薄膜体声波谐振器的结构主体为由电极-压电薄膜-电极组成的“三明治”结构,即两层金属电极层之间夹一层压电材料。通过在两电极间输入正弦信号,FBAR利用逆压电效应将输入电信号转换为机械谐振,并且再利用压电效应将机械谐振转换为电信号输出。
通信技术的快速发展要求滤波器工作频率不断提高,例如5G通信频段(sub-6G)的频率在3GHz-6GHz,频率高于4G等通信技术。对于体声波谐振器和滤波器,高工作频率意味着薄膜厚度尤其是电极的薄膜厚度,要进一步减小;然而电极薄膜厚度的减小带来的主要负面效应为电学损耗增加导致的谐振器Q值降低,尤其是串联谐振点及其频率附近处的Q值降低; 相应地,高工作频率体声波滤波器的性能也随着体声波谐振器的Q值降低而大幅恶化。
此外,滤波器还存在提升功率容量的需求和缩小滤波器尺寸的需求。
发明内容
为缓解或解决现有技术中的上述问题或者提升功率容量或缩小滤波器尺寸,提出本发明。
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括:
一种体声波谐振器,包括:
基底;
底电极;
顶电极;和
压电层,设置在底电极与顶电极之间,
其中:
底电极为间隙电极,所述间隙电极具有空隙层,在所述间隙电极的厚度方向上,所述空隙层与所述间隙电极的顶面与底面均存在距离,所述空隙层形成所述谐振器的声学镜空腔或者所述空隙层内设置有声学镜结构;
所述基底设置有至少一个电连接通孔,所述通孔一端连接到所述底电极,另一端适于连接到位于基底的下侧的焊盘。
本发明的实施例还涉及一种滤波器,包括上述的体声波谐振器。
本发明的实施例还涉及体声波谐振器的制造方法,包括步骤:
提供基底,以及在基底的上侧沉积第一底电极层;
在第一底电极层上形成图形化的牺牲层;
沉积第二底电极层,所述第二底电极层覆盖所述牺牲层以及所述第一底电极层,第一底电极层与第二底电极层彼此电连接;
图形化第一底电极层与第二底电极层以形成底电极;
沉积压电层和顶电极层,图形化顶电极层以形成顶电极;
释放所述牺牲层;
刻蚀穿过基底的导电通孔,以及在基底的下侧形成与导电通孔电连接的导电焊盘。
本发明的实施例也涉及一种电子设备,包括上述的滤波器或者上述的 谐振器或根据上述方法制造的体声波谐振器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图;
图1A为根据本发明的一个示例性实施例的沿图1中的A-A向截得的示意性截面图;
图2为根据本发明的另一个示例性实施例的沿类似于图1中的A-A向截得的示意性截面图,其中示出了多个导电通孔;
图3为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图;
图3A为根据本发明的一个示例性实施例的沿图3中的A-B向截得的示意性截面图;
图4为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图;
图4A为根据本发明的一个示例性实施例的沿图4中的A-A向截得的示意性截面图;
图5A-5I为根据本发明的一个示例性实施例的体声波谐振器的制造过程的示意图;
图6A为根据本发明的一个示例性实施例的体声波谐振器的示意性截面图,其中空隙层上侧设置有空隙种子层,下侧设置有阻挡层;
图6B为根据本发明的一个示例性实施例的体声波谐振器的示意性截面图,其中空隙层上侧设置有空隙种子层,下侧设置有阻挡层;
图6C为根据本发明的一个示例性实施例的体声波谐振器的示意性截面图,其中空隙层上侧设置有空隙种子层,下侧设置有阻挡层;
图7A-7I为根据本发明的另一个示例性实施例的体声波谐振器的制 造过程的示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
图1为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图,图1A为根据本发明的一个示例性实施例的沿图1中的A-A向截得的示意性截面图。在图1和图1A中,各附图标记如下:
101:基底,可选材料为单晶硅、砷化镓、蓝宝石、石英等。
102:底电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
103:声学镜,可为空腔,也可采用布拉格反射层及其他等效形式。
104:压电薄膜层,可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料。
105:顶电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
106:基底内刻蚀出的通孔(via,也可以称为过孔),可以为单个也可以为多个。
107:电信号引出的焊盘(bondpad),可用于后期的封装,以及可用于向底电极供电而作为底电极引脚的一部分。
108:顶电极表面的钝化层。
110:晶向种子层,可以是AlN。
111:晶向种子层,可以是AlN。
