WO2021109492A1 - 一种电压调节电路及超声设备 - Google Patents

一种电压调节电路及超声设备 Download PDF

Info

Publication number
WO2021109492A1
WO2021109492A1 PCT/CN2020/092215 CN2020092215W WO2021109492A1 WO 2021109492 A1 WO2021109492 A1 WO 2021109492A1 CN 2020092215 W CN2020092215 W CN 2020092215W WO 2021109492 A1 WO2021109492 A1 WO 2021109492A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
resistor
output
circuit
Prior art date
Application number
PCT/CN2020/092215
Other languages
English (en)
French (fr)
Inventor
赵德知
赵健
胡胜寒
Original Assignee
深圳开立生物医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳开立生物医疗科技股份有限公司 filed Critical 深圳开立生物医疗科技股份有限公司
Publication of WO2021109492A1 publication Critical patent/WO2021109492A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device

Definitions

  • the present invention relates to the field of disease diagnosis, in particular to a voltage regulating circuit and ultrasonic equipment.
  • Ultrasound equipment is widely used in the field of disease diagnosis, and its working principle is: transmitting ultrasonic signals to the human body and receiving ultrasonic echo signals to detect human diseases by using ultrasonic echo imaging technology.
  • ultrasound equipment can work in different modes.
  • the power supply voltage required by the transmitting chip of the ultrasound equipment is not the same.
  • the method of adjusting the power supply voltage of the transmitting chip is: using a DC-DC conversion circuit to provide the corresponding power supply voltage for the transmitting chip in different modes.
  • the output voltage of the DC-DC conversion circuit contains relatively large interference. The signal will affect the imaging effect of the ultrasound equipment.
  • the purpose of the present invention is to provide a voltage regulation circuit and ultrasonic equipment, which can suppress interference signals in the output voltage of the DC-DC conversion circuit, so as to provide a stable power supply for the transmitter chip in the ultrasonic equipment, thereby improving the imaging effect of the ultrasonic equipment; moreover, The input and output pressure difference of the positive linear regulator and the negative linear regulator can be adjusted to prevent the two from being damaged due to excessive power consumption.
  • the present invention provides a voltage adjustment circuit, which is applied to an ultrasonic device containing a transmitting chip, including:
  • a positive linear regulator whose input terminal is connected to the output positive terminal of the DC-DC conversion circuit, and the output terminal is connected to the positive terminal of the power supply of the transmitter chip;
  • a negative linear regulator whose input terminal is connected to the negative output terminal of the DC-DC conversion circuit, and the output terminal is connected to the negative terminal of the power supply of the transmitter chip;
  • the differential pressure regulating circuit respectively connected to the DC-DC conversion circuit, the positive linear regulator, and the negative linear regulator is used to control the positive linear regulator according to the power supply demand of the transmitter chip And the output voltage of the negative linear regulator; the differential pressure regulating circuit is also used to control the positive linear regulator and the negative linear regulator by adjusting the output voltage of the DC-DC conversion circuit Input and output pressure difference.
  • the pressure difference control circuit includes:
  • the D/A converters respectively connected to the reference terminal of the positive linear regulator and the reference terminal of the negative linear regulator are used to control the positive linear regulator and the negative linear regulator by adjusting its own output voltage.
  • the voltage difference circuit connected to the output terminal of the D/A converter is used to make the difference between the output voltage of the D/A converter and the adjustable negative bias voltage, and use the difference between the two as the difference.
  • the given value of the DC-DC conversion circuit is used to make the difference between the output voltage of the D/A converter and the adjustable negative bias voltage, and use the difference between the two as the difference.
  • the voltage feedback circuit respectively connected to the output terminal of the voltage difference circuit and the DC-DC conversion circuit is used to control the positive output voltage of the DC-DC conversion circuit to track a certain ratio to the given value Voltage value; wherein, the negative output voltage of the DC-DC conversion circuit and its positive output voltage are opposite to each other.
  • the voltage difference circuit includes a first resistor, a second resistor, and a first operational amplifier; wherein:
  • the input positive terminal of the first operational amplifier is connected to the output terminal of the D/A converter, and the input negative terminal of the first operational amplifier is connected to the first terminal of the first resistor and the second resistor respectively.
  • the second end of the first resistor is connected to the adjustable negative bias voltage, the second end of the second resistor is connected to the output of the first operational amplifier and the common end is used as the The output terminal of the voltage difference circuit; wherein the resistance values of the first resistor and the second resistor are equal.
  • the voltage difference circuit further includes a third resistor and a fourth resistor; wherein:
  • the first end of the third resistor is connected to the output end of the D/A converter, and the second end of the third resistor is connected to the input positive end of the first operational amplifier and the fourth resistor respectively.
  • the first end is connected, and the second end of the fourth resistor is grounded;
  • the voltage difference circuit is also used to match the impedance of the input positive terminal and the input negative terminal of the first operational amplifier by adjusting the resistance of the third resistor and the fourth resistor.
  • the voltage difference circuit further includes:
  • a first capacitor connected in parallel with the second resistor
  • a second capacitor connected in parallel with the fourth resistor.
  • the voltage feedback circuit includes a fifth resistor, a sixth resistor, a seventh resistor, a third capacitor, a fourth capacitor, and a second operational amplifier; wherein:
  • the input positive terminal of the second operational amplifier is connected to the output terminal of the voltage difference circuit, and the input negative terminal of the second operational amplifier is respectively connected to the first terminal of the fifth resistor and the output terminal of the sixth resistor.
  • the first end, the first end of the third capacitor, and the first end of the fourth capacitor are connected, the second end of the fifth resistor is connected to the output positive end of the DC-DC conversion circuit, the The second end of the sixth resistor is grounded, the second end of the third capacitor is connected to the first end of the seventh resistor, and the second end of the seventh resistor is respectively connected to the second end of the fourth capacitor.
  • the output terminal of the second operational amplifier and the comparison terminal of the DC-DC conversion circuit are connected;
  • the voltage feedback circuit is specifically used to control the DC-DC conversion circuit to adjust its output voltage so that the voltage value of the negative input terminal of the second operational amplifier tracks the voltage value of the positive input terminal of the second operational amplifier.
  • the DC-DC conversion circuit includes a DC-DC controller, a switch tube, a sampling resistor, a transformer, a first rectifier diode, and a second rectifier diode; wherein:
  • the comparison terminal of the DC-DC controller is connected with the output terminal of the voltage feedback circuit, the detection terminal of the DC-DC controller is connected with the first terminal of the sampling resistor, and the second terminal of the sampling resistor Grounded, the drive end of the DC-DC controller is connected to the control end of the switch tube, the first end of the switch tube is connected to the input negative end of the transformer, and the input positive end of the transformer is connected to the
  • the power terminal of the DC-DC controller is connected and the common terminal is connected to the DC power supply, the output positive terminal of the transformer is connected to the anode of the first rectifier diode, and the cathode of the first rectifier diode serves as the DC-DC converter
  • the output positive terminal of the circuit, the output negative terminal of the transformer is connected to the cathode of the second rectifier diode, the anode of the second rectifier diode is used as the output negative terminal of the DC-DC conversion circuit, and the middle of the transformer Tap to ground;
  • the DC-DC conversion circuit is specifically configured to adjust the duty cycle of the driving pulse of the switch tube according to the comparison result of the voltage input from the comparison terminal and the detection terminal, so as to adjust the output voltage of the switch tube.
  • the DC-DC conversion circuit further includes a fifth capacitor and a sixth capacitor; wherein:
  • the first end of the fifth capacitor is connected to the cathode of the first rectifier diode
  • the first end of the sixth capacitor is connected to the anode of the second rectifier diode
  • the second end of the fifth capacitor is connected to The second terminal of the sixth capacitor is connected and the common terminal is grounded.
  • the positive output voltage of the DC-DC conversion circuit/(the output voltage of the D/A converter-negative bias voltage) the output voltage of the positive linear regulator/the D/A conversion The output voltage of the device;
  • the negative output voltage of the DC-DC conversion circuit/(the output voltage of the D/A converter-the negative bias voltage) the output voltage of the negative linear regulator/the output of the D/A converter Voltage.
