WO2021114355A1 - 液晶显示装置 - Google Patents

液晶显示装置 Download PDF

Info

Publication number
WO2021114355A1
WO2021114355A1 PCT/CN2019/126657 CN2019126657W WO2021114355A1 WO 2021114355 A1 WO2021114355 A1 WO 2021114355A1 CN 2019126657 W CN2019126657 W CN 2019126657W WO 2021114355 A1 WO2021114355 A1 WO 2021114355A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
liquid crystal
display device
gate
Prior art date
Application number
PCT/CN2019/126657
Other languages
English (en)
French (fr)
Inventor
陈江川
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/627,308 priority Critical patent/US20210325747A1/en
Publication of WO2021114355A1 publication Critical patent/WO2021114355A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Definitions

  • the present disclosure relates to a liquid crystal display device, in particular to a liquid crystal display device used in a dual-gate driving mode.
  • TFT thin film transistor
  • the distribution and connection of the data lines and the gate lines is one sub-pixel with one gate line 160.
  • Another type of dual gate drive is to double the gate line to halve the data line.
  • adjacent TFTs that is, adjacent sub-pixels
  • the source electrodes of the adjacent sub-pixels are connected to the same data line, but the gates of adjacent sub-pixels are respectively connected to different gate lines, and the TFT opening directions of the adjacent sub-pixels are different.
  • the TFT opening direction is different.
  • the overlapping area of the source/drain of the TFT of adjacent sub-pixels relative to the active layer is inconsistent, resulting in the gates of adjacent sub-pixels.
  • the capacitance (Cgs) between the electrode and the source is inconsistent, and the difference in the feedthrough voltage causes problems such as uneven display and display difference.
  • the light transmittance of the left and right adjacent pixels will be visible to the human eye. For example, in car displays, this problem will be so serious that vertical stripes can be seen.
  • a compensation circuit is often used to compensate the gate-source capacitance (Cgs).
  • the sources of the TFTs of adjacent sub-pixels are connected to the same data line, but the gates of adjacent sub-pixels are connected to different gate lines to form the TFTs of adjacent sub-pixels.
  • the opening direction is different.
  • the overlapping area of the source/drain of the TFT of adjacent sub-pixels relative to the active layer is inconsistent, resulting in inconsistent gate-source capacitance (Cgs) of adjacent sub-pixels, resulting in feedthrough voltage Differences cause problems such as uneven display and display differences.
  • Cgs gate-source capacitance
  • the main purpose of this application is to use a thin film transistor (TFT) substrate structure for a dual gate drive circuit without gate-source capacitance (Cgs) compensation.
  • TFT thin film transistor
  • this application proposes a liquid crystal display device, in which the overlapping area of the source/drain of the thin film transistors of adjacent sub-pixels with respect to the active layer is the same, so that the overlapping areas of adjacent sub-pixels
  • the gate-source capacitance (Cgs) is the same, so it can avoid the display unevenness and display difference caused by the difference in the feedthrough voltage caused by the inconsistency of the gate-source capacitance (Cgs).
  • the liquid crystal display device proposed in the present application includes a plurality of scan lines, a plurality of data lines mutually perpendicular to the plurality of scan lines, and a plurality of sub-pixels defined by the plurality of scan lines and the plurality of data lines,
  • Each of the sub-pixels includes a thin film transistor, the thin film transistor includes a gate, a source, and a drain.
  • the gate is correspondingly connected to one of the plurality of scan lines, and each data line corresponds to each
  • the thin film transistor includes two extensions, the two extensions are used to form two branches of the source, one end of the drain faces the opening formed by the two branches, and each sub The openings of the pixels face the same direction.
  • the sub-pixels in the same column are connected to the same data line.
  • the liquid crystal display device further includes a data driving chip disposed in a non-display area, and a sector area connected between the data driving chip and the plurality of data lines, and A plurality of wiring lines are connected to the data driving chip, and every two data lines are correspondingly connected to one of the plurality of wiring lines in the sector area.
  • the adjacent sub-pixels are connected to different scan lines.
  • it further includes a gate driving chip disposed in a non-display area, and a gate driving sector connected between the gate driving chip and the plurality of scan lines, the gate driving A plurality of traces of the sector area are connected to the gate driving chip, and each of the scan lines is correspondingly connected to one of the plurality of traces of the gate drive sector.
  • the two extensions of the data line have a symmetric structure based on a symmetry axis, and the symmetry axis is parallel to the scan line.
  • the thin film transistor further includes a gate insulating layer, an active layer is laminated on the gate, and a flat layer covers the active layer, the source and the drain, and the upper The electrode is disposed above the flat layer, the sub-pixel further includes a lower electrode, and a part of the drain is electrically connected to the lower electrode.
  • the upper electrode is strip-shaped and is arranged corresponding to the lower electrode to form a fringe field switching electrode structure.
  • the liquid crystal display device further includes a color filter substrate, a liquid crystal layer, and a first alignment film located between the upper electrode and the liquid crystal layer.
  • the plurality of sub-pixels include red sub-pixels, green sub-pixels, and blue sub-pixels, or the plurality of sub-pixels include red sub-pixels, green sub-pixels, blue sub-pixels, and white sub-pixels.
