WO2021112069A1 - 連続繊維補強材、連続繊維補強材の製造方法及びコンクリート構造物 - Google Patents

連続繊維補強材、連続繊維補強材の製造方法及びコンクリート構造物 Download PDF

Info

Publication number
WO2021112069A1
WO2021112069A1 PCT/JP2020/044636 JP2020044636W WO2021112069A1 WO 2021112069 A1 WO2021112069 A1 WO 2021112069A1 JP 2020044636 W JP2020044636 W JP 2020044636W WO 2021112069 A1 WO2021112069 A1 WO 2021112069A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous fiber
reinforcing material
coating layer
core material
fiber reinforcing
Prior art date
Application number
PCT/JP2020/044636
Other languages
English (en)
French (fr)
Inventor
寛哲 西岡
菅原 宏
秀昭 竹崎
洋平 野上
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2021562647A priority Critical patent/JPWO2021112069A1/ja
Publication of WO2021112069A1 publication Critical patent/WO2021112069A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal

Definitions

  • the present invention relates to a continuous fiber reinforcing material including a core material and a coating layer.
  • the present invention also relates to a method for producing the continuous fiber reinforcing material.
  • the present invention also relates to a concrete structure using the continuous fiber reinforcing material.
  • a concrete structure in which reinforcing bars or continuous fiber reinforcing materials are embedded in concrete is widely known.
  • the continuous fiber reinforcing material is generally produced by impregnating fibers such as glass fibers with a resin.
  • the continuous fiber reinforcing material is lighter in weight than the reinforcing bar, and is excellent in corrosion resistance and workability.
  • Patent Document 1 discloses a method for producing a reinforcing material for concrete in which a glass fiber bundle impregnated with a thermosetting resin is coated with a sheath fiber impregnated with a thermosetting resin.
  • the sheath fiber is an alkali durable fiber.
  • the concrete reinforcing material has a core-sheath structure.
  • Patent Document 2 discloses a fiber-reinforced plastic rod in which the surface of a continuous long fiber bundle oriented in the longitudinal direction is covered with a fiber mat in which short fibers are dispersed and distributed in an arbitrary direction.
  • the plastic rod has a spiral groove on its surface.
  • Patent Document 3 discloses an FRP rock bolt in which an aggregate of glass fibers and / or aramid fibers is impregnated with a thermosetting resin and is thermoset.
  • the lock bolt has an uneven shape at predetermined intervals on the outer peripheral surface.
  • the surface of the lock bolt is covered with a heat-shrinkable tube made of polypropylene or polyethylene.
  • Patent Document 4 discloses a reinforcing bar made of a resin-impregnated fiber composite disposed inside concrete in order to reinforce a concrete structure.
  • the outer periphery of the fiber-reinforced bar material in which the resin-impregnated fiber is formed into a rod shape is covered with a resin layer.
  • the resin in the resin layer has compatibility with the resin in the resin-impregnated fiber. Concavities and convexities are formed on the outer periphery of the resin layer in the longitudinal direction.
  • the continuous fiber reinforcing material has lower adhesion to concrete than the reinforcing bar.
  • a continuous fiber reinforcing material having irregularities on the outer surface has been used.
  • the inside of concrete is an alkaline environment.
  • the conventional continuous fiber reinforcing material may have low alkali resistance, and as a result, the alkaline component permeates into the continuous fiber reinforcing material, and the strength of the continuous fiber reinforcing material tends to decrease.
  • the permeation of the alkaline component into the continuous fiber reinforcing material can be suppressed to some extent, so that the alkali resistance can be improved to some extent. it can.
  • a continuous fiber reinforcing material having a resin layer on the outer surface it is difficult to improve the adhesiveness to concrete even when unevenness is formed on the resin layer.
  • the core material comprises a core material and a coating layer for coating the outer surface of the core material, and the core material contains a cured product of a thermosetting resin and reinforcing fibers, and the coating material is provided.
  • the layer contains a cured product of a thermosetting resin and an inorganic filler having an average particle size of 1 ⁇ m or more and 100 ⁇ m or less and a moth hardness of 3 or more and 10 or less, and the inorganic filler in 100% by weight of the coating layer.
  • a continuous fiber reinforcing material having a material content of 25% by weight or more and 80% by weight or less is provided.
  • the inorganic filler is silicon carbide, nitrogen carbide, alumina, aluminum hydroxide, calcium carbonate, silica, or fly ash.
  • the cured product of the thermosetting resin contained in the coating layer is a cured product of an epoxy resin, a cured product of a vinyl ester resin, or an unsaturated polyester resin. It is a cured product.
  • the coating layer has a concave portion and a convex portion, and the average value of the thickness of the concave portion is 0.1 mm or more, and the thickness of the convex portion.
  • the difference Z between the average value of the above and the average value of the thickness of the recess is 0.1 mm or more and 2.0 mm or less.
  • the coating layer has concave portions and convex portions, and the bearing area coefficient obtained by the following formula (1) is 0.03 or more and 0.15. It is as follows.
  • Supporting area coefficient [(Y ⁇ M) / (P ⁇ N)] ⁇ ⁇ ⁇ Equation (1)
  • the outer surface of the core material has a rough surface structure.
  • the outer surface of the core material has a rough surface structure, and the arithmetic mean roughness of the outer surface of the core material is smaller than the difference Z.
  • the arithmetic mean roughness of the outer surface of the core material is 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the reinforcing fiber is a glass fiber, a carbon fiber, an aramid fiber, or a basalt fiber.
  • the cured product of the thermosetting resin contained in the core material is a cured product of an epoxy resin, a cured product of a vinyl ester resin, or an unsaturated polyester resin. It is a cured product.
  • the content of the reinforcing fiber is 30% by volume or more and 80% by volume or less in 100% by volume of the core material.
  • a step of impregnating a reinforcing fiber with a thermosetting resin and then curing the reinforcing fiber to obtain a core material, and a step of obtaining the core material A step of blasting the outer surface to obtain a core material having a rough surface structure on the outer surface, and a thermosetting resin and an inorganic filler on the outer surface of the core material having a rough surface structure on the outer surface.
  • a method for producing a continuous fiber reinforcing material which comprises a step of arranging a material for a coating layer containing the coating layer and then curing the material to obtain a continuous fiber reinforcing material.
  • a concrete structure comprising concrete and the above-mentioned continuous fiber reinforcing material embedded in the concrete.
  • the continuous fiber reinforcing material according to the present invention includes a core material and a coating layer that covers the outer surface of the core material.
  • the core material contains a cured product of a thermosetting resin and a reinforcing fiber
  • the coating layer is a cured product of a thermosetting resin and has an average particle diameter of 1 ⁇ m or more.
  • the content of the inorganic filler in 100% by weight of the coating layer is 25% by weight or more and 80% by weight or less, including an inorganic filler having a thickness of 100 ⁇ m or less and a Morse hardness of 3 or more and 10 or less. Since the continuous fiber reinforcing material according to the present invention has the above-mentioned structure, it is possible to increase the adhesive force with concrete and the alkali resistance.
  • 1A and 1B are cross-sectional views schematically showing a continuous fiber reinforcing material according to an embodiment of the present invention.
  • 2 (a) and 2 (b) are photographs of the continuous fiber reinforcing material included in the present invention.
  • the continuous fiber reinforcing material according to the present invention includes a core material and a coating layer that covers the outer surface of the core material.
  • the coating layer covers at least a part of the outer surface of the core material.
  • the core material contains a cured product of a thermosetting resin and reinforcing fibers
  • the coating layer is a cured product of a thermosetting resin and has an average particle diameter of 1 ⁇ m or more.
  • the content of the inorganic filler is 25% by weight or more and 80% by weight or less in 100% by weight of the coating layer.
  • the continuous fiber reinforcing material according to the present invention has the above-mentioned structure, it is possible to increase the adhesive force with concrete and the alkali resistance.
  • a conventional continuous fiber reinforcing material having a resin layer (coating layer) on the outer surface can improve alkali resistance to some extent, but it is difficult to improve adhesion to concrete. Further, even if the resin layer has an uneven shape, it is difficult to sufficiently improve the adhesiveness with concrete. Further, in the conventional continuous fiber reinforcing material having a resin layer on the outer surface, the strength of the resin layer is low, and the continuous fiber reinforcing material may be deformed or damaged.
  • the present inventor has difficulty in increasing both the adhesive force to concrete and the alkali resistance because the strength of the resin layer is low. I found that. The present inventor has found that there is a relationship between the strength of the outer surface of the continuous fiber reinforcing material and the adhesiveness to concrete.
  • the continuous fiber reinforcing material according to the present invention includes a specific coating layer, the strength of the coating layer can be increased, and as a result, the adhesive force with concrete can be increased. Further, since the continuous fiber reinforcing material according to the present invention is provided with a specific coating layer, alkali resistance can be enhanced. Further, in the continuous fiber reinforcing material according to the present invention, the alkali resistance can be increased and the strength of the coating layer can be increased, so that the strength of the continuous fiber reinforcing material can be increased and the high strength can be maintained for a long period of time. Can be maintained.
  • FIG. 1 (a) and 1 (b) are cross-sectional views schematically showing a continuous fiber reinforcing material according to an embodiment of the present invention.
  • FIG. 1 (b) is a diagram along the line I-I of FIG. 1 (a).
  • the continuous fiber reinforcing material 1 includes a core material 2 and a coating layer 3.
  • the core material 2 has a columnar shape.
  • the coating layer 3 covers the outer surface of the core material 2.
  • the coating layer 3 is arranged on the outer surface of the core material 2.
  • the coating layer 3 covers the outer peripheral surface of the core material 2.