  • the present invention also provides an ultrasonic device, which includes a transmitting chip and any of the above voltage regulating circuits.
  • the present invention provides a voltage regulation circuit, which includes a DC-DC conversion circuit, a positive linear regulator, a negative linear regulator, and a differential pressure regulating circuit.
  • the voltage regulation circuit of the present application adds a positive linear regulator and a negative linear regulator on the basis of the DC-DC conversion circuit, which can suppress the interference signal in the output voltage of the DC-DC conversion circuit, which can be used as the transmitter chip in the ultrasonic equipment. Provide a stable power supply to improve the imaging effect of ultrasound equipment.
  • this application also adds a pressure difference control circuit, which can adjust the positive linear regulator and the negative linear regulator. The input and output voltage difference of the linear regulator prevents the two from being damaged due to excessive power consumption.
  • the present invention also provides an ultrasonic device, which has the same beneficial effects as the above-mentioned voltage regulation circuit.
  • FIG. 1 is a schematic structural diagram of a voltage regulation circuit provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a specific structure of a voltage regulation circuit provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a circuit for generating a negative bias voltage according to an embodiment of the present invention.
  • the core of the present invention is to provide a voltage regulation circuit and ultrasonic equipment, which can suppress interference signals in the output voltage of the DC-DC conversion circuit, so as to provide stable power for the transmitter chip in the ultrasonic equipment, thereby improving the imaging effect of the ultrasonic equipment; moreover, The input and output pressure difference of the positive linear regulator and the negative linear regulator can be adjusted to prevent the two from being damaged due to excessive power consumption.
  • FIG. 1 is a schematic structural diagram of a voltage regulation circuit provided by an embodiment of the present invention.
  • the voltage regulation circuit is applied to ultrasonic equipment containing a transmitting chip, including:
  • a positive linear regulator 2 whose input terminal is connected to the output positive terminal of the DC-DC conversion circuit 1, and the output terminal is connected to the positive terminal of the power supply of the transmitter chip;
  • a negative linear regulator 3 whose input terminal is connected to the negative output terminal of the DC-DC conversion circuit 1, and the output terminal is connected to the negative terminal of the power supply of the transmitter chip;
  • the differential pressure regulating circuit 4 connected to the DC-DC conversion circuit 1, the positive linear regulator 2 and the negative linear regulator 3, respectively, is used to control the positive linear regulator 2 and the negative linear regulator according to the power supply requirements of the transmitter chip
  • the output voltage of the voltage regulator 3; the differential pressure regulating circuit 4 is also used to control the input and output differential pressures of the positive linear regulator 2 and the negative linear regulator 3 by adjusting the output voltage of the DC-DC conversion circuit 1.
  • the voltage regulation circuit of the present application includes a DC-DC conversion circuit 1, a positive linear regulator 2, a negative linear regulator 3, and a pressure difference control circuit 4. Its working principle is:
  • the DC-DC conversion circuit 1 is used for voltage conversion of a DC voltage input from a DC power supply and outputting another DC voltage.
  • the DC voltage output by the DC-DC conversion circuit 1 includes a positive DC voltage and a negative DC voltage.
  • the positive DC voltage is input to the positive linear regulator 2 and the negative DC voltage is input to the negative linear regulator 3.
  • the output voltage of the positive linear regulator 2 and the negative linear regulator 3 is controlled by the differential pressure regulating circuit 4, the purpose is to make the output voltage of the positive linear regulator 2 and the negative linear regulator 3 meet the power supply requirements of the transmitter chip ,
  • the positive linear regulator 2 and the negative linear regulator 3 are specifically used to convert the input DC voltage into the power supply voltage required by the transmitter chip.
  • the positive linear regulator 2 and the negative linear regulator 3 have voltage stabilization performance, they can suppress interference signals in the output voltage of the DC-DC converter circuit 1 (for example, fluctuations in the voltage signal output by the DC-DC converter circuit 1 will produce ripples).
  • Wave noise interferes with the voltage signal
  • the front-end hardware inside the positive linear regulator 2 and negative linear regulator 3 contains a filter regulator device for suppressing interference signals such as ripple noise, which can well suppress the voltage
  • interference signals such as ripple noise in the signal
  • the pressure difference control circuit 4 of the present application can also adjust the positive linear regulator 2 and The input and output voltage difference of the negative linear regulator 3 is used to adjust the power consumption of the two.
  • the differential pressure regulating circuit 4 since the differential pressure regulating circuit 4 can control the output voltages of the positive linear regulator 2 and the negative linear regulator 3, the differential pressure regulating circuit 4 then controls the positive linear regulator 2 and the negative linear regulator 3
  • the input voltage that is, the output voltage of the DC-DC converter circuit 1
  • the positive linear regulator 2 and the negative linear regulator 3 of the present application can be selected as LDO (Low Dropout Regulator, low dropout linear regulator), which has the advantages of low cost and small output ripple.
  • LDO Low Dropout Regulator, low dropout linear regulator
  • FIG. 2 is a schematic diagram of a specific structure of a voltage regulation circuit provided by an embodiment of the present invention.
  • the voltage regulation circuit is based on the above-mentioned embodiment:
  • the pressure difference control circuit 4 includes:
  • the D/A converter 41 respectively connected to the reference terminal of the positive linear regulator 2 and the reference terminal of the negative linear regulator 3 is used to control the positive linear regulator 2 and the negative linear regulator by adjusting its own output voltage 3 output voltage;
  • the voltage difference circuit 42 connected to the output terminal of the D/A converter 41 is used to make the difference between the output voltage of the D/A converter 41 and the adjustable negative bias voltage, and use the difference between the two as DC- The given value of DC conversion circuit 1;
  • the voltage feedback circuit 43 respectively connected to the output terminal of the voltage difference circuit 42 and the DC-DC conversion circuit 1 is used to control the positive output voltage of the DC-DC conversion circuit 1 to track a voltage value that is proportional to a given value; , The negative output voltage of the DC-DC converter circuit 1 and its positive output voltage are opposite to each other.
  • the voltage difference control circuit 4 of the present application includes a D/A converter 41, a voltage difference circuit 42 and a voltage feedback circuit 43, and its working principle is as follows:
  • the output terminal of the negative linear regulator 3 is connected to a voltage divider circuit composed of resistors R10 and R11, and the output voltage of this voltage divider circuit is fed back to the feedback terminal (FB2) of the negative linear regulator 3, which is known
  • FB2 feedback terminal
  • the output voltage of the negative linear regulator -(R10/R11)*VREF2, so when the resistance values of the resistor R10 and the resistor R11 are selected, the application can control the negative voltage by adjusting the output voltage of the D/A converter 41 The output voltage of the linear regulator 3.
  • the analog voltage signal output by the D/A converter 41 is also input to the voltage difference circuit 42.
  • the voltage difference circuit 42 also inputs a negative bias voltage with an adjustable voltage value.
  • the voltage difference circuit 42 is used to take the input analog voltage
  • the negative bias voltage is subtracted from the signal, that is, the input analog voltage signal is added to the absolute value of the negative bias voltage, and the difference between the two is input to the voltage feedback circuit 43.
  • the voltage feedback circuit 43 is used to control the positive output voltage of the DC-DC converter circuit 1 to track a voltage value that is proportional to the difference voltage output by the voltage difference circuit 42.
  • the adjustable bias voltage should be set to a negative value, that is, a negative bias voltage.
  • the negative bias voltage can be provided by a reverse proportional amplifier circuit.
  • the reverse proportional amplifier circuit includes resistors R12-R16, capacitors C10-C11, and operational amplifier U4.
  • the reverse proportional amplifying circuit inputs a positive voltage Vbiasin and outputs a negative bias voltage Vbiasout, thereby adjusting the output negative bias voltage Vbiasout by adjusting the input positive voltage Vbiasin.
  • the voltage difference circuit 42 includes a first resistor R1, a second resistor R2, and a first operational amplifier U1; wherein:
  • the input positive terminal of the first operational amplifier U1 is connected to the output terminal of the D/A converter 41, and the input negative terminal of the first operational amplifier U1 is respectively connected to the first terminal of the first resistor R1 and the first terminal of the second resistor R2 ,
  • the second end of the first resistor R1 is connected to the adjustable negative bias voltage, the second end of the second resistor R2 is connected to the output end of the first operational amplifier U1, and the common end is used as the output end of the voltage difference circuit 42; Wherein, the resistance values of the first resistor R1 and the second resistor R2 are equal.
