WO2021114196A1 - 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法 - Google Patents

基于大面积厚膜可控织构光子晶体锂硫电池的制备方法 Download PDF

Info

Publication number
WO2021114196A1
WO2021114196A1 PCT/CN2019/124964 CN2019124964W WO2021114196A1 WO 2021114196 A1 WO2021114196 A1 WO 2021114196A1 CN 2019124964 W CN2019124964 W CN 2019124964W WO 2021114196 A1 WO2021114196 A1 WO 2021114196A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
lithium
sulfur
thick film
mesh
Prior art date
Application number
PCT/CN2019/124964
Other languages
English (en)
French (fr)
Inventor
胡晓斌
林升炫
蔡子贺
肖佳佳
陈宇航
王一帆
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US17/761,698 priority Critical patent/US12142752B2/en
Publication of WO2021114196A1 publication Critical patent/WO2021114196A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/18Quartz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the invention relates to materials and preparation methods in the technical field of lithium batteries, in particular to a preparation method of a lithium-sulfur battery based on a large-area thick film controllable texture photonic crystal.
  • Lithium-ion batteries as currently commonly used electrochemical storage devices, have the characteristics of good thermal safety, good reversibility, and non-toxicity.
  • lithium-ion batteries are based on the reaction mechanism of lithium ions intercalating lithium back and forth between the two poles, their theoretical specific capacity and energy density are limited and cannot meet the needs of high-power equipment such as power vehicles.
  • Lithium-sulfur battery is a kind of energy storage device with wide application prospect in people's daily life. Its reaction mechanism is different from that of lithium-ion batteries. It is based on the chemical reaction between metallic lithium and sulfur, so it has high theoretical specific capacity (1675mAhg -1 ), high theoretical energy density, sulfur abundance, and environmental friendliness. But like other lithium batteries, the safety of lithium-sulfur batteries, such as spontaneous combustion, has always hindered the application prospects of power batteries. The root cause of the spontaneous combustion phenomenon is caused by the local overheating of the electric battery stack, and the microscopic uneven reaction inside the battery electrode is the culprit of the local overheating.
  • the traditional photonic crystal has a small area and thin thickness, which limits the areal density of active materials, and thus cannot achieve the high areal capacity density and areal energy density of lithium-sulfur batteries.
  • the general self-assembly method, spraying method, and spin coating method use smooth surface substrates (such as glass, metal foil, etc.).
  • Chinese patent CN102691106A discloses a method for preparing crack-free photonic crystals, which uses spraying, spin coating or spraying.
  • the ink printing method self-assembles opal-structured photonic crystals on the surface of flexible substrates, but the thickness of the photonic crystals obtained by such methods is usually no more than 20 ⁇ m;
  • the suction filtration method can be used to prepare photonic crystals with a thickness of 500 ⁇ m.
  • Chinese Patent CN100410301C discloses a method for preparing ordered porous conductive polymers by suction filtration/dipping method, which uses a 0.22 ⁇ m filter membrane as the substrate and is pumped by vacuum. Filtration makes the monodisperse microspheres form colloidal crystals. Like the spraying method, there is a problem of cracks after drying, and the suction filtration method requires the pore size of the substrate to be smaller than the particle size of the microspheres, which limits its further application.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art and provide a method for preparing a large-area thick film controllable texture photonic crystal lithium-sulfur battery, which solves the problem of small area and uncontrollable thickness in the prior art. technical problem.
  • the method for preparing a lithium-sulfur battery based on a large-area thick-film controllable texture photonic crystal includes:
  • Preparation of monodisperse microsphere suspension add monodisperse microspheres into a solvent and disperse to form a suspension;
  • the substrate is ultrasonically cleaned in ethanol, acetone and isopropanol to remove impurities and organic matter on the surface and then dried;
  • microsphere photonic crystals place the substrate in a prepared suspension, place in an oven, and self-assemble at a certain temperature until the solvent of the suspension is completely volatilized to obtain microsphere photonic crystals;
  • the base material is sealed, treated at an appropriate temperature, and naturally cooled and dried to obtain a sulfur positive electrode
  • the preparation of lithium-sulfur battery the sulfur positive electrode is used as the working electrode, the lithium sheet is the counter electrode, and the polypropylene is used as the separator to assemble the battery.
  • the particle size of the monodisperse microspheres is 100nm-1000nm, and the concentration of the suspension is 0.1-10wt%.
  • the substrate is paper with carbon fiber, carbon fiber cloth, metal wire mesh or nickel foam, and the metal wire mesh is stainless steel mesh, nickel mesh, titanium mesh, copper mesh, tungsten mesh, molybdenum mesh, zirconium mesh, lead mesh or Platinum mesh.
  • the existing photonic crystals are all prepared on a smooth surface, which is very different from the present invention.
  • the substrate used in the present invention is a network structure or a non-smooth surface structure. Compared with preparing photonic crystals on a smooth surface, the present invention has the following advantages.
  • the present invention expands the selection range of substrates for traditional preparation of photonic crystals, from a smooth solid substrate to a non-smooth grid-like direction;
  • the present invention simplifies the processing of the substrate Traditional substrates such as glass require acid treatment and other multi-process pre-treatments.
  • the present invention only requires simple treatment of water and alcohol;
  • photonic crystals are prepared on a smooth surface, regardless of the area and thickness. Due to limitations, the present invention can obtain any area and thickness we want, and provides more choices for practical applications; fourth, the present invention solves the large-area cracks that exist in traditional photonic crystals prepared on smooth substrates.
