WO2021114370A1 - 白光oled显示装置及其制作方法 - Google Patents

白光oled显示装置及其制作方法 Download PDF

Info

Publication number
WO2021114370A1
WO2021114370A1 PCT/CN2019/126892 CN2019126892W WO2021114370A1 WO 2021114370 A1 WO2021114370 A1 WO 2021114370A1 CN 2019126892 W CN2019126892 W CN 2019126892W WO 2021114370 A1 WO2021114370 A1 WO 2021114370A1
Authority
WO
WIPO (PCT)
Prior art keywords
rhodamine
white light
conversion film
display device
manufacturing
Prior art date
Application number
PCT/CN2019/126892
Other languages
English (en)
French (fr)
Inventor
查宝
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/627,335 priority Critical patent/US11335736B2/en
Publication of WO2021114370A1 publication Critical patent/WO2021114370A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light

Definitions

  • the present invention relates to the field of display technology, in particular to a white light OLED display device and a manufacturing method thereof.
  • OLED Organic light emitting diode
  • the white OLED-based display covers the three primary colors (red, green, and blue) in the visible light region, and can be used as the backlight of a liquid crystal display (LCD), using a combination of white light OLED backlight and color filter
  • LCD liquid crystal display
  • the technology not only has simple preparation process, good repeatability, and low cost, but also fully meets the characteristics of light, thin, and low power consumption of LCD. Therefore, it has become an important technology for the production of large-size full-color OLED displays.
  • the white light OLED display device and the manufacturing method thereof provided by the present invention solve the technical problem that the white light generated by the existing white light OLED display device has low color purity and low backlight conversion rate.
  • the embodiment of the present invention provides a method for manufacturing a white light OLED display device, which includes the following steps:
  • Step S10 Provide a white light OLED light source
  • Step S20 providing a color filter layer, the color filter layer including a red color resist, a green color resist, and a blue color resist;
  • Step S30 forming an organic fluorescent color conversion film on the side of the color filter layer close to the white light OLED light source, and the organic fluorescent color conversion film includes forming on the green color resist and the red color respectively.
  • the first conversion film and the second conversion film on the resist wherein the first conversion film converts the cyan light emitted by the white light OLED light source into green light, and the second conversion film converts the light emitted by the white light OLED light source The yellow-orange light is converted into red light.
  • the first conversion film is formed by the cross-linking reaction of rhodamine 6G derivative and the acrylic resin in the siloxane resin.
  • the second conversion film is formed by the rhodamine 101 derivative and silicon
  • the acrylic resin in the oxane resin is formed by a crosslinking reaction.
  • the step S30 includes the following steps:
  • Step S301 The mass ratios of rhodamine 6G derivatives and rhodamine 101 derivatives, siloxane resin and 3-(methacryloxy)propyltrimethoxysilane are respectively (0.8 ⁇ 1.2): (8 ⁇ 12): Mix the ratio of (13-15) into rhodamine 6G dye solution and rhodamine 101 dye solution;
  • Step S302 mixing the rhodamine 6G dye solution and the rhodamine 101 dye solution with an organic solvent and a UV light initiator respectively;
  • Step S303 placing the rhodamine 6G dye solution on the green color resist, and placing the rhodamine 101 dye solution on the red color resist;
  • Step S304 irradiate the color filter layer with UV light, and the rhodamine 6G dye solution and the rhodamine 101 dye solution are respectively monodispersed to form the first conversion on the green color resist And forming the second conversion film on the red color resist.
  • the rhodamine 6G derivative in the step S301 includes the following chemical structure:
  • R1 to R6 are one of the halogen substituents -F, -Cl, Br, -I, or have a non-conjugated structure, or have a conjugated structure connected through an alkoxy group or an ester group, or contain hetero Conjugated structure of the ring;
  • R7 ⁇ R10 are one of the halogen substituents -F, -Cl, Br, -I, or have a non-conjugated structure;
  • R11 is the structure of the ester group end with an unsaturated double bond structure;
  • X- is one of F-, Cl-, Br-, CN-, ClO 4 -, CF 3 SO 3 -, CF 2 HSO 3 -and CFH 2 SO 3 -.
  • R11 includes a chemical structure Wherein, n is 1-25.
  • the rhodamine 101 derivative in the step S301 includes the following chemical structure:
  • R5 is the structure of the ester group end with an unsaturated double bond structure;
  • X- is F-, Cl-, Br-, CN-, ClO 4 -, CF 3 SO 3 -, CF 2 HSO 3- And one of CFH 2 SO 3 -.
  • R5 includes a chemical structure Wherein, n is 1-40.
  • the siloxane resin is diphenyldihydroxysilane, diphenyldihydroxysilane and 3-(methacryloyloxy) )
  • the chemical formula for the reaction of propyltrimethoxysilane is:
  • the rhodamine 6G derivative and the rhodamine 101 derivative are combined with a siloxane resin, 3-(methacryloyloxy) )
  • the ratio of propyltrimethoxysilane is 1:10:12.
  • the ratio of the rhodamine 6G dye solution and the rhodamine 101 dye solution, the organic solvent and the UV light initiator It is (5 ⁇ 15): (45 ⁇ 55): (0.8 ⁇ 1.5).
  • the ratio of the rhodamine 6G dye solution and the rhodamine 101 dye solution, the organic solvent and the UV light initiator is 10:50:1 .
  • the embodiment of the present invention provides a method for manufacturing a white light OLED display device, which includes the following steps:
  • Step S10 Provide a white light OLED light source
  • Step S20 providing a color filter layer, the color filter layer including a red color resist, a green color resist, and a blue color resist;
  • Step S30 forming an organic fluorescent color conversion film on the side of the color filter layer close to the white light OLED light source, and the organic fluorescent color conversion film includes forming on the green color resist and the red color respectively The first conversion film and the second conversion film on the resist, wherein the first conversion film converts the cyan light emitted by the white light OLED light source into green light, and the second conversion film converts the light emitted by the white light OLED light source The yellow-orange light is converted to red light.
  • the step S30 includes the following steps:
  • Step S301 The mass ratios of rhodamine 6G derivatives and rhodamine 101 derivatives, siloxane resin and 3-(methacryloxy)propyltrimethoxysilane are respectively (0.8 ⁇ 1.2): (8 ⁇ 12): Mix the ratio of (13-15) into rhodamine 6G dye solution and rhodamine 101 dye solution;
  • Step S302 mixing the rhodamine 6G dye solution and the rhodamine 101 dye solution with an organic solvent and a UV light initiator respectively;
  • Step S303 placing the rhodamine 6G dye solution on the green color resist, and placing the rhodamine 101 dye solution on the red color resist;
  • Step S304 irradiate the color filter layer with UV light, and the rhodamine 6G dye solution and the rhodamine 101 dye solution are respectively monodispersed to form the first conversion on the green color resist And forming the second conversion film on the red color resist.