  • the voltage difference circuit 42 of the present application includes a first resistor R1, a second resistor R2, and a first operational amplifier U1, and its working principle is:
  • the output voltage of the first operational amplifier (the analog voltage output by the D/A converter-the negative bias voltage) * R2/R1
  • the bias voltage is the difference between the two, and it can be obtained: the resistance of the first resistor R1 and the second resistor R2 should be equal.
  • the voltage difference circuit 42 further includes a third resistor R3 and a fourth resistor R4; wherein:
  • the first end of the third resistor R3 is connected to the output end of the D/A converter 41, and the second end of the third resistor R3 is respectively connected to the input positive end of the first operational amplifier U1 and the first end of the fourth resistor R4, The second end of the fourth resistor R4 is grounded;
  • the voltage difference circuit 42 is also used to adjust the resistance of the third resistor R3 and the fourth resistor R4 to match the impedance of the input positive terminal and the input negative terminal of the first operational amplifier U1.
  • the voltage difference circuit 42 of the present application further includes a third resistor R3 and a fourth resistor R4, and its working principle is as follows:
  • this application adds a third resistor R3 and a fourth resistor R4 at the input positive terminal of the first operational amplifier U1.
  • the voltage difference circuit 42 further includes:
  • a first capacitor C1 connected in parallel with the second resistor R2;
  • the second capacitor C2 is connected in parallel with the fourth resistor R4.
  • the voltage difference circuit 42 of the present application further includes a first capacitor C1 and a second capacitor C2, and its working principle is as follows:
  • Both the first capacitor C1 and the second capacitor C2 are used to prevent signal oscillation in the circuit to stabilize the output of the first operational amplifier U1.
  • the voltage feedback circuit 43 includes a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, a third capacitor C3, a fourth capacitor C4, and a second operational amplifier U2; among them:
  • the positive input terminal of the second operational amplifier U2 is connected to the output terminal of the voltage difference circuit 42, and the negative input terminal of the second operational amplifier U2 is connected to the first terminal of the fifth resistor R5, the first terminal of the sixth resistor R6, and the first terminal of the sixth resistor R6, respectively.
  • the first end of the three capacitors C3 and the first end of the fourth capacitor C4 are connected, the second end of the fifth resistor R5 is connected to the positive output end of the DC-DC conversion circuit 1, the second end of the sixth resistor R6 is grounded, and the second end of the sixth resistor R6 is grounded.
  • the second end of the three capacitor C3 is connected to the first end of the seventh resistor R7, and the second end of the seventh resistor R7 is respectively connected to the second end of the fourth capacitor C4, the output end of the second operational amplifier U2, and the DC-DC conversion
  • the comparison terminal of circuit 1 is connected;
  • the voltage feedback circuit 43 is specifically used to control the DC-DC conversion circuit 1 to adjust its output voltage so that the voltage value of the negative input terminal of the second operational amplifier U2 tracks the voltage value of the positive input terminal of the second operational amplifier U2.
  • the voltage feedback circuit 43 of the present application includes a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, a third capacitor C3, a fourth capacitor C4, and a second operational amplifier U2, and its working principle is:
  • the voltage feedback circuit 43 is used to control the DC-DC conversion circuit 1 to adjust its output voltage so that the voltage value of the negative input terminal of the second operational amplifier U2 tracks the voltage value of the positive input terminal, that is, controls the positive output voltage of the DC-DC conversion circuit
  • the seventh resistor R7, the third capacitor C3, and the fourth capacitor C4 are used to provide a certain amplitude margin and phase margin for the second operational amplifier U2, thereby improving the stability of the loop.
  • the DC-DC conversion circuit 1 includes a DC-DC controller U3, a switch tube Q, a sampling resistor Rs, a transformer T, a first rectifier diode D1 and a second rectifier diode D2; among them:
  • the comparison terminal of the DC-DC controller U3 is connected to the output terminal of the voltage feedback circuit 43, the detection terminal of the DC-DC controller U3 is connected to the first terminal of the sampling resistor Rs, and the second terminal of the sampling resistor Rs is grounded.
  • DC-DC The drive end of the controller U3 is connected to the control end of the switch tube Q, the first end of the switch tube Q is connected to the negative input end of the transformer T, and the positive input end of the transformer T is connected to the power end of the DC-DC controller U3 and is common
  • the output terminal of the transformer T is connected to the anode of the first rectifier diode D1, the cathode of the first rectifier diode D1 is used as the output positive terminal of the DC-DC converter circuit 1, and the output negative terminal of the transformer T is connected to the second
  • the cathode of the rectifier diode D2 is connected, the anode of the second rectifier diode D2 is used as the negative output terminal of the DC-DC conversion circuit 1, and the middle tap
  • the DC-DC conversion circuit 1 is specifically configured to adjust the duty cycle of the driving pulse of the switch tube Q according to the comparison result of the voltage input from the comparison terminal and the detection terminal, so as to adjust the output voltage of the switch tube.
  • the DC-DC conversion circuit 1 of the present application includes a DC-DC controller U3, a switch tube Q, a sampling resistor Rs, a transformer T, a first rectifier diode D1, and a second rectifier diode D2, and its working principle is:
  • the voltage input from the comparison terminal (COMP) of the DC-DC controller U3 is the output voltage of the voltage feedback circuit 43, and the voltage input from the detection terminal (SENSE) of the DC-DC controller U3 is the voltage signal across the sampling resistor Rs, DC-
  • the DC controller U3 is used for adjusting the duty ratio of the driving pulse of the switching tube Q according to the comparison result of the voltage input from the comparison terminal and the detection terminal. It is known that the on-time of the switching tube Q depends on the duty ratio of its driving pulse. Therefore, when the duty ratio of the driving pulse of the switching tube Q changes, the on-time of the switching tube Q also changes. When the conduction time of the switch tube Q changes, the output voltage of the DC-DC conversion circuit 1 changes accordingly, thereby adjusting the output voltage of the DC-DC conversion circuit 1.
  • the switching tube Q of the present application may be an NMOS tube
  • the gate of the NMOS tube is used as the control terminal of the switching tube Q
  • the drain of the NMOS tube is used as the first terminal of the switching tube Q
  • the source of the NMOS tube is used as the switching tube.
  • the second end of Q is provided with a capacitor C9 to stabilize the output voltage VIN of the DC power supply.
  • the DC-DC conversion circuit 1 further includes a fifth capacitor C5 and a sixth capacitor C6; wherein:
  • the first end of the fifth capacitor C5 is connected to the cathode of the first rectifier diode D1
  • the first end of the sixth capacitor C6 is connected to the anode of the second rectifier diode D2
  • the second end of the fifth capacitor C5 is connected to the sixth capacitor C6.
  • the second terminal is connected and the common terminal is grounded.
  • the DC-DC conversion circuit 1 of the present application further includes a fifth capacitor C5 and a sixth capacitor C6, the working principle of which is as follows:
  • the fifth capacitor C5 and the sixth capacitor C6 play a filtering role, thereby stabilizing the output voltage of the DC-DC conversion circuit 1.
  • the positive output voltage of the DC-DC conversion circuit/(the output voltage of the D/A converter-negative bias voltage) the output voltage of the positive linear regulator/the output voltage of the D/A converter The output voltage;
  • the negative output voltage of the DC-DC conversion circuit/(the output voltage of the D/A converter-the negative bias voltage) the output voltage of the negative linear regulator/the output voltage of the D/A converter.
  • the positive output voltage of the DC-DC converter circuit the input voltage of the negative input terminal of the second operational amplifier*(R5/R6+1)
  • the input voltage of the positive input terminal of the second operational amplifier the output of the voltage difference circuit
  • the output voltage of the positive linear regulator (R8/R9+1)*the output voltage of the D/A converter
  • the positive output voltage of the DC-DC converter circuit and the output voltage of the positive linear regulator are The voltage difference depends on the magnitude of the negative bias voltage, that is, the input and output voltage difference of the positive linear regulator can be set by setting the negative bias voltage.
  • This application also provides an ultrasonic device, including a transmitting chip and any of the above-mentioned voltage regulating circuits. It should be pointed out that the transmitter chip of the present application can be used to implement an ultrasonic excitation signal, and it can be a current conventional transmitter chip, such as a chip of type MAX14808, which will not be repeated here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Automation & Control Theory (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dc-Dc Converters (AREA)

