WO2021109939A1 - 激光测距装置和机器人 - Google Patents

激光测距装置和机器人 Download PDF

Info

Publication number
WO2021109939A1
WO2021109939A1 PCT/CN2020/132295 CN2020132295W WO2021109939A1 WO 2021109939 A1 WO2021109939 A1 WO 2021109939A1 CN 2020132295 W CN2020132295 W CN 2020132295W WO 2021109939 A1 WO2021109939 A1 WO 2021109939A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lens
distance measuring
receiving
measuring device
Prior art date
Application number
PCT/CN2020/132295
Other languages
English (en)
French (fr)
Inventor
张志淳
刘小禹
潘柯
Original Assignee
北京石头世纪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201922133087.0U external-priority patent/CN211826513U/zh
Priority claimed from CN201922132464.9U external-priority patent/CN211826511U/zh
Priority claimed from CN201922129657.9U external-priority patent/CN212181022U/zh
Application filed by 北京石头世纪科技股份有限公司 filed Critical 北京石头世纪科技股份有限公司
Priority to US17/756,784 priority Critical patent/US20230008790A1/en
Priority to EP20895245.7A priority patent/EP4071514A4/en
Publication of WO2021109939A1 publication Critical patent/WO2021109939A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the present disclosure relates to the technical field of smart homes, and more specifically to a laser distance measuring device and a robot.
  • TOF Time of Flight
  • triangulation the other is triangulation.
  • TOF is not sensitive to deformation caused by temperature changes, and its ranging accuracy—especially in long-distance ranging—is higher than the triangulation method.
  • TOF is currently mostly used in long-distance ranging scenarios, such as drones or autonomous driving.
  • Triangular ranging methods are mostly used in relatively short distance (for example, less than 30 meters) high frequency (for example, higher than 1000 times/sec) ranging scenarios in an indoor environment.
  • the cost of the TOF ranging device is higher, and the reflected stray light is too much during short-range ranging.
  • One of the reasons for the excessive stray light in short-range distance measurement is that it is reflected from nearby obstacles to the surface of the package module of the light receiver (mostly silver-gray substrate) for specular reflection, and there is more inside the light receiving end. The secondary reflection enters the surface of the light receiver, which constitutes strong light noise.
  • the embodiment of the present disclosure provides a laser ranging device, and the laser ranging device includes:
  • a transmitting unit which includes a transmitter for emitting pulsed laser light to the target object to be ranged and a transmitting lens for passing the emitted pulsed laser light;
  • a receiving unit comprising a photodetector for receiving pulsed laser light reflected from the target object and a receiving lens for passing the reflected pulsed laser light;
  • the photodetector is arranged by being encapsulated in a packaging module, the packaging module is located behind the receiving lens and opposite to the receiving lens, and a part of the packaging module facing the receiving lens One side is constructed as a matte surface.
  • the side of the package module encapsulated with the photodetector facing the receiving lens is configured as a matte surface, which can reduce the reflective ability of the surface, thereby reducing or even eliminating nearby impurities. Astigmatism can improve the signal-to-noise ratio, which is conducive to improving the accuracy of TOF's short-distance and high-frequency range measurement in an indoor environment.
  • a robot including the laser distance measuring device as described above.
  • the laser ranging device equipped with the robot is suitable for short-distance and high-frequency ranging in an indoor environment by using TOF, and the ranging accuracy is higher.
  • a laser ranging device comprising:
  • a transmitting unit which includes a transmitter for emitting pulsed laser light to the target object to be ranged and a transmitting lens for passing the emitted pulsed laser light;
  • a receiving unit comprising a photodetector for receiving pulsed laser light reflected from the target object and a receiving lens for passing the reflected pulsed laser light;
  • the photodetector is a PIN-type photodiode.
  • a PIN-type photodiode can be used as the light detector of the receiving unit, which is suitable for light sensing in an indoor environment and has a low cost.
  • a robot including the above-mentioned laser distance measuring device.
  • the cost of the laser ranging device equipped with it is low, and it is suitable for short-distance and high-frequency ranging in an indoor environment using TOF.
  • a laser ranging device comprising:
  • a frame comprising a first optical cavity and a second optical cavity arranged side by side with the first optical cavity;
  • An emission unit the emission unit includes an emitter arranged at the rear end of the first optical cavity and an emission lens arranged at the front end of the first optical cavity, and the emitter is used to emit pulsed laser light toward the emission lens;
  • the receiving unit includes a photodetector provided at the rear end of the second optical cavity and a receiving lens provided at the front end of the second optical cavity, and the photodetector is used for receiving the to-be-received lens via the receiving lens.
  • the light-shielding hood is arranged on the front side of the frame, the rear surface of the light-shielding hood abuts against the front surface of the frame, and the transmitting lens and the receiving lens are spaced apart to prevent Optical interference occurs between the transmitting unit and the receiving unit.
  • the transmitting lens and the receiving lens are separated by setting a light shield to ensure that no light interference occurs between the transmitting unit and the receiving unit, and the structure of the distance measuring device is compact. Further save the space occupied by the ranging device.
  • a robot including the above-mentioned laser distance measuring device.
  • the laser ranging device equipped with the robot can effectively isolate the optical signal between the transmitting unit and the receiving unit.
  • Fig. 1 is a perspective view of a laser distance measuring device according to an alternative embodiment of the present disclosure as viewed from the bottom surface;
  • FIG. 2 is a three-dimensional view of the distance measuring component of the laser distance measuring device shown in FIG. 1;
  • Fig. 3 is a cross-sectional view of the laser ranging assembly shown in Fig. 2;
  • FIG. 4 is a three-dimensional view of the circuit board of the receiving unit of the laser distance measuring device shown in FIG. 1;
  • FIG. 5 is a three-dimensional view of the light shield of the laser distance measuring device shown in FIG. 1;
  • Fig. 6 is another perspective view of the light shield of the laser distance measuring device shown in Fig. 1;
  • Fig. 7 is an exploded view of the laser distance measuring device shown in Fig. 1.
  • the embodiments of the present disclosure provide a laser ranging device, which can emit laser pulses to a target object to be ranged, then receive the laser pulse reflected by the target object, and analyze and calculate the received laser pulse to obtain The distance between the target object and the laser distance measuring device.
  • the laser ranging device provided by the embodiment of the present disclosure is suitable for short-distance (for example, less than 30 meters) and high-frequency (for example, higher than 1000 times/sec) ranging in an indoor environment using TOF.
