WO2021114417A1 - 一种供电系统及其整流电路 - Google Patents

一种供电系统及其整流电路 Download PDF

Info

Publication number
WO2021114417A1
WO2021114417A1 PCT/CN2019/129073 CN2019129073W WO2021114417A1 WO 2021114417 A1 WO2021114417 A1 WO 2021114417A1 CN 2019129073 W CN2019129073 W CN 2019129073W WO 2021114417 A1 WO2021114417 A1 WO 2021114417A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switch
bridge arm
rectifier circuit
bridge
semiconductor
Prior art date
Application number
PCT/CN2019/129073
Other languages
English (en)
French (fr)
Inventor
谢周悦
Original Assignee
浙江禾川科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江禾川科技股份有限公司 filed Critical 浙江禾川科技股份有限公司
Publication of WO2021114417A1 publication Critical patent/WO2021114417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present invention relates to the field of rectification, in particular to a rectifier circuit.
  • the present invention also relates to a power supply system.
  • the purpose of the present invention is to provide a rectifier circuit that does not cause shunting on two rectifier bridges. Even if the resistance values of the two rectifier bridges are different, the rectifier bridge will not be burnt out due to uneven shunting.
  • Another object of the present invention is to provide a power supply system including the above-mentioned rectifier circuit, which will not produce shunting phenomenon on two rectifier bridges, even if the resistance of the two rectifier bridges are different, it will not be caused by shunt failure. All lead to the phenomenon of burnout of the rectifier bridge, which prolongs the service life.
  • the present invention provides a rectifier circuit including a first rectifier bridge having a first bridge arm and a second bridge arm, and a second rectifier bridge having a third bridge arm and a fourth bridge arm;
  • the input end of the first bridge arm and the input end of the second bridge arm are respectively connected to the input end of the third bridge arm, the input end of the fourth bridge arm, and the negative electrode of the load;
  • the output end of a bridge arm and the output end of the second bridge arm are respectively connected to the output end of the third bridge arm, the output end of the fourth bridge arm, and the anode of the load;
  • connection point between the two semiconductor switches in the first bridge arm and the connection point between the two semiconductor switches in the second bridge arm are both connected to the anode of the power supply; the two semiconductor switches in the third bridge arm
  • connection point between the switches and the connection point between the two semiconductor switches in the fourth bridge arm are both connected to the negative electrode of the power supply.
  • the first bridge arm includes a first semiconductor switch and a second semiconductor switch
  • the second bridge arm includes a third semiconductor switch and a fourth semiconductor switch
  • the third bridge arm includes a fifth semiconductor switch and a second semiconductor switch.
  • the fourth bridge arm includes a seventh semiconductor switch and an eighth semiconductor switch;
  • the anode of the first semiconductor switch is used as the input terminal of the first bridge arm, the cathode of the first semiconductor switch is connected to the anode of the second semiconductor switch, and the cathode of the second semiconductor switch is used as the first
  • the output terminal of a bridge arm the anode of the third semiconductor switch is used as the input terminal of the second bridge arm, the cathode of the third semiconductor switch is connected to the anode of the fourth semiconductor switch, and the fourth semiconductor switch
  • the negative electrode of the switch is used as the output terminal of the second bridge arm; the positive electrode of the fifth semiconductor switch is used as the input terminal of the third bridge arm, and the negative electrode of the fifth semiconductor switch is connected to the positive electrode of the sixth semiconductor switch.
  • the negative electrode of the sixth semiconductor switch is used as the output terminal of the third bridge arm; the positive electrode of the seventh semiconductor switch is used as the input terminal of the fourth bridge arm, and the negative electrode of the seventh semiconductor switch is connected to the output terminal of the fourth bridge arm.
  • the anode of the eighth semiconductor switch is connected, and the cathode of the eighth semiconductor switch is used as the output terminal of the fourth bridge arm.
  • the first semiconductor switch, the second semiconductor switch, the third semiconductor switch, the fourth semiconductor switch, the fifth semiconductor switch, the sixth semiconductor switch, and the seventh semiconductor switch are diodes.
  • Both the switch and the eighth semiconductor switch are silicon controlled switches
  • the rectifier circuit also includes:
  • the control devices respectively connected with each semiconductor switch are used for driving each of the semiconductor switches according to a preset pulse, so as to realize rectification.