  • the rhodamine 6G derivative in the step S301 includes the following chemical structure:
  • R1 to R6 are one of the halogen substituents -F, -Cl, Br, -I, or have a non-conjugated structure, or have a conjugated structure connected through an alkoxy group or an ester group, or contain hetero Conjugated structure of the ring;
  • R7 ⁇ R10 are one of the halogen substituents -F, -Cl, Br, -I, or have a non-conjugated structure;
  • R11 is the structure of the ester group end with an unsaturated double bond structure;
  • X- is one of F-, Cl-, Br-, CN-, ClO 4 -, CF 3 SO 3 -, CF 2 HSO 3 -and CFH 2 SO 3 -.
  • R11 includes a chemical structure Wherein, n is 1-25.
  • the rhodamine 101 derivative in the step S301 includes the following chemical structure:
  • R5 is the structure of the ester group end with an unsaturated double bond structure;
  • X- is F-, Cl-, Br-, CN-, ClO 4 -, CF 3 SO 3 -, CF 2 HSO 3- And one of CFH 2 SO 3 -.
  • R5 includes a chemical structure Wherein, n is 1-40.
  • the siloxane resin is diphenyldihydroxysilane, diphenyldihydroxysilane and 3-(methacryloyloxy) )
  • the chemical formula for the reaction of propyltrimethoxysilane is:
  • the rhodamine 6G dye and the rhodamine 101 dye are respectively combined with the acrylic group at the end of the siloxane resin, Form a monodisperse.
  • the organic solvent is one or more of chlorobenzene, toluene, o-dichlorobenzene, and diethyl ether, and the UV light
  • the initiator is ⁇ , ⁇ -diethoxyacetophenone or 2-methyl-2-morpholino-1-(4-methylphenylthio)propan-1-one.
  • the embodiment of the present invention provides a white light OLED display device, including:
  • Color filter layer including red color resist, green color resist and blue color resist
  • the organic fluorescent color conversion film is disposed on the side of the color filter layer close to the white light OLED light source, and the organic fluorescent color conversion film includes the organic fluorescent color conversion film respectively disposed on the green color resist and the red color resist.
  • the first conversion film and the second conversion film wherein the first conversion film converts the cyan light emitted by the white light OLED light source into green light, and the second conversion film converts the yellow-orange light emitted by the white light OLED light source The light is converted to red light.
  • the beneficial effects of the present invention are: the white light OLED display device and the manufacturing method thereof provided by the present invention improve the white light OLED by making an organic fluorescent color conversion film and placing it between the white light OLED light source and the color film filter.
  • the color gamut and color conversion rate of the display device effectively solve the problem that the color reproduction ability and light conversion efficiency of the white light OLED light source cannot be achieved at the same time, which is beneficial to improve the compactness of the organic fluorescent color conversion film and avoid the color film filter layer.
  • the free-state ions penetrate into the organic layer in the white light OLED light source; at the same time, it can also block water and oxygen well, which is beneficial to improve the stability of the device.
  • FIG. 1 is a flowchart of a method for manufacturing a white light OLED display device according to an embodiment of the present invention.
  • FIGS. 2 to 4 are schematic diagrams of the flow structure of a method for manufacturing a white light OLED display device according to an embodiment of the present invention
  • FIG. 5 is a flowchart of step S30 in a method for manufacturing a white light OLED display device according to an embodiment of the present invention.
  • the present invention is directed to the white light OLED display device of the prior art, and the white light generated has low color purity and low backlight conversion rate. This embodiment can solve this defect.
  • the manufacturing method of the white light OLED display device includes the following steps:
  • Step S10 Provide a white light OLED light source 1.
  • the white light OLED light source 1 can emit red light, green light, and blue light, and has a weaker intensity in the cyan light band and the yellow-orange light band.
  • Step S20 Provide a color filter layer 2 which includes a red color resist R, a green color resist G, and a blue color resist B.
  • the color filter layer 2 includes a base substrate 21 and a color resist layer 22 formed on the base substrate 21.
  • the color resist layer 22 includes a red color resist R, The green color resist G and the blue color resist B, wherein the red color resist R, the green color resist G, and the blue color resist B are located on the base substrate 21 close to the white light OLED light source 1 On the side.
  • Step S30 An organic fluorescent color conversion film 3 is formed on the side of the color filter layer 2 close to the white light OLED light source 1, and the organic fluorescent color conversion film 3 includes the green color resistors G And the first conversion film 31 and the second conversion film 32 on the red color resist R, wherein the first conversion film 31 converts the cyan light emitted by the white light OLED light source 1 into green light, and the second The conversion film 32 converts the yellow-orange light emitted by the white light OLED light source 1 into red light.
  • the first conversion film 31 is formed by the crosslinking reaction of the rhodamine 6G derivative and the acrylic resin in the siloxane resin
  • the second conversion film 32 is formed by The rhodamine 101 derivative and the acrylic resin in the siloxane resin are formed by cross-linking reaction.
  • the step S30 includes the following steps:
  • Step S301 The mass ratios of rhodamine 6G derivatives and rhodamine 101 derivatives, siloxane resin and 3-(methacryloxy)propyltrimethoxysilane are respectively (0.8 ⁇ 1.2): (8 ⁇ 12): Mix the ratio of (13-15) into rhodamine 6G dye solution and rhodamine 101 dye solution.
  • the rhodamine 6G derivative includes the following chemical structure:
  • the rhodamine 6G derivative includes groups R1 to R4 in the parent ring, R5 to R6 and X- containing amino groups at the 3 and 6 positions, and R7 to R10 in the bottom ring.
  • R1 to R6 are one of the halogen substituents -F, -Cl, Br, -I, or have a non-conjugated structure, or have a conjugated structure connected through an alkoxy group or an ester group, or contain hetero Conjugated structure of the ring;
  • R7 ⁇ R10 are one of the halogen substituents -F, -Cl, Br, -I, or have a non-conjugated structure;
  • R11 is the structure of the ester group end with an unsaturated double bond structure;
  • X- is one of F-, Cl-, Br-, CN-, ClO 4 -, CF 3 SO 3 -, CF 2 HSO 3 -and CFH 2 SO 3 -.
  • Conjugated structures containing heterocycles can be five- and six-membered heterocycles and benzoheterocyclic compounds.
  • Five-membered heterocyclic compounds include furan, thiophene, pyrrole, thiazole, imidazole, etc.
  • six-membered heterocyclic compounds include pyridine, pyridine, etc.
  • Condensed ring heterocyclic compounds include indole, quinoline, pteridine, acridine, etc.
  • the non-conjugated structure may be a linear alkane, or a branched alkane, or a linear or branched alkane of an alkoxy group, or a chain substance containing an ester group, or a fluorine-substituted alkane derived Among them, the carbon chain length can range from 1 to 25.
  • R11 may include a chemical structure Wherein, n is 1-25, and n is the length of the carbon chain.