  • the laser ranging device 1 of an optional implementation provided by the embodiment of the present disclosure mainly includes a ranging component 10 and an outer casing 20.
  • the ranging component 10 is the core component of the laser ranging device 1 to realize the ranging function.
  • the outer shell 20 is roughly constructed in the shape of a round pie, which is arranged on the outside of the distance measuring assembly 10 and plays a role of fixing and protecting. It can be understood that, in other embodiments, the outer shell 20 may also be configured in an oval pie shape or a cube shape.
  • the outer casing 20 is provided with a first opening 21 through which the emitted laser pulse passes and a second opening 22 through which the laser pulse reflected by the target object to be ranged passes.
  • the laser distance measuring device 1 may also include a fixed seat.
  • the outer casing 20 is buckled on the fixing base, and a substantially closed internal space is formed between the outer casing 20 and the fixing base, and the distance measuring assembly 10 is accommodated in the internal space.
  • An installation structure such as a screw hole or a buckle can also be provided on the fixing seat, and the laser distance measuring device 1 can be installed and fixed to a robot, a drone, etc. through the installation structure.
  • the ranging assembly 10 includes a transmitting unit 11, a receiving unit 12 and a frame 13.
  • the transmitting unit 11 and the receiving unit 12 are respectively fixed on the frame 13 to form a whole.
  • the transmitting unit 11 includes a transmitter 111, a transmitting circuit board 112 and a transmitting lens 113.
  • the transmitter 111 is used to emit laser pulses for distance measurement.
  • the transmitter 111 is configured as a laser diode.
  • the laser diode is integratedly arranged on the transmitting circuit board 112.
  • a first optical cavity 131 is provided on the frame 13.
  • the emission circuit board 112 and the emission lens 113 are fixed to the frame 13 and are respectively located at both ends of the first optical cavity 131.
  • the laser pulse emitted by the transmitter 111 may be transmitted to the outside through the emitting lens 113.
  • the transmitting lens 113 can focus and collimate the laser pulse passing through it. It can be understood that, in other embodiments, other devices capable of emitting laser light may also be used as the transmitter.
  • the first optical cavity 131 and the second optical cavity 132 are arranged side by side.
  • the first optical cavity 131 may be substantially configured as a cylindrical channel
  • the second optical cavity 132 may be substantially configured as a street cone-shaped channel
  • the cross-sectional area of the front end of the second optical cavity 132 is larger than the cross-sectional area of the back end.
  • the transmitting unit 11 further includes a regulator 114.
  • the emitting lens 113 is installed on the adjuster 114, and the adjuster 114 is arranged in the first optical cavity 131 of the frame 13 in an adjustable manner. Therefore, the position of the emitting lens 113 relative to the emitter 111 can be adjusted by changing the position of the adjuster 114 in the first optical cavity 131 to adjust the optical path of the calibration emitting unit 11.
  • the direction of the position adjustment may include the direction along the laser pulse transmission and the direction perpendicular to the laser pulse transmission direction.
  • the adjuster 114 has a cylindrical structure.
  • the outer side surface of the adjuster 114 and the inner side surface of the first optical cavity 131 are respectively provided with threads.
  • the adjuster 114 is movably arranged in the first optical cavity 131 by means of threaded engagement.
  • the adjuster 114 can be screwed to adjust the position of the transmitting lens 113.
  • the adjustment method is relatively simple. After the emitting lens 113 is adjusted in place, the adjuster 114 and the emitting lens 113 can be fixed at the position by a process such as glue dispensing.
  • the center wavelength of the laser pulse emitted by the transmitter 111 may be 905 nm or 850 nm.
  • the light of these wavelengths can be distinguished from the ambient light in the normal indoor environment, which is beneficial to reduce the influence of ambient light and improve the accuracy of distance measurement. It can be understood that due to the large amount of stray light with a wavelength close to 850 nm in the outdoor ambient light, the laser pulse with a center wavelength of 850 nm is not suitable for use in an outdoor environment, but is more suitable for distance measurement in an indoor environment.
  • the receiving unit 12 includes a light detector 121, a receiving circuit board 122 and a receiving lens 123.
  • the photodetector 121 is used to sense the laser pulse reflected by the target object, and generate a corresponding photoelectric signal to transmit to the receiving circuit board 122.
  • the analysis circuit on the receiving circuit board 122 analyzes and calculates the photoelectric signal to obtain the distance between the target object and the laser distance measuring device 1.
  • the photodetector 121 is packaged in the package module 124 as shown in FIG. 4 and is integratedly arranged on the receiving circuit board 122.
  • a second optical cavity 132 isolated from the first optical cavity 131 is provided on the frame 13.
  • the receiving circuit board 122 and the receiving lens 123 are fixed to the frame 13 and are respectively located at two ends of the second optical cavity 132.
  • the laser pulses reflected by the target object can be focused and collimated by the receiving lens 123 before being sensed by the photodetector 121.
  • the receiving unit 12 may set a receiving window as large as possible, that is, the receiving lens 123 may be as large as possible.
  • the installation space is limited, and due to the consideration of miniaturization, the size of the laser distance measuring device 1 itself is limited.
  • the outer housing 20 roughly defines the outer contour of the laser distance measuring device 1. Therefore, the size of the laser distance measuring device 1 in the thickness direction (that is, the axial direction of the disc shape) is significantly smaller than the size in the direction parallel to the end surface 23 of the outer shell 20 (that is, the radial direction of the disc shape).
  • the receiving lens 123 is arranged such that its size along the direction parallel to the end surface 23 is larger than its size along the above-mentioned thickness direction to form a receiving window as large as possible.
  • the receiving lens 123 may be configured to have a rectangular projection on a plane perpendicular to its optical axis AX2 (see FIG. 3), wherein the long side of the rectangle is parallel to the end surface 23, and the short side of the rectangle is perpendicular to the end surface 23.
  • the outer surface of at least one of the transmitting lens 113 and the receiving lens 123 is configured as a free-form surface. That is, the outer surface of the aforementioned lens satisfies the following formula:
  • z is the value of the lens thickness direction
  • r is the polar coordinate value of any point on the curved surface
  • k is the quadric surface coefficient
  • c is the radius of curvature of a fixed point on the curved surface.
  • Multiple ⁇ i are parameters to be set.
