WO2021112131A1 - 状態判定方法、状態判定装置、状態判定システム、状態判定プログラム及び記録媒体 - Google Patents

状態判定方法、状態判定装置、状態判定システム、状態判定プログラム及び記録媒体 Download PDF

Info

Publication number
WO2021112131A1
WO2021112131A1 PCT/JP2020/044891 JP2020044891W WO2021112131A1 WO 2021112131 A1 WO2021112131 A1 WO 2021112131A1 JP 2020044891 W JP2020044891 W JP 2020044891W WO 2021112131 A1 WO2021112131 A1 WO 2021112131A1
Authority
WO
WIPO (PCT)
Prior art keywords
state determination
state
envelope
determination device
electric signal
Prior art date
Application number
PCT/JP2020/044891
Other languages
English (en)
French (fr)
Inventor
康之 白坂
哲裕 加藤
泰衡 趙
裕太 葛山
良輔 ▲高▼橋
優李 廣野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020227018001A priority Critical patent/KR20220111261A/ko
Priority to CN202080083284.9A priority patent/CN114760917A/zh
Priority to EP20895329.9A priority patent/EP4070724A4/en
Priority to US17/781,835 priority patent/US20230000394A1/en
Priority to JP2021501057A priority patent/JPWO2021112131A1/ja
Publication of WO2021112131A1 publication Critical patent/WO2021112131A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • A61B5/1115Monitoring leaving of a patient support, e.g. a bed or a wheelchair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms

Definitions

  • the present invention is a state determination method for determining the state of a living body, a state determination device to which such a method is applied, a state determination system including such a state determination device, and a state determination for realizing such a state determination device.
  • the present invention relates to a program and a recording medium on which such a state determination program is recorded.
  • Patent Document 1 proposes an excellent biological detection system, but detects what the condition of the care recipient on the bed is for the purpose of further improving the quality of nursing and long-term care. Is required.
  • the present invention has been made in view of such circumstances, and a main object of the present invention is to provide a state determination method capable of determining the state of a living body.
  • Another object of the present invention is to provide a state determination device to which the state determination method according to the present invention is applied.
  • Another object of the present invention is to provide a state determination system including the state determination device according to the present invention.
  • Another object of the present invention is to provide a state determination program for realizing the state determination device according to the present invention.
  • Another object of the present invention is to provide a recording medium in which a state determination program for realizing the state determination device according to the present invention is recorded.
  • the state determination method described in the present application rectifies an electric signal based on vibration generated from a living body, derives an envelope from the rectified electric signal, and determines the state of the living body based on the derived envelope. It is characterized by making a judgment.
  • the determination discloses a state determination method characterized in that the body position is determined as the state of the living body.
  • the determination is made to determine the body position of a person who is a living body by comparing the value indicated by the derived envelope with a predetermined reference value.
  • a state determination method characterized in that the body position of the person is at least a lying position or a sitting position.
  • the predetermined reference value is a bed entry determination reference value for determining a person's entry motion and a rise determination reference value for determining a person's awakening motion.
  • the state determination method is disclosed, wherein the floor entry determination reference value is set to a value larger than the rise determination reference value.
  • the determination is determined to be absent when the value indicated by the envelope is below the floor entry determination reference value and the rising determination reference value for a predetermined time or longer.
  • the state determination method determines that the patient is absent, if the value indicated by the envelope exceeds the rise determination reference value and the bed entry determination reference value, it is determined that the bed entry operation has been performed. Disclose the state determination method to be performed.
  • the value indicated by the envelope exceeds the rise determination reference value and falls below the bed entry determination reference value. In this case, it is determined that the person's body position is in the lying position, and after determining that the person is in the lying position, if the value indicated by the envelope is lower than the above-mentioned rising determination reference value, it is determined that the person's body position is in the sitting position.
  • a state determination method characterized by the above is disclosed.
  • the present application discloses a state determination method in which the envelope is derived by passing an electric signal in a predetermined frequency band in the state determination method.
  • the present application discloses a state determination method in which the envelope is derived by taking a moving average of electric signals in the state determination method.
  • an A / D conversion unit that converts an electric signal acquired as an analog signal based on vibration into a digital electric signal is used, and the rectification uses the electric signal converted into the digital electric signal.
  • a state determination method characterized by rectifying is disclosed.
  • the state determination device described in the present application is a state determination device including a computer including a control unit and a recording unit, and the recording unit is rectified with a rectifying means for rectifying an electric signal based on vibration generated from a living body. It is characterized in that a program for causing the computer to execute an envelope detection means for deriving an envelope from an electric signal and a determination means for determining a state of a living body based on the derived envelope are recorded. ..
  • the determination means is characterized in that it determines the body position of the living body as the state of the living body.
  • the determination means determines and determines the body position of a person who is a living body by comparing the value indicated by the envelope derived by the envelope detection means with a predetermined reference value.
  • the resulting person's body position is characterized by including at least a lying or sitting position.
  • the predetermined reference value is a bed entry determination reference value for determining a person's entry motion and a rise determination reference value for determining a person's awakening motion.
  • the floor entry determination reference value is set to a value larger than the rise determination reference value.
  • the determination means determines that the envelope is absent when the value indicated by the envelope is below the floor entry determination reference value and the rise determination reference value for a predetermined time or longer. However, after determining that the person is absent, if the value indicated by the envelope exceeds the rising determination reference value and the bed entry standard, it is determined that the bed entry operation has been performed.
  • the determination means determines that the bed entry operation has been performed, and then the value indicated by the envelope exceeds the rise determination reference value and falls below the bed entry determination reference value. In this case, it is determined that the person's body position is in the lying position, and after determining that the person is in the lying position, if the value indicated by the envelope is lower than the above-mentioned rising determination reference value, it is determined that the person's body position is in the sitting position. It is characterized by that.
  • the envelope detection means is characterized in that the envelope is derived by passing an electric signal in a predetermined frequency band.
  • the envelope detection means is characterized in that the envelope is derived by taking a moving average of electric signals.
  • the state determination device described in the present application includes an A / D conversion means for converting an electric signal acquired as an analog signal based on vibration into a digital electric signal, and the rectifying means converts the electric signal converted into a digital electric signal. It is characterized by rectifying.
  • the state determination system described in the present application includes a vibration detection device having a detection unit for detecting vibration and an output unit for outputting an electric signal based on the detected vibration, and the state determination device. It is characterized in that the state of a living body is determined based on an electric signal output from the vibration detection device.
  • the detection unit of the vibration detection device is characterized in that it has a sheet shape.
  • the state determination program described in the present application is a state determination program for causing a computer that has acquired an electric signal based on the detected vibration to determine the state of a living body, and a step of rectifying the electric signal based on the vibration by the computer. It is characterized in that a step of deriving an envelope from a rectified electric signal and a step of determining the state of a living body based on the derived envelope are executed.
  • the recording medium described in the present application is a recording medium in which a state determination program for causing a computer that has acquired an electric signal based on the detected vibration to determine the state of a living body is recorded, and the electric signal based on the vibration is recorded in the computer. It is characterized by recording a state determination program that executes a step of rectifying a living body, a step of deriving an envelope from a rectified electric signal, and a step of determining the state of a living body based on the derived envelope. To do.
  • the state determination when it is determined that the floor entry determination reference value or the rising determination reference value is exceeded or decreased, the state determination is characterized in that the state continues for a predetermined time or longer. Disclose the device.
  • the present application discloses a state determination device that amplifies an electric signal based on vibration and adjusts the amplification factor according to a living body for determining a state or an environment for determining a state.
  • the present application discloses a state determination device characterized in that the bed entry determination reference value or the rise determination reference value is changed for a predetermined period according to the state of a living body.
  • the present application discloses a state determination system including a detection device for detecting physical information, wherein the state determination device determines the state of a living body in combination with the physical information detected by the detection device. ..
  • the state determination method, the state determination device, the state determination system, and the state determination program according to the present invention determine the state of the living body from the envelope of the electric signal based on the detected vibration. Thereby, in the present invention, for example, it is possible to determine the state of a living body such as a person requiring long-term care at a facility, and the like has an excellent effect.
  • FIG. 1 is a schematic view schematically showing a configuration example of the state determination system described in the present application.
  • the state determination system described in the present application is installed in a facility such as a hospital, a nursing home, or a long-term care facility.
  • a facility such as a hospital, a nursing home, or a long-term care facility.
  • rooms such as a sickroom and a long-term care room for patients, residents and other long-term care recipients, and beds used by the long-term care recipients are arranged in the rooms.
  • a waiting area such as a nurse station is set up in the facility where staff such as nurses, caregivers, and doctors who provide nursing care for persons requiring long-term care and care such as long-term care are waiting.
  • a vibration detection device 1 is attached to the bed used by the person requiring long-term care.
  • the vibration detection device 1 includes a vibration detection unit 10 using a sheet-shaped vibration sensor, and amplifies and outputs an electric signal based on the detected vibration.
  • the vibration detection unit 10 of the vibration detection device 1 is placed on or under a mat on a bed used by a person requiring long-term care, for example. Sheets or the like are laid on the mat and the vibration detection unit 10 as needed.
  • FIG. 1 illustrates a situation in which a person requiring long-term care on a mat and a vibration detection unit 10 gets up from a lying position and becomes a sitting position.
  • the state of lying down means a state in which the person requiring long-term care is lying on the bed, and is in a supine position, a lateral position, or a prone position.
  • the sitting position refers to a state in which the person requiring long-term care raises his / her upper body on the bed.
  • a state determination device 2 is connected to the vibration detection device 1, and an electric signal output from the vibration detection device 1 is input to the state determination device 2 via a communication line. Further, as a device capable of communicating with the state determination device 2, various communication devices 3 such as a nurse call receiving device possessed by a nurse, a monitor installed at a nurse station, and a mobile phone held by an outside party are used. There is. The status determination device 2 and the communication device 3 are connected so as to be communicable by a communication network NW such as a wireless LAN (Local Area Network), a wired LAN, a WAN (Wide Area Network), and a dedicated communication line.
  • NW such as a wireless LAN (Local Area Network), a wired LAN, a WAN (Wide Area Network), and a dedicated communication line.
  • FIG. 2 is a block diagram showing a configuration example of various devices included in the state determination system described in the present application.
  • the state determination system includes a vibration detection device 1, a state determination device 2 connected to the vibration detection device 1, a communication device 3 capable of communicating with the state determination device 2, a physical information detection device 4 connectable to the state determination device 2, and the like. It is equipped with various devices.
  • the vibration detection device 1 includes various configurations such as an amplitude amplification unit 11 and an output unit 12 in addition to the above-mentioned vibration detection unit 10 using a sheet-shaped vibration sensor.
  • the vibration detection unit 10 detects the vibration of a living body such as a person requiring long-term care, converts the detected vibration into an analog electric signal, and outputs the detected vibration to the amplitude amplification unit 11.
  • the amplitude amplification unit 11 is a signal amplification amplifier that amplifies the voltage of the electric signal, amplifies the amplitude of the voltage of the analog electric signal input from the vibration detection unit 10, and outputs the amplitude to the output unit 12.
  • the output unit 12 outputs the analog electric signal amplified by the amplitude amplification unit 11 to the state determination device 2 via the connection line.
  • the state determination device 2 is a device using various computers such as a signal processing computer and a personal computer, and is a control unit 20, an input unit 21, an A / D conversion unit 22, a recording unit 23, a storage unit 24, and an operation unit 25. , Output unit 26, communication unit 27, auxiliary storage unit 28, and the like.
  • the control unit 20 is a processor such as a CPU (Central Processing Unit) that includes various circuits such as an information processing circuit, a time measuring circuit, and a register circuit, and executes processing for controlling each part in the device.
  • a processor such as a CPU (Central Processing Unit) that includes various circuits such as an information processing circuit, a time measuring circuit, and a register circuit, and executes processing for controlling each part in the device.
  • CPU Central Processing Unit
  • the input unit 21 is an interface device such as various adapters and control circuits that accept the input of analog electric signals transmitted from the vibration detection device 1 via the connection line.
  • the A / D conversion unit 22 is a converter that converts an analog electric signal that the input unit 21 has received an input into a digital electric signal.
  • the recording unit 23 is a circuit configured by using a hard disk, a RAID (Redundant Arrays of Inexpensive Disks), a non-volatile memory such as a flash memory, and a volatile memory such as various RAMs (Random Access Memory), and can store various information. I'm recording.
  • the recording unit 23 records programs such as a basic program (OS: Operating System) and an application program (application program) that operates on the basic program.
  • As the application program various programs such as the state determination program 230 for realizing the state determination device 2 are recorded.
  • the recording unit 23 records various data such as master data such as various reference values used in the state determination program 230 and actual data for recording the processing history.