  • the thyristor switch is a MOS transistor.
  • the rectifier circuit further includes:
  • the control device is also used to control the prompter to prompt when each of the semiconductor switches is driven.
  • the reminder is a light reminder device.
  • the light prompting device is a light emitting diode.
  • the present invention also provides a power supply system, including the rectifier circuit as described in any one of the above.
  • the present invention provides a rectifier circuit.
  • the current In the positive half cycle of the alternating current output from the power supply, the current will first flow into the first rectifier bridge, and then return to the power supply after passing through the second rectifier bridge.
  • the current In the negative half cycle, the current will first flow into the second rectifier bridge. Bridge, and then return to the power supply after passing through the first rectifier bridge.
  • the present invention also provides a power supply system, which has the same beneficial effects as the above rectifier circuit.
  • FIG. 1 is a schematic structural diagram of a rectifier circuit provided by the present invention
  • Fig. 2 is a schematic structural diagram of a rectifier circuit in the prior art
  • Fig. 3 is a schematic structural diagram of another rectifier circuit provided by the present invention.
  • the core of the present invention is to provide a rectifier circuit that does not cause shunting on two rectifier bridges. Even if the resistance values of the two rectifier bridges are different, the rectifier bridge will not be burnt out due to uneven shunting.
  • Another core of the present invention is to provide a power supply system including the above-mentioned rectifier circuit, which will not cause shunting on the two rectifier bridges. Even if the resistance values of the two rectifier bridges are different, it will not be due to shunt failure. All lead to the phenomenon of burnout of the rectifier bridge, which prolongs the service life.
  • FIG. 1 is a schematic structural diagram of a rectifier circuit provided by the present invention, including: a first rectifier bridge 1 having a first bridge arm 11 and a second bridge arm 12, and a third bridge arm 21 and a fourth bridge arm.
  • the input end of the first bridge arm 11 and the input end of the second bridge arm 12 are respectively connected to the input end of the third bridge arm 21, the input end of the fourth bridge arm 22 and the negative electrode of the load;
  • the output of the first bridge arm 11 And the output end of the second bridge arm 12 are respectively connected to the output end of the third bridge arm 21, the output end of the fourth bridge arm 22, and the positive pole of the load;
  • connection point between the two semiconductor switches in the first bridge arm 11 and the connection point between the two semiconductor switches in the second bridge arm 12 are both connected to the positive pole of the power supply; between the two semiconductor switches in the third bridge arm 21 The connection point of and the connection point between the two semiconductor switches in the fourth bridge arm 22 are both connected to the negative pole of the power supply.
  • the current flowing out of the positive pole of the power source may first pass through the first rectifier bridge 1, and then flow through the second rectifier bridge 2 back to the negative pole.
  • the current flowing out of the negative pole of the power supply can pass through the second rectifier bridge 2 first, and then flow through the first rectifier bridge 1 back to the positive pole.
  • the load can be of multiple types, which are not limited in the embodiment of the present invention.
  • the present invention provides a rectifier circuit.
  • the current In the positive half cycle of the alternating current output from the power supply, the current will first flow into the first rectifier bridge, and then return to the power supply after passing through the second rectifier bridge.
  • the current In the negative half cycle, the current will first flow into the second rectifier bridge. Bridge, and then return to the power supply after passing through the first rectifier bridge.
  • the first bridge arm 11 includes a first semiconductor switch D1 and a second semiconductor switch D2
  • the second bridge arm 12 includes a third semiconductor switch D3 and a fourth semiconductor switch D4
  • the third bridge arm 21 includes A fifth semiconductor switch D5 and a sixth semiconductor switch D6
  • the fourth bridge arm 22 includes a seventh semiconductor switch D7 and an eighth semiconductor switch D8;
  • the anode of the first semiconductor switch D1 is used as the input terminal of the first bridge arm 11
  • the cathode of the first semiconductor switch D1 is connected to the anode of the second semiconductor switch D2
  • the cathode of the second semiconductor switch D2 is used as the output terminal of the first bridge arm 11.