  • the rhodamine 101 derivative includes the following chemical structure:
  • Conjugated structures containing heterocycles can be five- and six-membered heterocycles and benzoheterocyclic compounds.
  • Five-membered heterocyclic compounds include furan, thiophene, pyrrole, thiazole, imidazole, etc.
  • six-membered heterocyclic compounds include pyridine, pyridine, etc.
  • Condensed ring heterocyclic compounds include indole, quinoline, pteridine, acridine, etc.
  • the non-conjugated structure may be a linear alkane, or a branched alkane, or a linear or branched alkane of an alkoxy group, or a chain substance containing an ester group, or a fluorine-substituted alkane derived Among them, the carbon chain length can range from 1 to 30.
  • R5 can include a chemical structure Wherein, n is 1-40, and n is the carbon chain length.
  • the ratio of rhodamine 6G derivative and rhodamine 101 derivative to siloxane resin and 3-(methacryloxy)propyltrimethoxysilane is 1:10:12 by mass ratio. mixing.
  • the siloxane resin may be diphenyldihydroxysilane, and the chemical formula of the reaction between diphenyldihydroxysilane and 3-(methacryloxy)propyltrimethoxysilane is:
  • Step S302 mixing the rhodamine 6G dye solution and the rhodamine 101 dye solution with an organic solvent and a UV light initiator, respectively.
  • organic solvents and UV light initiators can optimize the solvent selection, ratio and preparation process of the material, and obtain the optimal film-forming conditions of the material.
  • the organic solvent is a substance with low polarity and high boiling point, such as
  • the organic solvent is one or more of chlorobenzene, toluene, o-dichlorobenzene and diethyl ether, and the UV light initiator is ⁇ , ⁇ -diethoxyacetophenone or 2-methyl-2 -Morpholino-1-(4-methylphenylthio)propan-1-one.
  • the ratio of the rhodamine 6G dye solution and the rhodamine 101 dye solution, the organic solvent and the UV light initiator is (5-15): (45-55): (0.8-1.5) In the embodiment of the present invention, the ratio can be specifically selected as 10:50:1.
  • Step S303 Place the rhodamine 6G dye solution on the green color resist G, and place the rhodamine 101 dye solution on the red color resist R.
  • inkjet printing may be used to place the rhodamine 6G dye solution on the green color resist G, and place the rhodamine 101 dye solution on the red color resist R.
  • Step S304 The color filter layer 2 is irradiated with UV light, and the rhodamine 6G dye solution and the rhodamine 101 dye solution are respectively monodispersed to form the first A conversion film 31, and the second conversion film 32 is formed on the red color resist R.
  • the color filter layer 2 is irradiated with UV light, and under the action of the UV light initiator, rhodamine 6G dye and rhodamine 101 dye modified with acrylic groups can be combined with silicone resin
  • the acrylic group at the middle end is combined to realize the monodispersion of rhodamine 6G dye and rhodamine 101 dye, and then the first conversion film 31 is formed on the green color resist G, and formed on the red color resist R
  • the second conversion film 32, and a transparent film layer 33 may be formed on the blue color resist B, wherein the first conversion film 31 and the second conversion film 32 are both composite film layers, and the first The conversion film 31 can convert the cyan light emitted by the white light OLED light source 1 into green light, and the second conversion film 32 can convert the yellow-orange light emitted by the white light OLED light source 1 into red light, so that it can be used to The cyan light and yellow-orange light in the white light OLED light source 1 are absorbed, thereby achieving improvement
  • the siloxane resin modified with acrylic groups when used, when UV light is irradiated, under the action of the UV light initiator, further cross-linking reaction can occur, which is beneficial to improve the compactness of the network structure of the siloxane resin Therefore, the compactness of the organic fluorescent color conversion film 3 can be effectively improved, and free ions in the color film filter layer can be prevented from penetrating into the organic layer in the white light OLED light source 1; A good barrier to water and oxygen is beneficial to improve the stability of the device.
  • the proportion of the UV light initiator is relatively small, when UV light is irradiated, the UV light initiator will cleave to generate free radicals, thereby causing a reaction. Therefore, after the UV light irradiation is over, the resulting The UV light initiator does not exist on the first conversion film 31 and the second conversion film 32 in subsequent processes.
  • an embodiment of the present invention also provides a white-light OLED display device, which is manufactured by using the above-mentioned method for manufacturing a white-light OLED display device.
  • the white-light OLED display device includes a white-light OLED light source 1, a color filter layer 2, and Organic fluorescent color conversion film 3.
  • the white light OLED light source 1 can emit red light, green light and blue light;
  • the color filter layer 2 includes a red color resist R, a green color resist G, and a blue color resist B;
  • the organic fluorescent color conversion film 3 is arranged On the side of the color filter layer 2 that is close to the white light OLED light source 1, the organic fluorescent color conversion film 3 includes a first layer disposed on the green color resist G and the red color resist R, respectively.
  • the conversion film 31 and the second conversion film 32 wherein the first conversion film 31 and the second conversion film 32 are both composite film layers, and the first conversion film 31 converts the cyan light emitted by the white light OLED light source 1
  • the light is converted into green light
  • the second conversion film 32 converts the yellow-orange light emitted by the white light OLED light source 1 into red light, so that the cyan light and the yellow-orange light in the white light OLED light source 1 can be absorbed respectively , Thereby realizing the improvement of color purity; at the same time, the first conversion film 31 and the second conversion film 32 can be excited to emit green light and red light respectively, which is beneficial to improve the light conversion efficiency.
  • the white light OLED display device and the manufacturing method thereof provided by the embodiments of the present invention improve the white light OLED display by making an organic fluorescent color conversion film and placing it between the white light OLED light source and the color film filter.
  • the color gamut and color conversion rate of the device effectively solve the problem that the color reproduction ability and light conversion efficiency of the white light OLED light source cannot be achieved at the same time, which is beneficial to improve the compactness of the organic fluorescent color conversion film and avoid the color film filter layer.
  • Free ions penetrate into the organic layer in the white light OLED light source; at the same time, it can also block water and oxygen well, which is beneficial to improve the stability of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种白光OLED显示装置及其制作方法,制作方法包括:制作有机萤光色彩转换膜(3),包括分别设置于绿色色阻和红色色阻上的第一转换膜(31)和第二转换膜(32),第一转换膜(31)将青绿光转换为绿光,第二转换膜(32)将黄橙光转换为红光,能够提升白光OLED显示装置的色域和色彩转换率,并提升了有机色彩转换膜的致密性以及器件的稳定性。