  • the problem is that the uniform distribution of photonic crystals is restricted to the mesh of the substrate, and the resulting photonic crystals have a high degree of flatness and self-assembly without cracks, which improves the integrity and connectivity of the later inverse opal structure.
  • the temperature of the self-assembly is 35-65°C.
  • the thickness of the microsphere photonic crystal is 10 ⁇ m-650 ⁇ m, and the area is 0.1 cm 2 -400 cm 2 .
  • the metal salt used is zinc nitrate, nickel nitrate, iron nitrate, cobalt nitrate or manganese nitrate
  • the organic ligand is 2-methylimidazole
  • the solvent is methanol, N,N- One or more of dimethylformamide or N,N-dimethylacetamide
  • the solubility of the metal salt is 0.1M-10M
  • the solubility of the organic ligand is 0.1M-20M.
  • the reaction temperature of the temperature-controlled reaction is 50°C-90°C, and the reaction time is 1h-12h; the temperature of the high-temperature heat treatment is controlled at 600°C-1200°C, and the time is controlled at 3h-12h.
  • the concentration of the hydrofluoric acid solution is 0.5% by weight to 30% by weight.
  • the solvent used is toluene or carbon disulfide, and the concentration of elemental sulfur is 1-10 wt%.
  • the temperature of suitable temperature treatment is 120°C-160°C, and the time is 1h-24h.
  • the present invention realizes that the thickness of the electrode can be controlled from a thick film of 10-650um, and at the same time, by changing the area of the substrate, the electrode area is prepared from a large area of 0.1-400cm 2 .
  • a high sulfur load of 1-15 mg cm -2 is realized, thereby realizing the high areal capacity density and areal energy density of the lithium-sulfur battery.
  • the technical scheme disclosed in the present invention has simple process, low cost and wide application range, and the prepared battery electrode can realize the characteristics of large area, controllable thick film and high surface sulfur loading.
  • Figure 1 is a picture of the photonic crystal prepared in Example 1 and the assembled lithium-sulfur battery
  • Example 2 is a picture of the photonic crystal prepared in Example 1 and the assembled lithium-sulfur battery;
  • Example 3 is a picture of the photonic crystal prepared in Example 1 and the assembled lithium-sulfur battery.
  • the preparation method based on a large area thick film controllable texture photonic crystal lithium-sulfur battery includes the following steps:
  • the substrates were cleaned ultrasonically in ethanol, acetone and isopropanol, and the impurities and organic matter on the surface were removed and dried in an oven for subsequent use.
  • the substrates that can be used are carbon fiber paper and carbon fiber cloth.
  • the metal salt is zinc nitrate, nickel nitrate, iron nitrate, cobalt nitrate or manganese nitrate
  • the organic ligand is 2-methylimidazole
  • the solvent is one or more of methanol, N,N-dimethylformamide or N,N-dimethylacetamide
  • the solubility of the metal salt is 0.1M- 10M
  • the solubility of the organic ligand is 0.1M-20M, and then moved to an oven at 50°C-90°C to react for 1h-12h to generate metal organic framework materials in the gaps of the microsphere photonic crystals.
  • the sulfur positive electrode is used as the working electrode
  • the lithium sheet is used as the counter electrode
  • the polypropylene is used as the separator to assemble the battery.
  • the small glass bottle used for the self-assembled silica opal template was ultrasonically cleaned with deionized water for 20 minutes, at least 3 times, and the carbon fiber paper was ultrasonically cleaned with deionized water, acetone, isopropanol, and alcohol for 20 minutes each, and dried for later use.
  • the alcohol solution of silica microspheres with a concentration of 2% and a diameter of 200 nm was dropped into the glass bottle, dripped to the full, and the cleaned carbon fiber paper was placed obliquely at the same time. Put the glass bottle in a blast drying box and keep the temperature at 35°C until the alcohol solution in the glass bottle is completely volatilized, so as to self-assemble into photonic crystals in the large holes of the carbon fiber paper.
  • the metal framework organic precursor solution was prepared, and 0.84g zinc nitrate hexahydrate, 0.96g 2-methylimidazole, 25mL methanol and 25mL N,N-dimethylformamide were mixed and stirred for 10 minutes.
  • the carbon fiber paper from the previous step was immersed in the metal frame organic precursor solution for 1 hour, and then moved to a drying oven at 70°C for 6 hours to form a composite of silica and metal frame organics in the large pores of the carbon fiber paper.
  • the carbon fiber paper was transferred to a tube furnace in an inert atmosphere for heat treatment at 800°C for 3 hours.
  • Figure 1 is a picture of a photonic crystal prepared by using carbon fiber paper as a substrate and an assembled lithium-sulfur battery in this embodiment, where a is a carbon fiber paper composite silicon oxide photonic crystal, and b is a woven fabric composed of carbon fiber paper composite carbon light crystal and sulfur. Construct photonic crystal sulfur anode.
  • the textured photonic crystal prepared in this embodiment has an area of 16 cm 2 , a thickness of 230 um, and a surface sulfur load of 11 mg cm -2 . Select carbon fiber paper substrates of different thicknesses and cut different areas to obtain textured photonic crystals of different thicknesses and areas. Combined with adjusting the concentration of the sulfur organic solution, sulfur cathodes with different sulfur loadings can be obtained.
  • the small glass bottle used for the self-assembled silica opal template was ultrasonically cleaned with deionized water for 20 minutes, at least 3 times, and the nickel mesh was ultrasonically cleaned with deionized water, acetone, isopropanol and alcohol for 20 minutes each, and dried for use.
  • Figure 2 is a picture of the photonic crystal prepared by using nickel mesh as the substrate and the assembled lithium-sulfur battery in this embodiment, where a is a nickel mesh composite silicon oxide photonic crystal; b is a nickel mesh composite carbon light crystal and a woven fabric composed of sulfur Construct photonic crystal sulfur anode.