需要说明的是,空气间隙构成空隙层,但是本发明中,空隙层除了可以为空气间隙层之外,还可以是真空间隙层,也可以是填充了其他气体介质的空隙层。虽然没有示出,在可选的实施例中,在空隙层的空间足够的情况下,空隙层内也可以设置例如布拉格反射层的声学镜结构。
需要说明的是,上述结构中的晶向种子层110和111,钝化层108均可以省略。
在图1A所示的实施例中,导电通孔106的设置位置在空隙层的几何中心。这里设置在几何中心包括了邻近几何中心,例如处于以几何中心为圆心、以10μm为半径的范围内。但是,导电通孔106也可以设置在其他位置。
在本发明中,底电极中含有空隙层,这种将声学反射层移至电极内部的方法致使下电极可以与基底完全接触。在此前提的基础上通过在基底刻蚀通孔结构,使电学信号通过通孔可以从谐振器底电极直接导出。基于本发明的谐振器组成的滤波器产品无需额外增加信号导出结构(如pad),从而可缩小此类产品的尺寸。
在本发明中,可选的,所述空隙层的厚度在
Figure PCTCN2020088702-appb-000001
的范围内。在进一步的实施例中,使得空隙层的高度大于谐振器的典型振幅(约10nm),相应的,空隙层的高度在
Figure PCTCN2020088702-appb-000002
的范围内,这有利于谐振器在大功率工作时顶电极与谐振腔(此实施例为顶电极、压电层、底电极组成的复合结构)的声学能量解耦。
图2为根据本发明的另一个示例性实施例的沿类似于图1中的A-A向截得的示意性截面图,其中示出了多个导电通孔。在图2的实施例中,多个导电通孔与同一个导电焊盘电连接。
图3为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图,图3A为根据本发明的一个示例性实施例的沿图3中的A-B向截得的示意性截面图。
图3和图3A所示的谐振器与图1A所示的谐振器的不同在于,底电极还横向延伸从而具有延伸部,如图3A与图3所示,底电极104延伸到谐振器的有效区域之外。该延伸部可以与其他谐振器的底电极相连。在图示的实施例中,导电通孔106的设置位置在空隙层的几何中心。这里设置在几何中心包括了邻近几何中心,例如处于以几何中心为圆心、以10μm为半径的范围内。但是,导电通孔106也可以设置在其他位置。
图4为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图,图4A为根据本发明的一个示例性实施例的沿图4中的A-A向截得的 示意性截面图。
在图4A和图4中,在空隙层内设置有支柱结构109。支柱结构可以与底电极为同种材料,也可以为不同材料。如图4A所示,支柱结构109支撑连接在空隙层上下两侧之间。支柱结构一方面可以防止空隙层的上下电极层因应力等因素贴合在一起;另一方面可以加速谐振器热量传导至基底。
需要指出的是,支柱结构109的高度也可以小于空隙层中空隙的高度,这同样可以起到防止空隙层的上下电极层因应力等因素贴合在一起。支柱结构可以设置在空隙层的几何中心,这里设置在几何中心包括了邻近几何中心,例如处于以几何中心为圆心、以10μm为半径的范围内。
在图示的实施例中,导电通孔106与支柱结构109在谐振器的厚度方向上不重叠,但是,本发明不限于此。在可选的实施例中,导电通孔在谐振器沿厚度方向的投影中与所述支柱结构存在重合,这里的重合不仅包括了两者的投影存在部分重叠和全部重叠的情形,也包括了两者的投影中心之间的横向距离不超过10μm这样的情况。在可选的实施例中,有一个导电通孔106的设置位置在空隙层的几何中心。这里设置在几何中心包括了邻近几何中心,例如处于以几何中心为圆心、以10μm为半径的范围内。
图5A-5I为根据本发明的一个示例性实施例的体声波谐振器的制造过程的示意图。下面参照图5A-5I示例性描述体声波谐振器的制造过程。
首先,如图5A所示,在基底101上沉积第一种子层110、第一底电极层102以及牺牲层112。
其次,如图5B所示,对牺牲层112图形化。
接着,如图5C所示,沉积第二种子层111。
参见图5D,对第二种子层111图形化。接着,在图5E中,沉积第二底电极层102。在图5F中,对第一底电极层与第二底电极层图形化,以形成最终的底电极。
参见图5G,沉积压电层104,顶电极105以及钝化层108,其中包括了对顶电极的图形化。
接着,如图5H所示,释放牺牲层112以形成空隙层,该空隙层可以作为谐振器的声学镜空腔。
参见图5I,在基底的下侧刻蚀出导电通孔106,以及沉积导电焊盘并对该导电焊盘图形化。
需要指出的是,在以上的方法中,可以不设置第一种子层和/或第二种子层,也可不设置钝化层108。
此外,以上的步骤顺序也可以基于实际情况调换。例如,可以在刻蚀通孔以及形成导电焊盘之后,在进行对牺牲层112的释放。再如,可以在形成了第一种子层(如有该步骤)之后,或者在不设置第一种子层的情况下,先设置导电通孔106及导电焊盘107,再进行第一底电极层的沉积。这些均在本发明的保护范围之内。