Description

白光OLED显示装置及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种白光OLED显示装置及其制作方法。
背景技术
有机发光二极管(organic light emitting diode,OLED)显示器具有自发光、结构简单、轻薄、响应速度快、视角宽、功耗低及可实现柔性显示等优势。
作为有机电致发光的一种,白光OLED在照明和显示器上的应用,受到业界的广泛重视而成为研究热点。基于白色OLED的显示器,覆盖了可见光区域中的三原色(红、绿、蓝),可作为液晶显示面板(Liquid Crystal Display,LCD)的背光源,采用白光OLED背光源与彩膜滤光片相结合的技术,不仅制备工艺简单、重复性好、成本低;而且完全可以满足LCD的轻、薄、低功耗的特性需求,因此成为目前制作大尺寸全彩色OLED显示器的重要技术。
然而,目前大多数白光OLED是由蓝光激发黄色荧光与蓝光混合而产生白光,这种方法产生的白光具有低色纯度,低背光转换率的缺陷。
综上所述,需要提供一种新的白光OLED显示装置及其制作方法来解决上述技术问题。
技术问题
本发明提供的白光OLED显示装置及其制作方法,解决了现有的白光OLED显示装置产生的白光具有低色纯度以及低背光转换率的技术问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明实施例提供一种白光OLED显示装置的制作方法,包括以下步骤:
步骤S10:提供白光OLED光源;
步骤S20:提供彩色滤光片层,所述彩色滤光片层包括红色色阻、绿色色阻及蓝色色阻;以及
步骤S30:在所述彩色滤光片层靠近所述白光OLED光源的一侧形成有机 萤光色彩转换膜,所述有机萤光色彩转换膜包括分别形成于所述绿色色阻和所述红色色阻上的第一转换膜和第二转换膜,其中,所述第一转换膜将所述白光OLED光源发出的青绿光转换为绿光,所述第二转换膜将所述白光OLED光源发出的黄橙光转换为红光,所述第一转换膜由罗丹明6G衍生物与硅氧烷树脂中的丙烯酸树脂发生交联反应而形成,所述第二转换膜由罗丹明101衍生物与硅氧烷树脂中的丙烯酸树脂发生交联反应而形成。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S30包括以下步骤:
步骤S301:分别将罗丹明6G衍生物和罗丹明101衍生物与硅氧烷树脂、3-(甲基丙烯酰氧)丙基三甲氧基硅烷按照质量比为(0.8~1.2):(8~12):(13~15)的比例混合成罗丹明6G染料溶液和罗丹明101染料溶液;
步骤S302:将所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别与有机溶剂和UV光起始剂进行混合;
步骤S303:将所述罗丹明6G染料溶液置于所述绿色色阻上,将所述罗丹明101染料溶液置于所述红色色阻上;以及
步骤S304:对所述彩色滤光片层采用UV光照射,所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别发生单分散,以在所述绿色色阻上形成所述第一转换膜,在所述红色色阻上形成所述第二转换膜。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S301中的所述罗丹明6G衍生物包括以下化学结构:
Figure PCTCN2019126892-appb-000001
其中,R1~R6为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构,或具有通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R7~R10为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构;R11为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、 ClO 4-、CF 3SO 3-、CF 2HSO 3-以及CFH 2SO 3-中的一种。
根据本发明实施例提供的白光OLED显示装置的制作方法,R11包括化学结构
Figure PCTCN2019126892-appb-000002
其中,n为1~25。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S301中的所述罗丹明101衍生物包括以下化学结构:
Figure PCTCN2019126892-appb-000003
其中,R1~R4为卤取代基-F、-Cl、Br、-I中的一种,或-NH 2、-COOH、-OH、-SH、-COH、-COO-、-COCl、-COBr、-CN、-NO 2、=NH、≡N、苯以及酚环中的一种,或具有非共轭的结构,或通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R5为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、ClO 4-、CF 3SO 3-、CF 2HSO 3-以及CFH 2SO 3-中的一种。
根据本发明实施例提供的白光OLED显示装置的制作方法,R5包括化学结构
Figure PCTCN2019126892-appb-000004
其中,n为1~40。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S301中,所述硅氧烷树脂为二苯基二羟基硅烷,二苯基二羟基硅烷与3-(甲基丙烯酰氧)丙基三甲氧基硅烷发生反应的化学式为:
Figure PCTCN2019126892-appb-000005
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S301中,所述罗丹明6G衍生物和所述罗丹明101衍生物与硅氧烷树脂、3-(甲基丙烯酰氧)丙基三甲氧基硅烷的配比为1:10:12。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S302中,所述罗丹明6G染料溶液和罗丹明101染料溶液、所述有机溶剂以及所述UV光起始剂的配比为(5~15):(45~55):(0.8~1.5)。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述罗丹明6G染料溶液和罗丹明101染料溶液、所述有机溶剂以及所述UV光起始剂的配比为10:50:1。
本发明实施例提供一种白光OLED显示装置的制作方法,包括以下步骤:
步骤S10:提供白光OLED光源;
步骤S20:提供彩色滤光片层,所述彩色滤光片层包括红色色阻、绿色色阻及蓝色色阻;以及
步骤S30:在所述彩色滤光片层靠近所述白光OLED光源的一侧形成有机萤光色彩转换膜,所述有机萤光色彩转换膜包括分别形成于所述绿色色阻和所述红色色阻上的第一转换膜和第二转换膜,其中,所述第一转换膜将所述白光OLED光源发出的青绿光转换为绿光,所述第二转换膜将所述白光OLED光源发出的黄橙光转换为红光。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S30包括以下步骤:
步骤S301:分别将罗丹明6G衍生物和罗丹明101衍生物与硅氧烷树脂、3-(甲基丙烯酰氧)丙基三甲氧基硅烷按照质量比为(0.8~1.2):(8~12):(13~15)的比例混合成罗丹明6G染料溶液和罗丹明101染料溶液;
步骤S302:将所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别与有机溶剂和UV光起始剂进行混合;
步骤S303:将所述罗丹明6G染料溶液置于所述绿色色阻上,将所述罗丹明101染料溶液置于所述红色色阻上;以及
步骤S304:对所述彩色滤光片层采用UV光照射,所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别发生单分散,以在所述绿色色阻上形成所述 第一转换膜,在所述红色色阻上形成所述第二转换膜。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S301中的所述罗丹明6G衍生物包括以下化学结构:
Figure PCTCN2019126892-appb-000006
其中,R1~R6为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构,或具有通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R7~R10为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构;R11为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、ClO 4-、CF 3SO 3-、CF 2HSO 3-以及CFH 2SO 3-中的一种。
根据本发明实施例提供的白光OLED显示装置的制作方法,R11包括化学结构
Figure PCTCN2019126892-appb-000007
其中,n为1~25。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S301中的所述罗丹明101衍生物包括以下化学结构:
Figure PCTCN2019126892-appb-000008
其中,R1~R4为卤取代基-F、-Cl、Br、-I中的一种,或-NH 2、-COOH、-OH、-SH、-COH、-COO-、-COCl、-COBr、-CN、-NO 2、=NH、≡N、苯以及酚环中的一种,或具有非共轭的结构,或通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R5为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、ClO 4-、CF 3SO 3-、CF 2HSO 3-以 及CFH 2SO 3-中的一种。
根据本发明实施例提供的白光OLED显示装置的制作方法,R5包括化学结构
Figure PCTCN2019126892-appb-000009
其中,n为1~40。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S301中,所述硅氧烷树脂为二苯基二羟基硅烷,二苯基二羟基硅烷与3-(甲基丙烯酰氧)丙基三甲氧基硅烷发生反应的化学式为:
Figure PCTCN2019126892-appb-000010
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S304中,所述罗丹明6G染料和所述罗丹明101染料分别与所述硅氧烷树脂末端的丙烯酸基团相结合,形成单分散。
根据本发明实施例提供的白光OLED显示装置的制作方法,所述步骤S302中,所述有机溶剂为氯苯、甲苯、邻二氯苯以及二乙醚中的一种或多种,所述UV光起始剂为α,α-二乙氧基苯乙酮或2-甲基-2-吗啉代-1-(4-甲基苯硫基)丙烷-1-酮。
本发明实施例提供一种白光OLED显示装置,包括:
白光OLED光源;
彩色滤光片层,包括红色色阻、绿色色阻及蓝色色阻;以及
有机萤光色彩转换膜,设置于所述彩色滤光片层靠近所述白光OLED光源的一侧,所述有机萤光色彩转换膜包括分别设置于所述绿色色阻和所述红色色阻上的第一转换膜和第二转换膜,其中,所述第一转换膜将所述白光OLED光源发出的青绿光转换为绿光,所述第二转换膜将所述白光OLED光源发出的黄橙光转换为红光。
有益效果
本发明的有益效果为:本发明提供的白光OLED显示装置及其制作方法,通过制作有机萤光色彩转换膜,并将其置于白光OLED光源和彩膜滤光片之间,提升了白光OLED显示装置的色域和色彩转换率,有效地解决了白光OLED光源的色彩再现能力和光转换效率不能同时实现的问题,有利于提升有机荧光色彩转化膜的致密性,避免彩膜滤光片层中的游离态离子渗透进入到白光OLED光源中的有机层中;同时也可以很好地阻隔水氧,有利于提升器件的稳定性。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种白光OLED显示装置的制作方法中的流程图。
图2~图4为本发明实施例提供的一种白光OLED显示装置的制作方法的流程结构示意图;
图5为本发明实施例提供的一种白光OLED显示装置的制作方法中的步骤S30的流程图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有技术的白光OLED显示装置,产生的白光具有低色纯度以及低背光转换率,本实施例能够解决该缺陷。
如图1所示,本发明实施例提供的白光OLED显示装置的制作方法,包括以下步骤:
步骤S10:提供白光OLED光源1。
具体地,如图2所示,所述白光OLED光源1可以发射红光、绿光和蓝光,在青绿光波段和黄橙光波段具有较弱的强度。
步骤S20:提供彩色滤光片层2,所述彩色滤光片层2包括红色色阻R、绿色色阻G及蓝色色阻B。
具体地,如图3所示,所述彩色滤光片层2包括衬底基板21以及形成于所述衬底基板21上的色阻层22,所述色阻层22包括红色色阻R、所述绿色色阻G及所述蓝色色阻B,其中,所述红色色阻R、所述绿色色阻G及所述蓝色色阻B位于所述衬底基板21靠近所述白光OLED光源1的一侧。
步骤S30:在所述彩色滤光片层2靠近所述白光OLED光源1的一侧形成有机萤光色彩转换膜3,所述有机萤光色彩转换膜3包括分别形成于所述绿色色阻G和所述红色色阻R上的第一转换膜31和第二转换膜32,其中,所述第一转换膜31将所述白光OLED光源1发出的青绿光转换为绿光,所述第二转换膜32将所述白光OLED光源1发出的黄橙光转换为红光。
如图4所示,在本发明实施例中,所述第一转换膜31由罗丹明6G衍生物与硅氧烷树脂中的丙烯酸树脂发生交联反应而形成,所述第二转换膜32由罗丹明101衍生物与硅氧烷树脂中的丙烯酸树脂发生交联反应而形成。
具体地,如图5所示,所述步骤S30包括以下步骤:
步骤S301:分别将罗丹明6G衍生物和罗丹明101衍生物与硅氧烷树脂、3-(甲基丙烯酰氧)丙基三甲氧基硅烷按照质量比为(0.8~1.2):(8~12):(13~15)的比例混合成罗丹明6G染料溶液和罗丹明101染料溶液。
具体地,所述罗丹明6G衍生物包括以下化学结构:
Figure PCTCN2019126892-appb-000011
所述罗丹明6G衍生物包括母环中的基团R1~R4、3,6位的含有氨基的R5~R6、X-以及底环中的R7~R10。
其中,R1~R6为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构,或具有通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R7~R10为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构;R11为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、ClO 4-、CF 3SO 3-、CF 2HSO 3-以及CFH 2SO 3-中的一种。
含有杂环的共轭结构可以为五元和六元杂环以及苯并杂环化合物等,五元杂环化合物包括呋喃、噻吩、吡咯、噻唑、咪唑等,六元杂环化合物包括吡啶、吡嗪、嘧啶、哒嗪等,稠环杂环化合物包括吲哚、喹啉、蝶啶、吖啶等。
所述非共轭结构可以为直链烷烃,或者有支链的烷烃,或者是烷氧基的直链或者支链的烷烃,或者是含有酯基的链状物,或者是氟取代的烷烃衍生物,其中,碳链长度的范围可以为1~25等长度不等。
可选地,R11可以包括化学结构
Figure PCTCN2019126892-appb-000012
其中,n为1~25,n为碳链长度。
所述罗丹明101衍生物包括以下化学结构:
Figure PCTCN2019126892-appb-000013
其中,R1~R4为卤取代基-F、-Cl、Br、-I中的一种,或氨基-NH 2、羧基-COOH、羟基-OH、硫酸基-SH、醛根-COH、酯-COO-、酰基-COCl、-COBr、腈-CN、硝基-NO 2、=NH、≡N、苯以及酚环中的一种,或具有非共轭的结构,或通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R5为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、ClO 4-、CF 3SO 3-、CF 2HSO 3-以及CFH 2SO 3-中的一种。