Abstract

电压调节电路及超声设备。电压调节电路包括DC‑DC转换电路(1)、正线性稳压器(2)、负线性稳压器(2)及压差调控电路(4)。本申请的电压调节电路可以抑制DC‑DC转换电路(1)的输出电压中的干扰信号,以为超声设备中的发射芯片提供稳定电源,从而提升超声设备成像效果。

Description

一种电压调节电路及超声设备
本申请要求于2019年12月04日提交至中国专利局、申请号为201911229944.5、发明名称为“一种电压调节电路及超声设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及疾病诊断领域,特别是涉及一种电压调节电路及超声设备。
背景技术
超声设备广泛应用于疾病诊断领域,其工作原理为:向人体发射超声波信号并接收超声回波信号,以利用超声回波成像技术检查人体疾病。目前,超声设备可在不同模式下工作,当超声设备在不同模式下工作时,其发射芯片所需的供电电压并不相同。现有技术中,发射芯片的供电电压的调节方式为:利用DC-DC转换电路为发射芯片在不同模式下提供相应的供电电压,但是,DC-DC转换电路的输出电压中含有较大的干扰信号,会影响超声设备成像效果。
因此,如何提供一种解决上述技术问题的方案是本领域的技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种电压调节电路及超声设备,可以抑制DC-DC转换电路的输出电压中的干扰信号,以为超声设备中的发射芯片提供稳定电源,从而提升超声设备成像效果;而且,可调节正线性稳压器及负线性稳压器的输入输出压差,从而避免二者因功耗过大而损坏。
为解决上述技术问题,本发明提供了一种电压调节电路,应用于包含发射芯片的超声设备,包括:
输入端与直流电源连接的DC-DC转换电路;
输入端与所述DC-DC转换电路的输出正端连接、输出端与所述发射芯片的电源正端连接的正线性稳压器;
输入端与所述DC-DC转换电路的输出负端连接、输出端与所述发射芯片的电源负端连接的负线性稳压器;
分别与所述DC-DC转换电路、所述正线性稳压器及所述负线性稳压器连接的压差调控电路,用于按照所述发射芯片的供电需求控制所述正线性稳压器及所述负线性稳压器的输出电压;所述压差调控电路还用于通过调节所述DC-DC转换电路的输出电压控制所述正线性稳压器及所述负线性稳压器的输入输出压差。
优选地,所述压差调控电路包括:
分别与所述正线性稳压器的基准端和所述负线性稳压器的基准端连接的D/A转换器,用于通过调节自身输出电压控制所述正线性稳压器及所述负线性稳压器的输出电压;
与所述D/A转换器的输出端连接的电压求差电路,用于将所述D/A转换器的输出电压与可调的负偏置电压作差,并将二者差值作为所述DC-DC转换电路的给定值;
分别与所述电压求差电路的输出端和所述DC-DC转换电路连接的电压反馈电路,用于控制所述DC-DC转换电路的正输出电压跟踪与所述给定值呈一定比例的电压值;其中,所述DC-DC转换电路的负输出电压与其正输出电压互为相反数。
优选地,所述电压求差电路包括第一电阻、第二电阻及第一运算放大器;其中:
所述第一运算放大器的输入正端与所述D/A转换器的输出端连接,所述第一运算放大器的输入负端分别与所述第一电阻的第一端和所述第二电阻的第一端连接,所述第一电阻的第二端接入可调的负偏置电压,所述第二电阻的第二端与所述第一运算放大器的输出端连接且公共端作为所述电压求差电路的输出端;其中,所述第一电阻和所述第二电阻的阻值相等。
优选地,所述电压求差电路还包括第三电阻和第四电阻;其中:
所述第三电阻的第一端与所述D/A转换器的输出端连接,所述第三电阻的第二端分别与所述第一运算放大器的输入正端和所述第四电阻的第一端连接,所述第四电阻的第二端接地;
所述电压求差电路还用于通过调整所述第三电阻和所述第四电阻的阻值,使所述第一运算放大器的输入正端和输入负端的阻抗匹配。
优选地,所述电压求差电路还包括:
与所述第二电阻并联的第一电容;
与所述第四电阻并联的第二电容。
优选地,所述电压反馈电路包括第五电阻、第六电阻、第七电阻、第三电容、第四电容及第二运算放大器;其中:
所述第二运算放大器的输入正端与所述电压求差电路的输出端连接,所述第二运算放大器的输入负端分别与所述第五电阻的第一端、所述第六电阻的第一端、所述第三电容的第一端及所述第四电容的第一端连接,所述第五电阻的第二端与所述DC-DC转换电路的输出正端连接,所述第六电阻的第二端接地,所述第三电容的第二端与所述第七电阻的第一端连接,所述第七电阻的第二端分别与所述第四电容的第二端、所述第二运算放大器的输出端及所述DC-DC转换电路的比较端连接;
所述电压反馈电路具体用于控制所述DC-DC转换电路调节其输出电压,以使所述第二运算放大器的输入负端的电压值跟踪其输入正端的电压值。
优选地,所述DC-DC转换电路包括DC-DC控制器、开关管、采样电阻、变压器、第一整流二极管及第二整流二极管;其中:
所述DC-DC控制器的比较端与所述电压反馈电路的输出端连接,所述DC-DC控制器的检测端与所述采样电阻的第一端连接,所述采样电阻的第二端接地,所述DC-DC控制器的驱动端与所述开关管的控制端连接,所述开关管的第一端与所述变压器的输入负端连接,所述变压器的输入正端与所述DC-DC控制器的电源端连接且公共端接入直流电源,所述变压器的输出正端与所述第一整流二极管的阳极连接,所述第一整流二极管的阴极作为所述DC-DC转换电路的输出正端,所述变压器的输出负端与所述第二整流二极管的阴极连接,所述第二整流二极管的阳极作为所述DC-DC转换电路的输出负端,所述变压器的中间抽头接地;
所述DC-DC转换电路具体用于根据自身比较端和检测端输入的电压的比较结果调整所述开关管的驱动脉冲的占空比,以调节自身输出电压。
优选地,所述DC-DC转换电路还包括第五电容和第六电容;其中:
所述第五电容的第一端与所述第一整流二极管的阴极连接,所述第六电容的第一端与所述第二整流二极管的阳极连接,所述第五电容的第二端与所述第六电容的第二端连接且公共端接地。
优选地,所述DC-DC转换电路的正输出电压/(所述D/A转换器的输出电压-负偏置电压)=所述正线性稳压器的输出电压/所述D/A转换器的输出电压;
所述DC-DC转换电路的负输出电压/(所述D/A转换器的输出电压-负偏置电压)=所述负线性稳压器的输出电压/所述D/A转换器的输出电压。
为解决上述技术问题,本发明还提供了一种超声设备,包括发射芯片及上述任一种电压调节电路。
本发明提供了一种电压调节电路,包括DC-DC转换电路、正线性稳压器、负线性稳压器及压差调控电路。本申请的电压调节电路在DC-DC转换电路的基础上增设正线性稳压器和负线性稳压器,可以抑制DC-DC转换电路的输出电压中的干扰信号,以为超声设备中的发射芯片提供稳定电源,从而提升超声设备成像效果。而且,考虑到正线性稳压器及负线性稳压器的输入输出压差越大,二者的功耗越大,所以本申请还增设压差调控电路,可调节正线性稳压器及负线性稳压器的输入输出压差,从而避免二者因功耗过大而损坏。