  • the storage unit 24 is a circuit configured by using a volatile memory, and temporarily stores data generated when various programs are executed. Although the recording unit 23 and the storage unit 24 are shown as different circuits for convenience, they may be configured by one circuit, or their functions may be complemented with each other.
  • the operation unit 25 is an operation device such as a touch panel and a push button, and receives an input of an operation to the state determination device 2.
  • an operation device such as a keyboard and a mouse may be used as the operation unit 25.
  • the output unit 26 is an output device such as a liquid crystal display or a speaker.
  • the operation unit 25 and the output unit 26 may be provided, for example, as a liquid crystal touch panel in which a thin plate-shaped liquid crystal display and a touch panel are laminated.
  • the communication unit 27 is an interface device such as an antenna, a LAN adapter, and a control circuit for wireless communication or wired communication with the communication device 3 via the communication network NW.
  • the auxiliary storage unit 28 is a drive, a slot, or the like that reads various programs and data from a portable recording medium REC such as a CD-ROM, a DVD-ROM, or a semiconductor memory in which various programs and data such as a state determination program 230 are recorded. It is an interface device.
  • a portable recording medium REC such as a CD-ROM, a DVD-ROM, or a semiconductor memory in which various programs and data such as a state determination program 230 are recorded. It is an interface device.
  • the computer having the various configurations illustrated above reads various programs such as the state determination program 230 recorded on the portable recording medium REC under the control of the control unit 20, and records them on the recording unit 23. Then, the computer reads various programs such as the state determination program 230 recorded in the recording unit 23, stores various information in the storage unit 24 as appropriate, and performs rectification processing, envelope detection processing, state determination processing, and determination results. By executing various procedures such as output processing, the state determination device 2 operates.
  • the communication device 3 includes a communication unit 30 that communicates with the state determination device 2 via the communication network NW, an output unit 31 that performs various outputs, and the like.
  • the output by the output unit 31 is processing such as light output, image display, sound output, ringing, and vibration.
  • the physical information detection device 4 is a device that detects physical information such as the heart rate, respiratory rate, and pulse of the care recipient, and is appropriately used as needed.
  • the vibration detection device 1 detects vibrations related to a living body such as a care recipient by the vibration detection unit 10, and converts the detected vibrations into analog electric signals. Further, the vibration detection device 1 amplifies the voltage of the analog electric signal based on the vibration by the amplitude amplification unit 11, and outputs the amplified analog electric signal to the state determination device 2 by the output unit 12.
  • FIG. 3 is a flowchart showing an example of processing of the state determination device 2 described in the present application.
  • the state determination device 2 receives the input of the analog electric signal from the vibration detection device 1 at the input unit 21, and performs the A / D conversion process of converting the received analog electric signal into a digital electric signal by the A / D conversion unit 22. (Step S1).
  • the received analog electric signal is sampled at a predetermined sampling interval such as 10 ms, and converted into a digital electric signal such as 16 bits.
  • the digital electric signal converted by the A / D conversion unit 22 in step S1 is, for example, 16-bit digital data.
  • the control unit 20 included in the state determination device 2 executes various programs such as the state determination program 230 to perform rectification processing, envelope detection processing, state determination processing, and determination result output for the digital electric signal which is digital data. Processing is performed by an algorithm that includes various procedures such as processing.
  • the control unit 20 performs a rectification process on the digital electric signal that has undergone the A / D conversion process (step S2).
  • the rectification process in step S2 is a process of converting to pulsating current by rectification processing such as half-wave rectification and full-wave rectification.
  • the control unit 20 performs an envelope detection process for deriving an envelope from the rectified digital electric signal with respect to the rectified digital electric signal (step S3).
  • the envelope detection process in step S3 is a process for smoothing the digital electric signal converted into pulsating current.
  • a process obtained by exemplifying any one or a combination of a moving average process, a BPF (band pass filter) process, and an LPF (low pass filter) process can be listed. it can.
  • the moving average process is a process of deriving an envelope by averaging the signal values of a set predetermined number of samplings.
  • the BPF process is a digital filter process that passes a digital electric signal of a specific frequency band and blocks a digital electric signal of a frequency band other than the passing frequency band, and is an FIR filter (finite impulse response filter) and an IIR filter (infinite impulse response filter). It is performed by a filter process such as an impulse response filter).
  • the LPF process is a digital filter process that passes a digital electric signal in a frequency band below a specific frequency and blocks a digital electric signal in a frequency band other than the frequency band to be passed, and is a filter process such as an FIR filter or an IIR filter. Will be done.
  • the control unit 20 performs a state determination process for determining the state of the living body based on the derived envelope (step S4).
  • the state determination process in step S4 is a process of determining the state of the living body by comparing the signal value indicated by the envelope derived by the envelope detection process with various reference values recorded in advance in the recording unit 23. Is. By comparing the signal value indicated by the envelope with various reference values, the presence or absence of a living person requiring long-term care, the state of body position, and the like are determined.
  • the posture determined as a state is a posture such as a lying position or a sitting position. That is, the state includes presence / absence, body position, and the like. In addition, the body position includes a lying position, a sitting position, and the like.
  • the control unit 20 that has determined the state of the living body performs a determination result output process that outputs the determination result (step S5).
  • the determination result output process in step S5 is a process of transmitting information indicating the determination result from the communication unit 27 to the communication device 3 via the communication network NW.
  • the communication device 3 receives the information indicating the determination result transmitted from the state determination device 2 via the communication network NW in the communication unit 30, and outputs the information indicating the received determination result from the output unit 31.
  • the output of the judgment result is the output of light from various communication devices 3 such as a nurse call receiver owned by a nurse, a monitor installed at a nurse station, and a mobile phone held by an outside party, image display, and voice. It is executed as a notification process for output, ringing, vibration, etc.
  • a nurse, a caregiver, a staff member such as a doctor, a family member, or the like who has confirmed the determination result output from the communication device 3 can take appropriate measures according to the condition of the target care recipient.
  • FIG. 4 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • FIG. 4 is a graph showing an outline of determination of the condition of the care recipient by the condition determination device 2.
  • the horizontal axis represents time
  • the vertical axis represents the signal value of the digital electrical signal after amplifying the voltage
  • the transition of the electrical signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • Sv1 shows the signal value after the A / D conversion process in step S1
  • Sv2 shows the signal value after the rectification process in step S2 and the envelope detection process in step S3.
  • Th1 in FIG. 4 is a rising determination reference value
  • Th2 is a bed entry determination reference value.
  • the rising determination reference value Th1 and the bed entry determination reference value Th2 are reference values recorded for determining the state with respect to the fluctuation of the signal value shown on the vertical axis.
  • the period Pa, the period Pb, the period Pc, the period Pd, and the period Pe shown on the horizontal axis in FIG. 4 indicate the periods according to the posture of the long-term care recipient.
  • FIG. 4 indicates the periods according to the posture of the long-term care recipient.
  • the period Pa is the period during which the long-term care recipient was absent from the bed
  • the period Pb is the period during which the long-term care recipient enters the bed
  • the period Pc is the period Pc.
  • the period Pd is the period during which the care recipient got up on the bed from the lying position
  • the period Pe was the period during which the care recipient got up and went to bed. This is the period during which he was in a sitting position sitting on top.
  • the signal value Sv1 detects various vibrations such as vibrations due to heartbeat, vibrations due to lung respiration, and vibrations due to body movements generated by a person requiring nursing care in a lying position during the period Pc.
  • the signal value Sv1 changes significantly in the period Pb during which the long-term care recipient has entered the bed and the period Pd during which the person needs to get up, and stabilizes in the period Pe in the sitting state. Further, the signal value Sv2 also captures the schematic changes in the period Pa, the period Pb, the period Pc, the period Pd, and the period Pe of the signal value Sv1.
  • the state determination device 2 determines the state of the person requiring long-term care by comparing the signal value Sv2 with the rising determination reference value Th1 and the bed entry determination reference value Th2. In the example shown in FIG. 4, if the signal value Sv2 is continuously lower than the rising determination reference value Th1 after determining that the care-requiring person is absent, it is determined that the care-requiring person is absent.
  • the signal value Sv2 rises higher than the rise determination reference value Th1 and becomes higher than the bed entry determination reference value Th2, it is determined that the bed entry operation has been performed. ..
  • the signal value Sv2 rises higher than the rise determination reference value Th1 and lower than the bed entry determination reference value Th2 after it is determined that the floor entry operation has been performed, it is determined to be in the lying position. After determining the lying position, when the signal value Sv2 rises and falls below the determination reference value Th1, it is determined that the position of the person requiring long-term care is in the sitting position.
  • FIGS. 5 and 6 are graphs showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • the horizontal axis is time
  • the vertical axis is the signal value of the digital electric signal after amplifying the voltage
  • the transition of the electric signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • the graphs illustrated in FIGS. 5 and 6 are signals when the care recipient is in the lying position, and in FIG. 4, they correspond to the state in the period P1.
  • FIG. 5 shows the signal value after performing the A / D conversion process in step S1
  • FIG. 6 shows the signal value after performing half-wave rectification using the signal value of FIG.
  • step S2 the negative value signal value existing in FIG. 5 is “0” in FIG. 6, and it is clear that half-wave rectification was performed. is there.
  • the state determination device 2 can execute half-wave rectification as shown in FIGS. 5 and 6 as the rectification process in step S2.
  • FIGS. 7 and 8 are graphs showing an example of an electric signal processed by the state determination device 2 described in the present application. 7 and 8 show the transition of the electric signal for 20 seconds from a certain time at a sampling interval of 10 ms, with time on the horizontal axis and signal value of the digital electric signal after amplifying the voltage on the vertical axis. There is.
  • the graphs illustrated in FIGS. 7 and 8 are signals when the care recipient is in the lying position, and in FIG. 4, they correspond to the state in the period P1.
  • FIG. 7 shows the signal value after performing the A / D conversion process in step S1
  • FIG. 8 shows the signal value after performing full-wave rectification using the signal value of FIG. 7 as the rectification process of step S2. Is shown. As is clear from comparing FIGS.
  • the state determination device 2 can execute full-wave rectification as shown in FIGS. 7 and 8 as the rectification process in step S2.
  • FIG. 9 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • time is taken on the horizontal axis, and the signal value of the digital electric signal after amplifying the voltage is taken on the vertical axis, and the transition of the electric signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • FIG. 9 shows a signal value Sv1 after the A / D conversion process in step S1 and a signal value Sv2 after the rectification process in step S2 and the envelope detection process in step S3.
  • the signal value Sv2 smoothed by the moving average processing is illustrated as the envelope detection process in step S3, and the average of the latest 100 samples is taken as the moving average process.
  • the state determination device 2 compares the signal value Sv2 after the envelope detection process with the rise determination reference value Th1 as the state determination process in step S4, and either the signal value Sv2 exceeds the rise determination reference value Th1.
  • the position of the care recipient is determined by determining whether it is below the level. In the example shown in FIG. 9, when the signal value Sv2 exceeds the rising judgment reference value Th1, it is determined that the body position of the person requiring care is not a sitting position but a lying position, and when it is lower than the rising judgment reference value Th1, care is required.
  • the body position of the person is determined to be the sitting position. Therefore, in the example of FIG. 9, it is determined that the care-requiring person is in the lying position (not the sitting position) in the period P1, and that the care-requiring person gets up and is in the sitting position in the period P3.
  • FIG. 10 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • the horizontal axis represents time
  • the vertical axis represents the signal value of the digital electrical signal after amplifying the voltage
  • the transition of the electrical signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • FIG. 10 shows a signal value Sv1 after the A / D conversion process in step S1 and a signal value Sv2 after the rectification process in step S2 and the envelope detection process in step S3.
  • the signal value Sv2 smoothed by the LPF process is illustrated as the envelope detection process in step S3.
  • FIG. 11 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • the horizontal axis represents time
  • the vertical axis represents the signal value of the digital electrical signal after amplifying the voltage
  • the transition of the electrical signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • FIG. 11 shows a signal value Sv1 after the A / D conversion process in step S1 and a signal value Sv2 after the rectification process in step S2 and the envelope detection process in step S3.
  • FIG. 11 illustrates a signal value Sv2 smoothed by a process combining a moving average process and an LPF process as the envelope detection process in step S3.
  • the signal value Sv2 is used as the envelope by taking a moving average based on the latest 100 samples for the digital electric signal in the frequency band of 0.5 Hz or less that is passed by the LPF process. Is derived. Even when the moving average process and the LPF process are combined as the envelope detection process, the signal value Sv2 is lowered by changing the body position of the care recipient from the lying position to the sitting position. Therefore, it is possible to determine the state of the person requiring long-term care by setting an appropriate reference value Th1 for getting up.