  • the present application further provides a liquid crystal display device, including a plurality of scan lines, a plurality of data lines perpendicular to the plurality of scan lines, and a plurality of sub-lines defined by the plurality of scan lines and the plurality of data lines.
  • a pixel, each of the sub-pixels includes a thin film transistor, the thin film transistor includes a gate, a source, and a drain, the gate is correspondingly connected to one of the plurality of scan lines, and each of the data lines corresponds to
  • Each of the thin film transistors includes two extensions. The two extensions are used to form two branches of the source. One end of the drain faces the opening formed by the two branches.
  • the openings of the sub-pixels face the same direction, and further include a data driving chip arranged in a non-display area, and a sector area connected between the data driving chip and the plurality of data lines, and A plurality of wiring lines in the sector area are connected to the data driving chip, and every two data lines are correspondingly connected to one of the plurality of wiring lines in the sector area.
  • the sub-pixels in the same column are connected to the same data line.
  • the adjacent sub-pixels are connected to different scan lines.
  • it further includes a gate driving chip disposed in a non-display area, and a gate driving sector connected between the gate driving chip and the plurality of scan lines, the gate driving A plurality of traces of the sector area are connected to the gate driving chip, and each of the scan lines is correspondingly connected to one of the plurality of traces of the gate drive sector.
  • the two extensions of the data line have a symmetric structure based on a symmetry axis, and the symmetry axis is parallel to the scan line.
  • the thin film transistor further includes a gate insulating layer, an active layer is laminated on the gate, and a flat layer covers the active layer, the source and the drain, and the upper The electrode is disposed above the flat layer, the sub-pixel further includes a lower electrode, and a part of the drain is electrically connected to the lower electrode.
  • the upper electrode is strip-shaped and is arranged corresponding to the lower electrode to form a fringe field switching electrode structure.
  • it further includes a color filter substrate, a liquid crystal layer, and a first alignment film located between the upper electrode and the liquid crystal layer.
  • the plurality of sub-pixels include red sub-pixels, green sub-pixels, and blue sub-pixels, or the plurality of sub-pixels include red sub-pixels, green sub-pixels, blue sub-pixels, and white sub-pixels.
  • the present application further provides a liquid crystal display device, including a plurality of scan lines, a plurality of data lines perpendicular to the plurality of scan lines, and a plurality of sub-lines defined by the plurality of scan lines and the plurality of data lines.
  • a pixel, each of the sub-pixels includes a thin film transistor, the thin film transistor includes a gate, a source, and a drain, the gate is correspondingly connected to one of the plurality of scan lines, and each of the data lines corresponds to
  • Each of the thin film transistors includes two extensions. The two extensions are used to form two branches of the source. One end of the drain faces the opening formed by the two branches.
  • the openings of the sub-pixels face the same direction; wherein, it further includes a data driving chip arranged in a non-display area, and a sector area connected between the data driving chip and the plurality of data lines, the A plurality of traces of the sector area are connected to the data driving chip, and every two of the data lines are correspondingly connected to one of the plurality of traces of the sector area; and, a gate disposed in the non-display area A driving chip, and a gate driving sector connected between the gate driving chip and the plurality of scan lines, and a plurality of traces of the gate driving sector are connected to the gate driving chip, Each of the scan lines is correspondingly connected to one of a plurality of wiring lines of the gate driving sector.
  • This application proposes a liquid crystal display device.
  • adjacent sub-pixels are connected to different scan lines, so that the left and right sub-pixels can be controlled separately, and the data
  • the line is input to the display area, it is divided into two, adjacent sub-pixels (Thin film transistor, TFT) opening direction can be made consistent, effectively avoiding the difference in the gate-source capacitance (Cgs) caused by the inconsistency of the overlapping area of the source/drain of the adjacent sub-pixel TFT with respect to the active layer, which will lead to the difference in the capacitance between the gate and the source.
  • Realistic vertical streaks caused by sub-pixel feedthrough differences, or other image quality issues improve the display image quality.
  • FIG. 1 is a schematic diagram of a dual gate driving circuit of a liquid crystal display device according to an embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view taken along the line A-A' in Fig. 1.
  • This application proposes a liquid crystal display device.
  • adjacent sub-pixels are connected to different scan lines, so that the left and right sub-pixels can be controlled separately, and the data
  • the line is input to the display area, it is divided into two, adjacent sub-pixels (Thin film transistor, TFT) opening direction can be made consistent, effectively avoiding the difference in the gate-source capacitance (Cgs) caused by the inconsistency of the overlapping area of the source/drain of the adjacent sub-pixel TFT with respect to the active layer, which will lead to the difference in the capacitance between the gate and the source (Cgs).
  • Realistic vertical streaks caused by sub-pixel feedthrough differences, or other image quality issues improve the display image quality. Specific embodiments are described as follows.