本发明还提供了一种超声设备,与上述电压调节电路具有相同的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种电压调节电路的结构示意图;
图2为本发明实施例提供的一种电压调节电路的具体结构示意图;
图3为本发明实施例提供的一种用于生成负偏置电压的电路示意图。
具体实施方式
本发明的核心是提供一种电压调节电路及超声设备,可以抑制DC-DC转换电路的输出电压中的干扰信号,以为超声设备中的发射芯片提供稳定电源,从而提升超声设备成像效果;而且,可调节正线性稳压器及负线性稳压器的输入输出压差,从而避免二者因功耗过大而损坏。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,图1为本发明实施例提供的一种电压调节电路的结构示意图。
该电压调节电路应用于包含发射芯片的超声设备,包括:
输入端与直流电源连接的DC-DC转换电路1;
输入端与DC-DC转换电路1的输出正端连接、输出端与发射芯片的电源正端连接的正线性稳压器2;
输入端与DC-DC转换电路1的输出负端连接、输出端与发射芯片的电源负端连接的负线性稳压器3;
分别与DC-DC转换电路1、正线性稳压器2及负线性稳压器3连接的压差调控电路4,用于按照发射芯片的供电需求控制正线性稳压器2及负线性稳压器3的输出电压;压差调控电路4还用于通过调节DC-DC转换电路1的输出电压控制正线性稳压器2及负线性稳压器3的输入输出压差。
具体地,本申请的电压调节电路包括DC-DC转换电路1、正线性稳压器2、负线性稳压器3及压差调控电路4,其工作原理为:
DC-DC转换电路1用于将直流电源输入的直流电压进行电压转换,输出另一直流电压。DC-DC转换电路1输出的直流电压包括正直流电压和负直流电压,正直流电压输入至正线性稳压器2,负直流电压输入至负线性稳压器3。正线性稳压器2和负线性稳压器3的输出电压由压差调控电路4控制,目的是使正线性稳压器2和负线性稳压器3的输出电压满足于发射芯片的供电需求,正线性稳压器2和负线性稳压器3具体用于将输入的直流电压转换为发射芯片其所需的供电电压。由于正线性稳压器2和负线性稳压器3具有稳压性能,可以抑制DC-DC转换电路1的输出电压中的干扰信号(如DC-DC转换电路1输出的电压信号波动会产生纹波噪声,对电压信号造成干扰,而正线性稳压器2和负线性稳压器3内部的前端硬件中包含用于抑制纹波噪声等干扰信号的滤波稳压器件,可很好地抑制电压信号中存在的纹波噪声等干扰信号),所以本申请可为发射芯片提供稳定的供电电压,从而提升超声设备成像效果。
考虑到正线性稳压器2及负线性稳压器3的输入输出压差越大,二者的功耗越大,所以本申请的压差调控电路4还可调节正线性稳压器2及负线性稳压器3的输入输出压差,以调整二者功耗。具体地,由于压差调控电路4可控制正线性稳压器2和负线性稳压器3的输出电压,所以压差调控电路4再控制住正线性稳压器2和负线性稳压器3的输入电压,即DC-DC转换电路1的输出电压,便可实现正线性稳压器2及负线性稳压器3的输入输出压差的控制,从而避免二者因功耗过大而损坏。
更具体地,本申请的正线性稳压器2和负线性稳压器3可选用LDO(Low Dropout Regulator,低压差线性稳压器),LDO具有成本低、输出纹波小等优点。
请参照图2,图2为本发明实施例提供的一种电压调节电路的具体结构示意图。该电压调节电路在上述实施例的基础上:
作为一种可选的实施例,压差调控电路4包括:
分别与正线性稳压器2的基准端和负线性稳压器3的基准端连接的D/A转换器41,用于通过调节自身输出电压控制正线性稳压器2及负线性稳压器3的输出电压;
与D/A转换器41的输出端连接的电压求差电路42,用于将D/A转换器41的输出电压与可调的负偏置电压作差,并将二者差值作为DC-DC转换电路1的给定值;
分别与电压求差电路42的输出端和DC-DC转换电路1连接的电压反馈电路43,用于控制DC-DC转换电路1的正输出电压跟踪与给定值呈一定比例的电压值;其中,DC-DC转换电路1的负输出电压与其正输出电压互为相反数。
具体地,本申请的压差调控电路4包括D/A转换器41、电压求差电路42及电压反馈电路43,其工作原理为:
D/A转换器41用于将接收的数字信号转换为模拟电压信号,并将模拟电压信号分别输入至正线性稳压器2的基准端(VREF1)和负线性稳压器3的基准端(VREF2)。从图2可知,正线性稳压器2的输出端接入由电阻R8和电阻R9组成的分压电路,此分压电路的输出电压反馈至正线性稳压器2的反馈端(FB1),已知正线性稳压器的输出电压=(R8/R9+1)*VREF1,所以在电阻R8和电阻R9的阻值选定的情况下,本申请可通过调节D/A转换器41的输出电压控制正线性稳压器2的输出电压。同理,负线性稳压器3的输出端接入由电阻R10和电阻R11组成的分压电路,此分压电路的输出电压反馈至负线性稳压器3的反馈端(FB2),已知负线性稳压器的输出电压=-(R10/R11)*VREF2,所以在电阻R10和电阻R11的阻值选定的情况下,本申请可通过调节D/A转换器41的输出电压控制负线性稳压器3的输出电压。
D/A转换器41输出的模拟电压信号还输入至电压求差电路42,电压求差电路42还输入有电压值可调的负偏置电压,电压求差电路42用于将输入的模拟电压信号减去负偏置电压,即将输入的模拟电压信号加上负偏置电压的绝对值,并将二者差值输入至电压反馈电路43。电压反馈电路43用于控制DC-DC转换电路1的正输出电压跟踪与电压求差电路42输出的 差值电压呈一定比例的电压值。当DC-DC转换电路1的正输出电压改变时,DC-DC转换电路1的负输出电压随之改变,具体是DC-DC转换电路1的负输出电压=-DC-DC转换电路1的正输出电压,从而调节DC-DC转换电路1的输出电压。
需要说明的是,由于正线性稳压器2和负线性稳压器3的输出电压小于各自输入电压,所以可调的偏置电压应设于负值,即负偏置电压。更具体地,负偏置电压可由反向比例放大电路提供,如图3所示,反向比例放大电路包括电阻R12-R16、电容C10-C11及运算放大器U4。反向比例放大电路输入正电压Vbiasin,输出负偏置电压Vbiasout,从而通过调整输入的正电压Vbiasin来调整输出的负偏置电压Vbiasout。
作为一种可选的实施例,电压求差电路42包括第一电阻R1、第二电阻R2及第一运算放大器U1;其中:
第一运算放大器U1的输入正端与D/A转换器41的输出端连接,第一运算放大器U1的输入负端分别与第一电阻R1的第一端和第二电阻R2的第一端连接,第一电阻R1的第二端接入可调的负偏置电压,第二电阻R2的第二端与第一运算放大器U1的输出端连接且公共端作为电压求差电路42的输出端;其中,第一电阻R1和第二电阻R2的阻值相等。
具体地,本申请的电压求差电路42包括第一电阻R1、第二电阻R2及第一运算放大器U1,其工作原理为:
已知第一运算放大器的输出电压=(D/A转换器输出的模拟电压-负偏置电压)*R2/R1,则基于电压求差电路42的原理:将输入的模拟电压信号减去负偏置电压得到二者差值,可得:第一电阻R1和第二电阻R2的阻值应相等。