  • the coating layer 3 has a concave portion 3a and a convex portion 3b.
  • the concave portion 3a and the convex portion 3b each extend in the circumferential direction of the core material 2.
  • the concave portion 3a and the convex portion 3b are each provided in an annular shape.
  • the unevenness, that is, the concave portion 3a and the convex portion 3b, are periodically provided in the axial direction of the continuous fiber reinforcing material 1, respectively.
  • the convex portion 3b has a shape that tapers as the distance from the core material 2 increases.
  • the average value (average thickness) of the thickness of the coating layer 3 is preferably 0.15 mm or more, more preferably 0.45 mm or more, preferably 2.0 mm or less, and more preferably 1.3 mm or less.
  • the average value of the thickness of the coating layer 3 is at least the above lower limit, the adhesive force with concrete can be further enhanced, and the alkali resistance can be further enhanced.
  • the average value of the thickness of the coating layer 3 is not more than the above upper limit, the manufacturing cost of the continuous fiber reinforcing material can be suppressed.
  • the average value (average thickness) X of the thickness of the recess 3a is preferably 0.1 mm or more, more preferably 0.3 mm or more, preferably 1.0 mm or less, and more preferably 0.7 mm or less.
  • the adhesive force with concrete can be further enhanced, and the alkali resistance can be further enhanced.
  • the average value X of the thicknesses of the recesses 3a is not more than the above upper limit, the manufacturing cost of the continuous fiber reinforcing material can be suppressed.
  • the average value (average thickness) Y of the thickness of the convex portion 3b is preferably 0.2 mm or more, more preferably 0.6 mm or more, preferably 3.0 mm or less, and more preferably 1.9 mm or less.
  • the adhesive force with concrete can be further enhanced, and the alkali resistance can be further enhanced.
  • the manufacturing cost of the continuous fiber reinforcing material can be suppressed.
  • the difference Z (absolute value of the difference) between the average value Y of the thickness of the convex portion 3b and the average value X of the thickness of the concave portion 3a is preferably 0.1 mm or more, more preferably 0.3 mm or more, and preferably 0.3 mm or more. It is 2.0 mm or less, more preferably 1.2 mm or less.
  • the difference Z is not less than the above lower limit and not more than the above upper limit, the adhesive force with the concrete can be further increased.
  • the average value X of the thicknesses of the recesses 3a of the coating layer 3 is preferably a value obtained by measuring the thicknesses of five or more recesses 3a and averaging the thicknesses thereof.
  • the average value Y of the thicknesses of the convex portions 3b of the coating layer 3 is preferably a value obtained by measuring the thicknesses of five or more convex portions 3b and averaging the thicknesses thereof.
  • the period P of the unevenness in the axial direction of the continuous fiber reinforcing material is preferably 2 mm or more, more preferably 3 mm or more, preferably 20 mm or less, and more preferably 15 mm or less.
  • the adhesive force with concrete can be further increased.
  • the period P of the unevenness is preferably obtained from the period of the convex portion 3a.
  • the period P of the convex portion 3a in the axial direction of the continuous fiber reinforcing material is preferably 2 mm or more, more preferably 3 mm or more, preferably 20 mm or less, and more preferably 15 mm or less.
  • the period P of the unevenness is preferably a value obtained by measuring each interval (5 or more) of the convex portions 3a from 6 or more convex portions 3a and averaging the intervals.
  • the bearing area coefficient obtained by the following formula (1) of the continuous fiber reinforcing material is preferably 0.03 or more, more preferably 0.05 or more. It is preferably 0.15 or less, more preferably 0.13 or less.
  • Supporting area coefficient [(Y ⁇ M) / (P ⁇ N)] ⁇ ⁇ ⁇ Equation (1)
  • the average value M of the outer peripheral lengths of the convex portions of the coating layer is a value obtained by measuring the outer peripheral lengths of three or more convex portions and averaging the outer peripheral lengths thereof.
  • the average value N of the outer peripheral length of the continuous fiber reinforcing material is an average value of the outer peripheral length of the continuous fiber reinforcing material in which the convex portion and the concave portion of the coating layer are put together.
  • the coating layer preferably has concave portions and convex portions.
  • the coating layer preferably has irregularities.
  • the coating layer does not have to have a concave portion and a convex portion.
  • the coating layer does not have to have irregularities.
  • the concave portion or the convex portion may be provided in an annular shape, may be provided in a shape other than the annular shape, or may be provided in an annular shape. , May be provided in a shape other than the annular shape.
  • the concave portion or the convex portion may be provided in a spiral shape.
  • the shape of the concave portion and the convex portion is not particularly limited.
  • the convex portion may have a shape that tapers as it is separated from the core material, or may have a shape that tapers. Further, the convex portion does not have to have a tapered shape and a tapered shape.
  • the concave portion and the convex portion may be provided periodically or irregularly.
  • the shape of the core material is not particularly limited.
  • the shape of the core material may be columnar or polygonal. Further, the core material itself may have a concave portion and a convex portion.
  • the outer surface of the core material preferably has a rough surface structure.
  • the rough surface structure is, for example, a structure having a plurality of convex portions or a plurality of concave portions.
  • the adhesive strength between the core material and the coating layer can be increased as compared with the case where the core material does not have a rough surface structure.
  • the outer surface of the core material has a rough surface structure, interfacial peeling between the core material and the coating layer can be effectively prevented. Therefore, even when the continuous fiber reinforcing material is embedded in concrete for a long period of time, the core material can be protected. As a result, the effects of the present invention can be effectively exerted over a long period of time.
  • the outer surface of the core material preferably has a rough surface structure by blasting.
  • the outer surface of the core material is preferably a blasted surface. Since the rough surface structure can be effectively formed on the outer surface of the core material by the blasting treatment, the adhesive strength between the core material and the coating layer can be increased. As a result, the effects of the present invention can be effectively exerted over a long period of time.
  • the arithmetic mean roughness (Ra) of the outer surface of the core material is preferably smaller than the difference Z (the difference between the average value Y of the thickness of the convex portion of the coating layer and the average value X of the thickness of the concave portion). ..
  • the arithmetic mean roughness (Ra) of the outer surface of the core material is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 50 ⁇ m or less, and more preferably 10 ⁇ m or less. In this case, the adhesive strength between the core material and the coating layer can be further increased. As a result, the effects of the present invention can be effectively exerted over a long period of time.
  • the arithmetic mean roughness of the outer surface of the core material is measured according to JIS B0633: 2001.
  • the continuous fiber reinforcing material may or may not have the coating layer on the end face in the axial direction.
  • the core material may or may not be exposed at the end face in the axial direction.
  • the coating layer preferably covers at least the outer surface other than the axial end face of the core material, and more preferably covers the entire outer surface of the core material. ..
  • the core material contains reinforcing fibers. Only one type of the reinforcing fiber may be used, or two or more types may be used in combination.
  • Examples of the reinforcing fiber include glass fiber, carbon fiber, aramid fiber, and basalt fiber.
  • the reinforcing fiber is preferably glass fiber, carbon fiber, aramid fiber, or basalt fiber, and more preferably glass fiber or basalt fiber.
  • the reinforcing fiber since the alkali resistance is low, the reinforcing fiber tends to deteriorate, and as a result, the strength of the continuous fiber reinforcing material tends to decrease with time.
  • the strength of the continuous fiber reinforcing material can be maintained high.
  • the reinforcing fiber is preferably a roved fiber (reinforcing fiber bundle).
  • the reinforcing fibers are preferably oriented along the axial direction of the continuous fiber reinforcing material. It is preferable that the reinforcing fibers are aligned in the axial direction of the continuous fiber reinforcing material.
  • the content of the reinforcing fiber in 100% by volume of the core material is preferably 30% by volume or more, more preferably 50% by volume or more, preferably 80% by volume or less, and more preferably 75% by volume or less.
  • the strength of the continuous fiber reinforcing material can be further increased.
  • the core material contains a cured product of a thermosetting resin.
  • the coating layer contains a cured product of a thermosetting resin.
  • As the cured product of the thermosetting resin contained in the core material and the coating layer only one type may be used, or two or more types may be used in combination.
  • the cured product of the thermosetting resin contained in the core material and the cured product of the thermosetting resin contained in the coating layer may be the same or different.
  • thermosetting resin examples include epoxy resin, vinyl ester resin, unsaturated polyester resin, and the like.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy resin.
  • examples thereof include an epoxy resin having a skeleton.
  • vinyl ester resin examples include bis-based vinyl ester resin and novolac-based vinyl ester resin.
  • Examples of the unsaturated polyester resin include resins obtained by polycondensation of ⁇ , ⁇ -unsaturated dicarboxylic acid or its acid anhydride and glycols.
  • the thermosetting resin contained in the core material is preferably an epoxy resin, a vinyl ester resin, or an unsaturated polyester resin.
  • the cured product of the thermosetting resin contained in the core material is a cured product of an epoxy resin, a cured product of a vinyl ester resin, or a cured product of an unsaturated polyester resin. Is preferable.
  • the thermosetting resin contained in the material of the coating layer shall be an epoxy resin, a vinyl ester resin, or an unsaturated polyester resin. Is preferable, and an epoxy resin is more preferable.
  • the cured product of the thermosetting resin contained in the coating layer is a cured product of an epoxy resin, a cured product of a vinyl ester resin, or a cured product. It is preferably a cured product of an unsaturated polyester resin, and more preferably a cured product of an epoxy resin.