  • FIG. 1 is a schematic diagram of a dual gate driving circuit according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view taken along the line A-A' in FIG.
  • the liquid crystal display device includes a data driving chip arranged in a non-display area, and a fanout connected between the data driving chip and a plurality of data lines. A plurality of wirings in the fanout area are connected to the data driving chip. The two data lines are correspondingly connected to one of the multiple traces of the sector area.
  • the sector area of the driver chip (IC) maintains a dual gate structure and the number of data lines is halved, but the data lines are in the input display area.
  • the time is divided into two. For example, as shown in FIG. 1, the data line 510 is divided into a data line 511 and a data line 512 when input to the display area, and the data line 520 is divided into a data line 521 and a data line 522.
  • the liquid crystal display device proposed in the present application includes a plurality of scan lines 600, a plurality of data lines 511, 512, 521, 522 perpendicular to the plurality of scan lines, and a plurality of sub-lines defined by the plurality of scan lines and the plurality of data lines.
  • Pixels 201, 202, 203, and 204, each sub-pixel includes a thin film transistor (Thin film transistor, TFT) 211, 221, 231, 241.
  • the TFT includes a gate electrode 20, a gate insulating layer 30, an active layer 40, a source electrode 50 and a drain electrode 60, and a flat layer 70, which are sequentially stacked on the substrate 10.
  • the electrode 20 is correspondingly connected to one of the multiple scan lines 600, and each data line includes two extensions 501, 502 corresponding to each TFT to form two branches of the source electrode 50, and one end of the drain electrode 60 faces the two sides of the source electrode 50.
  • the openings formed by the branches 501 and 502 face the same direction.
  • the sub-pixel 201, the sub-pixel 202, and the sub-pixel 203 form a pixel unit, which respectively correspond to the red sub-pixel, the green sub-pixel, and the blue sub-pixel in the color filter, and the sub-pixel 204 corresponds to To the red sub-pixel in the adjacent pixel unit.
  • Adjacent sub-pixels are connected to different scan lines, the TFT 211 of the sub-pixel 201 is connected to the data line 511, and the TFT 221 of the sub-pixel 202 is connected to the data line 512.
  • the data line 520 is divided into a data line 521 and a data line 522 when input to the display area.
  • the TFT 231 of the sub-pixel 203 is connected to the data line 521, and the TFT 241 of the sub-pixel 204 is connected to the data line 522.
  • the left and right data lines 510 and 520 respectively control the adjacent sub-pixels 201, 202 and 203, 204 respectively.
  • all the sub-pixels in the same line are connected to the same data line 511, 521, that is, the two branches 501, 502 of each TFT of all the sub-pixels in the same line are located on the same side of the same data line.
  • the source/drain of each TFT is relative to The overlapping area of the active layer, even if there is an error caused by the process alignment, the gate-source capacitance (Cgs) of each TFT will remain the same because of the same error, so the solution of the present invention does not need Cgs compensation .
  • the Cgs is based on design requirements, and the two extensions 501 and 502 of the data line have a symmetrical structure based on the symmetry axis, which is parallel to the scan line.
  • the liquid crystal display device further includes a gate driving chip disposed in the non-display area, and a gate driving sector connected between the gate driving chip and a plurality of scan lines.
  • the lines are connected to the gate driving chip, and each scan line is correspondingly connected to one of the multiple wiring lines in the gate driving sector.
  • the liquid crystal display device further includes an upper electrode disposed above the flat layer 70, each sub-pixel further includes a lower electrode 81, and a part of the drain 60 is electrically connected to the lower electrode 81.
  • the upper electrode 82 is strip-shaped, it is arranged corresponding to the lower electrode 81 to form a fringe field switching (FFS) electrode structure.
  • FFS fringe field switching
  • the liquid crystal display device may further include a color filter substrate 300, a liquid crystal layer 400, and a first alignment film 90 located between the upper electrode and the liquid crystal layer.
  • the color filter substrate 300 at least includes a substrate 301, color photoresists 303, 304, a black matrix 302 located between different color photoresists, and a second alignment film 310 located between the color photoresist and the liquid crystal layer.
  • the multiple sub-pixels defined by multiple scan lines and multiple data lines can be designed to include red sub-pixels, green sub-pixels, and blue sub-pixels, or multiple sub-pixels corresponding to different color photoresists on the color filter substrate 300.
  • the pixels include red sub-pixels, green sub-pixels, blue sub-pixels, and white sub-pixels.
  • the transmittance design value can be adjusted to the left and right, but because of the process deviation, when the black matrix (BM) has a certain alignment deviation, adjust it to It is difficult to have no misalignment at all.
  • the TFT of all sub-pixels can be The source has symmetry in the X direction, that is, the two extensions connected to the data line have a symmetrical structure with the symmetry axis parallel to the scan line. Therefore, the solution of the present invention does not require Cgs compensation. Moreover, it is convenient to design and manufacture. The difference in the transmittance of the left and right sub-pixels can be smaller than what is visible to the human eye.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种液晶显示装置,相邻子像素(201,202,203,204)的薄膜晶体管(211,221,231,241)的源极(50)/漏极(60)相对于有源层(40)的重迭面积一致,使相邻子像素(201,202,203,204)的栅极-源极电容(Cgs)一致,因此可以避免栅极-源极电容(Cgs)不一致所导致的馈通电压差异所引起的显示不均、显示差异等问题,提升了双栅极产品的画质。