作为一种可选的实施例,电压求差电路42还包括第三电阻R3和第四电阻R4;其中:
第三电阻R3的第一端与D/A转换器41的输出端连接,第三电阻R3的第二端分别与第一运算放大器U1的输入正端和第四电阻R4的第一端连接,第四电阻R4的第二端接地;
电压求差电路42还用于通过调整第三电阻R3和第四电阻R4的阻值,使第一运算放大器U1的输入正端和输入负端的阻抗匹配。
进一步地,本申请的电压求差电路42还包括第三电阻R3和第四电阻R4,其工作原理为:
考虑到第一运算放大器U1在输入正端和输入负端的阻抗匹配时输出会更加稳定,所以本申请在第一运算放大器U1在输入正端增设第三电阻R3和第四电阻R4,通过调整第三电阻R3和第四电阻R4的阻值,使第一运算放大器U1的输入正端和输入负端的阻抗匹配,即第一运算放大器U1的输入正端的阻抗=其输入负端的阻抗。
作为一种可选的实施例,电压求差电路42还包括:
与第二电阻R2并联的第一电容C1;
与第四电阻R4并联的第二电容C2。
进一步地,本申请的电压求差电路42还包括第一电容C1和第二电容C2,其工作原理为:
第一电容C1和第二电容C2均用于防止电路中的信号振荡,以稳定第一运算放大器U1的输出。
此外,从图2可知,第一运算放大器U1的+5V电源端和-5V电源端各自连接有电容C7和电容C8,电容C7和电容C8均起到滤波作用,以稳定第一运算放大器U1的供电电源。
作为一种可选的实施例,电压反馈电路43包括第五电阻R5、第六电阻R6、第七电阻R7、第三电容C3、第四电容C4及第二运算放大器U2;其中:
第二运算放大器U2的输入正端与电压求差电路42的输出端连接,第二运算放大器U2的输入负端分别与第五电阻R5的第一端、第六电阻R6的第一端、第三电容C3的第一端及第四电容C4的第一端连接,第五电阻R5的第二端与DC-DC转换电路1的输出正端连接,第六电阻R6的第二端接地,第三电容C3的第二端与第七电阻R7的第一端连接,第七电阻R7的第二端分别与第四电容C4的第二端、第二运算放大器U2的输出端及DC-DC转换电路1的比较端连接;
电压反馈电路43具体用于控制DC-DC转换电路1调节其输出电压,以使第二运算放大器U2的输入负端的电压值跟踪其输入正端的电压值。
具体地,本申请的电压反馈电路43包括第五电阻R5、第六电阻R6、第七电阻R7、第三电容C3、第四电容C4及第二运算放大器U2,其工作原理为:
第二运算放大器的输入负端的输入电压=[R6/(R5+R6)]*DC-DC转换电路的正输出电压,第二运算放大器的输入正端的输入电压=电压求差电路输出的差值电压。电压反馈电路43用于控制DC-DC转换电路1调节其输出电压,以使第二运算放大器U2的输入负端的电压值跟踪其输入正端的电压值,即控制DC-DC转换电路的正输出电压跟踪与电压求差电路42输出的差值电压呈一定比例的电压值,具体是DC-DC转换电路的正输出电压=电压求差电路输出的差值电压*(R5/R6+1)。
第七电阻R7、第三电容C3及第四电容C4用于为第二运算放大器U2提供一定幅值裕量和相位裕量,从而提高环路的稳定性。
作为一种可选的实施例,DC-DC转换电路1包括DC-DC控制器U3、开关管Q、采样电阻Rs、变压器T、第一整流二极管D1及第二整流二极管D2;其中:
DC-DC控制器U3的比较端与电压反馈电路43的输出端连接,DC-DC控制器U3的检测端与采样电阻Rs的第一端连接,采样电阻Rs的第二端接地,DC-DC控制器U3的驱动端与开关管Q的控制端连接,开关管Q的第一端与变压器T的输入负端连接,变压器T的输入正端与DC-DC控制器U3的电源端连接且公共端接入直流电源,变压器T的输出正端与第一整流二极管D1的阳极连接,第一整流二极管D1的阴极作为DC-DC转换电路1的输出正端,变压器T的输出负端与第二整流二极管D2的阴极连接,第二整流二极管D2的阳极作为DC-DC转换电路1的输出负端,变压器T的中间抽头接地;
DC-DC转换电路1具体用于根据自身比较端和检测端输入的电压的比较结果调整开关管Q的驱动脉冲的占空比,以调节自身输出电压。
具体地,本申请的DC-DC转换电路1包括DC-DC控制器U3、开关管Q、采样电阻Rs、变压器T、第一整流二极管D1及第二整流二极管D2,其工作原理为:
DC-DC控制器U3的比较端(COMP)输入的电压为电压反馈电路43的输出电压,DC-DC控制器U3的检测端(SENSE)输入的电压为采样电阻Rs两端的电压信号,DC-DC控制器U3用于根据自身比较端和检测端输入的电压的比较结果调整开关管Q的驱动脉冲的占空比。已知开关管Q的导通时间取决于其驱动脉冲的占空比,所以当开关管Q的驱动脉冲的占空比改变时,开关管Q的导通时间也随之改变。当开关管Q的导通时间改变时,DC-DC转换电路1的输出电压随之改变,从而起到调节DC-DC转换电路1的输出电压的作用。
更具体地,本申请的开关管Q可选用NMOS管,NMOS管的栅极作为开关管Q的控制端,NMOS管的漏极作为开关管Q的第一端,NMOS管的源极作为开关管Q的第二端。此外,直流电源的输出端设有电容C9,以稳定直流电源的输出电压VIN。
作为一种可选的实施例,DC-DC转换电路1还包括第五电容C5和第六电容C6;其中:
第五电容C5的第一端与第一整流二极管D1的阴极连接,第六电容C6的第一端与第二整流二极管D2的阳极连接,第五电容C5的第二端与第六电容C6的第二端连接且公共端接地。
进一步地,本申请的DC-DC转换电路1还包括第五电容C5和第六电容C6,其工作原理为:
第五电容C5和第六电容C6起到滤波作用,从而稳定DC-DC转换电路1的输出电压。
作为一种可选的实施例,DC-DC转换电路的正输出电压/(D/A转换器的输出电压-负偏置电压)=正线性稳压器的输出电压/D/A转换器的输出电压;
DC-DC转换电路的负输出电压/(D/A转换器的输出电压-负偏置电压)=负线性稳压器的输出电压/D/A转换器的输出电压。
具体地,已知DC-DC转换电路的正输出电压=第二运算放大器的输入负端的输入电压*(R5/R6+1),第二运算放大器的输入正端的输入电压=电压求差电路输出的差值电压=D/A转换器的输出电压-负偏置电压,由于第二运算放大器的输入负端的电压值跟踪其输入正端的电压值,所以DC-DC转换电路的正输出电压=(D/A转换器的输出电压-负偏置电压)*(R5/R6+1)。
已知正线性稳压器的输出电压=(R8/R9+1)*D/A转换器的输出电压,本申请设定:DC-DC转换电路的正输出电压/(D/A转换器的输出电压-负偏置电压)=正线性稳压器的输出电压/D/A转换器的输出电压,所以R5/R6=R8/R9。基于此,在D/A转换器的输出电压一定的情况下,正线性稳压器的输出电压也为定值,则DC-DC转换电路的正输出电压与正线性稳压器的输出电压的压差取决于负偏置电压的大小,即通过设定负偏置电压可以实现正线性稳压器的输入输出压差的设定。