  • the free-form surface is preferably a quadric surface, which has good focusing and collimation effects. Therefore, it is sufficient to use a single lens, and it is not necessary to provide a lens group including a plurality of lenses.
  • the lens focal length of at least one of the transmitting lens 113 and the receiving lens 123 is set to be less than or equal to 50 mm.
  • the thickness of the receiving lens 123 may be set to be less than or equal to 5 mm. With this arrangement, the size of the lens is small, which is conducive to the miniaturization of the laser distance measuring device 1.
  • Laser ranging devices are usually used as part of the perception system in application scenarios such as robots, drones or unmanned driving.
  • Robots or drones, etc. need to build an environment map based on the surrounding environment information sensed by the laser ranging device.
  • the robot or drone can plan a movement path within the constructed environment map and actively avoid obstacles, thereby realizing autonomous movement. Therefore, it is better to avoid blind spots in the laser distance measuring device, especially to avoid blind spots in the vicinity.
  • the conventional laser ranging device will inevitably lead to the appearance or even expansion of the blind zone when it is miniaturized, which is an irreconcilable natural contradiction.
  • ranging accuracy is a basic indicator to measure the performance of laser ranging devices.
  • the prerequisite for achieving accurate ranging is that the signal-to-noise ratio can reach the predetermined index, otherwise the accuracy measurement will be impossible. Therefore, increasing the proportion of received laser pulses as much as possible and reducing the introduction of other optical signal noise are issues that need to be considered in the entire optical path design of the laser ranging device.
  • FIG. 3 schematically shows the field angle ⁇ of the transmitting unit 11 and the field angle ⁇ of the receiving unit 12.
  • the laser ranging device 1 provided by the embodiment of the present disclosure is configured such that the field angle ⁇ of the receiving unit 12 is greater than the field angle ⁇ of the transmitting unit 11. It can be seen from Figure 3 that, according to this setting, the overlapping area of the receiving field of view and the transmitting field of view is the sum of area A and area B, and the blind area between the two is only area D.
  • the overlapping area of the receiving field of view and the transmitting field of view is zone A, and the area between the two The blind zone is zone C and zone D. It can be understood that when the field angle of the receiving unit is smaller than the field angle of the transmitting unit, the overlapping area of the two fields of view is further reduced and the blind area is further increased.
  • the receiving unit can have as large a light field as possible, so that the overlapping area between the receiving field of view and the transmitting field of view can be reduced or even eliminated, and the receiving unit can receive More light intensity, and can also improve the signal-to-noise ratio of the received signal.
  • the launch angle of the launch unit is small, and the laser pulse can be sent to a longer distance under the condition of limited power, which is beneficial for distance measurement.
  • the transmitting unit 11 and the receiving unit 12 are arranged along a lateral interval. According to what is shown in FIG. 3, it can be seen that the greater the distance L between the outer edge of the transmitting lens 113 and the outer edge of the receiving lens 123, the greater the distance between the optical axes AX1 and AX2 of the two. Correspondingly, the area of the triangle in the D zone is also larger. That is, the larger the blind zone between the transmitting field of view and the receiving field of view. Therefore, in order to reduce the blind area, the distance L between the outer edges of the transmitting lens 113 and the receiving lens 123 should be as small as possible.
  • the distance L between the outer edge of the transmitting lens 113 and the outer edge of the receiving lens 123 is set to be less than or equal to 3 mm.
  • the blind area between the transmitting field of view and the receiving field of view can be reduced as much as possible, and it is possible to avoid detecting nearby objects.
  • laser ranging devices that use TOF for outdoor ranging mostly use avalanche photodiodes (APD) as light detectors.
  • APD avalanche photodiodes
  • APD has a large magnification, even in an outdoor environment, it can capture relatively weak reflected laser pulses and amplify them for analysis and calculation, so it is suitable for laser ranging in outdoor environments.
  • APD amplifies the reflected laser pulse, it also amplifies the ambient light noise it receives in a proportional manner. Therefore, it is usually necessary to set up an optical filter to filter the amplified ambient light noise so as not to affect the analysis and calculation results and cause inaccurate ranging.
  • the laser distance measuring device 1 may use a P-type semiconductor-impurity-N-type semiconductor (positive-intrinsic-negative, PIN) ordinary photodiode as the photodetector 121.
  • PIN positive-intrinsic-negative
  • the magnification of the PIN photodiode is much smaller than that of the APD detector.
  • the PIN photodiode amplifies the laser pulse reflected by the target object and the ambient light noise by the ratio, the amplified ambient light noise is still below the pass threshold of the PIN photodiode because of its small magnification. Unable to pass the PIN photodiode.
  • the PIN photodiode essentially functions to filter ambient light. Therefore, the distance measuring device provided by the embodiment of the present disclosure may not include an optical filter, so that the cost can be further reduced.
  • the laser ranging device replaces the APD and optical filter with a low-cost PIN, and still achieves a high signal-to-noise ratio, which simplifies the optical circuit of the laser ranging device while reducing costs.
  • the design reduces the difficulty of design and implementation. This simplification of the optical receiving end also benefits from the design of the entire optical path, so that the optical signal received by the receiving end is strong enough and the ambient light noise is weak enough.
  • a filter capacitor electrically connected to the PIN photodiode can also be set to filter out high-frequency noise by means of AC blocking to ensure the accuracy of distance measurement.
  • the photodetector 121 is packaged in the package module 124.
  • the package module 124 is opposed to the receiving lens 123 through the second optical cavity 132 so that the laser pulse reflected by the target object can be sensed by the photodetector 121.
  • the laser pulse reflected by nearby obstacles has a strong intensity.
  • the outer surface of the package module 124 is made of a light-colored metal substrate such as silver gray, and the stray light reflected by it will increase the pulse width of the light received by the photodetector 121.
  • the optical pulse width here characterizes the pulse signal whose horizontal axis is time and the vertical axis is voltage that characterizes energy.
  • the TOF time of flight method
  • the TOF is based on the distance measurement principle based on the time difference between laser pulse emission and reception, and the time difference calculation method is closely related to the start and end positions of the light pulse width, not simply taking the middle of the pulse width The position is calculated, so the above-mentioned increase in the optical pulse width will cause inaccurate ranging.