含有杂环的共轭结构可以为五元和六元杂环以及苯并杂环化合物等,五元杂环化合物包括呋喃、噻吩、吡咯、噻唑、咪唑等,六元杂环化合物包括吡啶、 吡嗪、嘧啶、哒嗪等,稠环杂环化合物包括吲哚、喹啉、蝶啶、吖啶等。
所述非共轭结构可以为直链烷烃,或者有支链的烷烃,或者是烷氧基的直链或者支链的烷烃,或者是含有酯基的链状物,或者是氟取代的烷烃衍生物,其中,碳链长度的范围可以为1~30等长度不等。
可选地,R5可以包括化学结构
Figure PCTCN2019126892-appb-000014
其中,n为1~40,n为碳链长度。
在本发明实施例中,罗丹明6G衍生物和罗丹明101衍生物与硅氧烷树脂、3-(甲基丙烯酰氧)丙基三甲氧基硅烷按照质量比为1:10:12的比例混合。
可选地,所述硅氧烷树脂可以为二苯基二羟基硅烷,二苯基二羟基硅烷与3-(甲基丙烯酰氧)丙基三甲氧基硅烷发生反应的化学式为:
Figure PCTCN2019126892-appb-000015
步骤S302:将所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别与有机溶剂和UV光起始剂进行混合。
具体地,采用有机溶剂和UV光起始剂可以优化材料的溶剂选择、配比和制备工艺,得到材料最优的成膜条件,所述有机溶剂为低极性、高沸点的物质,例如所述有机溶剂为氯苯、甲苯、邻二氯苯以及二乙醚中的一种或多种,所述UV光起始剂为α,α-二乙氧基苯乙酮或2-甲基-2-吗啉代-1-(4-甲基苯硫基)丙烷-1-酮。
具体地,所述罗丹明6G染料溶液和罗丹明101染料溶液、所述有机溶剂以及所述UV光起始剂的配比为(5~15):(45~55):(0.8~1.5),在本发明实施例中,配比可以具体选择为10:50:1。
步骤S303:将所述罗丹明6G染料溶液置于所述绿色色阻G上,将所述罗丹明101染料溶液置于所述红色色阻R上。
具体地,可以采用喷墨打印的方式,将所述罗丹明6G染料溶液置于所述绿色色阻G上,将所述罗丹明101染料溶液置于所述红色色阻R上。
步骤S304:对所述彩色滤光片层2采用UV光照射,所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别发生单分散,以在所述绿色色阻G上形成所述第一转换膜31,在所述红色色阻R上形成所述第二转换膜32。
具体地,对所述彩色滤光片层2采用UV光照射,在所述UV光起始剂的作用下,含有丙烯酸基团修饰的罗丹明6G染料和罗丹明101染料可以与硅氧烷树脂中末端的丙烯酸基团相结合,从而实现罗丹明6G染料和罗丹明101染料的单分散,进而所述绿色色阻G上形成所述第一转换膜31,在所述红色色阻R上形成所述第二转换膜32,而在所述蓝色色阻B上可以形成透明膜层33,其中所述第一转换膜31和所述第二转换膜32均为复合膜层,所述第一转换膜31能够将所述白光OLED光源1发出的青绿光转换为绿光,所述第二转换膜32能够将所述白光OLED光源1发出的黄橙光转换为红光,从而可分别对所述白光OLED光源1中的青绿光和黄橙光进行吸收,从而实现对色彩纯度的提升;同时,所述第一转换膜31和所述第二转换膜32可分别被激发出绿光和红光,有利于提升光转化效率。
此外,采用丙烯酸基团修饰的硅氧烷树脂,UV光照射时,在所述UV光起始剂的作用下,可发生进一步的交联反应,有利于提升硅氧烷树脂的网络结构致密性,从而可以有效地提升所述有机荧光色彩转化膜3的致密性,避免所述彩膜滤光片层中的游离态离子渗透进入到所述白光OLED光源1中的有机层中;同时也可以很好地阻隔水氧,有利于提升器件的稳定性。
此外,由于所述UV光起始剂的比例相对比较少,在进行UV光照射时,所述UV光起始剂会裂解产生自由基,从而发生反应,因此UV光照射结束后,形成的所述第一转换膜31和所述第二转换膜32上后续过程中不存在所述UV光起始剂。
继续参考图4,本发明实施例还提供一种白光OLED显示装置,采用上述白光OLED显示装置的制作方法制备而成,所述白光OLED显示装置包括白光OLED光源1、彩色滤光片层2以及有机萤光色彩转换膜3。
所述白光OLED光源1可以发射红光、绿光和蓝光;所述彩色滤光片层2 包括红色色阻R、绿色色阻G及蓝色色阻B;所述有机萤光色彩转换膜3设置于所述彩色滤光片层2靠近所述白光OLED光源1的一侧,所述有机萤光色彩转换膜3包括分别设置于所述绿色色阻G和所述红色色阻R上的第一转换膜31和第二转换膜32,其中,所述第一转换膜31和所述第二转换膜32均为复合膜层,所述第一转换膜31将所述白光OLED光源1发出的青绿光转换为绿光,所述第二转换膜32将所述白光OLED光源1发出的黄橙光转换为红光,从而可分别对所述白光OLED光源1中的青绿光和黄橙光进行吸收,从而实现对色彩纯度的提升;同时,所述第一转换膜31和所述第二转换膜32可分别被激发出绿光和红光,有利于提升光转化效率。
有益效果为:本发明实施例提供的白光OLED显示装置及其制作方法,通过制作有机萤光色彩转换膜,并将其置于白光OLED光源和彩膜滤光片之间,提升了白光OLED显示装置的色域和色彩转换率,有效地解决了白光OLED光源的色彩再现能力和光转换效率不能同时实现的问题,有利于提升有机荧光色彩转化膜的致密性,避免彩膜滤光片层中的游离态离子渗透进入到白光OLED光源中的有机层中;同时也可以很好地阻隔水氧,有利于提升器件的稳定性。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种白光OLED显示装置的制作方法,包括以下步骤:
    步骤S10:提供白光OLED光源;
    步骤S20:提供彩色滤光片层,所述彩色滤光片层包括红色色阻、绿色色阻及蓝色色阻;以及
    步骤S30:在所述彩色滤光片层靠近所述白光OLED光源的一侧形成有机萤光色彩转换膜,所述有机萤光色彩转换膜包括分别形成于所述绿色色阻和所述红色色阻上的第一转换膜和第二转换膜,其中,所述第一转换膜将所述白光OLED光源发出的青绿光转换为绿光,所述第二转换膜将所述白光OLED光源发出的黄橙光转换为红光,所述第一转换膜由罗丹明6G衍生物与硅氧烷树脂中的丙烯酸树脂发生交联反应而形成,所述第二转换膜由罗丹明101衍生物与硅氧烷树脂中的丙烯酸树脂发生交联反应而形成。
  2. 根据权利要求1所述的白光OLED显示装置的制作方法,其中所述步骤S30包括以下步骤:
    步骤S301:分别将罗丹明6G衍生物和罗丹明101衍生物与硅氧烷树脂、3-(甲基丙烯酰氧)丙基三甲氧基硅烷按照质量比为(0.8~1.2):(8~12):(13~15)的比例混合成罗丹明6G染料溶液和罗丹明101染料溶液;
    步骤S302:将所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别与有机溶剂和UV光起始剂进行混合;
    步骤S303:将所述罗丹明6G染料溶液置于所述绿色色阻上,将所述罗丹明101染料溶液置于所述红色色阻上;以及
    步骤S304:对所述彩色滤光片层采用UV光照射,所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别发生单分散,以在所述绿色色阻上形成所述第一转换膜,在所述红色色阻上形成所述第二转换膜。
  3. 根据权利要求2所述的白光OLED显示装置的制作方法,其中所述步骤S301中的所述罗丹明6G衍生物包括以下化学结构:
    Figure PCTCN2019126892-appb-100001
    其中,R1~R6为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构,或具有通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R7~R10为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构;R11为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、ClO 4-、CF 3SO 3-、CF 2HSO 3-以及CFH 2SO 3-中的一种。
  4. 根据权利要求3所述的白光OLED显示装置的制作方法,其中R11包括化学结构
    Figure PCTCN2019126892-appb-100002