  • the textured photonic crystal prepared in this embodiment has an area of 16 cm 2 , a thickness of 180 um, and a surface sulfur load of 8 mg cm -2 . Selecting nickel mesh substrates of different thicknesses and cutting different areas can obtain textured photonic crystals of different thicknesses and areas. Combined with adjusting the concentration of the sulfur organic solution, sulfur cathodes with different sulfur loadings can be obtained.
  • the small glass bottle used for the self-assembled silica opal template was ultrasonically cleaned with deionized water for 20 minutes, at least 3 times, and the tungsten mesh was ultrasonically cleaned with deionized water, acetone, isopropanol, and alcohol for 20 minutes each, and dried for use.
  • the alcohol solution of silica microspheres with a concentration of 8% and a diameter of 250nm is dropped into the glass bottle, dripping to the full, and the cleaned tungsten mesh is placed obliquely. Put the glass bottle in a blast drying box and keep the temperature at 35°C until the alcohol solution in the glass bottle is completely volatilized, so as to self-assemble into a photonic crystal in the large holes of the tungsten mesh.
  • the metal framework organic precursor solution Prepare the metal framework organic precursor solution, mix and stir 0.168g zinc nitrate hexahydrate, 0.192g 2-methylimidazole, 25mL methanol and 25mL N,N-dimethylformamide for 10 minutes.
  • the tungsten mesh from the previous step was immersed in the metal frame organic precursor solution for 1 hour, and then moved to a drying oven at 80°C for 6 hours to form a composite of silica and metal frame organics in the large pores of the tungsten mesh. Move the tungsten mesh to a tube furnace in an inert atmosphere for heat treatment at 900°C for 3 hours.
  • Figure 3 is a picture of the photonic crystal prepared by using the tungsten mesh as the substrate and the assembled lithium-sulfur battery in this embodiment, where a is a tungsten mesh composite silicon oxide photonic crystal; b is a tungsten mesh composite carbon photonic crystal and a woven fabric composed of sulfur Construct photonic crystal sulfur anode.
  • the textured photonic crystal prepared in this embodiment has an area of 16 cm 2 , a thickness of 120 ⁇ m, and a surface sulfur load of 5 mg cm -2 . Select tungsten mesh substrates of different thicknesses and cut different areas to obtain textured photonic crystals of different thicknesses and areas. Combined with adjusting the concentration of the sulfur organic solution, sulfur cathodes with different sulfur loadings can be obtained.
  • the small glass bottles used for the self-assembled silica opal template were ultrasonically cleaned with deionized water for 20 minutes, at least 3 times, and the carbon fiber cloth was ultrasonically cleaned with deionized water, acetone, isopropanol, and alcohol for 20 minutes each, and dried for later use.
  • the metal frame organic precursor solution was prepared, and nickel nitrate, 2-methylimidazole, and methanol were mixed and stirred for 10 minutes.
  • the solubility of nickel nitrate was 0.1M and the solubility of 2-methylimidazole was 5M.
  • the carbon fiber cloth from the previous step was immersed in the metal frame organic precursor solution for 1 hour, and then moved to a drying oven at 50°C for 12 hours to form a composite of silica and metal frame organics in the large pores of the carbon fiber cloth.
  • the carbon fiber cloth was moved to a tube furnace in an inert atmosphere for heat treatment at 600°C for 12 hours.
  • the small glass bottle used for the self-assembled silica opal template was ultrasonically cleaned with deionized water for 20 minutes, at least 3 times, and the zirconium mesh was ultrasonically cleaned with deionized water, acetone, isopropanol, and alcohol for 20 minutes each, and dried for use.
  • the alcohol solution of silica microspheres with a concentration of 0.1% and a diameter of 500 nm is dropped into the glass bottle, dripping to the full, and the cleaned zirconium mesh is placed obliquely.
  • the metal framework organic precursor solution was prepared, and ferric nitrate, 2-methylimidazole, and N,N-dimethylacetamide were mixed and stirred for 10 min.
  • the solubility of ferric nitrate was 10M and the solubility of 2-methylimidazole was 0.1M.
  • the zirconium mesh from the previous step was immersed in the metal frame organic precursor solution for 1 hour, and then moved to a drying oven at 50°C for 12 hours to form a composite of silica and metal frame organics in the large pores of the zirconium mesh.
  • the structured photonic crystal sulfur positive electrode is used as the working electrode and the lithium sheet is used as the counter electrode to form a lithium-sulfur battery.
  • the small glass bottle used for the self-assembled silica opal template was ultrasonically cleaned with deionized water for 10 minutes, at least twice, the platinum mesh was ultrasonically cleaned with deionized water, acetone, isopropanol, and alcohol for 10 minutes each, and dried for later use.
  • Drop the alcohol solution of silicon dioxide microspheres with a concentration of 10% and a diameter of 1000 nm into the glass bottle drip it to the full, and place the cleaned platinum net obliquely at the same time.
  • the metal frame organic precursor solution was prepared, and manganese nitrate, 2-methylimidazole, and N,N-dimethylacetamide were mixed and stirred for 10 minutes.
  • the solubility of manganese nitrate was 10M and the solubility of 2-methylimidazole was 0.1M.
  • the platinum mesh from the previous step was immersed in the metal frame organic precursor solution for 1 hour, and then moved to a drying oven at 90°C for 1 hour to form a composite of silica and metal frame organics in the large pores of the platinum mesh. Move the platinum mesh to a tube furnace in an inert atmosphere for heat treatment at 1200°C for 3 hours.
  • the description with reference to the terms “one embodiment”, “example”, “specific example”, etc. means that the specific feature, structure, material, or characteristic described in combination with the embodiment or example is included in at least the present invention. In one embodiment or example. In this specification, the schematic representations of the above-mentioned terms do not necessarily refer to the same embodiment or example. Moreover, the described specific features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Glass Compositions (AREA)