  • the anode of the third semiconductor switch D3 is used as the input terminal of the second bridge arm 12, the cathode of the third semiconductor switch D3 is connected to the anode of the fourth semiconductor switch D4, and the cathode of the fourth semiconductor switch D4 is used as the output of the second bridge arm 12
  • the anode of the fifth semiconductor switch D5 is used as the input terminal of the third bridge arm 21, the cathode of the fifth semiconductor switch D5 is connected to the anode of the sixth semiconductor switch D6, and the cathode of the sixth semiconductor switch D6 is used as the third bridge arm 21 Output terminal;
  • the anode of the seventh semiconductor switch D7 is used as the input terminal of the fourth bridge arm 22, the cathode of the seventh semiconductor switch D7 is connected to the anode of the eighth semiconductor switch D8, and the cathode of the eighth semiconductor switch D8 is used as the fourth bridge arm 22 The output terminal.
  • the current flowing from the positive pole of the power supply may first pass through the first rectifier bridge 1, pass through the first semiconductor switch D1 and the second semiconductor switch D2, and then flow into the load, and then After coming out of the load, it flows through the seventh semiconductor switch D7 and the eighth semiconductor switch D8 and then returns to the negative pole.
  • the current flowing out of the negative pole of the power supply can first pass through the second rectifier bridge 2 and through the fifth semiconductor switch.
  • the switch D5 and the sixth semiconductor switch D6 flow into the branch, and then after being discharged from the load, flow through the third semiconductor switch D3 and the fourth semiconductor switch D4 and return to the positive electrode.
  • each rectifier bridge in the embodiment of the present invention uses only four semiconductor switches, which has a simple structure and low cost.
  • first rectifier bridge 1 and the second rectifier bridge 2 may also have other forms, which are not limited in the embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another rectifier circuit provided by the present invention.
  • the first semiconductor switch D1 and the second semiconductor switch D2, the third semiconductor switch D3, the fourth semiconductor switch D4, the fifth semiconductor switch D5, the sixth semiconductor switch D6, the seventh semiconductor switch D7, and the eighth semiconductor switch D8 are all diodes.
  • the diode has the advantages of small size, simple structure and low cost.
  • the semiconductor switch D8 can also be of various other types, which are not limited in the embodiment of the present invention.
  • the first semiconductor switch D1, the second semiconductor switch D2, the third semiconductor switch D3, the fourth semiconductor switch D4, the fifth semiconductor switch D5, the sixth semiconductor switch D6, the seventh semiconductor switch D7, and the The eighth semiconductor switch D8 is a silicon controlled switch;
  • the rectifier circuit also includes:
  • the control devices respectively connected with each semiconductor switch are used for driving each semiconductor switch according to a preset pulse so as to realize rectification.
  • the rectifier bridge composed of thyristor switches can be a controllable rectifier bridge, and the use of the controllable rectifier bridge can perform more diverse adjustment and control on electric energy, and can be applied to more scenarios.
  • the thyristor switch is a MOS (Metal-Oxide-Semiconductor Field-Effect Transistor) tube.
  • MOS Metal-Oxide-Semiconductor Field-Effect Transistor
  • the MOS tube has the advantages of low cost, long life, and fast response speed.
  • the thyristor switch may also be of other types, which is not limited in the embodiment of the present invention.
  • the rectifier circuit further includes:
  • the control device is also used to control the prompter to prompt when each semiconductor switch is driven.
  • control device can also control the prompter to prompt when driving each semiconductor switch, and the staff can use the prompter to determine whether the control device normally sends out a driving signal, thereby judging the control device Whether it is faulty, it is helpful for the staff to quickly diagnose the fault of the control device and improve the work efficiency.
  • the reminder is a light reminder device.
  • the light prompting device has the advantages of good prompting effect.
  • the prompting device can also be of various other types, for example, it can be a voice prompting device, etc., which is not limited in the embodiment of the present invention.
  • the light prompting device is a light emitting diode.
  • light-emitting diodes have the advantages of small size, low cost, and long life.
  • the light prompting device can also be of multiple types, which are not limited in the embodiment of the present invention.
  • the present invention also provides a power supply system, including the rectifier circuit as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种整流电路,在电源输出的交流电的正半周期,电流会先流入第一整流桥,然后再经过第二整流桥后返回电源,在负半周期电流会先流入第二整流桥,然后再经过第一整流桥后返回电源,不会在两个整流桥上产生分流的现象,即使两个整流桥的阻值不同也不会由于分流不均导致烧坏整流桥的现象发生,延长了使用寿命。一种供电系统,具有如上整流电路相同的有益效果。