  • FIG. 12 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • the horizontal axis represents time
  • the vertical axis represents the signal value of the digital electrical signal after amplifying the voltage
  • the transition of the electrical signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • FIG. 12 shows a signal value Sv1 after the A / D conversion process in step S1 and a signal value Sv2 after the rectification process in step S2 and the envelope detection process in step S3.
  • the signal value Sv2 smoothed by the BPF process is illustrated as the envelope detection process in step S3.
  • a digital electric signal in a frequency band of 0.1 to 0.5 Hz is passed, and a digital electric signal in a frequency band other than the frequency band is blocked.
  • the signal value Sv2 is lowered by changing the posture of the care recipient from the lying position to the sitting position. Therefore, it is possible to determine the state of the person requiring long-term care by setting an appropriate reference value Th1 for getting up.
  • FIG. 13 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • the horizontal axis represents time
  • the vertical axis represents the signal value of the digital electrical signal after amplifying the voltage
  • the transition of the electrical signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • FIG. 13 shows a signal value Sv1 after the A / D conversion process in step S1 and a signal value Sv2 after the rectification process in step S2 and the envelope detection process in step S3.
  • FIG. 13 illustrates a signal value Sv2 smoothed by a process combining a moving average process and a BPF process as the envelope detection process in step S3. In the envelope detection process illustrated in FIG.
  • a moving average based on the latest 100 samples is taken for a digital electric signal in the frequency band of 0.1 to 0.5 Hz passed by the BPF process to obtain an envelope.
  • the signal value Sv2 is derived. Even when the moving average process and the BPF process are combined as the envelope detection process, the signal value Sv2 is lowered by changing the body position of the care recipient from the lying position to the sitting position. Therefore, it is possible to determine the state of the person requiring long-term care by setting an appropriate reference value Th1 for getting up.
  • the state determination device 2 described in the present application can determine not only the position on the bed but also the presence or absence of the care recipient as the determination of the condition of the care recipient.
  • An example of signal processing for determining the presence or absence of a long-term care recipient will be described.
  • FIG. 14 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • the horizontal axis represents time
  • the vertical axis represents the signal value of the digital electrical signal after amplifying the voltage
  • the transition of the electrical signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • Sv1 shows the signal value after the A / D conversion process in step S1
  • Sv2 shows the signal value after the rectification process in step S2 and the envelope detection process in step S3.
  • the signal value Sv2 smoothed by the moving average processing is illustrated as the envelope detection process in step S3, and the average of the latest 100 samples is taken as the moving average process.
  • Th2 in FIG. 14 indicates a bed entry determination reference value.
  • the period P4, the period P5, and the period P6 shown on the horizontal axis in FIG. 14 indicate the period according to the presence / absence of the care recipient and the state of the body position.
  • the period P4 is the period during which the long-term care recipient was absent from the bed
  • the period P5 is the period during which the long-term care recipient entered the bed
  • the period P6 is the period during which the care recipient was in a lying position in bed.
  • the state determination device 2 compares the signal value Sv2 after the envelope detection process with the bed entry determination reference value Th2, and whether the signal value Sv2 exceeds the bed entry determination reference value Th2. By determining whether or not the value is below the level, the presence or absence and condition of the care recipient are determined. In the example shown in FIG.
  • the care-requiring person when the signal value Sv2 is continuously lower than the bed entry determination reference value Th2 for a predetermined time or more after determining that the care-requiring person is absent, the care-requiring person is absent. Is determined. Further, when the signal value Sv2 changes from a state below the bed entry determination reference value Th2 to a state above it and stabilizes for a certain period of time or more, the person requiring long-term care enters the bed and determines that the patient is in the lying position.
  • FIG. 15 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • time is taken on the horizontal axis
  • the signal value of the digital electric signal after amplifying the voltage is taken on the vertical axis
  • the transition of the electric signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • FIG. 15 shows a signal value Sv1 after the A / D conversion process in step S1 and a signal value Sv2 after the rectification process in step S2 and the envelope detection process in step S3.
  • the signal value Sv2 smoothed by the LPF process is illustrated as the envelope detection process in step S3.
  • FIG. 16 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • the horizontal axis represents time
  • the vertical axis represents the signal value of the digital electrical signal after amplifying the voltage
  • the transition of the electrical signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • FIG. 16 shows a signal value Sv1 after the A / D conversion process in step S1 and a signal value Sv2 after the rectification process in step S2 and the envelope detection process in step S3.
  • FIG. 16 illustrates a signal value Sv2 smoothed by a process combining a moving average process and an LPF process as the envelope detection process in step S3. In the envelope detection process illustrated in FIG.
  • the signal value Sv2 is used as the envelope by taking a moving average based on the latest 100 samples for the digital electric signal in the frequency band of 0.5 Hz or less that is passed by the LPF process. Is derived. Even when the moving average process and the LPF process are combined as the envelope detection process, the signal value Sv2 is increased when the person requiring nursing care enters the bed and is in the lying position. Therefore, it is possible to determine the state of the person requiring long-term care by setting an appropriate reference value Th2 for entering the bed.
  • FIG. 17 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • the horizontal axis represents time
  • the vertical axis represents the signal value of the digital electrical signal after amplifying the voltage
  • the transition of the electrical signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • FIG. 17 shows a signal value Sv1 after the A / D conversion process in step S1 and a signal value Sv2 after the rectification process in step S2 and the envelope detection process in step S3.
  • the signal value Sv2 smoothed by the BPF process is illustrated as the envelope detection process in step S3.
  • a digital electric signal in a frequency band of 0.1 to 0.5 Hz is passed, and a digital electric signal in a frequency band other than the frequency band is blocked.
  • the signal value Sv2 increases when the person requiring long-term care enters the bed and is in the lying position. Therefore, it is possible to determine the state of the person requiring long-term care by setting an appropriate reference value Th2 for entering the bed.
  • FIG. 18 is a graph showing an example of an electric signal processed by the state determination device 2 described in the present application.
  • the horizontal axis represents time
  • the vertical axis represents the signal value of the digital electrical signal after amplifying the voltage
  • the transition of the electrical signal for 20 seconds from a certain time is shown at a sampling interval of 10 ms.
  • FIG. 18 shows a signal value Sv1 after the A / D conversion process in step S1 and a signal value Sv2 after the rectification process in step S2 and the envelope detection process in step S3.
  • FIG. 18 illustrates a signal value Sv2 smoothed by a process combining a moving average process and a BPF process as the envelope detection process in step S3. In the envelope detection process illustrated in FIG.
  • the digital electrical signal in the frequency band of 0.1 to 0.5 Hz passed by the BPF process is used as an envelope by taking a moving average based on the latest 100 samples.
  • the signal value Sv2 is derived. Even when the moving average process and the BPF process are combined as the envelope detection process, the signal value Sv2 increases when the person requiring nursing care enters the bed and is in the lying position. Therefore, it is possible to determine the state of the person requiring long-term care by setting an appropriate reference value Th2 for entering the bed.
  • the state determination device 2 described in the present application can acquire an electric signal based on the detected vibration and determine the presence / absence of a living body, a state such as a body position, etc. from the envelope based on the acquired electric signal. ..
  • the condition of the care-requiring person is determined even when the caregiver is not present, and the caregiver is notified. You can notify. Therefore, when there is a possibility that an abnormal condition has occurred in the care-requiring person, the caregiver can take an excellent effect such as being able to respond promptly.
  • the present invention is not limited to this, and other determination reference values are set and a determination method is used.
  • Etc. can be set as appropriate.
  • a judgment standard such as continuously exceeding or falling below a judgment standard value such as a rising judgment reference value Th1 and a bed entrance judgment reference value Th2 for a certain period of time. May be further provided.
  • the amplitude amplification unit 11 when the amplitude amplification unit 11 amplifies the voltage of the analog electric signal based on the vibration, the magnitude of the vibration depends on the fluctuation factors such as the thickness of the mattress and the individual difference of the care recipient.
  • the amplification degree may be adjusted so that a constant voltage amplitude is output. That is, the state determination device 2 can adjust the amplification factor according to the living body for determining the state or the environment for determining the state.
  • the determination reference values of the rising determination reference value Th1 and the entry determination reference value Th2 can be set to one value each without changing for each fluctuation factor. This eliminates the need to fluctuate the judgment reference value depending on fluctuating factors such as the environment in which the sensor is installed and individual differences in the care recipient.
  • the rising determination reference value Th1 and the bed entry determination reference value Th2 are illustrated as reference values that do not fluctuate, but the present invention is not limited to this, and is predetermined according to the movement of the care recipient.
  • the period may be changed.
  • the rising determination reference value Th1 is increased for a predetermined period.
  • the signal value Sv1 increases when there is a large movement when the care recipient gets up on the bed from the lying position, or when there is a large movement due to body movement, and the signal value Sv1 increases accordingly.
  • the signal value Sv2 Since the signal value Sv2 also increases, it may take some time for the signal value Sv2 to decrease after getting up, which may delay the rise determination. In the case of such a large movement, when the signal value Sv1 exceeds a certain reference value, the rising judgment reference value Th1 is greatly changed for a certain period of time, so that the rising time is longer than that of the conventional rising that does not change. It becomes possible to make a rise judgment quickly.
  • only an electric signal based on the detected vibration is acquired and a state such as the presence or absence of a living body and a state such as a body position is determined from the envelope based on the acquired electric signal. It is not limited to this.
  • the physical information detected by the physical information detection device 4 that detects physical information such as heart rate, respiratory rate, and pulse may be used in combination with the state determination.
  • the entry is confirmed after detecting the heart rate. This makes it possible to determine the floor entry state with higher accuracy.
  • the various numerical values shown in the above-described embodiment are all examples, and the numerical values such as the sampling interval, the number of samplings of the moving average, the LPF, the frequency band in the BPF, and various reference values are determined according to the embodiment. It can be set as appropriate.
  • the state determination device 2 described in the present application copes with various situations such as a situation from a sitting position to a lying position and a situation from a sitting position to an absent state by appropriately recording the state and setting an appropriate reference value. It is possible to detect changes in state.
  • the vibration detection unit 10 of the vibration detection device 1 is placed on the bed to determine the state of the person requiring long-term care, but the present invention is not limited to this.
  • it can be deployed in various forms such as determining the state of a driver sitting in the driver's seat of a vehicle and preventing abnormalities such as drowsy driving.
  • the living body for determining the state is not limited to humans, and can be developed into various forms such as being applicable to animals such as dogs and cats. ..
  • the vibration detection device 1 includes the amplitude amplification unit 11 and the state determination device 2 includes the A / D conversion unit 22, but the present invention is not limited to this.
  • the configuration of the device can be appropriately designed. That is, the vibration detection device 1 may perform A / D conversion processing and then output the digital electric signal, or the state determination device 2 may amplify the analog electric signal.
  • the output unit 31 of the communication device 3 it is possible to appropriately design such as performing a notification process for outputting information indicating the determination result from the output unit 26 of the state determination device 2.
  • processing such as rectification processing in step S2 and envelope detection processing in step S3 is shown as algorithm processing for digital electric signals, but the present invention is not limited to this, and analog for analog electric signals. It can also be realized as a process by an electric circuit. That is, the state determination device 2 described in the present application can realize these processes by combining electronic elements such as diodes, resistors, and capacitors. In that case, the A / D conversion process in step S1 can be omitted.
  • an analog electric circuit is constructed by combining electronic elements such as diodes, resistors, and capacitors to perform processing such as rectification processing and envelope detection processing
  • problems that do not pose a particular problem in algorithm processing occur. ..
  • the accuracy of the rectification process and the envelope detection process for the minute voltage change detected by the vibration detection unit 10 becomes an issue.
  • the envelope detection processing such as BPF processing and LPF processing can be performed by an analog electric circuit using an electric component such as an operational amplifier and an electronic element such as a resistor, a diode or a capacitor.
  • the present invention is not limited to this. That is, the state determination system described in the present application records data based on the detected vibration, determines the state change of the person requiring long-term care from the recorded data at a later date, and analyzes the behavior. It is possible to develop it in various forms.
  • Vibration detection device 10 Vibration detection unit 11
  • Amplitude amplification unit 12 Output unit 2
  • Status determination device 20 Control unit 21
  • Input unit 22 A / D conversion unit 23
  • Status determination program 24 Storage unit 25
  • Operation unit 26 Output unit 27
  • Communication unit 3 Communication device 30
  • Communication unit 31 Output unit 4 Physical information detection device NW communication network REC recording medium