    其中,n为1~25。
  5. 根据权利要求2所述的白光OLED显示装置的制作方法,其中所述步骤S301中的所述罗丹明101衍生物包括以下化学结构:
    Figure PCTCN2019126892-appb-100003
    其中,R1~R4为卤取代基-F、-Cl、Br、-I中的一种,或-NH 2、-COOH、-OH、-SH、-COH、-COO-、-COCl、-COBr、-CN、-NO 2、=NH、≡N、苯以及酚环中的一种,或具有非共轭的结构,或通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R5为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、ClO 4-、CF 3SO 3-、CF 2HSO 3-以及CFH 2SO 3-中的一种。
  6. 根据权利要求5所述的白光OLED显示装置的制作方法,其中R5包 括化学结构
    Figure PCTCN2019126892-appb-100004
    其中,n为1~40。
  7. 根据权利要求2所述的白光OLED显示装置的制作方法,其中所述步骤S301中,所述硅氧烷树脂为二苯基二羟基硅烷,二苯基二羟基硅烷与3-(甲基丙烯酰氧)丙基三甲氧基硅烷发生反应的化学式为:
    Figure PCTCN2019126892-appb-100005
  8. 根据权利要求2所述的白光OLED显示装置的制作方法,其中所述步骤S301中,所述罗丹明6G衍生物和所述罗丹明101衍生物与硅氧烷树脂、3-(甲基丙烯酰氧)丙基三甲氧基硅烷的配比为1:10:12。
  9. 根据权利要求2所述的白光OLED显示装置的制作方法,其中所述步骤S302中,所述罗丹明6G染料溶液和罗丹明101染料溶液、所述有机溶剂以及所述UV光起始剂的配比为(5~15):(45~55):(0.8~1.5)。
  10. 根据权利要求9所述的白光OLED显示装置的制作方法,其中所述罗丹明6G染料溶液和罗丹明101染料溶液、所述有机溶剂以及所述UV光起始剂的配比为10:50:1。
  11. 一种白光OLED显示装置的制作方法,包括以下步骤:
    步骤S10:提供白光OLED光源;
    步骤S20:提供彩色滤光片层,所述彩色滤光片层包括红色色阻、绿色色阻及蓝色色阻;以及
    步骤S30:在所述彩色滤光片层靠近所述白光OLED光源的一侧形成有机萤光色彩转换膜,所述有机萤光色彩转换膜包括分别形成于所述绿色色阻和所述红色色阻上的第一转换膜和第二转换膜,其中,所述第一转换膜将所述白光OLED光源发出的青绿光转换为绿光,所述第二转换膜将所述白光OLED光源发出的黄橙光转换为红光,所述第一转换膜由罗丹明6G衍生物与硅氧烷树脂中的丙烯酸树脂发生交联反应而形成,所述第二转换膜由罗丹明101衍生物与 硅氧烷树脂中的丙烯酸树脂发生交联反应而形成。
  12. 根据权利要求11所述的白光OLED显示装置的制作方法,其中所述步骤S30包括以下步骤:
    步骤S301:分别将罗丹明6G衍生物和罗丹明101衍生物与硅氧烷树脂、3-(甲基丙烯酰氧)丙基三甲氧基硅烷按照质量比为(0.8~1.2):(8~12):(13~15)的比例混合成罗丹明6G染料溶液和罗丹明101染料溶液;
    步骤S302:将所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别与有机溶剂和UV光起始剂进行混合;
    步骤S303:将所述罗丹明6G染料溶液置于所述绿色色阻上,将所述罗丹明101染料溶液置于所述红色色阻上;以及
    步骤S304:对所述彩色滤光片层采用UV光照射,所述罗丹明6G染料溶液和所述罗丹明101染料溶液分别发生单分散,以在所述绿色色阻上形成所述第一转换膜,在所述红色色阻上形成所述第二转换膜。
  13. 根据权利要求12所述的白光OLED显示装置的制作方法,其中所述步骤S301中的所述罗丹明6G衍生物包括以下化学结构:
    Figure PCTCN2019126892-appb-100006
    其中,R1~R6为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构,或具有通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R7~R10为卤取代基-F、-Cl、Br、-I中的一种,或具有非共轭结构;R11为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、ClO 4-、CF 3SO 3-、CF 2HSO 3-以及CFH 2SO 3-中的一种。
  14. 根据权利要求13所述的白光OLED显示装置的制作方法,其中R11包括化学结构
    Figure PCTCN2019126892-appb-100007
    其中,n为1~25。
  15. 根据权利要求12所述的白光OLED显示装置的制作方法,其中所述 步骤S301中的所述罗丹明101衍生物包括以下化学结构:
    Figure PCTCN2019126892-appb-100008
    其中,R1~R4为卤取代基-F、-Cl、Br、-I中的一种,或-NH 2、-COOH、-OH、-SH、-COH、-COO-、-COCl、-COBr、-CN、-NO 2、=NH、≡N、苯以及酚环中的一种,或具有非共轭的结构,或通过烷氧基或酯基相连接的共轭结构,或含有杂环的共轭结构;R5为具有不饱和双键结构的酯基末端的结构;X-为F-、Cl-、Br-、CN-、ClO 4-、CF 3SO 3-、CF 2HSO 3-以及CFH 2SO 3-中的一种。
  16. 根据权利要求15所述的白光OLED显示装置的制作方法,其中R5包括化学结构
    Figure PCTCN2019126892-appb-100009
    其中,n为1~40。
  17. 根据权利要求12所述的白光OLED显示装置的制作方法,其中所述步骤S301中,所述硅氧烷树脂为二苯基二羟基硅烷,二苯基二羟基硅烷与3-(甲基丙烯酰氧)丙基三甲氧基硅烷发生反应的化学式为:
    Figure PCTCN2019126892-appb-100010
  18. 根据权利要求12所述的白光OLED显示装置的制作方法,其中所述步骤S304中,所述罗丹明6G染料和所述罗丹明101染料分别与所述硅氧烷树脂末端的丙烯酸基团相结合,形成单分散。
  19. 根据权利要求12所述的白光OLED显示装置的制作方法,其中所述步骤S302中,所述有机溶剂为氯苯、甲苯、邻二氯苯以及二乙醚中的一种或 多种,所述UV光起始剂为α,α-二乙氧基苯乙酮或2-甲基-2-吗啉代-1-(4-甲基苯硫基)丙烷-1-酮。
  20. 一种白光OLED显示装置,包括:
    白光OLED光源;
    彩色滤光片层,包括红色色阻、绿色色阻及蓝色色阻;以及
    有机萤光色彩转换膜,设置于所述彩色滤光片层靠近所述白光OLED光源的一侧,所述有机萤光色彩转换膜包括分别设置于所述绿色色阻和所述红色色阻上的第一转换膜和第二转换膜,其中,所述第一转换膜将所述白光OLED光源发出的青绿光转换为绿光,所述第二转换膜将所述白光OLED光源发出的黄橙光转换为红光。
PCT/CN2019/126892 2019-12-10 2019-12-20 白光oled显示装置及其制作方法 WO2021114370A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,335 US11335736B2 (en) 2019-12-10 2019-12-20 White OLED display device and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911257779.4A CN110993668B (zh) 2019-12-10 2019-12-10 白光oled显示装置及其制作方法
CN201911257779.4 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021114370A1 true WO2021114370A1 (zh) 2021-06-17