  • At least the outer surface 124a facing the receiving lens 123 of the package module 124 with the photodetector 121 is set as a matte surface to reduce the The reflection effect can reduce or even eliminate the stray light and avoid the interference of the stray light on TOF ranging, which is beneficial to improve the signal-to-noise ratio.
  • a matting material may be coated on the outer surface 124a.
  • a matting agent such as polyacrylate resin or other matting powder, matting paint, etc. may be coated on the outer surface 124a to perform matting treatment to form a matting surface.
  • the outer surface 124a may be covered with a matting film.
  • a dark (for example, black) substrate it is also possible to directly use a dark (for example, black) substrate to make the outer package of the package module 124, so that at least the outer surface 124a is formed as a matte surface.
  • the distance between the outer edge of the receiving lens 123 and the transmitting lens 113 of the laser distance measuring device 1 provided by the embodiment of the present disclosure is at most 3 mm. Therefore, it is easy to happen that a part of the laser pulse emitted by the transmitting unit 11 has not yet been transmitted to the external target object, that is, has been reflected by the internal parts and received by the receiving unit 12, resulting in strong noise light and signal noise. The ratio is greatly reduced, and distance measurement cannot be achieved.
  • the laser distance measuring device 1 may further include a light shield 30.
  • the light shield 30 has a first channel 31 and a second channel 32 which are arranged between the distance measuring assembly 10 and the outer housing 20.
  • the two ends of the first channel 31 are connected to the transmitting lens 113 and the first opening 21 of the outer casing 20 respectively, and the two ends of the second channel 32 are connected to the receiving lens 123 and the second opening 22 of the outer casing 20 respectively.
  • an opaque light blocking wall 33 is arranged between the first channel 31 and the second channel 32 to completely isolate the two.
  • the laser pulse emitted by the transmitting unit 11 can only be transmitted to the outside through the first channel 31 and the first opening 21 after passing through the transmitting lens 113, and cannot be reflected inside the laser distance measuring device 1 to the receiving lens 123, thereby Avoiding the reduction of signal-to-noise ratio caused by internal reflection is beneficial to improve the accuracy of TOF ranging.
  • the light shielding cover 30 may be detachably mounted to the laser distance measuring device, and the light shielding cover may be made of materials such as resin.
  • the cross-sectional area of the first passage 31 may be configured to gradually decrease from front to back.
  • a protective device may be provided on the outside of the outer casing 20, such as a buffer to prevent the outer casing from being impacted.
  • the buffer is provided on the outside of the outer housing 20 and can move between the first position and the second position. When the buffer touches an obstacle, the buffer moves from the first position to the second position. Since the buffer will produce a certain range of relative movement relative to the outer housing 30, it is necessary to prevent the laser pulse emitted by the transmitter 111 from hitting the buffer. ⁇ On the device.
  • the structure of the first channel 31 can limit the laser pulse emitted by the transmitter 111 within a certain range to prevent the laser pulse from hitting the protection device.
  • the cross-sectional area of the second passage 32 may be configured to gradually increase from front to back.
  • the light blocking wall 33 may include a rear end The first step portion 146 and the second step portion 147 provided at the front end, wherein the front surface of the frame 13 abuts the first step portion 146.
  • the first step portion 146 may include a first surface 148 and a second surface 149 arranged at intervals on the rear side of the first surface 148, and the front surface of the frame 13 abuts against the second surface 149.
  • the second step portion 147 may abut the inner surface of the outer case 30.
  • the first surface 148 is parallel to the second surface 149. According to requirements, the first surface 148 may not be parallel to the second surface 149.
  • an extinction structure can be provided on the inner surface of the first channel 31.
  • the inner surface of the first channel 31 may be provided with a plurality of matting grooves, so the light irradiated on the matting grooves is reflected at different angles to disperse the emission.
  • the intensity of the light beam can avoid the problem of signal interference caused by a large number of direct light beams reflecting in the same direction.
  • the matting groove may extend along the circumferential direction of the inner surface of the first channel 31.
  • the plurality of matting grooves may be arranged at equal intervals along the length direction of the first channel 31 (ie, the front-rear direction).
  • the structure of the matting grooves is not limited to this embodiment, and the matting grooves may also be grooves of other shapes as required.
  • the extinction structure may be a protrusion provided on the inner surface of the first channel 31.
  • the protrusions may extend along the circumferential direction of the inner surface of the first passage 31, and a plurality of protrusions may be arranged at equal intervals along the length direction of the first passage 31 (ie, the front-rear direction).
  • a robot is also provided.
  • the robot may include the above-mentioned laser distance measuring device, which can obtain and construct a map of the indoor environment by using the TOF distance measuring device in an indoor environment through the laser distance measuring device, and move autonomously according to the constructed map.
  • the robot may be a smart cleaning device capable of autonomously moving on the ground to perform a cleaning function.
  • the smart cleaning device may be a sweeping robot, a mopping robot, or an integrated sweeping and mopping robot.
  • Smart cleaning equipment can include cleaning systems, sensing systems, control systems, and driving systems.
  • the perception system is used for smart cleaning equipment to perceive the external environment such as terrain.
  • the laser distance measuring device constitutes a part of the sensing system, which can be set on the front or top of the smart cleaning equipment.
  • the control system controls the driving system to drive the intelligent cleaning equipment to move autonomously based on the sensing result of the sensing system, and selectively controls the cleaning system to perform cleaning functions.
  • the side facing the receiving lens of the package module encapsulated with the photodetector is configured as a matte surface, which can weaken the reflective ability of the surface, thereby reducing or even eliminating nearby
  • the stray light can improve the signal-to-noise ratio, which is conducive to improving the accuracy of TOF for short-distance and high-frequency ranging in indoor environments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光测距装置(1)和机器人。激光测距装置(1)包括发射单元(11)和接收单元(12)。发射单元(11)包括用于发射脉冲激光至待被测距的目标物体的发射器(111)和用于供所发射的脉冲激光通过的发射透镜(113)。接收单元(12)包括用于接收从目标物体反射的脉冲激光的光探测器(121)和用于供所反射的脉冲激光通过的接收透镜(123)。其中,光探测器(121)通过封装在封装模组(124)中的方式设置,封装模组(124)位于接收透镜(123)的后方并与接收透镜(123)相对,其面向接收透镜(123)的一侧构造为消光表面。