Abstract

検出した振動に基づく電気信号から生体の状態を判定する状態判定方法、状態判定装置、状態判定システム、状態判定プログラム及び記録媒体を提供する。 状態判定装置(2)は、検出した振動に基づく電気信号を取得し、整流処理を行い(ステップS2)、整流した電気信号から包絡線を導出する包絡線検波処理を行い(ステップS3)、導出した包絡線に基づいて、生体の状態を判定する状態判定処理を行う(ステップS4)。生体の状態を判定した状態判定装置(2)は、判定した結果を出力する(ステップS5)。

Description

状態判定方法、状態判定装置、状態判定システム、状態判定プログラム及び記録媒体
 本発明は、生体の状態を判定する状態判定方法、そのような方法を適用する状態判定装置、そのような状態判定装置を備える状態判定システム、そのような状態判定装置を実現するための状態判定プログラム、及びそのような状態判定プログラムを記録してある記録媒体に関する。
 病院、老人ホーム、介護施設等の施設内において、看護師、介護士等の担当者は、患者、入居者等の要介護者が、病室内のベッドで就寝しているか、離床しているか等の状態を確認する見回り業務を行っている。このような見回り業務を支援すべく、例えば、本願出願人は、ベッド上に載置して、要介護者の存否を検出する生体検出システムを提案している(例えば、特許文献1参照。)。
特開2015-154926号公報
 特許文献1では、優れた生体検出システムを提案しているが、更なる看護及び介護の質の向上等を目的として、ベッド上の要介護者の状態がどのようなものであるかを検出することが求められている。
 本発明は斯かる事情に鑑みてなされたものであり、生体の状態を判定することが可能な状態判定方法の提供を主たる目的とする。
 また、本発明では、本発明に係る状態判定方法を適用した状態判定装置の提供を他の目的とする。
 更に、本発明は、本発明に係る状態判定装置を備える状態判定システムの提供を他の目的とする。
 更に、本発明は、本発明に係る状態判定装置を実現するための状態判定プログラムの提供を更に他の目的とする。
 更に、本発明は、本発明に係る状態判定装置を実現するための状態判定プログラムを記録してある記録媒体の提供を更に他の目的とする。
 上記課題を解決するために本願記載の状態判定方法は、生体から生じる振動に基づく電気信号を整流し、整流した電気信号から包絡線を導出し、導出した包絡線に基づいて、生体の状態を判定することを特徴とする。
 また、本願では、前記状態判定方法において、前記判定は、生体の状態として、生体の体位を判定することを特徴とする状態判定方法を開示する。
 また、本願では、前記状態判定方法において、前記判定は、導出した包絡線が示す値と、所定の基準値との比較により、生体である人の体位を判定するようにしてあり、判定結果となる人の体位には、少なくても臥位又は座位を含むことを特徴とする状態判定方法を開示する。
 また、本願では、前記状態判定方法において、前記所定の基準値は、人の入床動作を判定する入床判定基準値及び入床している人の起き上がり動作を判定する起き上がり判定基準値であり、前記入床判定基準値は、前記起き上がり判定基準値より大きい値が設定されていることを特徴とする状態判定方法を開示する。
 また、本願では、前記状態判定方法において、前記判定は、包絡線が示す値が、前記入床判定基準値及び前記起き上がり判定基準値を下回る状態が所定時間以上連続する場合、不在であると判定し、不在であると判定した後、包絡線が示す値が、前記起き上がり判定基準値及び前記入床判定基準値を上回る状態になった場合、入床動作が行われたと判定することを特徴とする状態判定方法を開示する。
 また、本願では、前記状態判定方法において、前記判定は、入床動作が行われたと判定した後、包絡線が示す値が、前記起き上がり判定基準値を上回り、かつ前記入床判定基準値を下回る場合、人の体位が臥位であると判定し、臥位であると判定した後、包絡線が示す値が、前記起き上がり判定基準値を下回る場合に、人の体位が座位であると判定することを特徴とする状態判定方法を開示する。
 また、本願では、前記状態判定方法において、前記包絡線の導出は、所定の周波数帯の電気信号を通過させることにより、包絡線を導出することを特徴とする状態判定方法を開示する。
 また、本願では、前記状態判定方法において、前記包絡線の導出は、電気信号の移動平均をとることにより、包絡線を導出することを特徴とする状態判定方法を開示する。
 また、本願では、前記状態判定方法において、振動に基づくアナログ信号として取得した電気信号をデジタル電気信号に変換するA/D変換部を用い、前記整流は、デジタル電気信号に変換された電気信号を整流することを特徴とする状態判定方法を開示する。
 更に、本願記載の状態判定装置は、制御部及び記録部を含むコンピュータを備える状態判定装置であって、前記記録部には、生体から生じる振動に基づく電気信号を整流する整流手段と、整流した電気信号から包絡線を導出する包絡線検波手段と、導出した包絡線に基づいて、生体の状態を判定する判定手段とを前記コンピュータに実行させるためのプログラムが記録されていることを特徴とする。
 また、本願記載の状態判定装置において、前記判定手段は、生体の状態として、生体の体位を判定することを特徴とする。
 また、本願記載の状態判定装置において、前記判定手段は、前記包絡線検波手段が導出した包絡線が示す値と、所定の基準値との比較により、生体である人の体位を判定し、判定結果となる人の体位には、少なくても臥位又は座位を含むことを特徴とする。
 また、本願記載の状態判定装置において、前記所定の基準値は、人の入床動作を判定する入床判定基準値及び入床している人の起き上がり動作を判定する起き上がり判定基準値であり、前記入床判定基準値は、前記起き上がり判定基準値より大きい値が設定されていることを特徴とする。
 また、本願記載の状態判定装置において、前記判定手段は、包絡線が示す値が、前記入床判定基準値及び前記起き上がり判定基準値を下回る状態が所定時間以上連続する場合、不在であると判定し、不在であると判定した後、包絡線が示す値が、前記起き上がり判定基準値及び前記入床基準を上回る状態になった場合、入床動作が行われたと判定することを特徴とする。
 また、本願記載の状態判定装置において、前記判定手段は、入床動作が行われたと判定した後、包絡線が示す値が、前記起き上がり判定基準値を上回り、かつ前記入床判定基準値を下回る場合、人の体位が臥位であると判定し、臥位であると判定した後、包絡線が示す値が、前記起き上がり判定基準値を下回る場合に、人の体位が座位であると判定することを特徴とする。
 また、本願記載の状態判定装置において、前記包絡線検波手段は、所定の周波数帯の電気信号を通過させることにより、包絡線を導出することを特徴とする。
 また、本願記載の状態判定装置において、前記包絡線検波手段は、電気信号の移動平均をとることにより、包絡線を導出することを特徴とする。
 また、本願記載の状態判定装置において、振動に基づくアナログ信号として取得した電気信号をデジタル電気信号に変換するA/D変換手段を備え、前記整流手段は、デジタル電気信号に変換された電気信号を整流することを特徴とする。
 更に、本願記載の状態判定システムは、振動を検出する検出部及び検出した振動に基づく電気信号を出力する出力部を有する振動検出装置と、前記状態判定装置とを備え、前記状態判定装置は、前記振動検出装置から出力した電気信号に基づいて、生体の状態を判定することを特徴とする。
 また、本願記載の状態判定システムにおいて、前記振動検出装置の検出部は、シート状をなすことを特徴とする。
 更に、本願記載の状態判定プログラムは、検出した振動に基づく電気信号を取得したコンピュータに、生体の状態を判定させる状態判定プログラムであって、コンピュータに、振動に基づく電気信号を整流するステップと、整流した電気信号から包絡線を導出するステップと、導出した包絡線に基づいて、生体の状態を判定するステップとを実行させることを特徴とする。
 更に、本願記載の記録媒体は、検出した振動に基づく電気信号を取得したコンピュータに、生体の状態を判定させる状態判定プログラムを記録してある記録媒体であって、コンピュータに、振動に基づく電気信号を整流するステップと、整流した電気信号から包絡線を導出するステップと、導出した包絡線に基づいて、生体の状態を判定するステップとを実行させる状態判定プログラムを記録してあることを特徴とする。
 更に、本願では、前記入床判定基準値又は前記起き上がり判定基準値を上回る又は下回るとの判定を行う場合に、所定時間以上その状態が継続することを判定基準とすることを特徴とする状態判定装置を開示する。
 更に、本願では、振動に基づく電気信号を増幅するようにしてあり、状態を判定する生体又は状態を判定する環境に応じて増幅率を調整することを特徴とする状態判定装置を開示する。
 更に、本願では、前記入床判定基準値又は前記起き上がり判定基準値を、生体の状態に応じて所定期間変化させることを特徴とする状態判定装置を開示する。
 更に、本願では、身体情報を検出する検出装置を備え、前記状態判定装置は、前記検出装置が検出した身体情報を併用して生体の状態を判定することを特徴とする状態判定システムを開示する。
 本発明に係る状態判定方法、状態判定装置、状態判定システム及び状態判定プログラムは、検出した振動に基づく電気信号の包絡線から生体の状態を判定する。これにより、本発明では、例えば、施設の要介護者等の生体の状態を判定することが可能である等、優れた効果を奏する。
本願記載の状態判定システムの構成例を模式的に示す概略図である。 本願記載の状態判定システムが備える各種装置の構成例を示すブロック図である。 本願記載の状態判定装置の処理の一例を示すフローチャートである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。 本願記載の状態判定装置により処理される電気信号の一例を示すグラフである。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本発明を具現化した一例であって、本発明の技術的範囲を限定する性格のものではない。
  <状態判定システム>
 図1は、本願記載の状態判定システムの構成例を模式的に示す概略図である。本願記載の状態判定システムは、病院、老人ホーム、介護施設等の施設内に設置される。施設内には、患者、入居者等の要介護者が入る病室、介護室等の部屋が設置されており、部屋内には要介護者が使用するベッドが配置されている。また、施設内には、要介護者の看護、介護等のケアを行う看護師、介護士、医師等の職員が待機するナースステーション等の待機所が設置されている。
 要介護者が使用するベッドには、振動検出装置1が取り付けられている。振動検出装置1は、シート状の振動センサを用いた振動検出部10を備え、検出した振動に基づく電気信号を増幅して出力する。振動検出装置1の振動検出部10は、例えば、要介護者が使用するベッド上でマットの上又は下に載置されている。マット及び振動検出部10の上には、必要に応じてシーツ等が敷かれる。図1では、マット及び振動検出部10の上の要介護者が、臥位の状態から起き上がって座位の状態になる状況を例示している。本願において、臥位の状態とは、要介護者がベッド上で横になっている状態であり、仰臥位、側臥位又は腹臥位の状態を示す。座位の状態とは、要介護者がベッド上で上半身を起こした状態を示す。
 振動検出装置1には、状態判定装置2が接続されており、振動検出装置1から出力される電気信号は通信線を介して状態判定装置2に入力される。また、状態判定装置2と通信可能な装置として、看護師が所持するナースコール受信装置、ナースステーションに配備されたモニタ、外部の関係者が保持する携帯電話等の各種通信装置3が用いられている。状態判定装置2及び通信装置3は、無線LAN(Local Area Network)、有線LAN、WAN(Wide Area Network )、専用通信線等の通信網NWにて通信可能に接続されている。
  <各種装置の構成>
 次に、本願記載の状態判定システムが備える各種装置のハードウェア構成について説明する。図2は、本願記載の状態判定システムが備える各種装置の構成例を示すブロック図である。状態判定システムは、振動検出装置1、振動検出装置1に接続された状態判定装置2、状態判定装置2と通信可能な通信装置3、状態判定装置2と接続可能な身体情報検出装置4等の各種装置を備えている。
 振動検出装置1は、シート状の振動センサを用いた前述の振動検出部10の他、振幅増幅部11、出力部12等の各種構成を備えている。振動検出部10は、要介護者等の生体の振動を検出し、検出した振動をアナログ電気信号に変換して振幅増幅部11へ出力する。振幅増幅部11は、電気信号の電圧を増幅する信号増幅アンプであり、振動検出部10から入力されたアナログ電気信号の電圧の振幅を増幅し、出力部12へ出力する。出力部12は、振幅増幅部11にて増幅されたアナログ電気信号を状態判定装置2へ接続線を介して出力する。
 状態判定装置2は、信号処理用コンピュータ、パーソナルコンピュータ等の各種コンピュータを用いた装置であり、制御部20、入力部21、A/D変換部22、記録部23、記憶部24、操作部25、出力部26、通信部27、補助記憶部28等の各種構成を備えている。
 制御部20は、情報処理回路、計時回路、レジスタ回路等の各種回路を備え、装置内の各部を制御する処理を実行するCPU(Central Processing Unit )等のプロセッサである。
 入力部21は、振動検出装置1から接続線を介して送信されるアナログ電気信号の入力を受け付ける各種アダプタ及び制御回路等のインターフェースデバイスである。
 A/D変換部22は、入力部21が入力を受け付けたアナログ電気信号をデジタル電気信号に変換するコンバータである。
 記録部23は、ハードディスク、RAID(Redundant Arrays of Inexpensive Disks )、フラッシュメモリ等の不揮発性メモリ、各種RAM(Random Access Memory)等の揮発性メモリを用いて構成される回路であり、様々な情報を記録している。記録部23には、基本プログラム(OS:Operating System)、基本プログラム上で動作する応用プログラム(アプリケーションプログラム)等のプログラムを記録している。応用プログラムとしては、状態判定装置2を実現するための状態判定プログラム230等の各種プログラムが記録されている。また、記録部23には、状態判定プログラム230で用いる各種基準値等のマスタデータ、処理の履歴を記録する実績データ等の各種データが記録されている。
 記憶部24は、揮発性メモリを用いて構成される回路であり、各種プログラムの実行に際して発生するデータを一時的に記憶する。なお、便宜上、記録部23及び記憶部24を異なる回路として示しているが、一の回路で構成してもよく、また相互にその機能を補完することも可能である。