Description

液晶显示装置 技术领域
本揭示涉及一种液晶显示装置,特别是涉及一种用于双栅极驱动方式的液晶显示装置。
背景技术
现有的驱动电路有单栅极(Single gate)驱动与双栅极(Dual gate)驱动,其中单栅极(Single gate)驱动电路的薄膜晶体管(Thin film transistor, TFT)基板结构中,TFT与数据线、栅极线的分布及连接是一个子像素搭配一条栅极线160。另一种双栅极(Dual gate)驱动,是通过加倍栅极线,减半数据线,其中相邻的TFT,也就是相邻的子像素,共享相同的数据线,也就是相邻子像素的源极连接到同一条数据线,但是相邻子像素的栅极则是分别连接到不同栅极线,形成相邻子像素的TFT开口方向不一样。
TFT开口方向不一样,在制造过程中,会因为曝光显影等工艺偏差而使得相邻子像素的TFT的源极/漏极相对于有源层的重迭面积不一致,导致相邻子像素的栅极-源极间电容(Cgs)不一致,进而导致馈通(Feedthrough)电压差异引起显示不均、显示差异等问题。特别是对于像素密度(pixels per inch,PPI)比较低的产品,左右相邻像素的透光率会有人眼可见程度的差异,例如车载显示,这个问题会严重到可以看到竖纹。
目前解决栅极-源极间电容(Cgs)不一致的方式,多采用补偿电路进行栅极-源极电容(Cgs)补偿。
技术问题
双栅极(Dual gate)驱动中相邻子像素的TFT的源极连接到同一条数据线,但是相邻子像素的栅极则是分别连接到不同栅极线,形成相邻子像素的TFT开口方向不一样。使得相邻子像素的TFT的源极/漏极相对于有源层的重迭面积不一致,导致相邻子像素的栅极-源极间电容(Cgs)不一致,进而导致馈通(Feedthrough)电压差异引起显示不均、显示差异等问题。
技术解决方案
本申请的主要目的是,用于双栅极驱动电路的薄膜晶体管(Thin film transistor, TFT)基板结构,不需做栅极-源极电容(Cgs)补偿。基于不需做Cgs补偿的目的,本申请提出了一种液晶显示装置,其中相邻子像素的薄膜晶体管的源极/漏极相对于有源层的重迭面积一致,使相邻子像素的栅极-源极电容(Cgs)一致,因此可以避免栅极-源极电容(Cgs)不一致所导至的馈通(Feedthrough)电压差异所引起的显示不均、显示差异等问题,提升了双栅极产品的画质。
本申请提出的液晶显示装置,包括多条扫描线、与所述多条扫描线相互垂直的多条数据线和由所述多条扫描线和所述多条数据线共同定义的多个子像素,每一所述子像素包括薄膜晶体管,所述薄膜晶体管包括栅极、源极和漏极,所述栅极对应连接至所述多条扫描线其中之一,每一所述数据线对应每一所述薄膜晶体管包括两个延伸部,所述两个延伸部用以形成所述源极的两个分支,所述漏极的一端朝向所述两个分支所形成的开口,每一所述子像素的所述开口朝向同一个方向。
于一实施例中,所述同一列所述子像素连接在同一条所述数据线上。
于一实施例中,所述液晶显示装置更包括设置在非显示区域内的数据驱动芯片,以及连接于所述数据驱动芯片与所述多条数据线之间的扇形区,所述扇形区的多条走线与所述数据驱动芯片相连接,每两条所述数据线对应连接至所述扇形区的多条走线其中之一。
于一实施例中,相邻的所述子像素连接不同的所述扫描线。
于一实施例中,更包括设置在非显示区域内的栅极驱动芯片,以及连接于所述栅极驱动芯片与所述多条扫描线之间的栅极驱动扇形区,所述栅极驱动扇形区的多条走线与所述栅极驱动芯片相连接,每条所述扫描线对应连接至所述栅极驱动扇形区的多条走线其中之一。
于一实施例中,所述数据线的两个延伸部基于对称轴具有对称结构,所述对称轴平行于所述扫描线。
于一实施例中,所述薄膜晶体管更包括栅极绝缘层、有源层层迭在所述栅极上方,平坦层覆盖所述有源层、所述源极和所述漏极,以及上电极配置在所述平坦层上方,所述子像素更包下电极,所述漏极的一部份电性连接至所述下电极。
于一实施例中,所述上电极为条状,与所述下电极对应设置,形成边缘场切换电极结构。
于一实施例中,所述液晶显示装置更包括彩色滤光片基板、液晶层,以及第一配向膜位于所述上电极与所述液晶层之间。
于一实施例中,所述多个子像素包括红色子像素、绿色子像素和蓝色子像素,或者多个子像素包括红色子像素、绿色子像素、蓝色子像素和白色子像素。
本申请更提供一种液晶显示装置,包括多条扫描线、与所述多条扫描线相互垂直的多条数据线和由所述多条扫描线和所述多条数据线共同定义的多个子像素,每一所述子像素包括薄膜晶体管,所述薄膜晶体管包括栅极、源极和漏极,所述栅极对应连接至所述多条扫描线其中之一,每一所述数据线对应每一所述薄膜晶体管包括两个延伸部,所述两个延伸部用以形成所述源极的两个分支,所述漏极的一端朝向所述两个分支所形成的开口,每一所述子像素的所述开口朝向同一个方向,其中,更包括设置在非显示区域内的数据驱动芯片,以及连接于所述数据驱动芯片与所述多条数据线之间的扇形区,所述扇形区的多条走线与所述数据驱动芯片相连接,每两条所述数据线对应连接至所述扇形区的多条走线其中之一。