同理,已知DC-DC转换电路的负输出电压=DC-DC转换电路的正输出电压的相反数,所以DC-DC转换电路的负输出电压=-(D/A转换器的输出电压-负偏置电压)*(R5/R6+1)。
已知负线性稳压器的输出电压=-(R10/R11)*D/A转换器的输出电压,本申请设定:DC-DC转换电路的负输出电压/(D/A转换器的输出电压-负偏置电压)=负线性稳压器的输出电压/D/A转换器的输出电压,所以R10/R11=(R8/R9)+1。基于此,在D/A转换器的输出电压一定的情况下,负线性稳压器的输出电压也为定值,则DC-DC转换电路的负输出电压与负线性稳压器的输出电压的压差取决于负偏置电压的大小,即通过设定负偏置电压可以实现负线性稳压器的输入输出压差的设定。
本申请还提供了一种超声设备,包括发射芯片及上述任一种电压调节电路。需要指出的是,本申请的发射芯片可用于实现超声波激励信号,其可以为目前常规的发射芯片,比如MAX14808等型号的芯片,此处不再过多赘述。
本申请提供的超声设备的介绍请参考上述电压调节电路的实施例,本申请在此不再赘述。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种电压调节电路,其特征在于,应用于包含发射芯片的超声设备,包括:
    输入端与直流电源连接的DC-DC转换电路;
    输入端与所述DC-DC转换电路的输出正端连接、输出端与所述发射芯片的电源正端连接的正线性稳压器;
    输入端与所述DC-DC转换电路的输出负端连接、输出端与所述发射芯片的电源负端连接的负线性稳压器;
    分别与所述DC-DC转换电路、所述正线性稳压器及所述负线性稳压器连接的压差调控电路,用于按照所述发射芯片的供电需求控制所述正线性稳压器及所述负线性稳压器的输出电压;所述压差调控电路还用于通过调节所述DC-DC转换电路的输出电压控制所述正线性稳压器及所述负线性稳压器的输入输出压差。
  2. 如权利要求1所述的电压调节电路,其特征在于,所述压差调控电路包括:
    分别与所述正线性稳压器的基准端和所述负线性稳压器的基准端连接的D/A转换器,用于通过调节自身输出电压控制所述正线性稳压器及所述负线性稳压器的输出电压;
    与所述D/A转换器的输出端连接的电压求差电路,用于将所述D/A转换器的输出电压与可调的负偏置电压作差,并将二者差值作为所述DC-DC转换电路的给定值;
    分别与所述电压求差电路的输出端和所述DC-DC转换电路连接的电压反馈电路,用于控制所述DC-DC转换电路的正输出电压跟踪与所述给定值呈一定比例的电压值;其中,所述DC-DC转换电路的负输出电压与其正输出电压互为相反数。
  3. 如权利要求2所述的电压调节电路,其特征在于,所述电压求差电路包括第一电阻、第二电阻及第一运算放大器;其中:
    所述第一运算放大器的输入正端与所述D/A转换器的输出端连接,所述第一运算放大器的输入负端分别与所述第一电阻的第一端和所述第二电 阻的第一端连接,所述第一电阻的第二端接入可调的负偏置电压,所述第二电阻的第二端与所述第一运算放大器的输出端连接且公共端作为所述电压求差电路的输出端;其中,所述第一电阻和所述第二电阻的阻值相等。
  4. 如权利要求3所述的电压调节电路,其特征在于,所述电压求差电路还包括第三电阻和第四电阻;其中:
    所述第三电阻的第一端与所述D/A转换器的输出端连接,所述第三电阻的第二端分别与所述第一运算放大器的输入正端和所述第四电阻的第一端连接,所述第四电阻的第二端接地;
    所述电压求差电路还用于通过调整所述第三电阻和所述第四电阻的阻值,使所述第一运算放大器的输入正端和输入负端的阻抗匹配。
  5. 如权利要求4所述的电压调节电路,其特征在于,所述电压求差电路还包括:
    与所述第二电阻并联的第一电容;
    与所述第四电阻并联的第二电容。
  6. 如权利要求2所述的电压调节电路,其特征在于,所述电压反馈电路包括第五电阻、第六电阻、第七电阻、第三电容、第四电容及第二运算放大器;其中:
    所述第二运算放大器的输入正端与所述电压求差电路的输出端连接,所述第二运算放大器的输入负端分别与所述第五电阻的第一端、所述第六电阻的第一端、所述第三电容的第一端及所述第四电容的第一端连接,所述第五电阻的第二端与所述DC-DC转换电路的输出正端连接,所述第六电阻的第二端接地,所述第三电容的第二端与所述第七电阻的第一端连接,所述第七电阻的第二端分别与所述第四电容的第二端、所述第二运算放大器的输出端及所述DC-DC转换电路的比较端连接;
    所述电压反馈电路具体用于控制所述DC-DC转换电路调节其输出电压,以使所述第二运算放大器的输入负端的电压值跟踪其输入正端的电压值。
  7. 如权利要求2所述的电压调节电路,其特征在于,所述DC-DC转换电路包括DC-DC控制器、开关管、采样电阻、变压器、第一整流二极管及第二整流二极管;其中:
    所述DC-DC控制器的比较端与所述电压反馈电路的输出端连接,所述DC-DC控制器的检测端与所述采样电阻的第一端连接,所述采样电阻的第二端接地,所述DC-DC控制器的驱动端与所述开关管的控制端连接,所述开关管的第一端与所述变压器的输入负端连接,所述变压器的输入正端与所述DC-DC控制器的电源端连接且公共端接入直流电源,所述变压器的输出正端与所述第一整流二极管的阳极连接,所述第一整流二极管的阴极作为所述DC-DC转换电路的输出正端,所述变压器的输出负端与所述第二整流二极管的阴极连接,所述第二整流二极管的阳极作为所述DC-DC转换电路的输出负端,所述变压器的中间抽头接地;
    所述DC-DC转换电路具体用于根据自身比较端和检测端输入的电压的比较结果调整所述开关管的驱动脉冲的占空比,以调节自身输出电压。
  8. 如权利要求7所述的电压调节电路,其特征在于,所述DC-DC转换电路还包括第五电容和第六电容;其中:
    所述第五电容的第一端与所述第一整流二极管的阴极连接,所述第六电容的第一端与所述第二整流二极管的阳极连接,所述第五电容的第二端与所述第六电容的第二端连接且公共端接地。
  9. 如权利要求2-8任一项所述的电压调节电路,其特征在于,所述DC-DC转换电路的正输出电压/(所述D/A转换器的输出电压-负偏置电压)=所述正线性稳压器的输出电压/所述D/A转换器的输出电压;
    所述DC-DC转换电路的负输出电压/(所述D/A转换器的输出电压-负偏置电压)=所述负线性稳压器的输出电压/所述D/A转换器的输出电压。
  10. 一种超声设备,其特征在于,包括发射芯片及如权利要求1-9任一项所述的电压调节电路。
PCT/CN2020/092215 2019-12-04 2020-05-26 一种电压调节电路及超声设备 WO2021109492A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911229944.5 2019-12-04
CN201911229944.5A CN110764564A (zh) 2019-12-04 2019-12-04 一种电压调节电路及超声设备