Description

一种供电系统及其整流电路
本申请要求于2019年12月13日提交至中国专利局、申请号为201911285679.2、发明名称为“一种供电系统及其整流电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及整流领域,特别是涉及一种整流电路,本发明还涉及一种供电系统。
背景技术
在对大电流进行整流时,为了节省成本,如图2所示,现有技术中经常采用两个小规格的整流桥并联在一起对大电流进行整流(其中D1至D8均为半导体开关),但是电源输出的电流在经过并联的两个整流桥时要进行分流,这就要求两个整流桥上分得的电流要均衡,但是由于半导体特性的差异,即使选择同一型号的半导体开关,两个整流桥的初始阻抗也会有所不同,如此一来,两个整流桥分得的电流值便不相等,分得电流值较大的整流桥的发热便会高于另一个整流桥,而且热度越高半导体开关的阻抗越小,便会导致电流分配进一步失衡,使得整流桥很容易被烧坏,使用寿命较短。
因此,如何提供一种解决上述技术问题的方案是本领域技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种整流电路,不会在两个整流桥上产生分流的现象,即使两个整流桥的阻值不同也不会由于分流不均导致烧坏整流桥的现象发生,延长了使用寿命;本发明的另一目的是提供一种包括上述整流电路的供电系统,不会在两个整流桥上产生分流的现象,即使两个整流桥的阻值不同也不会由于分流不均导致烧坏整流桥的现象发生,延长了使用寿命。
为解决上述技术问题,本发明提供了一种整流电路,包括具有第一桥臂和第二桥臂的第一整流桥以及具有第三桥臂和第四桥臂的第二整流桥;
所述第一桥臂的输入端以及所述第二桥臂的输入端均分别与所述第三桥臂的输入端、所述第四桥臂的输入端以及负载的负极连接;所述第一桥臂的输出端以及所述第二桥臂的输出端均分别与所述第三桥臂的输出端、所述第四桥臂的输出端以及所述负载的正极连接;
所述第一桥臂中两个半导体开关之间的连接点以及所述第二桥臂中两个半导体开关之间的连接点均与电源的正极连接;所述第三桥臂中两个半导体开关之间的连接点以及所述第四桥臂中两个半导体开关之间的连接点均与所述电源的负极连接。
优选地,所述第一桥臂包括第一半导体开关以及第二半导体开关,所述第二桥臂包括第三半导体开关以及第四半导体开关,所述第三桥臂包括第五半导体开关以及第六半导体开关,所述第四桥臂包括第七半导体开关以及第八半导体开关;
所述第一半导体开关的正极作为所述第一桥臂的输入端,所述第一半导体开关的负极与所述第二半导体开关的正极连接,所述第二半导体开关的负极作为所述第一桥臂的输出端;所述第三半导体开关的正极作为所述第二桥臂的输入端,所述第三半导体开关的负极与所述第四半导体开关的正极连接,所述第四半导体开关的负极作为所述第二桥臂的输出端;所述第五半导体开关的正极作为所述第三桥臂的输入端,所述第五半导体开关的负极与所述第六半导体开关的正极连接,所述第六半导体开关的负极作为所述第三桥臂的输出端;所述第七半导体开关的正极作为所述第四桥臂的输入端,所述第七半导体开关的负极与所述第八半导体开关的正极连接,所述第八半导体开关的负极作为所述第四桥臂的输出端。
优选地,所述第一半导体开关、所述第二半导体开关、所述第三半导体开关、所述第四半导体开关、所述第五半导体开关、所述第六半导体开关、所述第七半导体开关以及所述第八半导体开关均为二极管。
优选地,所述第一半导体开关、所述第二半导体开关、所述第三半导体开关、所述第四半导体开关、所述第五半导体开关、所述第六半导体开关、所述第七半导体开关以及所述第八半导体开关均为可控硅开关;
则该整流电路还包括:
分别与各个半导体开关连接的控制装置,用于根据预设脉冲驱动各个所述半导体开关,以便实现整流。