  • the alkali resistance can be further increased, so that the strength of the continuous fiber reinforcing material decreases with time. Can be effectively suppressed.
  • the content of the cured product of the thermosetting resin (content of the cured product of the thermosetting resin contained in the core material) in 100% by volume of the core material is preferably 20% by volume or more, more preferably 25. It is 5% by volume or more, preferably 70% by volume or less, and more preferably 45% by volume or less.
  • the strength of the continuous fiber reinforcing material can be further increased.
  • the content of the cured product of the thermosetting resin (content of the cured product of the thermosetting resin contained in the coating layer) in 100% by weight of the coating layer is preferably 20% by weight or more, more preferably 30. It is 0% by weight or more, preferably 80% by weight or less, and more preferably 70% by weight or less.
  • the content of the cured product of the thermosetting resin is at least the above lower limit and at least the above upper limit, the adhesive force with concrete can be further enhanced, and the alkali resistance can be further enhanced.
  • the coating layer contains an inorganic filler having an average particle size of 1 ⁇ m or more and 100 ⁇ m or less and a Mohs hardness of 3 or more and 10 or less (hereinafter, may be referred to as “inorganic filler X”).
  • inorganic filler X As the inorganic filler X, only one kind may be used, or two or more kinds may be used in combination.
  • the average particle size of the inorganic filler X is 1 ⁇ m or more and 100 ⁇ m or less from the viewpoint of increasing the adhesive force with concrete and increasing the alkali resistance.
  • the average particle size of the inorganic filler X is preferably 5 ⁇ m or more, and preferably 50 ⁇ m or less.
  • the average particle size of the inorganic filler X indicates a number average particle size.
  • the average particle size of the inorganic filler X can be obtained, for example, by performing a laser diffraction type particle size distribution measurement.
  • the Mohs hardness of the inorganic filler X is 3 or more and 10 or less from the viewpoint of increasing the adhesive force with concrete and increasing the alkali resistance.
  • the Mohs hardness of the inorganic filler X is preferably 4 or more.
  • Examples of the inorganic filler X include silicon carbide, nitrogen carbide, alumina, aluminum hydroxide, calcium carbonate, silica, fly ash, and carbon black.
  • the inorganic filler X is silicon carbide, nitrogen carbide, alumina, aluminum hydroxide, calcium carbonate, silica, or fly ash. It is preferable, and silicon carbide or alumina is more preferable. Further, by using these preferable inorganic fillers X, the dispersity of the inorganic fillers X in the coating layer can be further increased.
  • the content of the inorganic filler X in 100% by weight of the coating layer is 25% by weight or more and 80% by weight or less. If the content of the inorganic filler X is less than 25% by weight, the adhesive force with concrete may decrease. If the content of the inorganic filler X exceeds 80% by weight, the alkali resistance may decrease.
  • the content of the inorganic filler X in 100% by weight of the coating layer is preferably 30% by weight or more, preferably 75% by weight or less, and more preferably 70% by weight or less.
  • the adhesive force with the concrete can be further increased.
  • the content of the inorganic filler X is not more than the above upper limit, the alkali resistance can be further enhanced.
  • the core material and the coating layer may each contain various additives, if necessary.
  • the additives include compatibilizers, stabilizers, stabilizers, lubricants, processing aids, heat improvers, antioxidants, ultraviolet absorbers, light stabilizers, pigments and plasticizers. Only one kind of the above-mentioned additive may be used, or two or more kinds thereof may be used in combination.
  • the maximum diameter of the continuous fiber reinforcing material may be, for example, 5 mm or more, or 60 mm or less.
  • the method for producing the continuous fiber reinforcing material preferably includes the following steps (1) and (3), and more preferably includes steps (1), steps (2), and steps (3).
  • a core material corresponding to the shape of the first mold can be obtained.
  • the obtained core material contains a cured product of a thermosetting resin and reinforcing fibers.
  • a coating layer containing a thermosetting resin and an inorganic filler X on the outer surface of the core material (the core material having a rough surface structure on the outer surface when the step (2) above is performed).
  • the material of the coating layer containing the thermosetting resin and the inorganic filler X it is sandwiched between the second molds and heated to form the coating layer on the outer surface of the core material.
  • the obtained coating layer contains a cured product of a thermosetting resin and an inorganic filler X.
  • the continuous fiber reinforcing material is preferably used by being embedded in concrete.
  • the continuous fiber reinforcing material contains the continuous fiber reinforcing material and concrete, and is suitably used for obtaining a concrete structure in which the continuous fiber reinforcing material is embedded in the concrete.
  • the continuous fiber reinforcing material can also be used in applications where it is buried in concrete and is not used.
  • a concrete structure can be obtained by burying the above-mentioned continuous fiber reinforcing material in concrete.
  • the concrete structure according to the present invention includes concrete and the continuous fiber reinforcing material embedded in the concrete.
  • a part of the continuous fiber reinforcing material may be embedded in the concrete, or the whole of the continuous fiber reinforcing material may be embedded in the concrete.
  • thermosetting resin Unsaturated polyester resin (manufactured by Yupika) Epoxy resin (manufactured by Mitsubishi Chemical Corporation) Vinyl ester resin (manufactured by Showa Denko)
  • Silicon Carbide A (Average particle size 5.5 ⁇ m, Mohs hardness 10, manufactured by Shinano Electric Smelter Co., Ltd.) Alumina A (average particle size 5.3 ⁇ m, Mohs hardness 8, manufactured by Sumitomo Chemical Co., Ltd.) Alumina B (average particle size 100 ⁇ m, Mohs hardness 8, manufactured by Sumitomo Chemical Co., Ltd.) Alumina C (average particle size 120 ⁇ m, Mohs hardness 8, manufactured by Sumitomo Chemical Co., Ltd.) Fly ash (average particle size 20 ⁇ m, Mohs hardness 3, manufactured by Shikoku Kasei Kogyo Co., Ltd.) Aluminum hydroxide (average particle size 10 ⁇ m, Mohs hardness 3, manufactured by Sumitomo Chemical Co., Ltd.) Calcium carbonate (average particle size 10 ⁇ m, Mohs hardness 3, manufactured by Maruo Calcium) Talc (average particle size 10 ⁇ m, Mohs hardness 1, manufactured by
  • Example 1 The roved glass fiber was impregnated with an unsaturated polyester resin and then drawn into a drawing die ( ⁇ (diameter) 12) and cured to obtain a cylindrical core material having a diameter of 12 mm.
  • the obtained core material contains 60% by volume of glass fiber in 100% by volume of the core material.
  • an epoxy resin, a curing agent and silicon carbide A were mixed to obtain a material for a coating layer.
  • the material of the coating layer is placed on the outer peripheral surface of the obtained core material, sandwiched and heated by a second mold having an uneven shape, and has an axial length of 1000 mm, and the outer surface of the core material.
  • the material of the coating layer was applied to the surface of the exposed core material and cured to obtain a continuous fiber reinforcing material in which the entire outer surface of the core material was covered with the coating layer.
  • the core material is not exposed on the axial end face of the obtained continuous fiber reinforcing material, and the area of the portion covered by the coating layer is 100% of the area of the outer surface of the core material of 100%. is there.
  • the average value X of the thickness of the concave portion of the coating layer in the obtained continuous fiber reinforcing material is 0.5 mm
  • the difference Z between the average value Y of the thickness of the convex portion and the average value X of the thickness of the concave portion is 1. It is 0 mm.
  • Examples 2 to 9 and Comparative Examples 1 to 4 The composition of the coating layer and the difference Z between the average value X of the concave portion thickness of the continuous fiber reinforcing material and the average value X of the concave portion thickness and the average value Y of the convex portion thickness were changed as shown in Tables 1 to 3.
  • a continuous fiber reinforcing material was obtained in the same manner as in Example 1 except for the above.
  • FIGS. 2A and 2B are photographs of the continuous fiber reinforcing material included in the present invention. Specifically, FIGS. 2A and 2B are photographs of the continuous fiber reinforcing material produced in Example 1.
  • Example 10 Except for the composition of the coating layer and the difference Z between the average value X of the concave portion thickness of the continuous fiber reinforcing material and the average value X of the concave portion thickness and the average value Y of the convex portion thickness as shown in Table 4. , A continuous fiber reinforcing material was obtained in the same manner as in Example 1.
  • Example 11 to 14 A continuous fiber reinforcing material was obtained in the same manner as in Example 10 except that the obtained core material was blasted to obtain a core material having a rough surface structure on the outer surface. In Examples 11 to 14, the conditions of the blast treatment were changed.
  • Adhesive strength (tensile load)
  • One end of the continuous fiber reinforcing material having an axial length of 1000 mm was fixed using a mold having a 60 mm type unevenness. Further, a static leavening agent was injected into a steel pipe of 25 A 300 mm and fixed to the other end.
  • a pull-out test of the fixed continuous fiber reinforcing material was carried out using a center hole jack, and the tensile load when the continuous fiber reinforcing material fixed by the 60 mm mold was broken was measured.
  • Example 10 since the arithmetic mean roughness of the surface of the core material was small, the adhesive strength with the coating layer was low, and it was confirmed that the adhesive strength tended to be lower than in Examples 11 to 14. On the other hand, in Example 11, although the arithmetic mean roughness of the surface of the core material was large and the adhesiveness was excellent, the glass fibers on the surface of the core material were broken, and it was confirmed that the tensile strength tended to decrease. .. However, in Examples 10 and 11, the effect of the present invention was superior to that in Comparative Examples 1 to 5.
  • the continuous fiber reinforcing materials obtained in Examples 12 to 14 do not have the above-mentioned performance deterioration as compared with the continuous fiber reinforcing materials obtained in Examples 10 and 11, and the adhesive force to concrete and the tensile strength are improved. Are better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