图6A为根据本发明的一个示例性实施例的体声波谐振器的示意性截面图,其中空隙层上侧设置有空隙种子层,下侧设置有阻挡层,且图中示出了一个通孔。图6B为根据本发明的一个示例性实施例的体声波谐振器的示意性截面图,其中空隙层上侧设置有空隙种子层,下侧设置有阻挡层,且图中示出了三个通孔。图6C为根据本发明的一个示例性实施例的体声波谐振器的示意性截面图,其中空隙层上侧设置有空隙种子层,下侧设置有阻挡层,且图中示出了支柱结构。
图6A-6C与图3A、图2以及图4A分别相似,不同在于在图6A-6C中,设置了空隙种子层111以及阻挡层113,而在图3A、图2以及图4A中仅设置有空隙种子层111。
图7A-7I为根据本发明的另一个示例性实施例的体声波谐振器的制造过程的示意图。下面参照图7A-7I示例性描述体声波谐振器的制造过程。
首先,如图7A所示,在基底101上沉积第一种子层110、第一底电极层102、阻挡层113以及牺牲层112。
其次,如图7B所示,对牺牲层112和阻挡层113图形化。
接着,如图7C所示,沉积空隙种子层111。
如图7D所示,对空隙种子层111图形化。
如图7E所示,接着,沉积第二底电极层102。
在图7F中,对第一底电极层、第二底电极层和第一种子层110图形化,以形成最终的底电极。
参见图7G,沉积压电层104,顶电极105以及钝化层108,其中包括了对顶电极的图形化。
接着,如图7H所示,释放牺牲层112以形成空隙层103,该空隙层可以作为谐振器的声学镜空腔。
参见图7I,在基底的下侧刻蚀出导电通孔106,以及沉积导电焊盘107并对该导电焊盘图形化。
此外,以上的步骤顺序也可以基于实际情况调换。例如,可以在刻蚀通孔以及形成导电焊盘之后,在进行对牺牲层112的释放。再如,可以先设置导电通孔106及导电焊盘107,再进行第一底电极层的沉积。这些均在本发明的保护范围之内。
在本发明的体声波谐振器制造方法中,利用底电极内的空隙层作为声学镜,从而免除了在基底内形成声学镜空腔的CMP(化学机械抛光制程)工艺。
此外,本发明通过利用设置于基底的通孔106与底电极直接电连接,而无需额外的金属连接结构,从而可以获得更小的信号传输损耗,以及更小的电连接电阻。
在设置支柱结构109的情况下,本发明的上述方法可以包括如下步骤:在第一底电极层上形成图形化的牺牲层之前,在基底上侧形成支柱结构;且“在第一底电极层上形成图形化的牺牲层”的步骤中,支柱结构的高度不大于所述牺牲层的厚度。以上形成支柱结构109的沉膜方法(相较于CMP工艺,沉膜工艺的片内均匀性优秀,并且沉积速率不会随图形密度变化),因此无需为了包容CMP工艺的误差而刻意加大空隙层厚度。因此在尽可能不增加支柱结构宽度的前提下(支柱结构宽度过大会恶化谐振器性能),此发明的结构可以获得更大深宽比的支柱结构,也就是更加牢固的支柱结构。此外,利用上述方法,可以有效控制支柱结构109的高度,而且也易于实现支柱结构109与上下两侧之间的固定连接。
需要指出的是,支柱结构的设置不一定要在形成牺牲层之前,也可以是之后。例如,牺牲层沉积好之后,可以在对其图形化时在牺牲层中间挖小孔,然后在沉积第二底电极例如Mo金属的时候,Mo金属会在小孔里形成一个Mo金属的小柱子,即支柱结构。
在本发明中,在底电极中设置有空隙层时,谐振器的有效区域为顶电 极、底电极、压电层和底电极的空隙层在谐振器的厚度方向上的重叠区域。
在本发明中,提到的数值范围除了可以为端点值之外,还可以为端点值之间的中值或者其他值,均在本发明的保护范围之内。
在本发明中,无需额外增加信号导出结构,而是直接从谐振器的下部引出,从而缩小谐振器的尺寸,而且作为声学镜的空气腔变薄也能进一步缩小尺寸。
本发明底电极直接设置在基底上有利于热量传输,同时空气腔变薄,谐振器主体的热量也容易辐射到底电极。设置了支柱结构时,且有利于导热效果提升。这些有利于改善散热,满足器件的功率提升需求。
如本领域技术人员能够理解的,根据本发明的体声波谐振器可以用于形成滤波器。
基于以上,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
底电极;
顶电极;和
压电层,设置在底电极与顶电极之间,
其中:
底电极为间隙电极,所述间隙电极具有空隙层,在所述间隙电极的厚度方向上,所述空隙层与所述间隙电极的顶面与底面均存在距离,所述空隙层形成所述谐振器的声学镜空腔或者所述空隙层内设置有声学镜结构;
所述基底设置有至少一个电连接通孔,所述通孔一端连接到所述底电极,另一端适于连接到位于基底的下侧的焊盘。
2、根据1所述的谐振器,其中:
所述空隙层为空气间隙层或者真空间隙层。
3、根据1所述的谐振器,其中:
所述空隙层的厚度在
Figure PCTCN2020088702-appb-000003
的范围内。
4、根据3所述的谐振器,其中:
所述空隙层的厚度在
Figure PCTCN2020088702-appb-000004
的范围内。
5、根据1所述的谐振器,其中:
底电极整体位于基底的上表面。
6、根据1所述的谐振器,其中:
通孔中的至少一个设置在底电极的下方,以在谐振器的厚度方向上与底电极直接连接;或
在谐振器的厚度方向上的投影中,通孔中的至少一个位于谐振器的有效区域内。
7、根据1-6中任一项所述的谐振器,其中:
所述底电极与基底之间设置有第一晶向种子层,所述通孔贯穿所述第一晶向种子层。
8、根据1-6中任一项所述的谐振器,其中:
所述空隙层内设置有支柱结构。
9、根据8所述的谐振器,其中:
所述支柱结构连接所述空隙层的上下两侧。
10、根据9所述的谐振器,其中:
所述支柱结构为导热结构。
11、根据10所述的谐振器,其中:
所述支柱结构设置于所述空隙层的几何中心。
12、根据11所述的谐振器,其中:
所述至少一个电连接通孔中的一个通孔在谐振器沿厚度方向的投影中与所述支柱结构存在重合。
13、根据1-6中任一项所述的谐振器,其中:
所述底电极具有横向延伸到谐振器的有效区域之外的底电极延伸部。
14、根据1-6中任一项所述的谐振器,其中:
所述空隙层的下侧设置有阻挡层,所述阻挡层限定所述空隙层的下侧的边界;和/或
所述空隙层的上侧设置有空隙种子层,所述空隙种子层限定所述空隙层的上侧的边界。
15、一种滤波器,包括根据1-14中任一项所述的体声波谐振器。
16、根据15所述的滤波器,其中:
所述滤波器包括两个根据13所述的体声波谐振器,所述两个体声波谐振器的底电极经由所述底电极延伸部而彼此电连接。
17、一种体声波谐振器的制造方法,包括步骤:
提供基底,以及在基底的上侧沉积第一底电极层;
在第一底电极层上形成图形化的牺牲层;
沉积第二底电极层,所述第二底电极层覆盖所述牺牲层以及所述第一底电极层,第一底电极层与第二底电极层彼此电连接;
图形化第一底电极层与第二底电极层以形成底电极;
沉积压电层和顶电极层,图形化顶电极层以形成顶电极;
释放所述牺牲层;
刻蚀穿过基底的导电通孔,以及在基底的下侧形成与导电通孔电连接的导电焊盘。
18、根据17所述的方法,其中:
在沉积第一底电极层之前,所述方法还包括步骤:在基底上侧沉积和图形化第一晶向种子层,其中,所述第一底电极层沉积覆盖所述第一晶向种子层;且
“刻蚀穿过基底的导电通孔”的步骤中,导电通孔穿过所述第一晶向种子层。
19、根据17所述的方法,其中:
所述方法还包括步骤:在基底上侧形成支柱结构;且
“在第一底电极层上形成图形化的牺牲层”的步骤中,所述支柱结构的高度不大于所述牺牲层的厚度。
20、根据17-19中任一项所述的方法,其中:
步骤“在第一底电极层上形成图形化的牺牲层”之前,所述方法还包括在第一底电极层上设置与图形化阻挡层,且步骤“在第一底电极层上形成图形化的牺牲层”包括在阻挡层上形成图形化的牺牲层;和/或
步骤“沉积第二底电极层”之前,所述方法还包括在牺牲层上设置与图形化空隙种子层,且步骤“沉积第二底电极层”包括在空隙种子层沉积第二底电极层。
21、一种电子设备,包括根据15或16所述的滤波器,或者根据1-14中任一项所述的谐振器或根据17-20中任一项所述的方法制造的谐振器。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (21)

  1. 一种体声波谐振器,包括:
    基底;
    底电极;
    顶电极;和
    压电层,设置在底电极与顶电极之间,
    其中:
    底电极为间隙电极,所述间隙电极具有空隙层,在所述间隙电极的厚度方向上,所述空隙层与所述间隙电极的顶面与底面均存在距离,所述空隙层形成所述谐振器的声学镜空腔或者所述空隙层内设置有声学镜结构;
    所述基底设置有至少一个电连接通孔,所述通孔一端连接到所述底电极,另一端适于连接到位于基底的下侧的焊盘。
  2. 根据权利要求1所述的谐振器,其中:
    所述空隙层为空气间隙层或者真空间隙层。
  3. 根据权利要求1所述的谐振器,其中:
    所述空隙层的厚度在
    Figure PCTCN2020088702-appb-100001
    的范围内。
  4. 根据权利要求3所述的谐振器,其中:
    所述空隙层的厚度在
    Figure PCTCN2020088702-appb-100002
    的范围内。
  5. 根据权利要求1所述的谐振器,其中:
    底电极整体位于基底的上表面。
  6. 根据权利要求1所述的谐振器,其中:
    通孔中的至少一个设置在底电极的下方,以在谐振器的厚度方向上与底电极直接连接;或
    在谐振器的厚度方向上的投影中,通孔中的至少一个位于谐振器的有效区域内。
  7. 根据权利要求1-6中任一项所述的谐振器,其中:
    所述底电极与基底之间设置有第一晶向种子层,所述通孔贯穿所述第一晶向种子层。
  8. 根据权利要求1-6中任一项所述的谐振器,其中:
    所述空隙层内设置有支柱结构。
  9. 根据权利要求8所述的谐振器,其中:
    所述支柱结构连接所述空隙层的上下两侧。
  10. 根据权利要求9所述的谐振器,其中:
    所述支柱结构为导热结构。
  11. 根据权利要求10所述的谐振器,其中:
    所述支柱结构设置于所述空隙层的几何中心。
  12. 根据权利要求11所述的谐振器,其中:
    所述至少一个电连接通孔中的一个通孔在谐振器沿厚度方向的投影中与所述支柱结构存在重合。
  13. 根据权利要求1-6中任一项所述的谐振器,其中:
    所述底电极具有横向延伸到谐振器的有效区域之外的底电极延伸部。
  14. 根据权利要求1-6中任一项所述的谐振器,其中:
    所述空隙层的下侧设置有阻挡层,所述阻挡层限定所述空隙层的下侧的边界;和/或
    所述空隙层的上侧设置有空隙种子层,所述空隙种子层限定所述空隙层的上侧的边界。
  15. 一种滤波器,包括根据权利要求1-14中任一项所述的体声波谐振器。
  16. 根据权利要求15所述的滤波器,其中:
    所述滤波器包括两个根据权利要求13所述的体声波谐振器,所述两个体声波谐振器的底电极经由所述底电极延伸部而彼此电连接。
  17. 一种体声波谐振器的制造方法,包括步骤:
    提供基底,以及在基底的上侧沉积第一底电极层;
    在第一底电极层上形成图形化的牺牲层;
    沉积第二底电极层,所述第二底电极层覆盖所述牺牲层以及所述第一底电极层,第一底电极层与第二底电极层彼此电连接;
    图形化第一底电极层与第二底电极层以形成底电极;
    沉积压电层和顶电极层,图形化顶电极层以形成顶电极;
    释放所述牺牲层;
    刻蚀穿过基底的导电通孔,以及在基底的下侧形成与导电通孔电连接的导电焊盘。
  18. 根据权利要求17所述的方法,其中:
    在沉积第一底电极层之前,所述方法还包括步骤:在基底上侧沉积第一晶向种子层,其中,所述第一底电极层沉积覆盖所述第一晶向种子层;且
    “刻蚀穿过基底的导电通孔”的步骤中,导电通孔穿过所述第一晶向种子层。
  19. 根据权利要求17所述的方法,其中:
    所述方法还包括步骤:在基底上侧形成支柱结构;且
    “在第一底电极层上形成图形化的牺牲层”的步骤中,所述支柱结构的高度不大于所述牺牲层的厚度。
  20. 根据权利要求17-19中任一项所述的方法,其中:
    步骤“在第一底电极层上形成图形化的牺牲层”之前,所述方法还包括在第一底电极层上设置与图形化阻挡层,且步骤“在第一底电极层上形成图形化的牺牲层”包括在阻挡层上形成图形化的牺牲层;和/或
    步骤“沉积第二底电极层”之前,所述方法还包括在牺牲层上设置与图形化空隙种子层,且步骤“沉积第二底电极层”包括在空隙种子层沉积第二底电极层。
  21. 一种电子设备,包括根据权利要求15或16所述的滤波器,或者根据权利要求1-14中任一项所述的谐振器或根据权利要求17-20中任一项所述的方法制造的谐振器。
PCT/CN2020/088702 2019-12-09 2020-05-06 电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备 WO2021114556A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20899387.3A EP4092910A4 (en) 2019-12-09 2020-05-06 VOLUME ACOUSTIC WAVE RESONATOR HAVING SPACING LAYER ON ELECTRODE AND METHOD FOR MANUFACTURING SAME, FILTER AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911248447.X 2019-12-09
CN201911248447.XA CN111130490A (zh) 2019-12-09 2019-12-09 电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2021114556A1 true WO2021114556A1 (zh) 2021-06-17

Family

ID=70497830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088702 WO2021114556A1 (zh) 2019-12-09 2020-05-06 电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备

Country Status (3)

Country Link
EP (1) EP4092910A4 (zh)
CN (1) CN111130490A (zh)
WO (1) WO2021114556A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010123B (zh) * 2019-10-23 2021-06-01 诺思(天津)微系统有限责任公司 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备