于一实施例中,所述同一列所述子像素连接在同一条所述数据线上。
于一实施例中,相邻的所述子像素连接不同的所述扫描线。
于一实施例中,更包括设置在非显示区域内的栅极驱动芯片,以及连接于所述栅极驱动芯片与所述多条扫描线之间的栅极驱动扇形区,所述栅极驱动扇形区的多条走线与所述栅极驱动芯片相连接,每条所述扫描线对应连接至所述栅极驱动扇形区的多条走线其中之一。
于一实施例中,所述数据线的两个延伸部基于对称轴具有对称结构,所述对称轴平行于所述扫描线。
于一实施例中,所述薄膜晶体管更包括栅极绝缘层、有源层层迭在所述栅极上方,平坦层覆盖所述有源层、所述源极和所述漏极,以及上电极配置在所述平坦层上方,所述子像素更包下电极,所述漏极的一部份电性连接至所述下电极。
于一实施例中,所述上电极为条状,与所述下电极对应设置,形成边缘场切换电极结构。
于一实施例中,更包括彩色滤光片基板、液晶层,以及第一配向膜位于所述上电极与所述液晶层之间。
于一实施例中,所述多个子像素包括红色子像素、绿色子像素和蓝色子像素,或者多个子像素包括红色子像素、绿色子像素、蓝色子像素和白色子像素。
本申请更提供一种液晶显示装置,包括多条扫描线、与所述多条扫描线相互垂直的多条数据线和由所述多条扫描线和所述多条数据线共同定义的多个子像素,每一所述子像素包括薄膜晶体管,所述薄膜晶体管包括栅极、源极和漏极,所述栅极对应连接至所述多条扫描线其中之一,每一所述数据线对应每一所述薄膜晶体管包括两个延伸部,所述两个延伸部用以形成所述源极的两个分支,所述漏极的一端朝向所述两个分支所形成的开口,每一所述子像素的所述开口朝向同一个方向;其中,更包括设置在非显示区域内的数据驱动芯片,以及连接于所述数据驱动芯片与所述多条数据线之间的扇形区,所述扇形区的多条走线与所述数据驱动芯片相连接,每两条所述数据线对应连接至所述扇形区的多条走线其中之一;以及,设置在非显示区域内的栅极驱动芯片,以及连接于所述栅极驱动芯片与所述多条扫描线之间的栅极驱动扇形区,所述栅极驱动扇形区的多条走线与所述栅极驱动芯片相连接,每条所述扫描线对应连接至所述栅极驱动扇形区的多条走线其中之一。
有益效果
本申请提出了一种液晶显示装置,基于不需做栅极-源极电容(Cgs)补偿的目的,相邻的子像素连接不同的扫描线,从而实现左右子像素分别进行控制,并且,数据线输入显示区时将其一分为二,相邻子像素(Thin film transistor, TFT)的开口朝向可以做成一致,有效避免相邻子像素TFT源极/漏极相对于有源层的重迭面积不一致导致的栅极-源极间电容(Cgs)不同,进而导致相邻子像素馈通(feedthrough)差异引起的现实竖纹,或其他画质问题,从而提升了显示画质。
附图说明
为了更清楚地说明实施例或本申请中的技术方案,下面将对实施例或本申请技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明实施例的液晶显示装置的双栅极驱动电路示意图;以及
图2为沿图1中的线A-A’截取的剖面示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请提出了一种液晶显示装置,基于不需做栅极-源极电容(Cgs)补偿的目的,相邻的子像素连接不同的扫描线,从而实现左右子像素分别进行控制,并且,数据线输入显示区时将其一分为二,相邻子像素(Thin film transistor, TFT)的开口朝向可以做成一致,有效避免相邻子像素TFT源极/漏极相对于有源层的重迭面积不一致导致的栅极-源极间电容(Cgs)不同,进而导致相邻子像素馈通(feedthrough)差异引起的现实竖纹,或其他画质问题,从而提升了显示画质。具体实施例说明如下。
本申请提供的实施例,请同时参考图1与图2,图1为本发明实施例的双栅极驱动电路示意图,图2为沿图1中的线A-A’截取的剖面示意图。液晶显示装置包括设置在非显示区域内的数据驱动芯片,以及连接于数据驱动芯片与多条数据线之间的扇形区(Fanout),扇形区的多条走线与数据驱动芯片相连接,每两条所述数据线对应连接至所述扇形区的多条走线其中之一,换言之,驱动芯片(IC)的扇形区维持双栅极架构数据线数量减半,但是数据线在输入显示区时一分为二,举例说明,如图1所示,数据线510在输入显示区时分为数据线511与数据线512,数据线520分为数据线521与数据线522。