コンクリートとの付着力を高めることができ、かつ耐アルカリ性を高めることができる連続繊維補強材を提供する。 本発明に係る連続繊維補強材は、芯材と、前記芯材の外表面を被覆する被覆層とを備え、前記芯材が、熱硬化性樹脂の硬化物と、補強繊維とを含み、前記被覆層が、熱硬化性樹脂の硬化物と、平均粒子径が1μm以上100μm以下でありかつモース硬度が3以上10以下である無機充填材とを含み、前記被覆層100重量%中、前記無機充填材の含有量が、25重量%以上80重量%以下である。

Description

連続繊維補強材、連続繊維補強材の製造方法及びコンクリート構造物
 本発明は、芯材と被覆層とを備える連続繊維補強材に関する。また、本発明は、上記連続繊維補強材の製造方法に関する。また、本発明は、上記連続繊維補強材を用いたコンクリート構造物に関する。
 コンクリート中に鉄筋又は連続繊維補強材が埋め込まれたコンクリート構造物が広く知られている。上記連続繊維補強材は、一般的に、ガラス繊維等の繊維に、樹脂を含浸させて製造される。上記連続繊維補強材は、鉄筋と比べて、軽量であり、かつ耐腐食性及び施工性に優れる。
 下記の特許文献1には、熱硬化性樹脂が含浸されたガラス繊維束が、熱硬化性樹脂が含浸された鞘繊維により被覆されたコンクリート用補強材の製造方法が開示されている。上記鞘繊維は、アルカリ耐久性繊維である。上記コンクリート用補強材は、芯鞘構造を有する。
 下記の特許文献2には、長手方向に配向された連続長繊維束の表面が、短繊維が任意方向に分散分布している繊維マットにより被覆された繊維強化プラスチック製ロッドが開示されている。上記プラスチック製ロッドは、表面に螺旋溝を有する。
 下記の特許文献3には、硝子繊維及び/又はアラミド繊維の集合体に、熱硬化樹脂を含ませ、かつ熱硬化させたFRP製ロックボルトが開示されている。上記ロックボルトは、外周面に所定間隔の凹凸形状を有する。上記ロックボルトの表面は、ポリプロピレン又はポリエチレンの熱収縮チューブにより被覆されている。
 下記の特許文献4には、コンクリート構造物の補強を行うために、コンクリートの内部に配設される樹脂含浸繊維複合体製補強筋が開示されている。上記樹脂含浸繊維複合体製補強筋では、樹脂含浸繊維が棒状に成形された繊維強化棒材の外周が、樹脂層により被覆されている。上記樹脂層の樹脂は、上記樹脂含浸繊維中の樹脂に対して相溶性を有する。上記樹脂層の外周に、長手方向へ亘って凹凸が形成されている。
特開平10-245259号公報 実開平03-068428号公報 特開平11-324596号公報 特開平07-139093号公報
 連続繊維補強材は、鉄筋と比べて、コンクリートとの付着力が低い。従来、連続繊維補強材とコンクリートとの付着力を高めるために、外表面に凹凸を有する連続繊維補強材が用いられている。しかしながら、外表面に凹凸を単に有する連続繊維補強材では、コンクリートとの付着力を十分に高めることは困難である。
 また、コンクリート内部はアルカリ性の環境である。しかしながら、従来の連続繊維補強材では、耐アルカリ性が低いことがあり、その結果、アルカリ成分が連続繊維補強材の内部に浸透し、連続繊維補強材の強度が低下しやすい。
 一方、特許文献4に記載のような、外表面に樹脂層を有する連続繊維補強材では、アルカリ成分の連続繊維補強材内部への浸透をある程度抑えることができるため、耐アルカリ性をある程度高めることができる。しかしながら、外表面に樹脂層を単に有する連続繊維補強材では、コンクリートとの付着性を高めることは困難である。また、外表面に樹脂層を有する連続繊維補強材において、該樹脂層に凹凸を形成した場合であっても、コンクリートとの付着性を高めることは困難である。
 このように、従来の連続繊維補強材では、コンクリートとの付着力を高め、かつ耐アルカリ性を高めることは困難である。
 本発明の目的は、コンクリートとの付着力を高めることができ、かつ耐アルカリ性を高めることができる連続繊維補強材を提供することである。また、本発明は、上記連続繊維補強材の製造方法を提供することも目的とする。また、本発明は、上記連続繊維補強材を備えるコンクリート構造物を提供することも目的とする。
 本発明の広い局面によれば、芯材と、前記芯材の外表面を被覆する被覆層とを備え、前記芯材が、熱硬化性樹脂の硬化物と、補強繊維とを含み、前記被覆層が、熱硬化性樹脂の硬化物と、平均粒子径が1μm以上100μm以下でありかつモース硬度が3以上10以下である無機充填材とを含み、前記被覆層100重量%中、前記無機充填材の含有量が、25重量%以上80重量%以下である、連続繊維補強材が提供される。
 本発明に係る連続繊維補強材のある特定の局面では、前記無機充填材が、炭化ケイ素、炭化窒素、アルミナ、水酸化アルミニウム、炭酸カルシウム、シリカ、又はフライアッシュである。
 本発明に係る連続繊維補強材のある特定の局面では、前記被覆層に含まれる前記熱硬化性樹脂の硬化物が、エポキシ樹脂の硬化物、ビニルエステル樹脂の硬化物、又は不飽和ポリエステル樹脂の硬化物である。
 本発明に係る連続繊維補強材のある特定の局面では、前記被覆層が、凹部と凸部とを有し、前記凹部の厚みの平均値が、0.1mm以上であり、前記凸部の厚みの平均値と、前記凹部の厚みの平均値との差Zが、0.1mm以上2.0mm以下である。
 本発明に係る連続繊維補強材のある特定の局面では、前記被覆層が、凹部と凸部とを有し、下記式(1)により求められる支圧面積係数が、0.03以上0.15以下である。
 支圧面積係数=[(Y×M)/(P×N)]   ・・・式(1)
 Y:前記被覆層の前記凸部の厚みの平均値(mm)
 M:前記被覆層の前記凸部の外周長さの平均値(mm)
 P:前記被覆層の前記凸部の周期の平均値(mm)
 N:連続繊維補強材の外周長さの平均値(mm)
 本発明に係る連続繊維補強材のある特定の局面では、前記芯材の外表面が、粗面構造を有する。
 本発明に係る連続繊維補強材のある特定の局面では、前記芯材の外表面が、粗面構造を有し、前記芯材の外表面の算術平均粗さが、前記差Zよりも小さい。
 本発明に係る連続繊維補強材のある特定の局面では、前記芯材の外表面の算術平均粗さが、0.5μm以上50μm以下である。
 本発明に係る連続繊維補強材のある特定の局面では、前記補強繊維が、ガラス繊維、炭素繊維、アラミド繊維、又はバサルト繊維である。
 本発明に係る連続繊維補強材のある特定の局面では、前記芯材に含まれる前記熱硬化性樹脂の硬化物が、エポキシ樹脂の硬化物、ビニルエステル樹脂の硬化物、又は不飽和ポリエステル樹脂の硬化物である。
 本発明に係る連続繊維補強材のある特定の局面では、前記芯材100体積%中、前記補強繊維の含有量が、30体積%以上80体積%以下である。
 本発明の広い局面によれば、上述した連続繊維補強材の製造方法であって、補強繊維に熱硬化性樹脂を含浸させた後、硬化させて、芯材を得る工程と、前記芯材の外表面をブラスト処理して、外表面に粗面構造を有する芯材を得る工程と、前記外表面に粗面構造を有する芯材の外表面上に、熱硬化性樹脂と無機充填材とを含む被覆層の材料を配置した後、硬化させて連続繊維補強材を得る工程とを備える、連続繊維補強材の製造方法が提供される。
 本発明の広い局面によれば、コンクリートと、前記コンクリート中に埋設された上述した連続繊維補強材とを備える、コンクリート構造物が提供される。
 本発明に係る連続繊維補強材は、芯材と、上記芯材の外表面を被覆する被覆層とを備える。本発明に係る連続繊維補強材では、上記芯材が、熱硬化性樹脂の硬化物と、補強繊維とを含み、上記被覆層が、熱硬化性樹脂の硬化物と、平均粒子径が1μm以上100μm以下でありかつモース硬度が3以上10以下である無機充填材とを含み、上記被覆層100重量%中、上記無機充填材の含有量が、25重量%以上80重量%以下である。本発明に係る連続繊維補強材では、上記の構成が備えられているので、コンクリートとの付着力を高めることができ、かつ耐アルカリ性を高めることができる。
図1(a)及び(b)は、本発明の一実施形態に係る連続繊維補強材を模式的に示す断面図である。 図2(a)及び(b)は、本発明に含まれる連続繊維補強材の写真である。
 以下、本発明を詳細に説明する。
 本発明に係る連続繊維補強材は、芯材と、上記芯材の外表面を被覆する被覆層とを備える。本発明に係る連続繊維補強材では、上記被覆層が上記芯材の外表面の少なくとも一部を被覆している。本発明に係る連続繊維補強材では、上記芯材が、熱硬化性樹脂の硬化物と、補強繊維とを含み、上記被覆層が、熱硬化性樹脂の硬化物と、平均粒子径が1μm以上100μm以下でありかつモース硬度が3以上10以下である無機充填材とを含む。本発明に係る連続繊維補強材では、上記被覆層100重量%中、上記無機充填材の含有量が、25重量%以上80重量%以下である。
 本発明に係る連続繊維補強材では、上記の構成が備えられているので、コンクリートとの付着力を高めることができ、かつ耐アルカリ性を高めることができる。