Family

ID=70091904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126892 WO2021114370A1 (zh) 2019-12-10 2019-12-20 白光oled显示装置及其制作方法

Country Status (3)

Country Link
US (1) US11335736B2 (zh)
CN (1) CN110993668B (zh)
WO (1) WO2021114370A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164245A (ja) * 1999-12-13 2001-06-19 Idemitsu Kosan Co Ltd 色変換膜及び有機エレクトロルミネッセンス素子
CN102916035A (zh) * 2012-08-28 2013-02-06 李崇 大尺寸全色oled显示器
CN104024891A (zh) * 2011-08-05 2014-09-03 日东电工株式会社 用于纠正色盲的光学元件
CN108139522A (zh) * 2015-10-09 2018-06-08 东丽株式会社 颜色转换组合物、颜色转换片以及包含其的光源单元、显示器、照明装置、背光单元、led芯片及led封装体
CN109768181A (zh) * 2019-01-18 2019-05-17 深圳市华星光电技术有限公司 白光有机发光二极管显示装置及其制造方法
CN109817686A (zh) * 2019-01-18 2019-05-28 深圳市华星光电技术有限公司 白光有机发光二极管显示装置及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073801B (zh) * 2013-02-15 2017-03-08 和光纯药工业株式会社 着色组合物
EP3165541B1 (en) * 2014-07-03 2020-09-09 FUJIFILM Wako Pure Chemical Corporation Graft polymer, resin colored matter, method for producing same, and resin composition containing resin colored matter
WO2016122285A2 (ko) * 2015-01-31 2016-08-04 주식회사 엘지화학 색변환 필름, 이의 제조방법 및 이를 포함하는 백라이트 유닛 및 디스플레이 장치
CN110333646A (zh) * 2019-07-17 2019-10-15 深圳市华星光电技术有限公司 一种红色彩膜光刻胶

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164245A (ja) * 1999-12-13 2001-06-19 Idemitsu Kosan Co Ltd 色変換膜及び有機エレクトロルミネッセンス素子
CN104024891A (zh) * 2011-08-05 2014-09-03 日东电工株式会社 用于纠正色盲的光学元件
CN102916035A (zh) * 2012-08-28 2013-02-06 李崇 大尺寸全色oled显示器
CN108139522A (zh) * 2015-10-09 2018-06-08 东丽株式会社 颜色转换组合物、颜色转换片以及包含其的光源单元、显示器、照明装置、背光单元、led芯片及led封装体
CN109768181A (zh) * 2019-01-18 2019-05-17 深圳市华星光电技术有限公司 白光有机发光二极管显示装置及其制造方法
CN109817686A (zh) * 2019-01-18 2019-05-28 深圳市华星光电技术有限公司 白光有机发光二极管显示装置及其制造方法

Also Published As

Publication number Publication date
US20210366995A1 (en) 2021-11-25
CN110993668A (zh) 2020-04-10
CN110993668B (zh) 2022-04-05
US11335736B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
Yin et al. Full‐color micro‐LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers
Lin et al. Hybrid-type white LEDs based on inorganic halide perovskite QDs: candidates for wide color gamut display backlights
WO2018018696A1 (zh) 一种量子点液晶背光源
WO2017080064A1 (zh) 量子点彩膜基板的制备方法及量子点彩膜基板
TWI804566B (zh) 發光元件、顯示器及色轉換基板
US10988619B2 (en) Manufacturing method of rhodamine dye oligomer, solid color material and liquid crystal display device
CN105932038A (zh) Woled显示装置
CN105242449A (zh) 量子点彩膜基板的制备方法及量子点彩膜基板
Oh et al. Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors
WO2018120710A1 (zh) Oled显示面板及其制造方法、显示装置
Zhu et al. Ultrahighly efficient white quantum dot light‐emitting diodes operating at low voltage
WO2016061842A1 (zh) 彩色显示器件
Li et al. Mass Transfer Printing of Metal‐Halide Perovskite Films and Nanostructures
CN108321284A (zh) 一种直下式量子点白光led背光模组及其制备方法
Tian et al. RETRACTED: Full-color micro-LED displays with cadmium-free quantum dots patterned by photolithography technology
Yin et al. Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer
US11249231B2 (en) Optical purification layer, edge-lit backlight module and polarizer
JP6225524B2 (ja) 有機エレクトロルミネッセンス表示装置用カラーフィルタ、有機エレクトロルミネッセンス表示装置および有機エレクトロルミネッセンス表示装置用カラーフィルタの製造方法
CN111312751A (zh) 一种显示装置及其制备方法
WO2020054575A1 (ja) 色変換組成物、色変換層、波長変換基板、波長変換基板の製造方法およびディスプレイ
WO2021017157A1 (zh) 一种背光组件、其显示装置及其应用终端
WO2021072853A1 (zh) Led白光器件及背光模组
TWI320802B (zh)
WO2021114370A1 (zh) 白光oled显示装置及其制作方法
JP6286916B2 (ja) 有機エレクトロルミネッセンス表示装置用カラーフィルタおよび有機エレクトロルミネッセンス表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955428

Country of ref document: EP

Kind code of ref document: A1