本申请提出的液晶显示装置,包括多条扫描线600、与多条扫描线相互垂直的多条数据线511、512、521、522和由多条扫描线和多条数据线共同定义的多个子像素201、202、203、204,每一子像素包括薄膜晶体管(Thin film transistor, TFT)211、221、231、241,TFT包括在基板10上依序层迭的栅极20、栅极绝缘层30、有源层40、源极50和漏极60、和平坦层70,栅极20对应连接至多条扫描线600其中之一,每一数据线包括两个延伸部501、502对应每一TFT以形成源极50的两个分支,漏极60的一端朝向源极50的两个分支501、502所形成的开口,每一子像素的开口朝向同一个方向。
如图1所示,例如子像素201、子像素202、子像素203组成一个像素单元,分别对应到彩色滤光片中的红色子像素、绿色子像素、蓝色子像素,而子像素204对应到邻近像素单元中的红色子像素。相邻的子像素连接不同的扫描线,子像素201的TFT211连接至数据线511,子像素202的TFT221连接至数据线512。数据线520在输入显示区时分为数据线521与数据线522,子像素203的TFT231连接至数据线521,子像素204的TFT241连接至数据线522。从而实现左右两数据线510、520对应相邻子像素201、202与203、204分别进行控制。
基于上述,同一直列的所有子像素连接在同一条数据线511、521上,也就是同一直列的所有子像素的每个TFT的两个分支501、502都位在同一条数据线的同一边,如此,基于每一子像素的开口朝向同一个方向,加上左右两数据线510、520对应相邻子像素201、202与203、204分别进行控制,每个TFT的源极/漏极相对于有源层的重迭面积,就算有制程对位造成的误差,也会因为误差一致而使每个TFT的栅极-源极间电容(Cgs)维持一样,因而本发明方案不需做Cgs补偿。另外,Cgs基于设计需要,数据线的两个延伸部501、502基于对称轴具有对称结构,对称轴平行于扫描线。
其中,液晶显示装置更包括设置在非显示区域内的栅极驱动芯片,以及连接于栅极驱动芯片与多条扫描线之间的栅极驱动扇形区,此栅极驱动扇形区的多条走线与栅极驱动芯片相连接,每条扫描线对应连接至此栅极驱动扇形区的多条走线其中之一。
液晶显示装置更包括上电极配置在平坦层70上方,每一子像素更包下电极81,漏极60的一部份电性连接至下电极81。在一实施例中,当上电极82为条状,与下电极81对应设置,形成边缘场切换(fringe field switching, FFS)电极结构。
液晶显示装置更可以包括彩色滤光片基板300、液晶层400,以及第一配向膜90位于上电极与液晶层之间。彩色滤光片基板300至少包括基板301、彩色光阻303、304,位于不同彩色光阻之间的黑色矩阵302,以及第二配向膜310位于彩色光阻与液晶层之间。
多条扫描线和多条数据线共同定义的多个子像素就可以对应彩色滤光片基板300上的不同彩色光阻而设计成包括红色子像素、绿色子像素和蓝色子像素,或者多个子像素包括红色子像素、绿色子像素、蓝色子像素和白色子像素。
另外,现有双栅极驱动方式的薄膜晶体管设计方案,透光率设计值可以调整为左右一致,但是因为工艺偏差存在,在黑色矩形(Black matrix, BM)存在一定对位偏差时,调整到完全没有对位偏差是很困难。然而,本申请除了上述的相邻的子像素连接不同的扫描线从而实现左右子像素分别进行控制,更由于在数据线输入显示区时将其一分为二,可以使所有子像素的TFT的源极存在X方向的对称性,也就是连接到数据线的两个延伸部具有对称轴平行于扫描线的对称结构,因此本发明方案不需做Cgs补偿,再者,方便于设计与制造,左右子像素的透过率差异,可以小于人眼可见程度。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种液晶显示装置,包括多条扫描线、与所述多条扫描线相互垂直的多条数据线和由所述多条扫描线和所述多条数据线共同定义的多个子像素,每一所述子像素包括薄膜晶体管,所述薄膜晶体管包括栅极、源极和漏极,所述栅极对应连接至所述多条扫描线其中之一,每一所述数据线对应每一所述薄膜晶体管包括两个延伸部,所述两个延伸部用以形成所述源极的两个分支,所述漏极的一端朝向所述两个分支所形成的开口,每一所述子像素的所述开口朝向同一个方向。
  2. 如权利要求1所述的液晶显示装置,其中,所述同一列所述子像素连接在同一条所述数据线上。
  3. 如权利要求2所述的液晶显示装置,其中,更包括设置在非显示区域内的数据驱动芯片,以及连接于所述数据驱动芯片与所述多条数据线之间的扇形区,所述扇形区的多条走线与所述数据驱动芯片相连接,每两条所述数据线对应连接至所述扇形区的多条走线其中之一。
  4. 如权利要求1所述的液晶显示装置,其中,相邻的所述子像素连接不同的所述扫描线。
  5. 如权利要求4所述的液晶显示装置,其中,更包括设置在非显示区域内的栅极驱动芯片,以及连接于所述栅极驱动芯片与所述多条扫描线之间的栅极驱动扇形区,所述栅极驱动扇形区的多条走线与所述栅极驱动芯片相连接,每条所述扫描线对应连接至所述栅极驱动扇形区的多条走线其中之一。