Description

激光测距装置和机器人
相关申请的交叉引用
本申请要求于2019年12月02日提交的申请号为201922129657.9、201922133087.0和201922132464.9的中国申请的优先权,其在此处于所有目的通过引用将其全部内容并入本文。
技术领域
本公开涉及智能家居的技术领域,且更具体地涉及一种激光测距装置和机器人。
背景技术
在民用和商用领域中,用于环境探测和地图构建的激光测距方法按技术路线大体可以分为两类:一类是飞行时间法(Time of Flight,TOF),另一类是三角测距法。其中,TOF对温度变化产生的形变不敏感,其测距精度——尤其是在远距离测距时——高于三角测距法。然而,目前TOF大多应用于远距离测距的场景,例如无人机或自动驾驶等。在室内环境下相对短距离(例如低于30米)的高频次(例如高于1000次/秒)测距场景中大多应用三角测距法。
这主要是由于采用TOF测距的装置成本更高,并且近距离测距时反射的杂散光过多,各种原因导致接收光的信噪比太低,因而测距精度较差。近距离测距的杂散光过多的其中一个原因,是从近处障碍物处反射至光接收器的封装模组表面(多为银灰色基材)进行镜面反射,并在光接收端内部多次反射进入光接收器表面,从而构成了强光噪声。
上述这些因素限制了TOF测距在室内环境下相对短距离的高频次测距场景中的应用。
发明内容
在本公开此部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本部分内容并不意味着要试图限定出所要求保 护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本公开实施例提供了一种激光测距装置,所述激光测距装置包括:
发射单元,所述发射单元包括用于发射脉冲激光至待被测距的目标物体的发射器和用于供所发射的脉冲激光通过的发射透镜;以及
接收单元,所述接收单元包括用于接收从所述目标物体反射的脉冲激光的光探测器和用于供所反射的脉冲激光通过的接收透镜;
其中,所述光探测器通过封装在封装模组中的方式设置,所述封装模组位于所述接收透镜的后方并且与所述接收透镜相对,所述封装模组的面向所述接收透镜的一侧构造为消光表面。
根据本公开实施例所提供的激光测距装置,封装有光探测器的封装模组的面向接收透镜的一侧构造为消光表面,能够减弱该表面的反光能力,从而减少甚至消除近处的杂散光,可以提高信噪比,有利于提高TOF在室内环境下进行短距离高频次测距的准确性。
根据本公开实施例的另一个方面,还提供一种机器人,所述机器人包括如上所述的激光测距装置。
根据本公开实施例所提供的机器人,其所装备的激光测距装置适于采用TOF在室内环境下进行短距离高频次的测距,测距精度更高。
根据本公开实施例的另一个方面,还提供一种激光测距装置,所述激光测距装置包括:
发射单元,所述发射单元包括用于发射脉冲激光至待被测距的目标物体的发射器和用于供所发射的脉冲激光通过的发射透镜;以及
接收单元,所述接收单元包括用于接收从所述目标物体反射的脉冲激光的光探测器和用于供所反射的脉冲激光通过的接收透镜;
其中,所述光探测器为PIN型光电二极管。
根据本公开实施例所提供的激光测距装置,可以采用PIN型光电二极管作为接收单元的光探测器,其适于在室内环境中进行光的感测,并且成本较低。此外,还可以省略设置光滤波片,由此能够进一步降低成本。
根据本公开实施例的另一个方面,还提供一种机器人,所述机器人包括如上述的激光测距装置。
根据本公开实施例所提供的机器人,其所装备的激光测距装置的成本 较低,并适于采用TOF在室内环境下进行短距离高频次的测距。
根据本公开实施例的另一个方面,还提供一种激光测距装置,所述激光测距装置包括:
框架,所述框架包括第一光腔和与所述第一光腔并排设置的第二光腔;
发射单元,所述发射单元包括设置在所述第一光腔的后端的发射器和设置在所述第一光腔的前端的发射透镜,所述发射器用于朝向所述发射透镜发射脉冲激光;
接收单元,所述接收单元包括设置在所述第二光腔的后端的光探测器和设置在所述第二光腔的前端的接收透镜,所述光探测器用于经由所述接收透镜接收待测距目标物体所返回的所述激光脉冲;以及
遮光罩,所述遮光罩设置在所述框架的前侧,所述遮光罩的后表面抵靠于所述框架的前表面,并且将所述发射透镜和所述接收透镜间隔开,以防止所述发射单元和所述接收单元之间产生光干扰。
根据本公开实施例所提供的激光测距装置,通过设置遮光罩,将发射透镜和接收透镜间隔开,以保证发射单元和接收单元之间不会产生光干扰,并且测距装置的结构紧凑,进一步节约该测距装置所占用的空间。
根据本公开实施例的另一个方面,还提供一种机器人,所述机器人包括如上述的激光测距装置。
根据本公开实施例所提供的机器人,其所装备的激光测距装置可以有效隔离发射单元和接收单元之间的光信号。
附图说明
本公开的下列附图在此作为本公开的一部分用于理解本公开所涉及的技术方案。附图中示出了本公开的实施例及其描述,用来解释本公开的基本原理。附图中:
图1为根据本公开的一个可选实施方式的激光测距装置从底面观察的立体视图;
图2为图1所示的激光测距装置的测距组件的立体视图;
图3为图2所示的激光测距组件的横向剖切视图;
图4为图1所示的激光测距装置的接收单元的电路板的立体视图;
图5为图1所示的激光测距装置的遮光罩的立体视图;
图6为图1所示的激光测距装置的遮光罩的另一立体视图;以及
图7为图1所示的激光测距装置的爆炸图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本公开更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本公开实施方式可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本公开实施方式发生混淆,对于本领域公知的一些技术特征未进行描述。
为了进一步了解本公开实施方式,将在下列的描述中提出详细的结构。显然,本公开实施方式的施行并不限定于本领域的技术人员所熟习的特殊细节。
本公开实施例提供了一种激光测距装置,其可以将激光脉冲发射至待被测距的目标物体,然后接收目标物体反射的激光脉冲,并且对所接收的激光脉冲进行分析计算从而得出目标物体与该激光测距装置之间的距离。本公开实施例所提供的激光测距装置适于采用TOF在室内环境中进行短距离(例如低于30米)高频次(例如高于1000次/秒)测距。下面结合附图进行详细介绍。
如图1所示,本公开实施例所提供的一个可选实施方式的激光测距装置1主要包括测距组件10和外壳体20。其中,测距组件10是激光测距装置1实现测距功能的核心部件。
外壳体20大致构造为圆饼状,其罩设在测距组件10的外部,起到固定和保护的作用。可以理解,在其他的实施方式中,外壳体20还可以构造为椭圆饼形或立方体等的形状。外壳体20上设置有供发射的激光脉冲通过的第一开口21和供待被测距的目标物体反射的激光脉冲通过的第二开口22。
虽然附图中没有示出,本领域技术人员可以理解,激光测距装置1还可以包括固定座。外壳体20扣合在固定座上,其与固定座之间形成大致封闭的内部空间,测距组件10容纳于该内部空间内。固定座上还可以设置诸如螺钉孔或卡扣等的安装结构,可以通过安装结构将激光测距装置1安装固定至机器人、无人机等。
如图2和图6所示,测距组件10包括发射单元11、接收单元12和框架13。发射单元11和接收单元12分别固定在框架13上,形成一个整体。