 操作部25は、タッチパネル、押しボタン等の操作用デバイスであり、状態判定装置2に対する操作の入力を受け付ける。なお、パーソナルコンピュータ等のコンピュータを用いて状態判定装置2を構成する場合、キーボード、マウス等の操作用デバイスを操作部25として用いてもよい。
 出力部26は、液晶ディスプレイ、スピーカ等の出力用デバイスである。なお、操作部25及び出力部26を、例えば、薄板状をなす液晶ディスプレイ及びタッチパネルを積層した液晶タッチパネルとして備えるようにしてもよい。
 通信部27は、通信網NWを介して通信装置3と無線通信又は有線通信をするためのアンテナ、LANアダプタ、制御回路等のインターフェースデバイスである。
 補助記憶部28は、状態判定プログラム230等の各種プログラム及びデータが記録されたCD-ROM、DVD-ROM、半導体メモリ等の可搬型の記録媒体RECから各種プログラム及びデータを読み取るドライブ、スロット等のインターフェースデバイスである。
 以上例示した様々な構成を備えるコンピュータは、制御部20の制御により、例えば、可搬型の記録媒体RECに記録されている状態判定プログラム230等の各種プログラムを読み取り、記録部23に記録する。そして、コンピュータは、記録部23に記録されている状態判定プログラム230等の各種プログラムを読み取り、適宜、記憶部24に各種情報を記憶させ、整流処理、包絡線検波処理、状態判定処理、判定結果出力処理等の各種手順を実行することにより、状態判定装置2として動作する。
 通信装置3は、通信網NWを介して状態判定装置2と通信する通信部30、各種出力を行う出力部31等の構成を備えている。出力部31による出力とは、光の出力、画像の表示、音声の出力、鳴動、振動等の処理である。
 身体情報検出装置4は、要介護者の心拍数、呼吸数、脈拍等の身体情報を検出する装置であり、必要に応じて適宜使用される。
  <各種装置の処理>
 次に、本願記載の状態判定システムにおける各種装置の処理について説明する。振動検出装置1は、振動検出部10により、要介護者等の生体に関する振動を検出し、検出した振動をアナログ電気信号に変換する。更に、振動検出装置1は、振幅増幅部11により、振動に基づくアナログ電気信号の電圧を増幅し、出力部12により、増幅したアナログ電気信号を状態判定装置2へ出力する。
 図3は、本願記載の状態判定装置2の処理の一例を示すフローチャートである。状態判定装置2は、入力部21にて、振動検出装置1からアナログ電気信号の入力を受け付け、受け付けたアナログ電気信号をデジタル電気信号に変換するA/D変換処理を、A/D変換部22にて行う(ステップS1)。ステップS1のA/D変換処理では、受信したアナログ電気信号を10ms等の所定のサンプリング間隔にてサンプリングし、例えば16bit等のデジタル電気信号に変換する処理を行う。
 ステップS1にて、A/D変換部22が変換した後のデジタル電気信号は、例えば16bit化されたデジタルデータである。状態判定装置2が備える制御部20は、状態判定プログラム230等の各種プログラムを実行することにより、デジタルデータであるデジタル電気信号に対し、整流処理、包絡線検波処理、状態判定処理、判定結果出力処理等の各種手順を含むアルゴリズムにて処理を行う。
 A/D変換処理を行ったデジタル電気信号に対し、制御部20は、整流処理を行う(ステップS2)。ステップS2の整流処理は、半波整流、全波整流等の整流処理にて、脈流に変換する処理である。
 整流処理を行ったデジタル電気信号に対し、制御部20は、整流したデジタル電気信号から包絡線を導出する包絡線検波処理を行う(ステップS3)。ステップS3の包絡線検波処理は、脈流に変換されたデジタル電気信号を平滑化する処理である。包絡線検波処理にて平滑化する方法としては、移動平均処理、BPF(帯域通過フィルタ)処理、LPF(低域通過フィルタ)処理のいずれかひとつ又はいずれかを組み合わせた処理を例示列挙することができる。移動平均処理は、設定された所定のサンプリング数の信号値を平均することにより、包絡線を導出する処理である。BPF処理は、特定の周波数帯のデジタル電気信号を通過させ、通過させる周波数帯以外の周波数帯のデジタル電気信号を遮断するデジタルフィルタ処理であり、FIRフィルタ(有限インパルス応答フィルタ)、IIRフィルタ(無限インパルス応答フィルタ)等のフィルタ処理により行われる。LPF処理は、特定の周波数以下の周波数帯のデジタル電気信号を通過させ、通過させる周波数帯以外の周波数帯のデジタル電気信号を遮断するデジタルフィルタ処理であり、FIRフィルタ、IIRフィルタ等のフィルタ処理により行われる。
 包絡線検波処理後、制御部20は、導出した包絡線に基づいて、生体の状態を判定する状態判定処理を行う(ステップS4)。ステップS4の状態判定処理は、包絡線検波処理にて導出した包絡線が示す信号値と、記録部23に予め記録している各種基準値とを比較することにより、生体の状態を判定する処理である。包絡線が示す信号値と各種基準値とを比較することにより、生体である要介護者の存否、体位等の状態を判定する。状態として判定する体位とは、臥位、座位等の体位である。即ち、状態には、存否、体位等が含まれる。また、体位には、臥位、座位等が含まれる。
 生体の状態を判定した制御部20は、判定した結果を出力する判定結果出力処理を行う(ステップS5)。ステップS5の判定結果出力処理は、通信部27から通信網NWを介して通信装置3へ、判定結果を示す情報を送信する処理である。
 通信装置3は、状態判定装置2から通信網NWを介して送信される判定結果を示す情報を通信部30にて受信し、受信した判定結果を示す情報を出力部31から出力する。判定結果の出力は、看護師が所持するナースコール受信装置、ナースステーションに配備されたモニタ、外部の関係者が保持する携帯電話等の各種通信装置3からの光の出力、画像の表示、音声の出力、鳴動、振動等の通報処理として実行される。通信装置3から出力される判定結果を確認した看護師、介護士、医師等の職員、家族等の関係者は、対象となる要介護者の状態に応じて適切な対応をとることができる。
  <信号処理の具体例>
 次に、状態判定装置2が実行する整流処理、包絡線検波処理、状態判定処理等の処理に関する具体的な信号処理の例を説明する。図4は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図4は、状態判定装置2による要介護者の状態の判定の概要を示すグラフである。図4は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図4中Sv1は、ステップS1にてA/D変換処理をした後の信号値を示しており、Sv2は、ステップS2の整流処理及びステップS3の包絡線検波処理を行った後の信号値を示している。また、図4中のTh1は、起き上がり判定基準値であり、Th2は、入床判定基準値である。起き上がり判定基準値Th1及び入床判定基準値Th2は、縦軸に示す信号値の変動に対する状態判定のために記録されている基準値である。図4中の横軸に示す期間Pa、期間Pb、期間Pc、期間Pd及び期間Peは、要介護者の体位の状態に応じた期間を示している。図4において、期間Paは、要介護者がベッド上に居ない不在の状態であった期間であり、期間Pbは要介護者がベッドに入る入床動作を行った期間であり、期間Pcは入床後に臥位の状態であった期間であり、期間Pdは、要介護者が臥位からベッド上で起き上がり動作を行った期間であり、そして、期間Peは、要介護者が起き上がってベッド上で座っている座位の状態であった期間である。信号値Sv1は、期間Pcにおいて、臥位状態にある要介護者から生じる心臓の拍動による振動、肺呼吸による振動、身体の動きによる振動等の様々な振動を検出している。信号値Sv1は、要介護者が入床動作を行った期間Pb及び起き上がる期間Pdにおいて大きく変化し、座位状態にある期間Peで安定する。また、信号値Sv2も、信号値Sv1の期間Pa、期間Pb、期間Pc、期間Pd及び期間Peでの概略的な変化を捉えている。状態判定装置2は、信号値Sv2を、起き上がり判定基準値Th1及び入床判定基準値Th2と比較することにより、要介護者の状態を判定する。図4に示す例では、信号値Sv2が、要介護者が不在であると判定してから起き上がり判定基準値Th1よりも低い状態が連続する場合、要介護者が不在であると判定する。要介護者が不在であると判定したのちに、信号値Sv2が起き上がり判定基準値Th1よりも高く、入床判定基準値Th2よりも高い状態になった場合、入床動作が行われたと判定する。入床動作が行われたと判定した後に、信号値Sv2が起き上がり判定基準値Th1よりも高く、入床判定基準値Th2よりも低い状態になった場合、臥位であると判定する。臥位状態と判定した後に、信号値Sv2が起き上がり判定基準値Th1を下回る場合に、要介護者の体位が座位となったと判定する。
 各ステップにおける信号処理の具体例について更に説明する。図5及び図6は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図5及び図6は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図5及び図6に例示するグラフは、要介護者の体位が臥位である場合の信号であり、図4では期間P1における状態に相当する。図5は、ステップS1にてA/D変換処理をした後の信号値を示しており、図6は、図5の信号値をステップS2の整流処理として半波整流を行った後の信号値を示している。図5及び図6を比較すると明らかなように、図5では存在する負の値をとる信号値が、図6では、「0」となっており、半波整流が行われたことが明らかである。状態判定装置2は、ステップS2の整流処理として、図5及び図6のような半波整流を実行することができる。
 図7及び図8は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図7及び図8は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図7及び図8に例示するグラフは、要介護者の体位が臥位である場合の信号であり、図4では期間P1における状態に相当する。図7は、ステップS1にてA/D変換処理をした後の信号値を示しており、図8は、図7の信号値をステップS2の整流処理として全波整流を行った後の信号値を示している。図7及び図8を比較すると明らかなように、図7にて負の値をとる信号値が、図8では、正の値に反転されており、全波整流が行われたことが明らかである。状態判定装置2は、ステップS2の整流処理として、図7及び図8のような全波整流を実行することができる。
 図9は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図9は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図9では、ステップS1にてA/D変換処理をした後の信号値Sv1と、ステップS2の整流処理及びステップS3の包絡線検波処理を行った信号値Sv2とを示している。図9では、ステップS3の包絡線検波処理として、移動平均処理にて平滑化した信号値Sv2を例示しており、移動平均処理として直近の100のサンプルの平均をとっている。そして、状態判定装置2は、ステップS4の状態判定処理として、包絡線検波処理後の信号値Sv2を、起き上がり判定基準値Th1と比較し、起き上がり判定基準値Th1より、信号値Sv2が上回るか又は下回るかを判定することにより、要介護者の体位を判定する。図9に示す例では、信号値Sv2が、起き上がり判定基準値Th1を上回る場合、要介護者の体位は、座位ではなく臥位であると判定し、起き上がり判定基準値Th1を下回る場合、要介護者の体位は、座位であると判定する。従って、図9の例では、期間P1で、要介護者は臥位である(座位ではない)と判定し、期間P3で、要介護者は起き上がって座位となったと判定する。
 図10は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図10は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図10では、ステップS1にてA/D変換処理をした後の信号値Sv1と、ステップS2の整流処理及びステップS3の包絡線検波処理を行った信号値Sv2とを示している。図10では、ステップS3の包絡線検波処理として、LPF処理にて平滑化した信号値Sv2を例示している。図10に例示したLPF処理では、0.5Hz以下の周波数帯のデジタル電気信号を通過させ、0.5Hzより大きい周波数帯のデジタル電気信号を遮断している。LPF処理にて平滑化した場合であっても、要介護者の体位が、臥位から座位になることにより、信号値Sv2の低下が発現している。従って、適切な起き上がり判定基準値Th1を設定することにより、要介護者の状態の判定が可能である。
 図11は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図11は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図11では、ステップS1にてA/D変換処理をした後の信号値Sv1と、ステップS2の整流処理及びステップS3の包絡線検波処理を行った信号値Sv2とを示している。図11では、ステップS3の包絡線検波処理として、移動平均処理及びLPF処理を組み合わせた処理にて平滑化した信号値Sv2を例示している。図11に例示した包絡線検波処理では、LPF処理にて通過する0.5Hz以下の周波数帯のデジタル電気信号に対し、直近100のサンプルに基づく移動平均をとることにより、包絡線として信号値Sv2を導出している。包絡線検波処理として、移動平均処理及びLPF処理を組み合わせた場合であっても、要介護者の体位が、臥位から座位になることにより、信号値Sv2の低下が発現している。従って、適切な起き上がり判定基準値Th1を設定することにより、要介護者の状態の判定が可能である。
 図12は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図12は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図12では、ステップS1にてA/D変換処理をした後の信号値Sv1と、ステップS2の整流処理及びステップS3の包絡線検波処理を行った信号値Sv2とを示している。図12では、ステップS3の包絡線検波処理として、BPF処理にて平滑化した信号値Sv2を例示している。図12に例示したBPF処理では、0.1~0.5Hzの周波数帯のデジタル電気信号を通過させ、当該周波数帯以外の周波数帯のデジタル電気信号を遮断している。BPF処理によって平滑化した場合であっても、要介護者の体位が、臥位から座位になることにより、信号値Sv2の低下が発現している。従って、適切な起き上がり判定基準値Th1を設定することにより、要介護者の状態の判定が可能である。