  6. 如权利要求1所述的液晶显示装置,其中,所述数据线的两个延伸部基于对称轴具有对称结构,所述对称轴平行于所述扫描线。
  7. 如权利要求1所述的液晶显示装置,其中,所述薄膜晶体管更包括栅极绝缘层、有源层层迭在所述栅极上方,平坦层覆盖所述有源层、所述源极和所述漏极,以及上电极配置在所述平坦层上方,所述子像素更包下电极,所述漏极的一部份电性连接至所述下电极。
  8. 如权利要求7所述的液晶显示装置,其中,所述上电极为条状,与所述下电极对应设置,形成边缘场切换电极结构。
  9. 如权利要求7所述的液晶显示装置,其中,更包括彩色滤光片基板、液晶层,以及第一配向膜位于所述上电极与所述液晶层之间。
  10. 如权利要求9所述的液晶显示装置,其中,所述多个子像素包括红色子像素、绿色子像素和蓝色子像素,或者多个子像素包括红色子像素、绿色子像素、蓝色子像素和白色子像素。
  11. 一种液晶显示装置,包括多条扫描线、与所述多条扫描线相互垂直的多条数据线和由所述多条扫描线和所述多条数据线共同定义的多个子像素,每一所述子像素包括薄膜晶体管,所述薄膜晶体管包括栅极、源极和漏极,所述栅极对应连接至所述多条扫描线其中之一,每一所述数据线对应每一所述薄膜晶体管包括两个延伸部,所述两个延伸部用以形成所述源极的两个分支,所述漏极的一端朝向所述两个分支所形成的开口,每一所述子像素的所述开口朝向同一个方向,其中,更包括设置在非显示区域内的数据驱动芯片,以及连接于所述数据驱动芯片与所述多条数据线之间的扇形区,所述扇形区的多条走线与所述数据驱动芯片相连接,每两条所述数据线对应连接至所述扇形区的多条走线其中之一。
  12. 如权利要求11所述的液晶显示装置,其中,所述同一列所述子像素连接在同一条所述数据线上。
  13. 如权利要求11所述的液晶显示装置,其中,相邻的所述子像素连接不同的所述扫描线。
  14. 如权利要求13所述的液晶显示装置,其中,更包括设置在非显示区域内的栅极驱动芯片,以及连接于所述栅极驱动芯片与所述多条扫描线之间的栅极驱动扇形区,所述栅极驱动扇形区的多条走线与所述栅极驱动芯片相连接,每条所述扫描线对应连接至所述栅极驱动扇形区的多条走线其中之一。
  15. 如权利要求11所述的液晶显示装置,其中,所述数据线的两个延伸部基于对称轴具有对称结构,所述对称轴平行于所述扫描线。
  16. 如权利要求11所述的液晶显示装置,其中,所述薄膜晶体管更包括栅极绝缘层、有源层层迭在所述栅极上方,平坦层覆盖所述有源层、所述源极和所述漏极,以及上电极配置在所述平坦层上方,所述子像素更包下电极,所述漏极的一部份电性连接至所述下电极。
  17. 如权利要求16所述的液晶显示装置,其中,所述上电极为条状,与所述下电极对应设置,形成边缘场切换电极结构。
  18. 如权利要求16所述的液晶显示装置,其中,更包括彩色滤光片基板、液晶层,以及第一配向膜位于所述上电极与所述液晶层之间。
  19. 如权利要求18所述的液晶显示装置,其中,所述多个子像素包括红色子像素、绿色子像素和蓝色子像素,或者多个子像素包括红色子像素、绿色子像素、蓝色子像素和白色子像素。
  20. 一种液晶显示装置,包括多条扫描线、与所述多条扫描线相互垂直的多条数据线和由所述多条扫描线和所述多条数据线共同定义的多个子像素,每一所述子像素包括薄膜晶体管,所述薄膜晶体管包括栅极、源极和漏极,所述栅极对应连接至所述多条扫描线其中之一,每一所述数据线对应每一所述薄膜晶体管包括两个延伸部,所述两个延伸部用以形成所述源极的两个分支,所述漏极的一端朝向所述两个分支所形成的开口,每一所述子像素的所述开口朝向同一个方向;其中,更包括设置在非显示区域内的数据驱动芯片,以及连接于所述数据驱动芯片与所述多条数据线之间的扇形区,所述扇形区的多条走线与所述数据驱动芯片相连接,每两条所述数据线对应连接至所述扇形区的多条走线其中之一;以及,设置在非显示区域内的栅极驱动芯片,以及连接于所述栅极驱动芯片与所述多条扫描线之间的栅极驱动扇形区,所述栅极驱动扇形区的多条走线与所述栅极驱动芯片相连接,每条所述扫描线对应连接至所述栅极驱动扇形区的多条走线其中之一。
PCT/CN2019/126657 2019-12-12 2019-12-19 液晶显示装置 WO2021114355A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,308 US20210325747A1 (en) 2019-12-12 2019-12-19 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911271993.5 2019-12-12
CN201911271993.5A CN111025804A (zh) 2019-12-12 2019-12-12 液晶显示装置