如图3所示,发射单元11包括发射器111、发射电路板112和发射透镜113。发射器111用于发射测距所用的激光脉冲。在本公开一个实施方式中,发射器111构造为激光二极管。该激光二极管集成地设置在发射电路板112上。框架13上设置有第一光腔131。发射电路板112和发射透镜113固定至框架13并且分别位于第一光腔131的两端。发射器111发射的激光脉冲可以通过发射透镜113向外传递。发射透镜113能够对经过其的激光脉冲起到聚焦和准直的作用。可以理解,在其他实施方式中,还可以使用其他能够发射激光的装置作为发射器。
在本公开一实施例中,第一光腔131和第二光腔132并排设置。第一光腔131可以大致构造为圆柱形的通道,第二光腔132可以大致构造为街头圆锥形通道,并且第二光腔132前端的横截面积大于后端的横截面积。
可选地,发射单元11还包括调节器114。发射透镜113安装在调节器114上,并且调节器114以可调节的方式设置在框架13的第一光腔131内。由此,可以通过改变调节器114在第一光腔131内的位置来调节发射透镜113相对于发射器111的位置,以调节校准发射单元11的光路。其中,位置调节的方向可以包括沿激光脉冲传递的方向和与激光脉冲传递的方向相垂直的方向。
在图3和图6示出的实施方式中,调节器114具有圆筒形的结构。调节器114的外侧面和第一光腔131的内侧面分别设置有螺纹。调节器114通过螺纹啮合的方式可移动地设置在第一光腔131内。在校准时,可以旋拧调节器114以调节发射透镜113的位置。调节的方式比较简单。当发射透镜113调整到位之后,可以通过诸如点胶等的工艺将调节器114和发射透镜113固定在该位置。
为了适应在室内环境下测距,发射器111所发射的激光脉冲的中心波长可以为905nm或850nm。这些波长的光可以与通常室内环境下的环境光区分开,有利于减弱环境光的影响,提高测距的准确性。可以理解,由于室外的环境光中存在大量波长接近850nm的杂散光,因而,中心波长为850nm的激光脉冲不适于在室外环境中使用,而比较适合应用于室内环境测距。
接收单元12包括光探测器121、接收电路板122和接收透镜123。光探测器121用于感测目标物体反射回的激光脉冲,并生成相应的光电信号传递至接收电路板122。接收电路板122上的分析电路等对光电信号进行分析计算以获知目标物体与激光测距装置1之间距离。光探测器121封装在如图4中所示的封装模组124中,并集成地设置在接收电路板122上。此外,框架13上设置有与第一光腔131隔离的第二光腔132。接收电路板122和接收透镜123固定至框架13并且分别位于第二光腔132的两端。由目标物体反射回的激光脉冲在被光探测器121感测之前可以通过接收透镜123进行聚焦和准直。
为了尽量多的接收目标物体反射的激光脉冲,以增加接收的光强,提高信噪比,接收单元12可以设置尽量大的接收窗口,也即接收透镜123尽量大。然而,如图1和图6所示,受限于安装空间,并且出于小型化的考虑,激光测距装置1本身的尺寸有限。可以理解,外壳体20大致限定激光测距装置1的外部轮廓。因而激光测距装置1在厚度方向(也即上述圆饼形状的轴向)的尺寸明显小于其在平行于外壳体20的端面23的方向(也即上述圆饼形状的径向)的尺寸。因此,如图2所示,接收透镜123设置为其沿平行于端面23的方向的尺寸大于其沿上述厚度方向的尺寸,以形成尽量大的接收窗口。例如,接收透镜123可以构造为在垂直于其光轴AX2(见图3)的平面上具有矩形的投影,其中矩形的长边与端面23平行,而矩形的短边则垂直于端面23。
此外,发射透镜113和接收透镜123中的至少一个的外表面构造为自由曲面。也即,上述透镜的外表面满足以下公式:
Figure PCTCN2020132295-appb-000001
在上述公式中,z为透镜厚度方向的值,r为曲面上任一点的极坐标值,k为二次曲面系数,c为曲面定点的曲率半径。多个α i是要设置的参数。自由曲面优选为二次曲面,其具有良好的聚焦和准直效果。因此,使用单片透镜即可,而不必设置包括多个透镜的透镜组。进一步地,发射透镜113和接收透镜123中的至少一个的透镜焦距设置为小于或等于50mm。另外,接收透镜123的厚度可以设置为小于或等于5mm。如此设置,透镜的尺寸 较小,有利于激光测距装置1的小型化。
激光测距装置通常在机器人、无人机或无人驾驶等的应用场景中作为感知系统的一部分使用。机器人或无人机等需要依据激光测距装置所感知的周围环境信息来构建环境地图。由此机器人或无人机能够在所构建的环境地图内规划移动路径并且主动避让障碍物,从而实现自主移动。因此,激光测距装置最好避免存在盲区,尤其是避免存在近处的盲区。而常规设置的激光测距装置在小型化时必然导致盲区的出现甚至扩大,这是不可调和的天然矛盾。
另外,测距准确性是衡量激光测距装置的性能的一个基本指标。而实现测距准确的前提是信噪比能够达到预定的指标,否则测准就无从谈起。因此尽量提高接收到的激光脉冲的占比,减少其他光信号噪音的引入,是激光测距装置的光路设计全程需要考虑的问题。
综合来看,对激光测距装置的设计优化需要解决盲区、信噪比、速度漂移以及误差控制等的问题,要考量和平衡多方面的因素。
图3示意性地示出了发射单元11的视场角θ和接收单元12的视场角β。本公开实施例所提供的激光测距装置1设置为接收单元12的视场角β大于发射单元11的视场角θ。从图3可以看出,根据此设置,接收视场与发射视场的交叠区为A区和B区之和,而二者之间的盲区仅为D区。
相比之下,当接收单元12的视场角与发射单元11的视场角相同(均为θ)时,接收视场与发射视场的交叠区为A区,而二者之间的盲区为C区和D区。可以理解,当接收单元的视场角小于发射单元的视场角时,二者的视场的交叠区进一步减小而盲区进一步增加。
由此可见,根据本公开实施例所提供激光测距装置,接收单元能够具有尽量大的光场,可以使接收视场与发射视场的交叠区并且减小甚至消除盲区,接收单元能够接收更多的光强,并且还可以提高接收信号的信噪比。另外,发射单元的发射角较小,在功率有限的情况下能够将激光脉冲发送至更远的距离,有利于测距。
此外,发射单元11与接收单元12沿横向间隔布置。根据图3所示出的,可以看出,发射透镜113的外缘与接收透镜123的外缘的间距L越大,二者的光轴AX1和AX2之间的距离也越大。相应地,D区的三角形的面积也越大。也即发射视场和接收视场的盲区越大。因此,为了减小盲区, 应当使发射透镜113与接收透镜123的外缘间距L尽量小。根据本公开实施例所提供激光测距装置,发射透镜113的外缘与接收透镜123的外缘的间距L设置为小于或等于3mm。由此能够尽量地减小发射视场与接收视场的盲区,能够避免测不到近处的物体。这些特性使得本公开实施例所提供的激光测距装置适于采用TOF在室内环境下进行短距离高频次的测距。
目前利用TOF进行室外测距的激光测距装置大多使用雪崩光电二极管(avalanche photodiode,APD)作为光探测器。这是由于APD具有很大的放大倍率,即使在室外环境中也能够捕捉相对较弱的反射激光脉冲并将其放大以供分析计算,因而适于在室外环境下进行激光测距。然而,APD在对反射的激光脉冲放大的同时,也会将其所接收的环境光噪声等比放大。因此,通常还需要设置光滤波片,将放大后的环境光噪声过滤,以免其对分析计算结果产生影响,导致测距不准。
而本公开实施例所提供的激光测距装置1,可以使用P型半导体-杂质-N型半导体(positive-intrinsic-negative,PIN)普通光电二极管作为光探测器121。PIN光电二极管本身的价格较低,因而可以降低激光测距装置1的成本。