Abstract

基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,利用垂直沉降自组装的方法,随着溶剂挥发,使单分散微球在基材的大孔中排列成光子晶体结构,以光子晶体为模板,在模板间隙中合成有序微孔碳,去除光子晶体模板获得三维有序分级多孔结构的碳光子晶体,从而形成大面积厚膜可控的织构光子晶体。将其与单质硫复合得到硫正极,锂金属作为对电极,从而组装成锂硫电池。通过改变基材的厚度和悬浊液的浓度,实现了电极厚度从10-650µm的厚膜可控,同时通过改变基材的面积,实现了电极面积从0.1-400cm 2的大面积制备。此外通过调节硫的有机溶液的浓度,实现了从1-15mg·cm -2的硫高负载,从而实现了锂硫电池的高面容量密度和面能量密度。

Description

基于大面积厚膜可控织构光子晶体锂硫电池的制备方法 技术领域
本发明涉及锂电池技术领域的材质及制备方法,尤其是涉及一种基于大面积厚膜可控织构光子晶体锂硫电池的制备方法。
背景技术
随着自然资源的日益枯竭,传统的不可再生能源无法继续满足人类社会发展的需要,人们对可替代能源的需求日益迫切。锂离子电池作为当前常用的电化学存储装置具有良好的热安全性、良好的可逆性和无毒性等特点。但是,鉴于锂离子电池是基于锂离子在两极之间来回嵌锂脱锂的反应机理,它的理论比容量和能量密度受到限制,无法满足大功率设备如动力汽车等的需求。
锂硫电池是人们日常生活中一种具有广泛应用前景的能源存储装置。它的反应机理与锂离子电池不同,是基于金属锂与硫的化学反应,因此具有高的理论比容量(1675mAhg -1)、高的理论能量密度、硫的丰富性以及环境友好性等特点。但是与其它锂电池一样,锂硫电池的安全性如自燃现象,始终阻碍着动力电池的应用前景。产生自燃现象的根本原因是电动电池堆局部过热引起的,而电池电极内部的微观的不均匀反应是局部过热的罪魁祸首。利用光子晶体的三维有序互连多孔结构作为活性材料的载体,可以有效解决微观反应不均匀的问题。而传统光子晶体的面积较小,厚度也很薄,限制了活性材料的面密度,从而无法实现锂硫电池的高面容量密度和面能量密度。
为了达到此技术要求,需要制备大面积、无裂纹、厚膜光子晶体,其难点在于当面积和厚度增加时,干燥过程中会产生表面产生大量的应力,使得裂纹难以避免。目前蛋白石结构光子晶体的制备主要采用自组装法、喷涂法、旋涂法和抽滤法,但是上述现有技术会存在以下缺陷:
1)一般的自组装法、喷涂法、旋涂法选用表面平滑的基底(如玻璃,金属箔等),中国专利CN102691106A公开了一种无裂纹光子晶体的制备方法,采用喷涂、旋涂或喷墨打印的方法在柔性基材表面自组装蛋白石结构光子晶体,但此类方法所得到的光子晶体厚度通常不超过20μm;
2)喷涂法用于制备大面积光子晶体,但由于干燥过程较快,导致其制备的光子晶体有序性较差,且干燥后由于表面张力会产生较明显的裂纹;
3)抽滤法可用于制备厚度达500μm的光子晶体,中国专利CN100410301C公开了一种用抽滤/浸渍法制备有序多孔导电聚合物的方法,以0.22μm的滤膜为基底,通过真空抽滤使单分散微球形成胶体晶体。与喷涂法相同,存在干燥后产生裂纹的问题,且抽滤法要求基材的孔径要小于微球的粒径,限制了其进一步应用。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,解决了现有技术中面积较小、厚度不可控的技术问题。
本发明的目的可以通过以下技术方案来实现:
基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,包括:
单分散微球悬浊液的配制:将单分散微球加入溶剂,分散配成悬浊液;
基材的预处理:将基材分别在乙醇、丙酮和异丙醇中超声清洗,除去表面的杂质及有机物后干燥;
微球光子晶体的制备:将基材置于配好的悬浊液中,置于烘箱中,在一定温度下自组装,直至悬浊液的溶剂完全挥发,得到微球光子晶体;
碳光子晶体的制备:
将生长有微球光子晶体的基材浸泡至金属有机框架物质的前驱体溶液中,随后移至烘箱中控温反应,在微球光子晶体的间隙中生成金属有机框架物质;
将基材移至管式炉,惰性气氛中高温热处理后,自然冷却至室温;
取出基材,将其浸泡至氢氟酸溶液中,再取出清洗干燥;
硫正极的制备:
将基材浸泡至单质硫的有机溶液中,充分吸收后取出干燥;
将基材密封并适温处理,自然冷却干燥,得到硫正极;
锂硫电池的制备:以硫正极为工作电极,锂片为对电极,聚丙烯为隔膜,组装成电池。
所述单分散微球的粒径为100nm-1000nm,悬浊液的浓度为0.1-10wt%。
所述基材为带有碳纤维纸、碳纤维布、金属丝网或泡沫镍,所述金属丝网为不锈钢网、镍网、钛网、铜网、钨网、钼网、锆网、铅网或铂金网。现有的光子晶体都是在平滑的表面上进行制备,这与本发明存在十分显著的区别,本发明中采用的基材为网络状结构或非平滑的表面结构。与在平滑的表面制备光子晶体相比,本发明具有以下几点优势。第一,本发明扩充了传统制备光子晶体对基材的选择范围,从平滑的实心的基材向非平滑的网格状的方向进行了拓展;第二,本发明简便了对基材的处理,传统的基材如玻璃等需要酸处理等多道工序前期处理,本发明只需要水和醇类的简单处理即可;第三,在平滑的表面制备光子晶体,无论是面积和厚度都受到了限制,本发明可以得到我们想要的任何面积和厚度,对实际应用提供了更多选择;第四,本发明解决了传统的在平滑基材上制备得到的光子晶体所存在的大面积裂纹的问题,将光子晶体均匀分布限制在基材网孔中,所得到的光子晶体平整自组装性程度高且无裂纹,改善了后期反蛋白石结构的完整性和连接性。
所述自组装的温度为35-65℃。
所述微球光子晶体的厚度为10μm-650μm,面积为0.1cm 2-400cm 2