CN112039466B (zh) * 2020-05-20 2024-03-12 中芯集成电路(宁波)有限公司上海分公司 一种薄膜体声波谐振器及其制造方法
CN114079433A (zh) * 2020-08-19 2022-02-22 诺思(天津)微系统有限责任公司 顶电极具有上下空隙的体声波谐振器及制造方法、滤波器及电子设备
JP7561971B2 (ja) * 2020-08-24 2024-10-04 アプライド マテリアルズ インコーポレイテッド 圧電用途のための堆積方法及び装置
CN113162578B (zh) * 2021-01-13 2023-04-07 诺思(天津)微系统有限责任公司 滤波器、多工器以及电子设备
CN113258901B (zh) * 2021-06-28 2021-10-29 深圳汉天下微电子有限公司 声学谐振器及其制造方法以及包括该声学谐振器的滤波器
CN114884482B (zh) * 2022-07-08 2022-11-18 深圳新声半导体有限公司 体声波谐振器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413795A (zh) * 2013-08-28 2013-11-27 天津大学 半导体器件的封装结构和半导体器件的封装工艺流程
CN105897211A (zh) * 2016-05-18 2016-08-24 华南理工大学 多谐振模式的薄膜体声波谐振器及其制备方法和滤波器
US20170047907A1 (en) * 2014-02-27 2017-02-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator device with an electrically-isolated layer of high-acoustic-impedance material interposed therein
US20170077385A1 (en) * 2015-09-10 2017-03-16 Triquint Semiconductor, Inc. Air gap in baw top metal stack for reduced resistive and acoustic loss
CN107196618A (zh) * 2017-02-16 2017-09-22 杭州左蓝微电子技术有限公司 薄膜体声波谐振器及其制备方法
CN110166014A (zh) * 2018-02-11 2019-08-23 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828713B2 (en) * 2002-07-30 2004-12-07 Agilent Technologies, Inc Resonator with seed layer
US9608594B2 (en) * 2014-05-29 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Capacitive coupled resonator device with air-gap separating electrode and piezoelectric layer
US9444428B2 (en) * 2014-08-28 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonators comprising backside vias
US10277196B2 (en) * 2015-04-23 2019-04-30 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave resonator and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413795A (zh) * 2013-08-28 2013-11-27 天津大学 半导体器件的封装结构和半导体器件的封装工艺流程
US20170047907A1 (en) * 2014-02-27 2017-02-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator device with an electrically-isolated layer of high-acoustic-impedance material interposed therein