进一步地,PIN光电二极管的放大倍率远小于APD探测器的放大倍率。在测距时,即使PIN光电二极管将目标物体反射的激光脉冲和环境光噪声等比放大,由于其放大倍率较小,经过放大后的环境光噪声仍然在PIN光电二极管的通过阈值之下,因而无法通过PIN光电二极管。由此,PIN光电二极管实质起到过滤环境光的作用。因此本公开实施例所提供的测距装置可以不包括光过滤片,从而可以进一步降低成本。也即,本公开实施例所提供的激光测距装置用低成本的PIN取代了APD和光过滤片,仍能取得较高的信噪比,在拉低成本的同时简化激光测距装置的光路电路的设计,降低设计和实施难度。光接收端能做此简化也受益于整个光路的设计,使得接收端接收到的光信号足够强,且环境光噪音足够弱。
另外,在高频环境中,还可以设置与PIN光电二极管电连接的滤波电容,通过交流阻断的方式过滤掉高频噪声,以确保测距的准确性。
如图4所示,光探测器121封装在封装模组124中。该封装模组124通过第二光腔132与接收透镜123相对,以便于目标物体反射的激光脉冲能够被光探测器121感测。在测距时,近处障碍物(例如30cm范围内) 反射的激光脉冲光强较强,其经接收透镜123进入第二光腔132后会被接收单元12的封装模组124的外表面反射,形成杂散光。通常,封装模组124的外表面为银灰色等浅色调的金属基材,其反射的杂散光会导致光探测器121接收到的光脉宽增加。此处的光脉宽表征的是横轴为时间,纵轴为表征能量的电压的脉冲信号。而TOF(时间飞行法)在测距原理上基于激光脉冲发射和接收的时间差进行测距,而该时间差计算方法与光脉宽的起始位置和结束位置息息相关,并不是简单地取脉宽中间位置进行计算,因此上述光脉宽增加会导致测距不准。
为了减弱杂散光对近距离测距的干扰,如图4所示,封装有光探测器121的封装模组124的至少朝向接收透镜123的外表面124a设置为消光表面,降低该外表面124a的反射作用,从而减弱甚至消除杂散光,避免杂散光对TOF测距产生干扰,有利于提高信噪比。
在本公开一实施例中,可以在外表面124a涂覆消光材料。例如,可以使用聚丙烯酸酯树脂等的消光剂或其他消光粉、消光漆等涂覆在外表面124a上对其进行消光处理,以形成消光表面。或者,也可以在外表面124a覆盖消光膜片。再或者,还可以直接采用深色(例如黑色)基材制作封装模组124的外包装,使得至少外表面124a形成为消光表面。
通过上面的描述可知,根据本公开实施例所提供的激光测距装置1的接收透镜123与发射透镜113之间的外缘间距最大为3mm。因此,很容易发生发射单元11所发射的激光脉冲的一部分还未发射至外部的目标物体即已经过内部零部件的反射而由接收单元12接收的情况,由此导致强噪声光,使得信噪比大大降低,无法实现测距。
为了避免上述情况发生,如图1和图5所示,本公开实施例所提供的激光测距装置1可以进一步地包括遮光罩30。该遮光罩30具有第一通道31和第二通道32,其设置在测距组件10和外壳体20之间。其中,第一通道31的两端分别与发射透镜113和外壳体20的第一开口21对接,第二通道32的两端分别与接收透镜123和外壳体20的第二开口22对接。并且,第一通道31和第二通道32之间设置有不透光的光阻隔壁33将二者完全隔离开。由此,发射单元11发出的激光脉冲在通过发射透镜113之后只能经由第一通道31和第一开口21发射至外部,而不能在激光测距装置1的内部反射至接收透镜123处,从而避免内部反射造成的信噪比降低,有利于 提高TOF测距的准确度。在本公开实施例中,遮光罩30可以以可拆卸的方式安装至激光测距装置,遮光罩可以由树脂等材料制成。
在本公开实施例中,第一通道31的横截面面积可以构造为从前到后逐渐减小。在外壳体20的外部可以设置保护装置,例如避免外壳体遭到碰撞的缓冲器。在本公开实施例中,缓冲器设置在外壳体20的外部,且能在第一位置和第二位置之间移动。当缓冲器触碰到障碍物时,缓冲器从第一位置移动到第二位置,由于缓冲器相对外壳体30会产生一定范围的相对运动,需要防止发射器111发射的激光脉冲打到该缓冲器上。第一通道31的这种结构可以将发射器111发射的激光脉冲限定在一定的范围内,以防止激光脉冲打到该保护装置上。另外,第二通道32的横截面面积可以构造为从前到后逐渐增大。
在本公开实施例中,当遮光罩30以可拆卸方式安装于激光测距装置上时,为进一步防止发射单元11和接收单元12之间产生光干扰,光阻隔壁33可以包括设置在后端的第一台阶部146和设置在前端的第二台阶部147,其中,框架13的前面表抵靠第一台阶部146。
如图6所示,第一台阶部146可以包括第一表面148和间隔设置在第一表面148后侧的第二表面149,框架13的前表面抵靠第二表面149。第二台阶部147可以抵靠外壳体30的内表面。在本公开实施例中,第一表面148平行于第二表面149。根据需要,第一表面148也可以不平行于第二表面149。
在测距装置的工作环境中,外界杂散光会对发射单元11产生一定影响,为减小该影响,可以在第一通道31内表面设置消光结构。如图5所示,在本公开的一个实施例中,第一通道31的内表面可以设置由多个消光凹槽,是的照射到消光凹槽上的光发生不同角度的反射,以分散发射光束的强度,因而可以避免大量直射光束朝向同一方向反射造成信号干扰的问题。消光凹槽可以沿第一通道31的内表面的周向延伸。多个消光凹槽可以沿第一通道31的长度方向(即前后方向)间隔等间距地设置。本领域技术人员可以理解,消光凹槽的结构不限于本实施方式,根据需要,消光凹槽还可以为其他形状的凹槽。
在本公开一个未示出的实施例中,消光结构可以为设置在第一通道31的内表面的凸起。例如,该凸起可以沿第一通道31的内表面的周向延伸, 并且多个凸起可以沿第一通道31的长度方向(即前后方向)间隔等间距地设置。
根据本公开实施例的另一个方面,还提供一种机器人。该机器人可以包括上述激光测距装置,其能够通过激光测距装置在室内环境下利用TOF测距获取并构建室内环境的地图,并且依据所构建的地图自主地移动。
在一个实施方式中,机器人可以是能够在地面上自主地移动以执行清扫功能的智能清洁设备。例如,该智能清洁设备可以是扫地机器人、拖地机器人或扫拖一体的机器人等。智能清洁设备可以包括清洁系统、感知系统、控制系统和驱动系统等。其中,感知系统用于智能清洁设备对例如地形等的外界环境进行感知。激光测距装置构成感知系统的一部分,其可以设置在智能清洁设备的前部或顶部。控制系统基于感知系统的感知结果控制驱动系统驱动智能清洁设备自主地移动,并且有选择地控制清洁系统执行清洁功能。
根据本公开实施例所提供的激光测距装置和机器人,封装有光探测器的封装模组的面向接收透镜的一侧构造为消光表面,能够减弱该表面的反光能力,从而减少甚至消除近处的杂散光,可以提高信噪比,有利于提高TOF在室内环境下进行短距离高频次测距的准确性。
另外,根据本公开实施例所提供的激光测距装置和机器人,
除非另有定义,本公开中所使用的技术和科学术语与本公开所涉及技术方案的技术领域的技术人员通常理解的含义相同。本公开中使用的术语只是为了描述具体的实施目的,不是旨在限制本公开的保护范围。本公开中出现的诸如“设置”等术语既可以表示一个部件直接附接至另一个部件,也可以表示一个部件通过中间件附接至另一个部件。本公开中在一个实施方式中描述的特征可以单独地或与其它特征结合地应用于另一个实施方式,除非该特征在该另一个实施方式中不适用或是另有说明。
本公开已经通过上述实施方式进行了说明,但应当理解的是,上述实施方式只是用于举例和说明的目的,而非意在将本公开限制于所描述的实施方式范围内。本领域技术人员可以理解的是,根据本公开的教导还可以做出更多种的变型和修改,这些变型和修改均落在本公开所要求保护的范围以内。