所述金属有机框架物质的前驱体溶液中,采用的金属盐为硝酸锌、硝酸镍、硝酸铁、硝酸钴或硝酸锰,有机配体为2-甲基咪唑,溶剂为甲醇、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺的一种或几种,金属盐的溶度为0.1M-10M,有机配体的溶度为0.1M-20M。
控温反应的反应温度为50℃-90℃,反应时间为1h-12h;高温热处理的温度控制在600℃-1200℃,时间控制在3h-12h。
所述氢氟酸溶液的浓度为0.5wt%-30wt%。
所述单质硫的有机溶液中,采用的溶剂为甲苯或者二硫化碳,单质硫的浓度为1-10wt%。
适温处理的温度为120℃-160℃,时间为1h-24h。
本发明通过改变基材的厚度和悬浊液的浓度,实现了电极厚度从10-650um的厚膜可控,同时通过改变基材的面积,实现了电极面积从0.1-400cm 2的大面积制备。此外通过调节硫的有机溶液的浓度,实现了从1-15mg cm -2的硫高负 载,从而实现了锂硫电池的高面容量密度和面能量密度。
与现有技术相比,本发明所公开的技术方案工艺简单,成本低廉,适用范围广,制备得到的电池电极可实现大面积、厚膜可控和高面载硫量的特点。
附图说明
图1为实施例1制备得到的光子晶体及组装的锂硫电池的图片;
图2为实施例1制备得到的光子晶体及组装的锂硫电池的图片;
图3为实施例1制备得到的光子晶体及组装的锂硫电池的图片。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,包括以下步骤:
(1)单分散微球悬浊液的配制
(1.1)将粒径为100nm-1000nm的单分散微球置于烧杯中,加入溶剂,超声分散,配成一定浓度的悬浊液,根据不同的基材,悬浊液的浓度为0.1-10%;
(2)基材的预处理
(2.1)将基材分别在乙醇、丙酮和异丙醇中超声清洗,除去表面的杂质及有机物后置于烘箱中干燥以备后续使用,可以使用的基材为带有碳纤维纸,碳纤维布,金属丝网或泡沫镍,使用金属网的话,可以采用不锈钢网、镍网、钛网、铜网、钨网、钼网、锆网、铅网或铂金网;
(3)微球光子晶体的制备
(3.1)将基材置于配好的悬浊液中,置于烘箱中,在35-65℃温度下自组装,直至悬浊液的溶剂完全挥发,即得到厚度为10μm-650μm,面积为0.1cm 2-400cm 2的微球光子晶体;
(4)碳光子晶体的制备
(4.1)将生长有微球光子晶体的基材浸泡至金属有机框架物质的前驱体溶 液中,金属有机框架的前驱液中,金属盐为硝酸锌、硝酸镍、硝酸铁、硝酸钴或硝酸锰,有机配体为2-甲基咪唑,溶剂为甲醇、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺的一种或几种,金属盐的溶度为0.1M-10M,有机配体的溶度为0.1M-20M,随后移至烘箱中50℃-90℃下反应1h-12h,在微球光子晶体的间隙中生成金属有机框架物质。
(4.2)将基材移至管式炉,惰性气氛中600℃-1200℃高温热处理3h-12h,自然冷却至室温;
(4.3)取出基材,将其浸泡至0.5wt%-30wt%氢氟酸溶液中一定时间,取出清洗干燥;
(5)硫正极的制备
(5.1)将基材浸泡至单质硫的有机溶液中,使用的溶剂为甲苯或者二硫化碳,单质硫的有机溶液的浓度为1-10wt%,,充分吸收后取出干燥;
(5.2)将基材密封至小玻璃瓶中,移至管式炉,120℃-160℃适温处理1h-24h,自然冷却干燥;
(6)锂硫电池的制备
(6.1)以硫正极为工作电极,锂片为对电极,聚丙烯为隔膜,组装成电池。
以下是更加详细的实施案例,通过以下实施案例进一步说明本发明的技术方案以及所能够获得的技术效果。
实施例1
将自组装二氧化硅蛋白石模板要用的小玻璃瓶子用去离子水超声清洗20min,至少3遍,将碳纤维纸用去离子水、丙酮、异丙醇和酒精各超声清洗20min,均干燥备用。将浓度为2%、直径为200nm的二氧化硅微球酒精溶液滴入玻璃瓶中,滴满,同时倾斜放置清洗好的碳纤维纸。将玻璃瓶放入鼓风干燥箱中,温度保持为35℃,直至玻璃瓶中酒精溶液挥发完全,从而在碳纤维纸的大孔中自组装成光子晶体。配制金属框架有机物前驱液,将0.84g六水合硝酸锌,0.96g 2-甲基咪唑,25mL甲醇以及25mL N,N-二甲基甲酰胺混合搅拌10min。将前一步的碳纤维纸浸入金属框架有机物前驱液中1h,随后移到干燥箱中70℃反应6h,在碳纤维纸的大孔中形成二氧化硅和金属框架有机物的复合物。将碳纤维纸移到管式炉中惰性气氛中800℃热处理3h。取出,用20wt%氢氟酸浸泡 1天,去除二氧化硅模板,获得大面积、厚膜可控的织构光子晶体。将织构光子晶体放入浓度为1wt%的硫的甲苯溶液中浸泡20min,用加热搅拌器蒸干甲苯溶液,随后将织构光子晶体用玻璃瓶子密封起来,在氩气气氛中155℃热处理12h。随后在甲醇溶液中浸泡30秒,从而得到硫正极。以织构光子晶体硫正极为工作电极,锂片为对电极,组装成锂硫电池。
图1为本实施例以碳纤维纸作基材制备得到的光子晶体及组装的锂硫电池的图片,其中a为碳纤维纸复合氧化硅光子晶体,b为碳纤维纸复合碳光晶及硫组成的织构光子晶体硫正极。本实施例制备得到的织构光子晶体面积为16cm 2,厚度为230um,面载硫量为11mg cm -2。选取不同厚度的碳纤维纸基材,裁剪不同的面积,可以获得不同厚度和面积的织构光子晶体,再结合通过调节硫有机溶液的浓度,可以获得不同硫负载量的硫正极。
实施例2