US20170077385A1 (en) * 2015-09-10 2017-03-16 Triquint Semiconductor, Inc. Air gap in baw top metal stack for reduced resistive and acoustic loss
CN105897211A (zh) * 2016-05-18 2016-08-24 华南理工大学 多谐振模式的薄膜体声波谐振器及其制备方法和滤波器
CN107196618A (zh) * 2017-02-16 2017-09-22 杭州左蓝微电子技术有限公司 薄膜体声波谐振器及其制备方法
CN110166014A (zh) * 2018-02-11 2019-08-23 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4092910A4 *
ZHU, FENG ET AL.: "An elastic electrode model for wave propagation analysis in piezoelectric layered structures of film bulk acoustic resonators", 《ACTA MECHANICA SOLIDA SINICA》, vol. 30, no. 3, 27 April 2017 (2017-04-27), XP085151267, ISSN: 0894-9166, DOI: 10.1016/j.camss.2017.04.001 *

Also Published As

Publication number Publication date
EP4092910A4 (en) 2024-03-13
EP4092910A1 (en) 2022-11-23
CN111130490A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021114556A1 (zh) 电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备
WO2021109426A1 (zh) 体声波谐振器及制造方法、体声波谐振器单元、滤波器及电子设备
WO2021077711A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN107317560B (zh) 一种温度补偿表面声波器件及其制备方法
WO2021135019A1 (zh) 底电极为空隙电极的体声波谐振器、滤波器及电子设备
WO2021120499A1 (zh) 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备
WO2021109444A1 (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2022012334A1 (zh) 压电层双侧设置质量负载的体声波谐振器、滤波器及电子设备
WO2022143286A1 (zh) 单晶体声波谐振器、滤波器及电子设备
WO2021077716A1 (zh) 体声波谐振器、滤波器及电子设备
WO2021114555A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
WO2020177556A1 (zh) 带凹陷结构和凸结构的体声波谐振器、滤波器及电子设备
CN113746446A (zh) 具有稳定频率功能的体声波谐振器
WO2021232530A1 (zh) 一种固态装配谐振器的联接结构及制作工艺
WO2022228385A1 (zh) 具有加厚电极的体声波谐振器、滤波器及电子设备
CN111434036A (zh) 电声谐振器装置及其制造方法
WO2021077713A1 (zh) 体声波谐振器及其制造方法、滤波器和电子设备
CN111600569B (zh) 体声波谐振器及其制造方法、滤波器及电子设备
JP2021520755A (ja) フィルムバルク音響波共振器およびその製造方法
WO2024061051A1 (zh) 带有声子晶体的横向激励体声波谐振器及制备方法
WO2020098484A1 (zh) 带断裂结构体声波谐振器及其制造方法、滤波器和电子设备
WO2022188779A1 (zh) 谐振器及其制造方法、滤波器及电子设备
WO2022218376A1 (zh) 压电层下侧设置凸起和/或凹陷的体声波谐振器、滤波器及电子设备
WO2022188777A1 (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2022206332A1 (zh) 具有钨电极的体声波谐振器、滤波器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020899387

Country of ref document: EP

Effective date: 20220711