 従来の連続繊維補強材では、コンクリートとの付着力と、耐アルカリ性との双方を高めることは困難である。外表面に樹脂層(被覆層)を有する従来の連続繊維補強材では、耐アルカリ性をある程度高めることができるものの、コンクリートとの付着性を高めることは困難である。また、上記樹脂層に凹凸形状を形成したとしても、コンクリートとの付着性を十分に高めることは困難である。さらに、外表面に樹脂層を有する従来の連続繊維補強材では、該樹脂層の強度が低く、連続繊維補強材が変形したり、破損したりすることがある。
 本発明者は、樹脂層を有する従来の連続繊維補強材において、コンクリートとの付着力と、耐アルカリ性との双方を高めることが困難であることの原因が、樹脂層の強度が低いことであることを見出した。本発明者は、連続繊維補強材の外表面の強度と、コンクリートとの付着性とに関連性があることを見出した。
 本発明に係る連続繊維補強材は、特定の被覆層を備えるので、該被覆層の強度を高めることができ、その結果、コンクリートとの付着力を高めることができる。また、本発明に係る連続繊維補強材では、特定の被覆層が備えられているので、耐アルカリ性を高めることができる。さらに、本発明に係る連続繊維補強材では、耐アルカリ性を高めることができ、かつ被覆層の強度を高めることができるので、連続繊維補強材の強度を高めることができ、かつ高い強度を長期間維持することができる。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
 図1(a)及び(b)は、本発明の一実施形態に係る連続繊維補強材を模式的に示す断面図である。図1(b)は、図1(a)のI-I線に沿う図である。
 連続繊維補強材1は、芯材2と被覆層3とを備える。芯材2は、円柱状の形状を有する。被覆層3は、芯材2の外表面を被覆している。被覆層3は、芯材2の外表面上に配置されている。被覆層3は、芯材2の外周面を被覆している。
 被覆層3は、凹部3aと、凸部3bとを有する。凹部3a及び凸部3bはそれぞれ、芯材2の周方向に延びている。凹部3a及び凸部3bはそれぞれ、円環状に設けられている。凹凸は、即ち凹部3a及び凸部3bはそれぞれ、連続繊維補強材1の軸方向において、周期的に設けられている。凸部3bは、芯材2から離れるにつれて、先細りする形状を有する。
 被覆層3の厚みの平均値(平均厚み)は、好ましくは0.15mm以上、より好ましくは0.45mm以上であり、好ましくは2.0mm以下、より好ましくは1.3mm以下である。被覆層3の厚みの平均値が上記下限以上であると、コンクリートとの付着力をより一層高めることができ、また、耐アルカリ性をより一層高めることができる。被覆層3の厚みの平均値が上記上限以下であると、連続繊維補強材の製造コストを抑えることができる。
 凹部3aの厚みの平均値(平均厚み)Xは、好ましくは0.1mm以上、より好ましくは0.3mm以上であり、好ましくは1.0mm以下、より好ましくは0.7mm以下である。凹部3aの厚みの平均値Xが上記下限以上であると、コンクリートとの付着力をより一層高めることができ、また、耐アルカリ性をより一層高めることができる。凹部3aの厚みの平均値Xが上記上限以下であると、連続繊維補強材の製造コストを抑えることができる。
 凸部3bの厚みの平均値(平均厚み)Yは、好ましくは0.2mm以上、より好ましくは0.6mm以上であり、好ましくは3.0mm以下、より好ましくは1.9mm以下である。凸部3bの厚みの平均値Yが上記下限以上であると、コンクリートとの付着力をより一層高めることができ、また、耐アルカリ性をより一層高めることができる。凸部3bの厚みの平均値Yが上記上限以下であると、連続繊維補強材の製造コストを抑えることができる。
 凸部3bの厚みの平均値Yと、凹部3aの厚みの平均値Xとの差Z(差の絶対値)は、好ましくは0.1mm以上、より好ましくは0.3mm以上であり、好ましくは2.0mm以下、より好ましくは1.2mm以下である。差Zが上記下限以上及び上記上限以下であると、コンクリートとの付着力をより一層高めることができる。
 被覆層3の凹部3aの厚みの平均値Xは、5個以上の凹部3aの厚みを測定し、それらの厚みを平均した値であることが好ましい。被覆層3の凸部3bの厚みの平均値Yは、5個以上の凸部3bの厚みを測定し、それらの厚みを平均した値であることが好ましい。
 連続繊維補強材の軸方向における凹凸の周期Pは、好ましくは2mm以上、より好ましくは3mm以上であり、好ましくは20mm以下、より好ましくは15mm以下である。周期Pが上記下限以上及び上記上限以下であると、コンクリートとの付着力をより一層高めることができる。凹凸の周期Pは、凸部3aの周期から求めることが好ましい。
 ある凸部3aの連続繊維補強材の軸方向における中央と、該凸部の隣の凸部3aの連続繊維補強材の軸方向における中央との間隔を、凹凸の周期Pとして求めることが好ましい。したがって、連続繊維補強材の軸方向における凸部3aの周期Pは、好ましくは2mm以上、より好ましくは3mm以上であり、好ましくは20mm以下、より好ましくは15mm以下である。凹凸の周期Pは、6個以上の凸部3aから、凸部3aの各間隔(5個以上)を測定し、それらの間隔を平均した値であることが好ましい。
 本発明の効果をより一層効果的に発揮する観点からは、上記連続繊維補強材の下記式(1)により求められる支圧面積係数は、好ましくは0.03以上、より好ましくは0.05以上であり、好ましくは0.15以下、より好ましくは0.13以下である。
 支圧面積係数=[(Y×M)/(P×N)]   ・・・式(1)
 Y:上記被覆層の上記凸部の厚みの平均値(mm)
 M:上記被覆層の上記凸部の外周長さの平均値(mm)
 P:上記被覆層の上記凸部の周期の平均値(mm)
 N:連続繊維補強材の外周長さの平均値(mm)
 なお、上記被覆層の上記凸部の外周長さの平均値Mは、3個以上の凸部の外周長さを測定し、それらの外周長さを平均した値である。また、上記連続繊維補強材の外周長さの平均値Nは、上記被覆層の上記凸部と上記凹部とをまとめた連続繊維補強材の外周長さの平均値である。
 コンクリートとの付着力をより一層高める観点からは、上記被覆層は、凹部と凸部とを有することが好ましい。上記被覆層は凹凸を有することが好ましい。ただし、上記被覆層は、凹部と凸部とを有さなくてもよい。上記被覆層は凹凸を有さなくもよい。
 上記被覆層が凹部と凸部とを有する場合に、凹部又は凸部は、環状に設けられていてもよく、環状以外の形状で設けられていてもよく、円環状に設けられていてもよく、円環状以外の形状に設けられていてもよい。例えば、該凹部又は該凸部は、螺旋状に設けられていてもよい。
 上記被覆層が凹部と凸部とを有する場合に、凹部及び凸部の形状は特に限定されない。上記凸部は、芯材から離れるにつれて、先細りする形状を有していてもよく、先太りする形状を有していてもよい。また、上記凸部は、先細りする形状及び先太りする形状を有していなくてもよい。
 上記被覆層が凹部と凸部とを有する場合に、凹部及び凸部は、周期的に設けられていてもよく、不規則に設けられていてもよい。
 上記芯材の形状は特に限定されない。上記芯材の形状は、円柱状であってもよく、多角柱状であってもよい。また、上記芯材自体が、凹部と凸部とを有していてもよい。
 上記芯材の外表面は、粗面構造を有することが好ましい。上記粗面構造とは、例えば、複数の凸部又は複数の凹部による構造である。上記芯材の外表面が粗面構造を有する場合には、粗面構造を有していない場合と比べて、芯材と被覆層との接着強度を高めることができる。上記芯材の外表面が粗面構造を有する場合には、芯材と被覆層との界面剥離を効果的に防止することができる。そのため、連続繊維補強材が長期間コンクリート中に埋め込まれた場合であっても、芯材を保護することができる。その結果、長期に亘って、本発明の効果を効果的に発揮することができる。
 上記芯材の外表面は、ブラスト処理による粗面構造を有することが好ましい。上記芯材の外表面は、ブラスト処理された表面であることが好ましい。ブラスト処理により芯材の外表面に効果的に粗面構造を形成させることができるため、芯材と被覆層との接着強度を高めることができる。その結果、長期に亘って、本発明の効果を効果的に発揮することができる。
 上記芯材の外表面の算術平均粗さ(Ra)は、上記差Z(被覆層の凸部の厚みの平均値Yと、凹部の厚みの平均値Xとの差)よりも小さいことが好ましい。上記芯材の外表面の算術平均粗さ(Ra)は、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは50μm以下、より好ましくは10μm以下である。この場合には、芯材と被覆層との接着強度をより一層高めることができる。その結果、長期に亘って、本発明の効果を効果的に発揮することができる。
 芯材の外表面の算術平均粗さは、JIS B0633:2001に準拠して測定される。
 上記連続繊維補強材は、軸方向の端面において、上記被覆層を備えていてもよく、備えていなくてもよい。上記連続繊維補強材は、軸方向の端面において、芯材が露出していてもよく、露出していなくてもよい。上記連続繊維補強材では、上記被覆層が、上記芯材の軸方向の端面以外の外表面を少なくとも被覆していることが好ましく、上記芯材の外表面全体を被覆していることがより好ましい。