将自组装二氧化硅蛋白石模板要用的小玻璃瓶子用去离子水超声清洗20min,至少3遍,将镍网用去离子水、丙酮、异丙醇和酒精各超声清洗20min,均干燥备用。将浓度为5%、直径为300nm的二氧化硅微球酒精溶液滴入玻璃瓶中,滴满,同时倾斜放置清洗好的镍网。将玻璃瓶放入鼓风干燥箱中,温度保持为35℃,直至玻璃瓶中酒精溶液挥发完全,从而在镍网的大孔中自组装成光子晶体。配制金属框架有机物前驱液,将0.42g六水合硝酸锌,0.48g 2-甲基咪唑,25mL甲醇以及25mL N,N-二甲基甲酰胺混合搅拌10min。将前一步的镍网浸入金属框架有机物前驱液中1h,随后移到干燥箱中90℃反应6h,在镍网的大孔中形成二氧化硅和金属框架有机物的复合物。将镍网移到管式炉中惰性气氛中900℃热处理3h。取出,用1wt%氢氟酸浸泡3天,去除二氧化硅模板,获得大面积、厚膜可控的织构光子晶体。将织构光子晶体放入浓度为2wt%的硫的甲苯溶液中浸泡20min,用加热搅拌器蒸干甲苯溶液,随后将织构光子晶体用玻璃瓶子密封起来,在氩气气氛中155℃热处理12h。随后在甲醇溶液中浸泡30秒,从而得到硫正极。以织构光子晶体硫正极为工作电极,锂片为对电极,组装成锂硫电池。
图2为本实施例以镍网作基材制备得到的光子晶体及组装的锂硫电池的图片,其中a为镍网复合氧化硅光子晶体;b为镍网复合碳光晶及硫组成的织构 光子晶体硫正极。本实施例制备得到的织构光子晶体面积为16cm 2,厚度为180um,面载硫量为8mg cm -2。选取不同厚度的镍网基材,裁剪不同的面积,可以获得不同厚度和面积的织构光子晶体,再结合通过调节硫有机溶液的浓度,可以获得不同硫负载量的硫正极。
实施例3
将自组装二氧化硅蛋白石模板要用的小玻璃瓶子用去离子水超声清洗20min,至少3遍,将钨网用去离子水、丙酮、异丙醇和酒精各超声清洗20min,均干燥备用。将浓度为8%、直径为250nm的二氧化硅微球酒精溶液滴入玻璃瓶中,滴满,同时倾斜放置清洗好的钨网。将玻璃瓶放入鼓风干燥箱中,温度保持为35℃,直至玻璃瓶中酒精溶液挥发完全,从而在钨网的大孔中自组装成光子晶体。配制金属框架有机物前驱液,将0.168g六水合硝酸锌,0.192g 2-甲基咪唑,25mL甲醇以及25mL N,N-二甲基甲酰胺混合搅拌10min。将前一步的钨网浸入金属框架有机物前驱液中1h,随后移到干燥箱中80℃反应6h,在钨网的大孔中形成二氧化硅和金属框架有机物的复合物。将钨网移到管式炉中惰性气氛中900℃热处理3h。取出,用1wt%氢氟酸浸泡3天,去除二氧化硅模板,获得大面积、厚膜可控的织构光子晶体。将织构光子晶体放入浓度为5wt%的硫的二硫化碳溶液中浸泡10min,用加热搅拌器蒸干二硫化碳溶液,随后将织构光子晶体用玻璃瓶子密封起来,在氩气气氛中155℃热处理12h。随后在甲醇溶液中浸泡30秒,从而得到硫正极。以织构光子晶体硫正极为工作电极,锂片为对电极,组装成锂硫电池。
图3为本实施例以钨网作基材制备得到的光子晶体及组装的锂硫电池的图片,其中a为钨网复合氧化硅光子晶体;b为钨网复合碳光晶及硫组成的织构光子晶体硫正极。本实施例制备得到的织构光子晶体织构光子晶体面积为16cm 2,厚度为120um,面载硫量为5mg cm -2。选取不同厚度的钨网基材,裁剪不同的面积,可以获得不同厚度和面积的织构光子晶体,再结合通过调节硫有机溶液的浓度,可以获得不同硫负载量的硫正极。
实施例4
将自组装二氧化硅蛋白石模板要用的小玻璃瓶子用去离子水超声清洗20min,至少3遍,将碳纤维布用去离子水、丙酮、异丙醇和酒精各超声清洗 20min,均干燥备用。将浓度为8%、直径为100nm的二氧化硅微球酒精溶液滴入玻璃瓶中,滴满,同时倾斜放置清洗好的碳纤维布。将玻璃瓶放入鼓风干燥箱中,温度保持为40℃,直至玻璃瓶中酒精溶液挥发完全,从而在碳纤维布的大孔中自组装成光子晶体。配制金属框架有机物前驱液,将硝酸镍,2-甲基咪唑,甲醇混合搅拌10min,硝酸镍的溶度为0.1M,2-甲基咪唑的溶度为5M。将前一步的碳纤维布浸入金属框架有机物前驱液中1h,随后移到干燥箱中50℃反应12h,在碳纤维布的大孔中形成二氧化硅和金属框架有机物的复合物。将碳纤维布移到管式炉中惰性气氛中600℃热处理12h。取出,用0.5wt%氢氟酸浸泡3天,去除二氧化硅模板,获得大面积、厚膜可控的织构光子晶体。将织构光子晶体放入浓度为1wt%的硫的甲苯溶液中浸泡10min,用加热搅拌器蒸干甲苯溶液,随后将织构光子晶体用玻璃瓶子密封起来,在氩气气氛中120℃热处理24h。随后在甲醇溶液中浸泡30秒,从而得到硫正极。以织构光子晶体硫正极为工作电极,锂片为对电极,组装成锂硫电池。
实施例5
将自组装二氧化硅蛋白石模板要用的小玻璃瓶子用去离子水超声清洗20min,至少3遍,将锆网用去离子水、丙酮、异丙醇和酒精各超声清洗20min,均干燥备用。将浓度为0.1%、直径为500nm的二氧化硅微球酒精溶液滴入玻璃瓶中,滴满,同时倾斜放置清洗好的锆网。将玻璃瓶放入鼓风干燥箱中,温度保持为35℃,直至玻璃瓶中酒精溶液挥发完全,从而在锆网的大孔中自组装成光子晶体。配制金属框架有机物前驱液,将硝酸铁,2-甲基咪唑,N,N-二甲基乙酰胺混合搅拌10min,硝酸铁的溶度为10M,2-甲基咪唑的溶度为0.1M。将前一步的锆网浸入金属框架有机物前驱液中1h,随后移到干燥箱中50℃反应12h,在锆网的大孔中形成二氧化硅和金属框架有机物的复合物。将锆网移到管式炉中惰性气氛中1000℃热处理4h。取出,用15wt%氢氟酸浸泡2天,去除二氧化硅模板,获得大面积、厚膜可控的织构光子晶体。将织构光子晶体放入浓度为5wt%的硫的甲苯溶液中浸泡10min,用加热搅拌器蒸干甲苯溶液,随后将织构光子晶体用玻璃瓶子密封起来,在氩气气氛中160℃热处理1h。随后在甲醇溶液中浸泡30秒,从而得到硫正极。以织构光子晶体硫正极为工作电极,锂片为对电极,组装成锂硫电池。
实施例6