 図13は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図13は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図13では、ステップS1にてA/D変換処理をした後の信号値Sv1と、ステップS2の整流処理及びステップS3の包絡線検波処理を行った信号値Sv2とを示している。図13では、ステップS3の包絡線検波処理として、移動平均処理及びBPF処理を組み合わせた処理にて平滑化した信号値Sv2を例示している。図13に例示した包絡線検波処理では、BPF処理にて通過する0.1~0.5Hzの周波数帯のデジタル電気信号に対し、直近100のサンプルに基づく移動平均をとることにより、包絡線として信号値Sv2を導出している。包絡線検波処理として、移動平均処理及びBPF処理を組み合わせた場合であっても、要介護者の体位が、臥位から座位になることにより、信号値Sv2の低下が発現している。従って、適切な起き上がり判定基準値Th1を設定することにより、要介護者の状態の判定が可能である。
 本願記載の状態判定装置2は、要介護者の状態の判定として、ベッド上での体位を判定するだけでなく、要介護者の存否を判定することも可能である。要介護者の存否を判定する場合の信号処理の例について説明する。図14は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図14は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図14中Sv1は、ステップS1にてA/D変換処理をした後の信号値を示しており、Sv2は、ステップS2の整流処理及びステップS3の包絡線検波処理を行った後の信号値を示している。図14では、ステップS3の包絡線検波処理として、移動平均処理にて平滑化した信号値Sv2を例示しており、移動平均処理として直近の100のサンプルの平均をとっている。また、図14中のTh2は、入床判定基準値を示している。図14中の横軸に示す期間P4、期間P5及び期間P6は、要介護者の存否及び体位の状態に応じた期間を示している。図14において、期間P4は、要介護者がベッド上に居ない不在の状態であった期間であり、期間P5は、要介護者がベッドに入る入床動作を行った期間であり、そして、期間P6は、要介護者がベッドに入った臥位の状態であった期間である。状態判定装置2は、ステップS4の状態判定処理として、包絡線検波処理後の信号値Sv2を、入床判定基準値Th2と比較し、入床判定基準値Th2より、信号値Sv2が上回るか又は下回るかを判定することにより、要介護者の存否及び状態を判定する。図14に示す例では、信号値Sv2が、要介護者が不在であると判定してから入床判定基準値Th2を下回る状態が所定時間以上連続している場合、要介護者は不在であると判定する。また、信号値Sv2が入床判定基準値Th2を下回る状態から上回る状態に変化し、一定時間以上安定した場合、要介護者は入床し、臥位状態であると判定する。
 図15は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図15は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図15では、ステップS1にてA/D変換処理をした後の信号値Sv1と、ステップS2の整流処理及びステップS3の包絡線検波処理を行った信号値Sv2とを示している。図15では、ステップS3の包絡線検波処理として、LPF処理にて平滑化した信号値Sv2を例示している。図15に例示したLPF処理では、0.5Hz以下の周波数帯のデジタル電気信号を通過させ、0.5Hzより大きい周波数帯のデジタル電気信号を遮断している。LPF処理にて平滑化した場合であっても、要介護者が入床し、臥位となることにより、信号値Sv2の上昇が発現している。従って、適切な入床判定基準値Th2を設定することにより、要介護者の状態の判定が可能である。
 図16は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図16は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図16では、ステップS1にてA/D変換処理をした後の信号値Sv1と、ステップS2の整流処理及びステップS3の包絡線検波処理を行った信号値Sv2とを示している。図16では、ステップS3の包絡線検波処理として、移動平均処理及びLPF処理を組み合わせた処理にて平滑化した信号値Sv2を例示している。図16に例示した包絡線検波処理では、LPF処理にて通過する0.5Hz以下の周波数帯のデジタル電気信号に対し、直近100のサンプルに基づく移動平均をとることにより、包絡線として信号値Sv2を導出している。包絡線検波処理として、移動平均処理及びLPF処理を組み合わせた場合であっても、要介護者が入床し、臥位となることにより、信号値Sv2の上昇が発現している。従って、適切な入床判定基準値Th2を設定することにより、要介護者の状態の判定が可能である。
 図17は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図17は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図17では、ステップS1にてA/D変換処理をした後の信号値Sv1と、ステップS2の整流処理及びステップS3の包絡線検波処理を行った信号値Sv2とを示している。図17では、ステップS3の包絡線検波処理として、BPF処理にて平滑化した信号値Sv2を例示している。図17に例示したBPF処理では、0.1~0.5Hzの周波数帯のデジタル電気信号を通過させ、当該周波数帯以外の周波数帯のデジタル電気信号を遮断している。BPF処理によって平滑化した場合であっても、要介護者が入床し、臥位となることにより、信号値Sv2の上昇が発現している。従って、適切な入床判定基準値Th2を設定することにより、要介護者の状態の判定が可能である。
 図18は、本願記載の状態判定装置2により処理される電気信号の一例を示すグラフである。図18は、横軸に時間をとり、縦軸に電圧を増幅後のデジタル電気信号の信号値をとって、ある時刻から20秒間の電気信号の推移を10msのサンプリング間隔で示している。図18では、ステップS1にてA/D変換処理をした後の信号値Sv1と、ステップS2の整流処理及びステップS3の包絡線検波処理を行った信号値Sv2とを示している。図18では、ステップS3の包絡線検波処理として、移動平均処理及びBPF処理を組み合わせた処理にて平滑化した信号値Sv2を例示している。図18に例示した包絡線検波処理では、BPF処理にて通過する0.1~0.5Hzの周波数帯のデジタル電気信号に対し、直近100のサンプルに基づく移動平均をとることにより、包絡線として信号値Sv2を導出している。包絡線検波処理として、移動平均処理及びBPF処理を組み合わせた場合であっても要介護者が入床し、臥位となることにより、信号値Sv2の上昇が発現している。従って、適切な入床判定基準値Th2を設定することにより、要介護者の状態の判定が可能である。
 以上のように、本願記載の状態判定装置2は、検出した振動に基づく電気信号を取得し、取得した電気信号に基づく包絡線から生体の存否、体位等の状態を判定することが可能である。これにより、例えば、施設に入居している要介護者の状態の判定に適用した場合で、介護者がその場に居ないときであっても、要介護者の状態を判定し、介護者に通知することができる。従って、要介護者に異常な状態が発生している可能性がある場合、介護者は、迅速に対応することが可能である等、優れた効果を奏する。
 本発明は、以上説明した実施形態に限定されるものではなく、他のいろいろな形態で実施することが可能である。そのため、かかる実施形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。更に、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 例えば、前記実施形態では、起き上がり判定基準値Th1及び入床判定基準値Th2を上回る又は下回るのみについて例示したが、本発明はこれに限るものではなく、他の判定基準値の設定、判定の方法等、適宜設定することが可能である。例えば、臥位状態、座位状態等の状態を判定するために、起き上がり判定基準値Th1、入床判定基準値Th2等の判定基準値を、ある一定の時間継続して上回る又は下回るなどの判定基準を更に設けてもよい。これにより、確実に状態変化してから判定がなされるので誤報を低減することが可能となる。
 更に、前記実施形態において、振幅増幅部11により、振動に基づくアナログ電気信号の電圧を増幅する際に、マットレスの厚み、要介護者の個体差等の変動要因に依存する振動の大きさに対して、一定の電圧振幅が出力されるように増幅度を調整させてもよい。即ち、状態判定装置2は、状態を判定する生体又は状態を判定する環境に応じて増幅率を調整することが可能である。これにより、起き上がり判定基準値Th1、入床判定基準値Th2の判定基準値を、変動要因毎に変更することなく、それぞれひとつの値とすることが可能になる。これにより、センサが設置される環境、要介護者の個体差等の変動要因に依存して判定基準値を変動させる必要がなくなる。
 また、例えば、前記実施形態では、起き上がり判定基準値Th1及び入床判定基準値Th2を変動しない基準値として例示したが、本発明はこれに限るものではなく、要介護者の動きに応じて所定期間変更させるようにしてもよい。1つの例として、ステップS1にてA/D変換処理をした後の信号値Sv1が、ある基準値を上回った後、所定期間、起き上がり判定基準値Th1を大きくする。要介護者が臥位からベッド上で起き上がり動作を行う際に大きな動きがある場合、体動による大きな動きがあった場合等の大きな動きがあった場合に、信号値Sv1は大きくなり、それにともない信号値Sv2も大きくなるため、起き上がった後に信号値Sv2が減少するのに時間を要するときがあり、起上り判定が遅れる可能性がある。このような大きな動きがあった場合に、信号値Sv1がある基準値を超えた場合、起き上がり判定基準値Th1を一定期間大きく変動させておくことにより、変動させない従来の起き上りよりも時間的に早く起上り判定をすることが可能になる。
 また、例えば、前記実施形態では、検出した振動に基づく電気信号を取得し、取得した電気信号に基づく包絡線から生体の存否、体位等の状態を判定することのみを例示したが、本発明はこれに限るものではない。心拍数、呼吸数、脈拍等の身体情報を検出する身体情報検出装置4にて検出した身体情報を状態判定に併用してもよい。1つの例として、振動検出装置1の検出に基づく包絡線からの入床判定に加え、心拍数を検出してから入床確定する。これにより、より高精度に入床状態を確定させることが可能になる。
 また、例えば、前記実施形態で示した様々な数値は、全て例示であり、サンプリング間隔、移動平均のサンプリング数、LPF、BPFにおける周波数帯、各種基準値等の数値は、実施する態様に応じて適宜設定することが可能である。
 また、例えば、前記実施形態では、臥位から起き上がって座位となる状況、及び不在状態から臥位となる状況について例示したが、本発明はこれに限るものではない。即ち、本願記載の状態判定装置2は、適宜、状態の記録及び適切な基準値を設定することにより、座位から臥位となる状況、座位から不在状態となる状況等の様々な状況に対応した状態の変化を検出することが可能である。
 また、例えば、前記実施形態では、振動検出装置1の振動検出部10をベッド上に載置して要介護者の状態を判定する形態を示したが、本発明はこれに限るものではない。例えば、車両の運転席に座っている運転者の状態を判定し、居眠り運転等の異常を防止する等、様々な形態に展開することが可能である。また、本発明において、状態を判定する生体とは、人間に限るものではなく、犬、猫等の動物に対して適用することも可能である等、様々な形態に展開することが可能である。
 また、例えば、前記実施形態では、振動検出装置1が振幅増幅部11を備え、状態判定装置2がA/D変換部22を備える形態を示しが、本発明はこれに限るものではなく、それぞれの装置の構成は適宜設計することが可能である。即ち、振動検出装置1がA/D変換処理を行った上でデジタル電気信号を出力するようにしてもよく、また、状態判定装置2にてアナログ電気信号を増幅するようにしてもよい。更には、通信装置3の出力部31に代替して、状態判定装置2の出力部26から判定結果を示す情報を出力する通報処理を行う等、適宜設計することが可能である。
 更に、前記実施形態では、ステップS2の整流処理、ステップS3の包絡線検波処理等の処理をデジタル電気信号に対するアルゴリズム処理として示したが、本発明はこれに限るものではなく、アナログ電気信号に対するアナログ電気回路による処理として実現することも可能である。即ち、本願記載の状態判定装置2は、ダイオード、抵抗器、コンデンサ等の電子素子を組み合わせてこれらの処理を実現することが可能である。その場合、ステップS1のA/D変換処理を省略することが可能である。
 ただし、ダイオード、抵抗器、コンデンサ等の電子素子を組み合わせてアナログ電気回路を構成して、整流処理、包絡線検波処理等の処理を行う場合、アルゴリズム処理では特に問題とならなかった課題が発生する。例えば、アナログ電気回路では、整流処理を行うダイオードの順方向電圧以下の電気信号に対する処理が困難な場合がある。また、振動検出部10が検出した微小な電圧変化に対する整流処理及び包絡線検波処理の精度が課題となる。更に、BPF処理、LPF処理等の包絡線検波処理は、オペアンプ等の電機部品、及び抵抗器、ダイオード、コンデンサ等の電子素子を用いたアナログ電気回路で行うことも可能であるが、フィルタ特性の向上に課題を有する。更に、アナログ電気回路では、包絡線検波処理として移動平均処理を行うことは困難な場合がある。従って、本願記載の状態判定システムにおいては、デジタル電気信号を処理する素子、回路、装置等の技術を用いて構成することで、より優れたシステムを構築することが可能である。
 更に、前記実施形態では、要介護者の状態を実時間で判定する形態を示したが、本発明は、これに限るものではない。即ち、本願記載の状態判定システムは、検出した振動に基づくデータを記録しておき、後日、記録していたデータから要介護者の状態変化を判定し、行動を解析するようにする等、様々な形態に展開することが可能である。
 1    振動検出装置
  10   振動検出部
  11   振幅増幅部
  12   出力部
 2    状態判定装置
  20   制御部
  21   入力部
  22   A/D変換部
  23   記録部
   230  状態判定プログラム
  24   記憶部
  25   操作部
  26   出力部
  27   通信部
 3    通信装置
  30   通信部
  31   出力部
 4    身体情報検出装置
 NW    通信網
 REC   記録媒体