 以下、連続繊維補強材の詳細を更に説明する。
 (補強繊維)
 上記芯材は、補強繊維を含む。上記補強繊維は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記補強繊維としては、ガラス繊維、炭素繊維、アラミド繊維、及びバサルト繊維等が挙げられる。
 連続繊維補強材の強度をより一層高める観点からは、上記補強繊維は、ガラス繊維、炭素繊維、アラミド繊維、又はバサルト繊維であることが好ましく、ガラス繊維、又はバサルト繊維であることがより好ましい。補強繊維としてガラス繊維又はバサルト繊維を用いた従来の連続繊維補強材では、耐アルカリ性が低いため、該補強繊維が劣化しやすく、その結果、連続繊維補強材の強度が経時的に低下しやすい。これに対して、本発明では、補強繊維としてガラス繊維又はバサルト繊維を用いた場合でも、連続繊維補強材の強度を高く維持することができる。
 上記補強繊維は、ロービングされた繊維(補強繊維束)であることが好ましい。
 上記補強繊維は、連続繊維補強材の軸方向に沿って配向していることが好ましい。上記補強繊維は、連続繊維補強材の軸方向に引き揃えられていることが好ましい。
 上記芯材100体積%中、上記補強繊維の含有量は、好ましくは30体積%以上、より好ましくは50体積%以上であり、好ましくは80体積%以下、より好ましくは75体積%以下である。上記補強繊維の含有量が上記下限以上及び上記上限以下であると、連続繊維補強材の強度をより一層高めることができる。
 (熱硬化性樹脂の硬化物)
 上記芯材は、熱硬化性樹脂の硬化物を含む。上記被覆層は、熱硬化性樹脂の硬化物を含む。上記芯材及び上記被覆層に含まれる熱硬化性樹脂の硬化物はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記芯材に含まれる熱硬化性樹脂の硬化物と、上記被覆層に含まれる熱硬化性樹脂の硬化物とは、同一であってもよく、異なっていてもよい。
 上記熱硬化性樹脂としては、エポキシ樹脂、ビニルエステル樹脂、及び不飽和ポリエステル樹脂等が挙げられる。
 上記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。
 上記ビニルエステル樹脂としては、ビス系ビニルエステル樹脂、及びノボラック系ビニルエステル樹脂等が挙げられる。
 上記不飽和ポリエステル樹脂としては、α,β-不飽和ジカルボン酸又はその酸無水物とグリコール類との重縮合によって得られる樹脂等が挙げられる。
 連続繊維補強材の強度をより一層高める観点からは、上記芯材の材料に含まれる熱硬化性樹脂は、エポキシ樹脂、ビニルエステル樹脂、又は不飽和ポリエステル樹脂であることが好ましい。連続繊維補強材の強度をより一層高める観点からは、上記芯材に含まれる熱硬化性樹脂の硬化物は、エポキシ樹脂の硬化物、ビニルエステル樹脂の硬化物、又は不飽和ポリエステル樹脂の硬化物であることが好ましい。
 コンクリートとの付着力をより一層高める観点及び耐アルカリ性をより一層高める観点からは、上記被覆層の材料に含まれる熱硬化性樹脂は、エポキシ樹脂、ビニルエステル樹脂、又は不飽和ポリエステル樹脂であることが好ましく、エポキシ樹脂であることがより好ましい。コンクリートとの付着力をより一層高める観点及び耐アルカリ性をより一層高める観点からは、上記被覆層に含まれる熱硬化性樹脂の硬化物は、エポキシ樹脂の硬化物、ビニルエステル樹脂の硬化物、又は不飽和ポリエステル樹脂の硬化物であることが好ましく、エポキシ樹脂の硬化物であることがより好ましい。特に、上記被覆層に含まれる熱硬化性樹脂の硬化物がエポキシ樹脂の硬化物である場合には、耐アルカリ性を更により一層高めることができるので、連続繊維補強材の強度の経時的な低下を効果的に抑えることができる。
 上記芯材100体積%中、上記熱硬化性樹脂の硬化物の含有量(上記芯材に含まれる熱硬化性樹脂の硬化物の含有量)は、好ましくは20体積%以上、より好ましくは25体積%以上であり、好ましくは70体積%以下、より好ましくは45体積%以下である。上記熱硬化性樹脂の硬化物の含有量が上記下限以上及び上記上限以下であると、連続繊維補強材の強度をより一層高めることができる。
 上記被覆層100重量%中、上記熱硬化性樹脂の硬化物の含有量(上記被覆層に含まれる熱硬化性樹脂の硬化物の含有量)は、好ましくは20重量%以上、より好ましくは30重量%以上であり、好ましくは80重量%以下、より好ましくは70重量%以下である。上記熱硬化性樹脂の硬化物の含有量が上記下限以上及び上記上限以下であると、コンクリートとの付着力をより一層高めることができ、また、耐アルカリ性をより一層高めることができる。
 (無機充填材)
 上記被覆層は、平均粒子径が1μm以上100μm以下でありかつモース硬度が3以上10以下である無機充填材(以下、「無機充填材X」と記載することがある)を含む。上記無機充填材Xは、1種のみが用いられてもよく、2種以上が併用されていてもよい。
 コンクリートとの付着力を高め、かつ耐アルカリ性を高める観点から、上記無機充填材Xの平均粒子径は1μm以上100μm以下である。上記無機充填材Xの平均粒子径は、好ましくは5μm以上であり、好ましくは50μm以下である。上記無機充填材Xの平均粒子径が上記下限以上及び上記上限以下であると、コンクリートとの付着力をより一層高めることができ、また、耐アルカリ性をより一層高めることができる。
 上記無機充填材Xの平均粒子径は、数平均粒子径を示す。上記無機充填材Xの平均粒子径は、例えば、レーザー回折式粒度分布測定を行うことにより求められる。
 コンクリートとの付着力を高め、かつ耐アルカリ性を高める観点から、上記無機充填材Xのモース硬度は3以上10以下である。上記無機充填材Xのモース硬度は、好ましくはモース硬度4以上である。上記無機充填材Xのモース硬度が上記下限以上であると、コンクリートとの付着力をより一層高めることができ、また、耐アルカリ性をより一層高めることができる。
 上記無機充填材Xとしては、炭化ケイ素、炭化窒素、アルミナ、水酸化アルミニウム、炭酸カルシウム、シリカ、フライアッシュ、及びカーボンブラック等が挙げられる。
 コンクリートとの付着力をより一層高める観点及び耐アルカリ性をより一層高める観点からは、上記無機充填材Xは、炭化ケイ素、炭化窒素、アルミナ、水酸化アルミニウム、炭酸カルシウム、シリカ、又はフライアッシュであることが好ましく、炭化ケイ素、又はアルミナであることがより好ましい。また、これらの好ましい上記無機充填材Xを用いることにより、上記被覆層中の無機充填材Xの分散度をより一層高めることができる。
 上記被覆層100重量%中、上記無機充填材Xの含有量は、25重量%以上80重量%以下である。上記無機充填材Xの含有量が25重量%未満であると、コンクリートとの付着力が低下することがある。上記無機充填材Xの含有量が80重量%を超えると、耐アルカリ性が低下することがある。
 上記被覆層100重量%中、上記無機充填材Xの含有量は、好ましくは30重量%以上であり、好ましくは75重量%以下、より好ましくは70重量%以下である。上記無機充填材Xの含有量が上記下限以上であると、コンクリートとの付着力をより一層高めることができる。上記無機充填材Xの含有量が上記上限以下であると、耐アルカリ性をより一層高めることができる。
 (その他の成分)
 上記芯材及び上記被覆層はそれぞれ、必要に応じて、各種の添加剤を含んでいてもよい。上記添加剤としては、相溶化剤、安定剤、安定化助剤、滑剤、加工助剤、耐熱向上剤、酸化防止剤、紫外線吸収剤、光安定剤、顔料及び可塑剤等が挙げられる。上記添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 (連続繊維補強材のその他の詳細)
 上記連続繊維補強材の最大径は、例えば、5mm以上であってもよく、60mm以下であってもよい。
 上記連続繊維補強材の製造方法は、以下の工程(1)と工程(3)とを備えることが好ましく、工程(1)と工程(2)と工程(3)とを備えることがより好ましい。
 (1)補強繊維に熱硬化性樹脂を含浸させた後、硬化させて、芯材を得る工程。この工程では、ロービングされた補強繊維(補強繊維束)に熱硬化性樹脂を含浸させることが好ましい。補強繊維に熱硬化性樹脂を含浸させた後、第1の金型で硬化させることによって、該第1の金型の形状に対応する芯材を得ることができる。得られた芯材は、熱硬化性樹脂の硬化物と補強繊維とを含む。
 (2)上記芯材の外表面をブラスト処理して、外表面に粗面構造を有する芯材を得る工程。この工程を行うことにより、芯材の外表面に効果的に粗面構造を形成させることができるため、得られる連続繊維補強材において、芯材と被覆層との接着強度をより一層高めることができる。なお、この工程は、行われなくてもよい。