Publications (1)

Publication Number Publication Date
WO2021114355A1 true WO2021114355A1 (zh) 2021-06-17

Family

ID=70206099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126657 WO2021114355A1 (zh) 2019-12-12 2019-12-19 液晶显示装置

Country Status (3)

Country Link
US (1) US20210325747A1 (zh)
CN (1) CN111025804A (zh)
WO (1) WO2021114355A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433413B (zh) * 2020-11-26 2022-07-12 深圳市华星光电半导体显示技术有限公司 液晶显示器及其串扰消除方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292998A1 (en) * 2006-06-20 2007-12-20 Au Optronics Corporation Thin film transistor array substrate and method for manufacturing the same
CN101750809A (zh) * 2008-12-03 2010-06-23 上海天马微电子有限公司 液晶显示面板
CN102231030A (zh) * 2011-07-07 2011-11-02 南京中电熊猫液晶显示科技有限公司 薄膜晶体管液晶显示器的像素结构
CN105097832A (zh) * 2015-06-25 2015-11-25 合肥鑫晟光电科技有限公司 一种阵列基板及其制作方法、显示装置
CN105974706A (zh) * 2016-07-25 2016-09-28 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
CN110308600A (zh) * 2019-06-29 2019-10-08 上海天马微电子有限公司 阵列基板、显示面板和显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233431A (ja) * 1990-02-09 1991-10-17 Hitachi Ltd 液晶ディスプレイパネル
CN103185994B (zh) * 2011-12-29 2015-12-16 上海中航光电子有限公司 一种双栅型薄膜晶体管液晶显示装置的像素结构
CN110488548B (zh) * 2019-09-12 2022-04-05 合肥鑫晟光电科技有限公司 一种阵列基板和车载显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292998A1 (en) * 2006-06-20 2007-12-20 Au Optronics Corporation Thin film transistor array substrate and method for manufacturing the same
CN101750809A (zh) * 2008-12-03 2010-06-23 上海天马微电子有限公司 液晶显示面板
CN102231030A (zh) * 2011-07-07 2011-11-02 南京中电熊猫液晶显示科技有限公司 薄膜晶体管液晶显示器的像素结构
CN105097832A (zh) * 2015-06-25 2015-11-25 合肥鑫晟光电科技有限公司 一种阵列基板及其制作方法、显示装置
CN105974706A (zh) * 2016-07-25 2016-09-28 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
CN110308600A (zh) * 2019-06-29 2019-10-08 上海天马微电子有限公司 阵列基板、显示面板和显示装置

Also Published As

Publication number Publication date
CN111025804A (zh) 2020-04-17
US20210325747A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US10013938B2 (en) Display panel and display device, and fabrication method thereof
US8994905B2 (en) Liquid crystal display device
JP5480970B2 (ja) 表示パネル及び表示装置
WO2017140000A1 (zh) Va型coa液晶显示面板
TWI653614B (zh) 顯示面板
US20170133405A1 (en) Z-Inversion Type Display Device and Method of Manufacturing the Same
JP2018506739A (ja) 液晶表示パネル及び装置
WO2020244138A1 (zh) 一种多畴像素结构的显示面板
KR20210073807A (ko) 이형 액정 표시 패널
US20190025623A1 (en) Display device
US10845661B2 (en) Liquid crystal display device
CN113589601B (zh) 显示面板和显示装置
JP2009098336A (ja) 液晶表示装置
WO2021114355A1 (zh) 液晶显示装置
US20210327372A1 (en) Display panel and display device
US10754213B2 (en) Thin film transistor substrate
JP5512158B2 (ja) 表示装置
US20210356822A1 (en) Liquid crystal display panel
WO2016058184A1 (zh) 液晶显示面板及其阵列基板
US9946130B2 (en) Display device
KR20200039787A (ko) 액정 디스플레이
WO2020206785A1 (zh) 显示面板及显示模组
JP7018687B2 (ja) 液晶表示パネル
KR101308439B1 (ko) 액정 표시 패널
CN111752050A (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955962

Country of ref document: EP

Kind code of ref document: A1