Claims (14)

  1.  生体から生じる振動に基づく電気信号を整流し、
     整流した電気信号から包絡線を導出し、
     導出した包絡線に基づいて、生体の状態を判定する
     ことを特徴とする状態判定方法。
  2.  制御部及び記録部を含むコンピュータを備える状態判定装置であって、
     前記記録部には、
     生体から生じる振動に基づく電気信号を整流する整流手段と、
     整流した電気信号から包絡線を導出する包絡線検波手段と、
     導出した包絡線に基づいて、生体の状態を判定する判定手段と
     を前記コンピュータに実行させるためのプログラムが記録されていることを特徴とする状態判定装置。
  3.  請求項2に記載の状態判定装置であって、
     前記判定手段は、
     生体の状態として、生体の体位を判定する
     ことを特徴とする状態判定装置。
  4.  請求項3に記載の状態判定装置であって、
     前記判定手段は、
     前記包絡線検波手段が導出した包絡線が示す値と、所定の基準値との比較により、生体である人の体位を判定し、
     判定結果となる人の体位には、少なくても臥位又は座位を含む
     ことを特徴とする状態判定装置。
  5.  請求項4に記載の状態判定装置であって、
     前記所定の基準値は、
     人の入床動作を判定する入床判定基準値及び入床している人の起き上がり動作を判定する起き上がり判定基準値であり、
     前記入床判定基準値は、前記起き上がり判定基準値より大きい値が設定されている
     ことを特徴とする状態判定装置。
  6.  請求項5に記載の状態判定装置であって、
     前記判定手段は、
     包絡線が示す値が、前記入床判定基準値及び前記起き上がり判定基準値を下回る状態が所定時間以上連続する場合、不在であると判定し、
     不在であると判定した後、包絡線が示す値が、前記起き上がり判定基準値及び前記入床判定基準値を上回る状態になった場合、入床動作が行われたと判定する
     ことを特徴とする状態判定装置。
  7.  請求項6に記載の状態判定装置であって、
     前記判定手段は、
     入床動作が行われたと判定した後、包絡線が示す値が、前記起き上がり判定基準値を上回り、かつ前記入床判定基準値を下回る場合、人の体位が臥位であると判定し、
     臥位であると判定した後、包絡線が示す値が、前記起き上がり判定基準値を下回る場合に、人の体位が座位であると判定する
     ことを特徴とする状態判定装置。
  8.  請求項2乃至請求項7のいずれか1項に記載の状態判定装置であって、
     前記包絡線検波手段は、
     所定の周波数帯の電気信号を通過させることにより、包絡線を導出する
     ことを特徴とする状態判定装置。
  9.  請求項2乃至請求項8のいずれか1項に記載の状態判定装置であって、
     前記包絡線検波手段は、
     電気信号の移動平均をとることにより、包絡線を導出する
     ことを特徴とする状態判定装置。
  10.  請求項2乃至請求項9のいずれか1項に記載の状態判定装置であって、
     振動に基づくアナログ信号として取得した電気信号をデジタル電気信号に変換するA/D変換部を備え、
     前記整流手段は、
     デジタル電気信号に変換された電気信号を整流する
     ことを特徴とする状態判定装置。
  11.  振動を検出する検出部及び検出した振動に基づく電気信号を出力する出力部を有する振動検出装置と、
     請求項2乃至請求項10のいずれか1項に記載の状態判定装置と
     を備え、
     前記状態判定装置は、前記振動検出装置から出力された電気信号の入力を受け付ける入力部を備え、
     前記入力部にて入力を受け付けた電気信号に基づいて、生体の状態を判定する
     ことを特徴とする状態判定システム。
  12.  請求項11に記載の状態判定システムであって、
     前記振動検出装置の検出部は、シート状をなす
     ことを特徴とする状態判定システム。
  13.  検出した振動に基づく電気信号を取得したコンピュータに、生体の状態を判定させる状態判定プログラムであって、
     コンピュータに、
     振動に基づく電気信号を整流するステップと、
     整流した電気信号から包絡線を導出するステップと、
     導出した包絡線に基づいて、生体の状態を判定するステップと
     を実行させることを特徴とする状態判定プログラム。
  14.  検出した振動に基づく電気信号を取得したコンピュータに、生体の状態を判定させる状態判定プログラムを記録してある記録媒体であって、
     コンピュータに、
     振動に基づく電気信号を整流するステップと、
     整流した電気信号から包絡線を導出するステップと、
     導出した包絡線に基づいて、生体の状態を判定するステップと
     を実行させる状態判定プログラムを記録してあることを特徴とする記録媒体。
PCT/JP2020/044891 2019-12-04 2020-12-02 状態判定方法、状態判定装置、状態判定システム、状態判定プログラム及び記録媒体 WO2021112131A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227018001A KR20220111261A (ko) 2019-12-04 2020-12-02 상태 판정 방법, 상태 판정 장치, 상태 판정 시스템, 상태 판정 프로그램 및 기록 매체
CN202080083284.9A CN114760917A (zh) 2019-12-04 2020-12-02 状态判定方法、状态判定装置、状态判定系统、状态判定程序以及记录介质
EP20895329.9A EP4070724A4 (en) 2019-12-04 2020-12-02 STATE DETERMINATION METHOD, STATE DETERMINATION DEVICE, STATE DETERMINATION SYSTEM, STATE DETERMINATION PROGRAM, AND RECORDING MEDIUM
US17/781,835 US20230000394A1 (en) 2019-12-04 2020-12-02 State determination method, state determination device, state determination system, and recording medium
JP2021501057A JPWO2021112131A1 (ja) 2019-12-04 2020-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019219768 2019-12-04
JP2019-219768 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021112131A1 true WO2021112131A1 (ja) 2021-06-10

Family

ID=76221681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044891 WO2021112131A1 (ja) 2019-12-04 2020-12-02 状態判定方法、状態判定装置、状態判定システム、状態判定プログラム及び記録媒体

Country Status (7)

Country Link
US (1) US20230000394A1 (ja)
EP (1) EP4070724A4 (ja)
JP (1) JPWO2021112131A1 (ja)
KR (1) KR20220111261A (ja)
CN (1) CN114760917A (ja)
TW (1) TW202129605A (ja)
WO (1) WO2021112131A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048132A1 (ja) 2021-09-22 2023-03-30 積水化学工業株式会社 判定システム、判定方法、判定装置及び判定プログラム
WO2024070878A1 (ja) * 2022-09-29 2024-04-04 積水化学工業株式会社 情報処理システム、情報処理装置、制御方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533281A (ja) * 2001-03-12 2004-11-04 ユニバーシティ オブ ストラスクライド 活動モニター
JP2008110031A (ja) * 2006-10-30 2008-05-15 Aisin Seiki Co Ltd 寝姿勢判定装置
JP2015154926A (ja) 2014-01-17 2015-08-27 積水化学工業株式会社 生体検出システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4342298B2 (ja) * 2003-12-26 2009-10-14 株式会社山武 機器利用状況判定方法及び機器利用状況判定装置
JP6311215B2 (ja) * 2012-03-01 2018-04-18 ヘルスセンシング株式会社 人存在不在検出方法及び人存在不在検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533281A (ja) * 2001-03-12 2004-11-04 ユニバーシティ オブ ストラスクライド 活動モニター
JP2008110031A (ja) * 2006-10-30 2008-05-15 Aisin Seiki Co Ltd 寝姿勢判定装置
JP2015154926A (ja) 2014-01-17 2015-08-27 積水化学工業株式会社 生体検出システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4070724A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048132A1 (ja) 2021-09-22 2023-03-30 積水化学工業株式会社 判定システム、判定方法、判定装置及び判定プログラム
WO2024070878A1 (ja) * 2022-09-29 2024-04-04 積水化学工業株式会社 情報処理システム、情報処理装置、制御方法、およびプログラム

Also Published As

Publication number Publication date
CN114760917A (zh) 2022-07-15
EP4070724A1 (en) 2022-10-12
TW202129605A (zh) 2021-08-01
JPWO2021112131A1 (ja) 2021-06-10
EP4070724A4 (en) 2023-12-13
US20230000394A1 (en) 2023-01-05
KR20220111261A (ko) 2022-08-09

Similar Documents

Publication Publication Date Title
TWI604405B (zh) 病患監控系統
WO2021112131A1 (ja) 状態判定方法、状態判定装置、状態判定システム、状態判定プログラム及び記録媒体
WO2016108582A1 (ko) 스마트 침대 시스템 및 제어 방법
EP3603492B1 (en) Systems for patient turn detection and confirmation
JP2806214B2 (ja) 就寝装置
JP5202469B2 (ja) 監視支援装置、システム及び監視支援方法
US20230381039A1 (en) Information providing device
JP4342298B2 (ja) 機器利用状況判定方法及び機器利用状況判定装置
JP2004130012A (ja) 生体信号強度測定方法、並びに就寝状態判定方法及び就寝状態監視装置
US11213444B2 (en) On-bed state monitoring system
JP3491350B2 (ja) 就寝装置
JP6706536B2 (ja) 使用者位置検出装置及び方法
US20210327244A1 (en) Assistance control method and assistance system
WO2016186067A1 (ja) 使用者位置検出装置及び方法
JP2021003563A (ja) ベッドシステム
WO2023048132A1 (ja) 判定システム、判定方法、判定装置及び判定プログラム
JP6790196B2 (ja) 見守りシステム
JP2020052808A (ja) 見守り装置、見守りシステム、見守りプログラム、および見守り方法
JP7447599B2 (ja) 支援システム、支援方法およびプログラム
JP7320241B2 (ja) 情報処理装置、褥瘡リスク評価方法及び褥瘡リスク評価プログラム
JP6843927B2 (ja) 異常通報システム
JPWO2020171109A5 (ja)
JP6757642B2 (ja) ベッドシステム
KR20240065073A (ko) 판정 시스템, 판정 방법, 판정 장치 및 판정 프로그램
JP2013183812A (ja) 離床判定装置及び離床判定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021501057

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020895329

Country of ref document: EP

Effective date: 20220704