将自组装二氧化硅蛋白石模板要用的小玻璃瓶子用去离子水超声清洗10min,至少2遍,将铂金网用去离子水、丙酮、异丙醇和酒精各超声清洗10min,均干燥备用。将浓度为10%、直径为1000nm的二氧化硅微球酒精溶液滴入玻璃瓶中,滴满,同时倾斜放置清洗好的铂金网。将玻璃瓶放入鼓风干燥箱中,温度保持为65℃,直至玻璃瓶中酒精溶液挥发完全,从而在铂金网的大孔中自组装成光子晶体。配制金属框架有机物前驱液,将硝酸锰,2-甲基咪唑,N,N-二甲基乙酰胺混合搅拌10min,硝酸锰的溶度为10M,2-甲基咪唑溶度为0.1M。将前一步的铂金网浸入金属框架有机物前驱液中1h,随后移到干燥箱中90℃反应1h,在铂金网的大孔中形成二氧化硅和金属框架有机物的复合物。将铂金网移到管式炉中惰性气氛中1200℃热处理3h。取出,用30wt%氢氟酸浸泡1天,去除二氧化硅模板,获得大面积、厚膜可控的织构光子晶体。将织构光子晶体放入浓度为10wt%的硫的甲苯溶液中浸泡10min,用加热搅拌器蒸干甲苯溶液,随后将织构光子晶体用玻璃瓶子密封起来,在氩气气氛中140℃热处理8h。随后在甲醇溶液中浸泡30秒,从而得到硫正极。以织构光子晶体硫正极为工作电极,锂片为对电极,组装成锂硫电池。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,其特征在于,该方法包括:
    单分散微球悬浊液的配制:将单分散微球加入溶剂,分散配成悬浊液;
    基材的预处理:将基材分别在乙醇、丙酮和异丙醇中超声清洗,除去表面的杂质及有机物后干燥;
    微球光子晶体的制备:将基材置于配好的悬浊液中,置于烘箱中,在一定温度下自组装,直至悬浊液的溶剂完全挥发,得到微球光子晶体;
    碳光子晶体的制备:
    将生长有微球光子晶体的基材浸泡至金属有机框架物质的前驱体溶液中,随后移至烘箱中控温反应,在微球光子晶体的间隙中生成金属有机框架物质;
    将基材移至管式炉,惰性气氛中高温热处理后,自然冷却至室温;
    取出基材,将其浸泡至氢氟酸溶液中,再取出清洗干燥;
    硫正极的制备:
    将基材浸泡至单质硫的有机溶液中,充分吸收后取出干燥;
    将基材密封并适温处理,自然冷却干燥,得到硫正极;
    锂硫电池的制备:以硫正极为工作电极,锂片为对电极,聚丙烯为隔膜,组装成电池。
  2. 根据权利要求1所述的基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,其特征在于,所述单分散微球的粒径为100nm-1000nm,悬浊液的浓度为0.1-10wt%。
  3. 根据权利要求1所述的基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,其特征在于,所述基材为带有碳纤维纸、碳纤维布、金属丝网或泡沫镍,所述金属丝网为不锈钢网、镍网、钛网、铜网、钨网、钼网、锆网、铅网或铂金网。
  4. 根据权利要求1所述的基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,其特征在于,所述自组装的温度为35-65℃。
  5. 根据权利要求1所述的基于大面积厚膜可控织构光子晶体锂硫电池的制 备方法,其特征在于,所述微球光子晶体的厚度为10μm-650μm,面积为0.1cm 2-400cm 2
  6. 根据权利要求1所述的基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,其特征在于,所述金属有机框架物质的前驱体溶液中,采用的金属盐为硝酸锌、硝酸镍、硝酸铁、硝酸钴或硝酸锰,有机配体为2-甲基咪唑,溶剂为甲醇、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺的一种或几种,金属盐的溶度为0.1M-10M,有机配体的溶度为0.1M-20M。
  7. 根据权利要求1所述的基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,其特征在于,控温反应的反应温度为50℃-90℃,反应时间为1h-12h;高温热处理的温度控制在600℃-1200℃,时间控制在3h-12h。
  8. 根据权利要求1所述的基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,其特征在于,所述氢氟酸溶液的浓度为0.5wt%-30wt%。
  9. 根据权利要求1所述的基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,其特征在于,所述单质硫的有机溶液中,采用的溶剂为甲苯或者二硫化碳,单质硫的浓度为1-10wt%。
  10. 根据权利要求1所述的基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,其特征在于,适温处理的温度为120℃-160℃,时间为1h-24h。
PCT/CN2019/124964 2019-12-09 2019-12-13 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法 WO2021114196A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/761,698 US12142752B2 (en) 2019-12-09 2019-12-13 Preparation method for lithium-sulfur battery based on large-area thick-film controllable textured photonic crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911250675.0 2019-12-09
CN201911250675.0A CN111082147B (zh) 2019-12-09 2019-12-09 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法