优选地,所述可控硅开关为金氧半场效晶体管MOS管。
优选地,该整流电路还包括:
与所述控制装置连接的提示器;
则所述控制装置还用于在驱动各个所述半导体开关时控制所述提示器进行提示。
优选地,所述提示器为灯光提示装置。
优选地,所述灯光提示装置为发光二极管。
为解决上述技术问题,本发明还提供了一种供电系统,包括如上任一项所述的整流电路。
本发明提供了一种整流电路,在电源输出的交流电的正半周期,电流会先流入第一整流桥,然后再经过第二整流桥后返回电源,在负半周期电流会先流入第二整流桥,然后再经过第一整流桥后返回电源,不会在两个整流桥上产生分流的现象,即使两个整流桥的阻值不同也不会由于分流不均导致烧坏整流桥的现象发生,延长了使用寿命。
本发明还提供了一种供电系统,具有如上整流电路相同的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种整流电路的结构示意图;
图2为现有技术中的一种整流电路的结构示意图;
图3为本发明提供的另一种整流电路的结构示意图。
具体实施方式
本发明的核心是提供一种整流电路,不会在两个整流桥上产生分流的现象,即使两个整流桥的阻值不同也不会由于分流不均导致烧坏整流桥的现象发生,延长了使用寿命;本发明的另一核心是提供一种包括上述整流电路的供电系统,不会在两个整流桥上产生分流的现象,即使两个整流桥的阻值不同也不会由于分流不均导致烧坏整流桥的现象发生,延长了使用寿命。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明提供的一种整流电路的结构示意图,包括:具有第一桥臂11和第二桥臂12的第一整流桥1以及具有第三桥臂21和第四桥臂22的第二整流桥2;
第一桥臂11的输入端以及第二桥臂12的输入端均分别与第三桥臂21的输入端、第四桥臂22的输入端以及负载的负极连接;第一桥臂11的输出端以及第二桥臂12的输出端均分别与第三桥臂21的输出端、第四桥臂22的输出端以及负载的正极连接;
第一桥臂11中两个半导体开关之间的连接点以及第二桥臂12中两个半导体开关之间的连接点均与电源的正极连接;第三桥臂21中两个半导体开关之间的连接点以及第四桥臂22中两个半导体开关之间的连接点均与电源的负极连接。
具体的,在本发明实施例中,在交流电的正半周期内,电源的正极流出的电流可以先经过第一整流桥1,然后再流经第二整流桥2回到负极,在交流电的负半周期内,电源的负极流出的电流可以先经过第二整流桥2, 然后再流经第一整流桥1回到正极,在交流电的整个周期内都不会出现分流的现象,因此即使两个整流桥的阻抗不同,也不会由于分流不均而导致其中分流较大的整流桥快速损坏,保护了整流桥,延长了整流电路的使用寿命。
其中,本发明实施例中无需改变器件的数量,仅仅需要改变连接关系便可以避免分流的情况出现从而对整流桥进行保护。
其中,负载可以为多种类型,本发明实施例在此不做限定。
本发明提供了一种整流电路,在电源输出的交流电的正半周期,电流会先流入第一整流桥,然后再经过第二整流桥后返回电源,在负半周期电流会先流入第二整流桥,然后再经过第一整流桥后返回电源,不会在两个整流桥上产生分流的现象,即使两个整流桥的阻值不同也不会由于分流不均导致烧坏整流桥的现象发生,延长了使用寿命。
在上述实施例的基础上:
作为一种优选的实施例,第一桥臂11包括第一半导体开关D1以及第二半导体开关D2,第二桥臂12包括第三半导体开关D3以及第四半导体开关D4,第三桥臂21包括第五半导体开关D5以及第六半导体开关D6,第四桥臂22包括第七半导体开关D7以及第八半导体开关D8;