 (3)芯材(上記(2)の工程を行った場合は、外表面に粗面構造を有する芯材)の外表面上に、熱硬化性樹脂と無機充填材Xとを含む被覆層の材料を配置した後、硬化させて連続繊維補強材を得る工程。この工程では、熱硬化性樹脂と無機充填材Xとを含む被覆層の材料を配置した後、第2の金型で挟み込み加熱して、芯材の外表面上に被覆層を形成することが好ましい。得られた被覆層は、熱硬化性樹脂の硬化物と無機充填材Xとを含む。なお、第2の金型として凹凸形状を有する金型を用いることで、凹部と凸部とを有する被覆層を形成させることができる。
 上記連続繊維補強材は、コンクリートに埋設されて用いられることが好ましい。上記連続繊維補強材は、該連続繊維補強材とコンクリートとを含み、該コンクリート内に連続繊維補強材が埋設されているコンクリート構造物を得るために好適に用いられる。ただし、上記連続繊維補強材は、コンクリートに埋設されて用いられない用途においても用いることができる。
 コンクリート中に、上記連続繊維補強材を埋設することで、コンクリート構造物を得ることができる。本発明に係るコンクリート構造物は、コンクリートと、上記コンクリート中に埋設された上記連続繊維補強材とを備える。上記連続繊維補強材の一部が、上記コンクリート中に埋設されていてもよく、上記連続繊維補強材の全体が、上記コンクリート中に埋設されていてもよい。
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。
 以下の材料を用意した。
 (熱硬化性樹脂)
 不飽和ポリエステル樹脂(ユピカ社製)
 エポキシ樹脂(三菱ケミカル社製)
 ビニルエステル樹脂(昭和電工社製)
 (補強繊維)
 ガラス繊維(Tex.3000ダイレクトロービング)
 (無機充填材)
 炭化ケイ素A(平均粒子径5.5μm、モース硬度10、信濃電気製錬社製)
 アルミナA(平均粒子径5.3μm、モース硬度8、住友化学社製)
 アルミナB(平均粒子径100μm、モース硬度8、住友化学社製)
 アルミナC(平均粒子径120μm、モース硬度8、住友化学社製)
 フライアッシュ(平均粒子径20μm、モース硬度3、四国化成工業社製)
 水酸化アルミニウム(平均粒子径10μm、モース硬度3、住友化学社製)
 炭酸カルシウム(平均粒子径10μm、モース硬度3、丸尾カルシウム社製)
 タルク(平均粒子径10μm、モース硬度1、日本タルク社製)
 (硬化剤)
 エポキシ硬化剤(三菱ケミカル社製)
 (実施例1)
 ロービングされたガラス繊維に、不飽和ポリエステル樹脂を含浸させた後、引抜金型(Φ(直径)12)に引き込んで硬化させて、直径12mmの円柱状の芯材を得た。得られた芯材は、芯材100体積%中、ガラス繊維を60体積%で含む。また、エポキシ樹脂と硬化剤と炭化ケイ素Aとを混合し、被覆層の材料を得た。次いで、被覆層の材料を、得られた芯材の外周面上に配置し、凹凸形状を有する第2の金型で挟み込み加熱して、軸方向長さが1000mmであり、芯材の外表面が被覆層で配置されており、かつ軸方向の端面が被覆層で被覆されていない連続繊維補強材を得た。この連続繊維補強材において、露出している芯材の表面に被覆層の材料を塗布し、硬化させて、芯材の外表面全体が被覆層により被覆された連続繊維補強材を得た。得られた連続繊維補強材の軸方向の端面において芯材は露出しておらず、上記芯材の外表面の面積100%中、上記被覆層で覆われている部分の面積は、100%である。また、得られた連続繊維補強材における被覆層の凹部の厚みの平均値Xは0.5mmであり、凸部の厚みの平均値Yと凹部の厚みの平均値Xとの差Zは1.0mmである。
 (実施例2~9及び比較例1~4)
 被覆層の構成、並びに連続繊維補強材の凹部の厚みの平均値X及び凹部の厚みの平均値Xと凸部の厚みの平均値Yとの差Zを表1~3のように変更したこと以外は、実施例1と同様にして、連続繊維補強材を得た。
 (比較例5)
 ロービングされたガラス繊維に、不飽和ポリエステル樹脂を含浸させた後、外周部に繊維状物質を巻き付けた状態で、引抜金型(Φ(直径)12)に引き込んで硬化させた。その後、繊維状物質を除き、外表面に凹凸形状を有する直径12mm及び軸方向長さが1000mmである円柱状の連続繊維補強材(被覆層を備えない連続繊維補強材)を得た。得られた連続繊維補強材の凹部の厚みの平均値Xと凸部の厚みの平均値Yとの差Zは0.4mmである。
 (評価)
 (1)コンクリートとの付着性試験
 JSCE-E-539-2007「引抜き試験による連続繊維補強材とコンクリートとの付着強度試験方法」を参考にして以下の試験を行った。得られた連続繊維補強材(軸方向長さ1000mm)を、コンクリートとの付着長さが56mmとなるように、100mm角のコンクリート内に埋設した。埋設後、万能試験機を用いて連続繊維補強材を引き抜いた。連続繊維補強材を0.05mm滑らすために必要な引張応力を測定した。なお、以下の判定が○○である場合には、鉄筋とコンクリートとの付着性よりも高いことを意味する。
 <コンクリートとの付着性試験の判定基準>
 ○○:0.05mm滑らすために必要な引張応力が4.0MPa以上
 ○:0.05mm滑らすために必要な引張応力が3.3MPa以上4.0MPa未満
 ×:0.05mm滑らすために必要な引張応力が3.3MPa未満
 (2)耐アルカリ性試験
 JIS-A1193「コンクリート用連続繊維補強材の耐アルカリ試験方法」を参考にして以下の試験を行った。得られた連続繊維補強材を切断し、長さが50mmであるサンプルAを作製した。サンプルAの切断面を、用いた被覆層の材料を塗布し、硬化させて、芯材の外表面全体が被覆層により被覆されたサンプルBを作製した。得られたサンプルBを、60℃の0.25mol/Lの水酸化ナトリウム水溶液に28日間浸漬させた。浸漬後のサンプルBを、長さ25mmの位置で切断した。SEM-EDS分析により切断面を観察し、Naが被覆層を通って芯材まで浸透しているか否かを確認した。
 <耐アルカリ性試験の判定基準>
 ○○:Naが被覆層へ浸透していない
 ○:Naが被覆層へ浸透しているが、芯材までは浸透してない
 ×:Naが被覆層を通って芯材まで浸透している
 (3)総合判定
 (1)コンクリートとの付着性試験の評価結果と、(2)耐アルカリ性試験の評価結果とから、得られた連続繊維補強材を評価した。
 <総合判定の評価基準>
 ○○:上記の(1),(2)の評価結果がともに○○
 ○:上記の(1),(2)の評価結果に×がなく、かつ○がある
 ×:上記の(1),(2)の評価結果に×がある
 連続繊維補強材の構成及び結果を下記の表1~3に示す。また、図2(a)及び(b)は、本発明に含まれる連続繊維補強材の写真である。具体的には、図2(a)及び(b)は、実施例1で作製した連続繊維補強材の写真である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (実施例10)
 被覆層の構成、並びに連続繊維補強材の凹部の厚みの平均値X及び凹部の厚みの平均値Xと凸部の厚みの平均値Yとの差Zを表4のように変更したこと以外は、実施例1と同様にして、連続繊維補強材を得た。
 (実施例11~14)
 得られた芯材にブラスト処理を行い、外表面に粗面構造を有する芯材を得たこと以外は、実施例10と同様にして、連続繊維補強材を得た。なお、実施例11~14では、ブラスト処理の条件を変化させた。
 (評価)
 (4)芯材の外表面の算術平均粗さ(Ra)
 実施例10では、得られた芯材の外表面の算術平均粗さを測定した。実施例11~14では、ブラスト処理後の芯材の外表面の算術平均粗さを測定した。
 (5)付着強度(引張荷重)
 軸方向長さ1000mmの連続繊維補強材の一方の端部を、60mm型の凹凸を有する金型を用いて固定した。また、他方の端部に対して、25A300mmの鋼管に静的膨張剤を注入して固定した。センターホールジャッキを用いて、上記固定した連続繊維補強材の引抜試験を実施し、60mm型の金型で固定している側の連続繊維補強材が破壊したときの引張荷重を測定した。
 (6)引張強度
 軸方向長さ800mmの連続繊維補強材の両端部に対して、25A300mmの鋼管に静的膨張剤を注入して固定した。500kNの万能試験機を用いて、上記固定した連続繊維補強材の引張強度を測定した。
 連続繊維補強材の構成及び結果を下記の表4に示す。実施例10では、芯材の表面の算術平均粗さが小さいため被覆層との接着強度が低く、実施例11~14よりも付着強度が低い傾向が確認された。一方、実施例11では、芯材の表面の算術平均粗さが大きく、付着性は優れていたものの、芯材の表面のガラス繊維の切れが見られ、引張強度が低下する傾向が確認された。但し、実施例10及び11では、比較例1~5と比べて、本発明の効果に優れていた。実施例12~14で得られた連続繊維補強材は、実施例10,11で得られた連続繊維補強材に比べて、上記のような性能低下がなく、コンクリートとの付着力及び引張強度に優れている。
Figure JPOXMLDOC01-appb-T000004
 1…連続繊維補強材
 2…芯材
 3…被覆層
 3a…凹部
 3b…凸部
 X…凹部の厚みの平均値
 Y…凸部の厚みの平均値
 Z…凸部の厚みの平均値と凹部の厚みの平均値との差
 P…凹凸の周期