Claims (15)

  1. 一种激光测距装置,其特征在于,所述激光测距装置包括:
    发射单元,所述发射单元包括用于发射脉冲激光至待被测距的目标物体的发射器和用于供所发射的脉冲激光通过的发射透镜;以及
    接收单元,所述接收单元包括用于接收从所述目标物体反射的脉冲激光的光探测器和用于供所反射的脉冲激光通过的接收透镜;
    其中,所述光探测器通过封装在封装模组中的方式设置,所述封装模组位于所述接收透镜的后方并且与所述接收透镜相对,所述封装模组的面向所述接收透镜的一侧构造为消光表面。
  2. 根据权利要求1所述的激光测距装置,其特征在于,所述消光表面通过在所述封装模组的侧面涂覆消光材料形成。
  3. 根据权利要求1所述的激光测距装置,其特征在于,所述消光表面通过在所述封装模组的侧面覆盖消光膜片形成。
  4. 根据权利要求1所述的激光测距装置,其特征在于,所述封装模组的至少面向所述接收透镜的一侧采用黑色基材制作。
  5. 根据权利要求1所述的激光测距装置,其特征在于,所述接收单元的视场角大于所述发射单元的视场角。
  6. 根据权利要求1所述的激光测距装置,其特征在于,所述接收透镜的外缘与所述发射透镜的外缘的间距小于或等于3mm。
  7. 根据权利要求1所述的激光测距装置,其特征在于,所述光探测器为PIN型光电二极管。
  8. 根据权利要求1所述的激光测距装置,其特征在于,所述激光测距装置还包括遮光罩,所述遮光罩具有第一通道和第二通道,所述第一通道和所述第二通道通过光阻隔壁隔离,所述发射透镜与所述第一通道对接,所述发射单元发射的激光脉冲经过所述第一通道传递至所述激光测距装置的外部,所述接收透镜与所述第二通道对接,从所述目标物体反射的脉冲激光经过所述第二通道由所述接收单元接收。
  9. 根据权利要求1所述的激光测距装置,其特征在于,所述发射透镜和/或所述接收透镜为单片透镜。
  10. 根据权利要求1至9中任意一项所述的激光测距装置,其特征在于,所述激光测距装置为TOF测距装置。
  11. 一种机器人,其特征在于,所述机器人包括根据权利要求1至10中任意一项所述的激光测距装置。
  12. 一种激光测距装置,其特征在于,所述激光测距装置包括:
    发射单元,所述发射单元包括用于发射脉冲激光至待被测距的目标物体的发射器和用于供所发射的脉冲激光通过的发射透镜;以及
    接收单元,所述接收单元包括用于接收从所述目标物体反射的脉冲激光的光探测器和用于供所反射的脉冲激光通过的接收透镜;
    其中,所述光探测器为PIN型光电二极管。
  13. 一种机器人,其特征在于,所述机器人包括根据权利要求12所述的激光测距装置。
  14. 一种激光测距装置,其特征在于,所述激光测距装置包括:
    框架,所述框架包括第一光腔和与所述第一光腔并排设置的第二光腔;
    发射单元,所述发射单元包括设置在所述第一光腔的后端的发射器和设置在所述第一光腔的前端的发射透镜,所述发射器用于朝向所述发射透镜发射脉冲激光;
    接收单元,所述接收单元包括设置在所述第二光腔的后端的光探测器和设置在所述第二光腔的前端的接收透镜,所述光探测器用于经由所述接收透镜接收待测距目标物体所返回的所述激光脉冲;以及
    遮光罩,所述遮光罩设置在所述框架的前侧,所述遮光罩的后表面抵靠于所述框架的前表面,并且将所述发射透镜和所述接收透镜间隔开,以防止所述发射单元和所述接收单元之间产生光干扰。
  15. 一种机器人,其特征在于,所述机器人包括根据权利要求12所述的激光测距装置。
PCT/CN2020/132295 2019-12-02 2020-11-27 激光测距装置和机器人 WO2021109939A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/756,784 US20230008790A1 (en) 2019-12-02 2020-11-27 Laser ranging device and robot
EP20895245.7A EP4071514A4 (en) 2019-12-02 2020-11-27 LASER AND ROBOT TELEMETRY DEVICE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201922132464.9 2019-12-02
CN201922129657.9 2019-12-02
CN201922133087.0U CN211826513U (zh) 2019-12-02 2019-12-02 激光测距装置和机器人
CN201922133087.0 2019-12-02
CN201922132464.9U CN211826511U (zh) 2019-12-02 2019-12-02 激光测距装置和机器人
CN201922129657.9U CN212181022U (zh) 2019-12-02 2019-12-02 测距装置及具有其的智能清洁设备

Publications (1)

Publication Number Publication Date
WO2021109939A1 true WO2021109939A1 (zh) 2021-06-10

Family

ID=76221426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132295 WO2021109939A1 (zh) 2019-12-02 2020-11-27 激光测距装置和机器人

Country Status (3)

Country Link
US (1) US20230008790A1 (zh)
EP (1) EP4071514A4 (zh)
WO (1) WO2021109939A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117204952B (zh) * 2023-11-09 2024-03-15 北京唯迈医疗设备有限公司 一种医疗介入器件的测距装置、系统和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019984A1 (en) * 1991-05-03 1992-11-12 Valtion Teknillinen Tutkimuskeskus Apparatus for locating an object, and light transmitter
CN205229458U (zh) * 2015-09-28 2016-05-11 于春雨 激光测距雷达
CN206223977U (zh) * 2016-10-08 2017-06-06 深圳市金立通信设备有限公司 激光测距装置、摄像装置以及终端
CN207408583U (zh) * 2017-10-26 2018-05-25 成都微光云科技有限公司 一种小盲区激光测距雷达
CN110988898A (zh) * 2019-12-02 2020-04-10 北京石头世纪科技股份有限公司 激光测距装置和机器人
CN211826511U (zh) * 2019-12-02 2020-10-30 北京石头世纪科技股份有限公司 激光测距装置和机器人
CN211826513U (zh) * 2019-12-02 2020-10-30 北京石头世纪科技股份有限公司 激光测距装置和机器人

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2868860C (en) * 2012-09-21 2018-04-24 Irobot Corporation Proximity sensing on mobile robots
US10121813B2 (en) * 2017-03-28 2018-11-06 Luminar Technologies, Inc. Optical detector having a bandpass filter in a lidar system
US20180284246A1 (en) * 2017-03-31 2018-10-04 Luminar Technologies, Inc. Using Acoustic Signals to Modify Operation of a Lidar System
EP3676631A4 (en) * 2017-09-05 2021-04-14 Waymo LLC SHARED WAVEGUIDE FOR LIDAR TRANSMITTER AND RECEIVER
US11353556B2 (en) * 2017-12-07 2022-06-07 Ouster, Inc. Light ranging device with a multi-element bulk lens system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019984A1 (en) * 1991-05-03 1992-11-12 Valtion Teknillinen Tutkimuskeskus Apparatus for locating an object, and light transmitter
CN205229458U (zh) * 2015-09-28 2016-05-11 于春雨 激光测距雷达
CN206223977U (zh) * 2016-10-08 2017-06-06 深圳市金立通信设备有限公司 激光测距装置、摄像装置以及终端
CN207408583U (zh) * 2017-10-26 2018-05-25 成都微光云科技有限公司 一种小盲区激光测距雷达
CN110988898A (zh) * 2019-12-02 2020-04-10 北京石头世纪科技股份有限公司 激光测距装置和机器人
CN211826511U (zh) * 2019-12-02 2020-10-30 北京石头世纪科技股份有限公司 激光测距装置和机器人
CN211826513U (zh) * 2019-12-02 2020-10-30 北京石头世纪科技股份有限公司 激光测距装置和机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071514A4 *

Also Published As

Publication number Publication date
US20230008790A1 (en) 2023-01-12
EP4071514A4 (en) 2023-12-20
EP4071514A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2021109912A1 (zh) 激光测距装置和机器人
US10088557B2 (en) LIDAR apparatus
US7834984B2 (en) Device for optical distance measurement
CN103134470B (zh) 光学式测距装置及搭载该装置的电子设备
JP4991787B2 (ja) 反射型光電センサ
KR101785254B1 (ko) 전방향 라이다 장치
KR101785253B1 (ko) 라이다 장치
CN106291574A (zh) 一种小型红外测距装置
CN109819144B (zh) Tof摄像模组及其设计方法
KR102144541B1 (ko) 2방향 거리 검출 장치
CN110235025B (zh) 距离探测装置
CN211826513U (zh) 激光测距装置和机器人
CN211826511U (zh) 激光测距装置和机器人
WO2021109939A1 (zh) 激光测距装置和机器人
JP2007333592A (ja) 距離測定装置
US20210325516A1 (en) Optical system that detects and blocks backscatter
KR101814135B1 (ko) 라이다 시스템
CN112255617B (zh) 一种可抗阳光干扰型激光扫描测距仪
CN211826512U (zh) 激光测距装置和机器人
WO2023201160A1 (en) Detector having parallax compensation
WO2023201159A1 (en) Photosensor having range parallax compensation
JP4127579B2 (ja) 光波距離計
JP2023159092A (ja) 光走査装置、物体検出装置及びセンシング装置
WO2022088492A1 (zh) 一种采集器、距离测量系统及电子设备
WO2021134689A1 (zh) 测距装置和测距系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020895245

Country of ref document: EP

Effective date: 20220704