第一半导体开关D1的正极作为第一桥臂11的输入端,第一半导体开关D1的负极与第二半导体开关D2的正极连接,第二半导体开关D2的负极作为第一桥臂11的输出端;第三半导体开关D3的正极作为第二桥臂12的输入端,第三半导体开关D3的负极与第四半导体开关D4的正极连接,第四半导体开关D4的负极作为第二桥臂12的输出端;第五半导体开关D5的正极作为第三桥臂21的输入端,第五半导体开关D5的负极与第六半导体开关D6的正极连接,第六半导体开关D6的负极作为第三桥臂21的输出端;第七半导体开关D7的正极作为第四桥臂22的输入端,第七半导体开关D7的负极与第八半导体开关D8的正极连接,第八半导体开关D8的负极作为第四桥臂22的输出端。
具体的,在本发明实施例中,在交流电的正半周期内,电源的正极流出的电流可以先经过第一整流桥1,经过第一半导体开关D1以及第二半导体开关D2后流入负载,然后从负载出来后再流经第七半导体开关D7以及第八半导体开关D8后回到负极,在交流电的负半周期内,电源的负极流出的电流可以先经过第二整流桥2,经过第五半导体开关D5以及第六半导体开关D6后流入分在,然后从负载出来后再流经第三半导体开关D3以及第四半导体开关D4后回到正极。
其中,本发明实施例中每个整流桥均只采用了四个半导体开关,结构简单且成本低。
当然,除了本发明实施例中列举的具体形式外,第一整流桥1以及第二整流桥2还可以为其他形式,本发明实施例在此不做限定。
为了更好地对本发明实施例进行说明,请参考图3,图3为本发明提供的另一种整流电路的结构示意图,作为一种优选的实施例,第一半导体开关D1、第二半导体开关D2、第三半导体开关D3、第四半导体开关D4、第五半导体开关D5、第六半导体开关D6、第七半导体开关D7以及第八半导体开关D8均为二极管。
具体的,二极管具有体积小、结构简单以及成本低等优点。
当然,除了二极管外,第一半导体开关D1、第二半导体开关D2、第三半导体开关D3、第四半导体开关D4、第五半导体开关D5、第六半导体开关D6、第七半导体开关D7以及第八半导体开关D8均还可以为其他多种类型,本发明实施例在此不做限定。
作为一种优选的实施例,第一半导体开关D1、第二半导体开关D2、第三半导体开关D3、第四半导体开关D4、第五半导体开关D5、第六半导体开关D6、第七半导体开关D7以及第八半导体开关D8均为可控硅开关;
则该整流电路还包括:
分别与各个半导体开关连接的控制装置,用于根据预设脉冲驱动各个半导体开关,以便实现整流。
具体的,由可控硅开关组成的整流桥可以为可控整流桥,采用可控整流桥可以对电能进行更加多样的调整控制,能够适用于更多的场景。
作为一种优选的实施例,可控硅开关为MOS(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效晶体管)管。
具体的,MOS管具有成本低、寿命长以及响应速度快等优点。
当然,除了MOS管外,可控硅开关还可以为其他类型,本发明实施例在此不做限定。
作为一种优选的实施例,该整流电路还包括:
与控制装置连接的提示器;
则控制装置还用于在驱动各个半导体开关时控制提示器进行提示。
具体的,在本发明实施例中,控制装置还可以在驱动各个半导体开关时控制提示器进行提示,工作人员可以通过提示器来判断控制装置是否正常地发出了驱动信号,以此来判断控制装置是否故障,有利于工作人员快速地对控制装置进行故障诊断,提高了工作效率。
作为一种优选的实施例,提示器为灯光提示装置。
具体的,灯光提示装置具有提示效果好等优点。
当然,除了灯光提示装置外,提示器还可以为其他多种类型,例如可以为语音提示装置等,本发明实施例在此不做限定。
作为一种优选的实施例,灯光提示装置为发光二极管。
具体的,发光二极管具有体积小、成本低以及寿命长等优点。
当然,除了发光二极管外,灯光提示装置还可以为多种类型,本发明实施例在此不做限定。
为解决上述技术问题,本发明还提供了一种供电系统,包括如上任一项的整流电路。