Claims (13)

  1.  芯材と、前記芯材の外表面を被覆する被覆層とを備え、
     前記芯材が、熱硬化性樹脂の硬化物と、補強繊維とを含み、
     前記被覆層が、熱硬化性樹脂の硬化物と、平均粒子径が1μm以上100μm以下でありかつモース硬度が3以上10以下である無機充填材とを含み、
     前記被覆層100重量%中、前記無機充填材の含有量が、25重量%以上80重量%以下である、連続繊維補強材。
  2.  前記無機充填材が、炭化ケイ素、炭化窒素、アルミナ、水酸化アルミニウム、炭酸カルシウム、シリカ、又はフライアッシュである、請求項1に記載の連続繊維補強材。
  3.  前記被覆層に含まれる前記熱硬化性樹脂の硬化物が、エポキシ樹脂の硬化物、ビニルエステル樹脂の硬化物、又は不飽和ポリエステル樹脂の硬化物である、請求項1又は2に記載の連続繊維補強材。
  4.  前記被覆層が、凹部と凸部とを有し、
     前記凹部の厚みの平均値が、0.1mm以上であり、
     前記凸部の厚みの平均値と、前記凹部の厚みの平均値との差Zが、0.1mm以上2.0mm以下である、請求項1~3のいずれか1項に記載の連続繊維補強材。
  5.  前記被覆層が、凹部と凸部とを有し、
     下記式(1)により求められる支圧面積係数が、0.03以上0.15以下である、請求項1~4のいずれか1項に記載の連続繊維補強材。
     支圧面積係数=[(Y×M)/(P×N)]   ・・・式(1)
     Y:前記被覆層の前記凸部の厚みの平均値(mm)
     M:前記被覆層の前記凸部の外周長さの平均値(mm)
     P:前記被覆層の前記凸部の周期の平均値(mm)
     N:連続繊維補強材の外周長さの平均値(mm)
  6.  前記芯材の外表面が、粗面構造を有する、請求項1~5のいずれか1項に記載の連続繊維補強材。
  7.  前記芯材の外表面が、粗面構造を有し、
     前記芯材の外表面の算術平均粗さが、前記差Zよりも小さい、請求項4に記載の連続繊維補強材。
  8.  前記芯材の外表面の算術平均粗さが、0.5μm以上50μm以下である、請求項6又は7に記載の連続繊維補強材。
  9.  前記補強繊維が、ガラス繊維、炭素繊維、アラミド繊維、又はバサルト繊維である、請求項1~8のいずれか1項に記載の連続繊維補強材。
  10.  前記芯材に含まれる前記熱硬化性樹脂の硬化物が、エポキシ樹脂の硬化物、ビニルエステル樹脂の硬化物、又は不飽和ポリエステル樹脂の硬化物である、請求項1~9のいずれか1項に記載の連続繊維補強材。
  11.  前記芯材100体積%中、前記補強繊維の含有量が、30体積%以上80体積%以下である、請求項1~10のいずれか1項に記載の連続繊維補強材。
  12.  請求項1~11のいずれか1項に記載の連続繊維補強材の製造方法であって、
     補強繊維に熱硬化性樹脂を含浸させた後、硬化させて、芯材を得る工程と、
     前記芯材の外表面をブラスト処理して、外表面に粗面構造を有する芯材を得る工程と、
     前記外表面に粗面構造を有する芯材の外表面上に、熱硬化性樹脂と無機充填材とを含む被覆層の材料を配置した後、硬化させて連続繊維補強材を得る工程とを備える、連続繊維補強材の製造方法。
  13.  コンクリートと、
     前記コンクリート中に埋設された請求項1~11のいずれか1項に記載の連続繊維補強材とを備える、コンクリート構造物。
PCT/JP2020/044636 2019-12-02 2020-12-01 連続繊維補強材、連続繊維補強材の製造方法及びコンクリート構造物 WO2021112069A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021562647A JPWO2021112069A1 (ja) 2019-12-02 2020-12-01

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019218187 2019-12-02
JP2019-218187 2019-12-02
JP2020051538 2020-03-23
JP2020-051538 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021112069A1 true WO2021112069A1 (ja) 2021-06-10

Family

ID=76221079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044636 WO2021112069A1 (ja) 2019-12-02 2020-12-01 連続繊維補強材、連続繊維補強材の製造方法及びコンクリート構造物

Country Status (2)

Country Link
JP (1) JPWO2021112069A1 (ja)
WO (1) WO2021112069A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726432A (ja) * 1993-07-13 1995-01-27 Kuraray Co Ltd カチオン可染性ポリエステル繊維からなる紡績糸
JPH07139093A (ja) * 1993-11-11 1995-05-30 Fukuvi Chem Ind Co Ltd 樹脂含浸繊維複合体製補強筋及びその製造方法
JP2002371668A (ja) * 2001-04-28 2002-12-26 Schoeck Entwicklungs Gmbh 繊維強化プラスチックからなる補強ロッド
JP2005015253A (ja) * 2003-06-24 2005-01-20 Du Pont Toray Co Ltd セメント補強用繊維

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726432A (ja) * 1993-07-13 1995-01-27 Kuraray Co Ltd カチオン可染性ポリエステル繊維からなる紡績糸
JPH07139093A (ja) * 1993-11-11 1995-05-30 Fukuvi Chem Ind Co Ltd 樹脂含浸繊維複合体製補強筋及びその製造方法
JP2002371668A (ja) * 2001-04-28 2002-12-26 Schoeck Entwicklungs Gmbh 繊維強化プラスチックからなる補強ロッド
JP2005015253A (ja) * 2003-06-24 2005-01-20 Du Pont Toray Co Ltd セメント補強用繊維

Also Published As

Publication number Publication date
JPWO2021112069A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
Hensher Fiber-reinforced-plastic (FRP) reinforcement for concrete structures: properties and applications
El Refai et al. Bond performance of basalt fiber-reinforced polymer bars to concrete
Naito et al. Tensile properties of novel carbon/glass hybrid thermoplastic composite rods
WO2010140845A2 (en) Fiber reinforced plastic bolt and method for producing the same
JP2014108898A (ja) セメント強化用複合frp製短線材及びその製造方法
KR20120091699A (ko) 화상형성장치용 롤러 및 이를 포함하는 화상형성장치
WO2021112069A1 (ja) 連続繊維補強材、連続繊維補強材の製造方法及びコンクリート構造物
US10266292B2 (en) Carriers for composite reinforcement systems and methods of use
Apitz et al. New thermoplastic carbon fiber reinforced polymer rebars and stirrups
Zhang et al. Evolution and Prediction of Tensile Properties for Ductile Hybrid FRP Bars in a Simulated Concrete Environment
Kalamkarov et al. Experimental and analytical studies of smart composite reinforcement
WO2019167937A1 (ja) 構造物の補強用積層材料、補強方法及び補強構造体
JP2022075276A (ja) 連続繊維補強材及びコンクリート構造物
WO2019162390A1 (en) Strand in glass and/or basalt fibers for prestressed concrete
JP7402101B2 (ja) コンクリート補強部材
JP2014168862A (ja) 複合構造体の施工方法及び複合構造体
RU111560U1 (ru) Арматурный элемент
Zou et al. Characteristics of compressive failure behavior of polyacrylonitrile‐based carbon fiber multifilament
JP2001179831A (ja) 管路内面ライニング成形用シ−ト状成形材料
JP2007002432A (ja) セメント系構造物の補強方法および該方法によって補強されたセメント系構造物
US12006259B2 (en) Ultra-high-molecular-weight polyethylene concrete reinforcing bar
Fouad et al. FRC poles for distribution power lines
US20220144701A1 (en) Ultra-high-molecular-weight polyethylene concrete reinforcing bar
JP2001150433A (ja) せん断補強用熱可塑性樹脂被覆frp筋
JP5966390B2 (ja) 連続繊維補強材及び連続繊維補強材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896865

Country of ref document: EP

Kind code of ref document: A1