Publications (1)

Publication Number Publication Date
WO2021114196A1 true WO2021114196A1 (zh) 2021-06-17

Family

ID=70313365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124964 WO2021114196A1 (zh) 2019-12-09 2019-12-13 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法

Country Status (2)

Country Link
CN (1) CN111082147B (zh)
WO (1) WO2021114196A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113998703A (zh) * 2021-10-29 2022-02-01 华中科技大学 一种分级辐射超大孔二氧化硅纳米球及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996595A (zh) * 2020-08-12 2020-11-27 河北师范大学 一种制备无裂纹反蛋白石结构光子晶体的方法
CN113764741B (zh) * 2021-07-29 2023-07-25 华东师范大学 一种柔性纸基电池及其制备方法
CN114975878B (zh) * 2022-05-09 2024-03-19 上海交通大学 一种流延法制备大面积厚度可控有序多孔电极的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030106487A1 (en) * 2001-12-10 2003-06-12 Wen-Chiang Huang Photonic crystals and method for producing same
CN108461706A (zh) * 2018-02-26 2018-08-28 上海交通大学 基于金属有序多孔结构的光子晶体锂硫电池的制备方法
CN110316715A (zh) * 2019-06-28 2019-10-11 上海交通大学 一种原位制备金属衍生碳基光子晶体的方法
CN110407192A (zh) * 2019-08-19 2019-11-05 上海交通大学 利用金属有机框架制备三维有序分级多孔碳光子晶体方法
CN110518247A (zh) * 2019-08-19 2019-11-29 上海交通大学 基于碳光子晶体金属镀膜结构的锂硫电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108057880B (zh) * 2017-11-28 2021-06-18 上海交通大学 一种电沉积制备金属光子晶体的方法
CN110304636A (zh) * 2019-06-28 2019-10-08 上海交通大学 一种真空抽滤制备光子晶体厚膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030106487A1 (en) * 2001-12-10 2003-06-12 Wen-Chiang Huang Photonic crystals and method for producing same
CN108461706A (zh) * 2018-02-26 2018-08-28 上海交通大学 基于金属有序多孔结构的光子晶体锂硫电池的制备方法
CN110316715A (zh) * 2019-06-28 2019-10-11 上海交通大学 一种原位制备金属衍生碳基光子晶体的方法
CN110407192A (zh) * 2019-08-19 2019-11-05 上海交通大学 利用金属有机框架制备三维有序分级多孔碳光子晶体方法
CN110518247A (zh) * 2019-08-19 2019-11-29 上海交通大学 基于碳光子晶体金属镀膜结构的锂硫电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113998703A (zh) * 2021-10-29 2022-02-01 华中科技大学 一种分级辐射超大孔二氧化硅纳米球及其制备方法和应用

Also Published As

Publication number Publication date
CN111082147A (zh) 2020-04-28
US20220336789A1 (en) 2022-10-20
CN111082147B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2021114196A1 (zh) 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法
Wang et al. Application of carbon materials in aqueous zinc ion energy storage devices
CN109713224B (zh) 复合锂金属负极及制备方法、锂离子电池
Jiang et al. MOFs containing solid‐state electrolytes for batteries
Yu et al. Insight on the double‐edged sword role of water molecules in the anode of aqueous zinc‐ion batteries
Kim et al. Ni–NiO core–shell inverse opal electrodes for supercapacitors
Ying et al. Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries
CN110518247B (zh) 基于碳光子晶体金属镀膜结构的锂硫电池及其制备方法
US9293772B2 (en) Gradient porous electrode architectures for rechargeable metal-air batteries
CN108063219B (zh) 一种高效液态碱金属合金电极及其制备方法和应用
JP2003132890A (ja) リチウム硫黄二次電池用正極活物質及びその製造方法
CN104538596B (zh) 一种碳材料/共价有机二维网格复合电极材料及其制备方法与应用
AU2007213512B2 (en) An electrode for an electrochemical cell comprising mesoporous nickel hydroxide
CN112670543B (zh) 基于中空结构mof的复合固态电解质膜及其制备方法与应用
CN110316715B (zh) 一种原位制备金属衍生碳基光子晶体的方法
CN113517144B (zh) 一种碳纤维毡基柔性全固态非对称超级电容器及制备方法
Wu et al. Enhanced electrochemical performance of nickel hydroxide electrode with monolayer hollow spheres composed of nanoflakes
KR100913308B1 (ko) 구형 구조체를 적용한 염료감응형 태양전지
Hu et al. Dendrite‐Free Zinc Anodes Enabled by Exploring Polar‐Face‐Rich 2D ZnO Interfacial Layers for Rechargeable Zn‐Ion Batteries
Gang et al. Highly (002)-oriented ZnO in ZnO-NC microflakes coating layer for stable zinc anode in zinc-air batteries
CN106571460A (zh) 一种无粘结剂、自支撑结构的硒正极材料及其制备方法
CN110048110A (zh) 一种石墨烯复合电极材料的制备方法及其应用
CN113903910A (zh) 一种碳布/四氧化三钴纳米线复合材料及其制备方法和应用
Liang et al. Preparation of anode by MOF pyrolysis enabled long-life rechargeable zinc nickel batteries
US12142752B2 (en) Preparation method for lithium-sulfur battery based on large-area thick-film controllable textured photonic crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955452

Country of ref document: EP

Kind code of ref document: A1