对于本发明实施例提供的供电系统的介绍请参照前述的整流电路的实施例,本发明实施例在此不再赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即 可。还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种整流电路,其特征在于,包括具有第一桥臂和第二桥臂的第一整流桥以及具有第三桥臂和第四桥臂的第二整流桥;
    所述第一桥臂的输入端以及所述第二桥臂的输入端均分别与所述第三桥臂的输入端、所述第四桥臂的输入端以及负载的负极连接;所述第一桥臂的输出端以及所述第二桥臂的输出端均分别与所述第三桥臂的输出端、所述第四桥臂的输出端以及所述负载的正极连接;
    所述第一桥臂中两个半导体开关之间的连接点以及所述第二桥臂中两个半导体开关之间的连接点均与电源的正极连接;所述第三桥臂中两个半导体开关之间的连接点以及所述第四桥臂中两个半导体开关之间的连接点均与所述电源的负极连接。
  2. 根据权利要求1所述的整流电路,其特征在于,所述第一桥臂包括第一半导体开关以及第二半导体开关,所述第二桥臂包括第三半导体开关以及第四半导体开关,所述第三桥臂包括第五半导体开关以及第六半导体开关,所述第四桥臂包括第七半导体开关以及第八半导体开关;
    所述第一半导体开关的正极作为所述第一桥臂的输入端,所述第一半导体开关的负极与所述第二半导体开关的正极连接,所述第二半导体开关的负极作为所述第一桥臂的输出端;所述第三半导体开关的正极作为所述第二桥臂的输入端,所述第三半导体开关的负极与所述第四半导体开关的正极连接,所述第四半导体开关的负极作为所述第二桥臂的输出端;所述第五半导体开关的正极作为所述第三桥臂的输入端,所述第五半导体开关的负极与所述第六半导体开关的正极连接,所述第六半导体开关的负极作为所述第三桥臂的输出端;所述第七半导体开关的正极作为所述第四桥臂的输入端,所述第七半导体开关的负极与所述第八半导体开关的正极连接,所述第八半导体开关的负极作为所述第四桥臂的输出端。
  3. 根据权利要求2所述的整流电路,其特征在于,所述第一半导体开关、所述第二半导体开关、所述第三半导体开关、所述第四半导体开关、所述第五半导体开关、所述第六半导体开关、所述第七半导体开关以及所述第八半导体开关均为二极管。
  4. 根据权利要求2所述的整流电路,其特征在于,所述第一半导体开关、所述第二半导体开关、所述第三半导体开关、所述第四半导体开关、所述第五半导体开关、所述第六半导体开关、所述第七半导体开关以及所述第八半导体开关均为可控硅开关;
    则该整流电路还包括:
    分别与各个半导体开关连接的控制装置,用于根据预设脉冲驱动各个所述半导体开关,以便实现整流。
  5. 根据权利要求4所述的整流电路,其特征在于,所述可控硅开关为金氧半场效晶体管MOS管。
  6. 根据权利要求4所述的整流电路,其特征在于,该整流电路还包括:
    与所述控制装置连接的提示器;
    则所述控制装置还用于在驱动各个所述半导体开关时控制所述提示器进行提示。
  7. 根据权利要求6所述的整流电路,其特征在于,所述提示器为灯光提示装置。
  8. 根据权利要求7所述的整流电路,其特征在于,所述灯光提示装置为发光二极管。
  9. 一种供电系统,其特征在于,包括如权利要求1至8任一项所述的整流电路。
PCT/CN2019/129073 2019-12-13 2019-12-27 一种供电系统及其整流电路 WO2021114417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911285679.2 2019-12-13
CN201911285679.2A CN110880878A (zh) 2019-12-13 2019-12-13 一种供电系统及其整流电路

Publications (1)

Publication Number Publication Date
WO2021114417A1 true WO2021114417A1 (zh) 2021-06-17

Family

ID=69731707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129073 WO2021114417A1 (zh) 2019-12-13 2019-12-27 一种供电系统及其整流电路

Country Status (2)

Country Link
CN (1) CN110880878A (zh)
WO (1) WO2021114417A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381593B (zh) * 2021-06-29 2022-11-22 杭州米福科技有限公司 一种大功率容性负载仪器的前端辅助电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006050942A1 (de) * 2006-05-10 2007-11-15 Sack, Lothar, Dr.-Ing. Schaltungsanordnung und Steuerverfahren für einen Z-Source-Umrichter
CN101369723A (zh) * 2008-10-08 2009-02-18 中国电力科学研究院 一种可重构型静态无功补偿/直流融冰复合装置的保护系统
CN203851051U (zh) * 2014-04-30 2014-09-24 深圳欧陆通电子有限公司 一种用电设备、电源装置及其整流电路
CN206686097U (zh) * 2016-08-08 2017-11-28 深圳市金威源科技股份有限公司 一种整流电路
CN209200949U (zh) * 2018-12-28 2019-08-02 上海午阳电子科技有限公司 一种新能源汽车充电机整流桥实用并联电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873078B (zh) * 2009-04-21 2012-11-21 比亚迪股份有限公司 一种可控整流装置以及使用该整流装置的电动机
CN107294400B (zh) * 2017-07-16 2019-04-05 中车永济电机有限公司 基于高兼容功率单元的牵引变流装置
CN107947605A (zh) * 2017-12-25 2018-04-20 黄山硅鼎电子有限公司 基于gpp整流芯片并联式的桥式整流器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006050942A1 (de) * 2006-05-10 2007-11-15 Sack, Lothar, Dr.-Ing. Schaltungsanordnung und Steuerverfahren für einen Z-Source-Umrichter
CN101369723A (zh) * 2008-10-08 2009-02-18 中国电力科学研究院 一种可重构型静态无功补偿/直流融冰复合装置的保护系统
CN203851051U (zh) * 2014-04-30 2014-09-24 深圳欧陆通电子有限公司 一种用电设备、电源装置及其整流电路
CN206686097U (zh) * 2016-08-08 2017-11-28 深圳市金威源科技股份有限公司 一种整流电路
CN209200949U (zh) * 2018-12-28 2019-08-02 上海午阳电子科技有限公司 一种新能源汽车充电机整流桥实用并联电路

Also Published As

Publication number Publication date
CN110880878A (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
JP5547798B2 (ja) Led照明装置
US9591708B2 (en) LED driving device for dynamic segment configurations and the LED lighting apparatus thereof
SE410670B (sv) Anordning for reglering av en elektromagnet
US20150208474A1 (en) Method of taking power with low-voltage bypass by integrated circuit for ac direct driving leds and the integrated circuit
WO2012100683A1 (zh) 高功率因数恒流led照明电路
CN104540271B (zh) 一种自适应型led驱动电路
WO2013097692A1 (zh) 交流电直接驱动的led发光装置
CN101594046B (zh) 突入电流限制器
WO2021114417A1 (zh) 一种供电系统及其整流电路
US20190020264A1 (en) Power supply
TW201123981A (en) LED driving device
TW201541851A (zh) 馬達驅動電路
RU2437204C1 (ru) Устройство источника питания постоянного тока
US20130119883A1 (en) Buck converter and method for providing a current for at least one led
US8907583B1 (en) LED driving device
JP5775326B2 (ja) Led点灯回路
US20090168465A1 (en) Power supply circuit with protecting circuit
TW201134293A (en) Integrated circuit for driving high voltage LED lamp
TWI674035B (zh) 發光二極體照明裝置
CN103200735A (zh) 一种防止led闪烁的led驱动器
JP2013201420A (ja) カスコード接続した電流調整器
CN207743687U (zh) 一种具有保护功能的辅助电源
CN108599601B (zh) 同步变压器实现隔离式无源自驱光耦三相同步整流电路及其方法
US10595370B2 (en) LED lamp and driver circuit for LED light source
KR102132666B1 (ko) 발광 다이오드 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956170

Country of ref document: EP

Kind code of ref document: A1