Publications (1)

Publication Number Publication Date
WO2021109492A1 true WO2021109492A1 (zh) 2021-06-10

Family

ID=69341260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092215 WO2021109492A1 (zh) 2019-12-04 2020-05-26 一种电压调节电路及超声设备

Country Status (2)

Country Link
CN (1) CN110764564A (zh)
WO (1) WO2021109492A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110764564A (zh) * 2019-12-04 2020-02-07 深圳开立生物医疗科技股份有限公司 一种电压调节电路及超声设备
CN112971847B (zh) * 2021-02-09 2022-11-25 青岛海信医疗设备股份有限公司 一种超声设备
CN113285589B (zh) * 2021-04-21 2022-09-02 珠海迈巨微电子有限责任公司 电压转换电路及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470967A (zh) * 2003-06-20 2004-01-28 张步学 新型直流稳定电源暨大范围可调的开关型直流稳定电源
CN101404466A (zh) * 2008-11-05 2009-04-08 哈尔滨工业大学 一种非谐振适配电路及使用该电路的压电装置驱动器
CN102056363A (zh) * 2009-11-11 2011-05-11 海洋王照明科技股份有限公司 Led电源驱动电路
CN102594125A (zh) * 2012-03-22 2012-07-18 上海市电力公司 用于一种moa阻性电流检测系统的第二级电源电路
CN103248108A (zh) * 2013-05-16 2013-08-14 常州矽能电子科技有限公司 带mos管切换和可复用dc-dc模块的led驱动器
CN105846681A (zh) * 2015-01-30 2016-08-10 三垦电气株式会社 开关电源装置
US9543826B2 (en) * 2013-06-21 2017-01-10 Anpec Electronics Corporation Audible noise avoiding circuit and DC-DC boost converter having the same
CN106452048A (zh) * 2016-11-09 2017-02-22 苏州工业职业技术学院 电压自适应开关电源
CN110764564A (zh) * 2019-12-04 2020-02-07 深圳开立生物医疗科技股份有限公司 一种电压调节电路及超声设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470967A (zh) * 2003-06-20 2004-01-28 张步学 新型直流稳定电源暨大范围可调的开关型直流稳定电源
CN101404466A (zh) * 2008-11-05 2009-04-08 哈尔滨工业大学 一种非谐振适配电路及使用该电路的压电装置驱动器
CN102056363A (zh) * 2009-11-11 2011-05-11 海洋王照明科技股份有限公司 Led电源驱动电路
CN102594125A (zh) * 2012-03-22 2012-07-18 上海市电力公司 用于一种moa阻性电流检测系统的第二级电源电路
CN103248108A (zh) * 2013-05-16 2013-08-14 常州矽能电子科技有限公司 带mos管切换和可复用dc-dc模块的led驱动器
US9543826B2 (en) * 2013-06-21 2017-01-10 Anpec Electronics Corporation Audible noise avoiding circuit and DC-DC boost converter having the same
CN105846681A (zh) * 2015-01-30 2016-08-10 三垦电气株式会社 开关电源装置
CN106452048A (zh) * 2016-11-09 2017-02-22 苏州工业职业技术学院 电压自适应开关电源
CN110764564A (zh) * 2019-12-04 2020-02-07 深圳开立生物医疗科技股份有限公司 一种电压调节电路及超声设备

Also Published As

Publication number Publication date
CN110764564A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2021109492A1 (zh) 一种电压调节电路及超声设备
US10734885B2 (en) Removal of near DC errors in a peak-controlled boost converter using a low-bandwidth secondary control loop
US10090750B1 (en) Isolating switch circuit and control method thereof
US11290069B2 (en) Distortion reducing variable output impedance class-D amplifier
US8253491B2 (en) Method and apparatus for power converter for class D audio power amplifiers
US8779738B2 (en) Control circuit for switching regulator, switching regulator and electronic equipment using the control circuit
US8665612B2 (en) Constant current controller
US10050517B1 (en) Power supply apparatus converting input voltage to predetermined output voltage and controlling output voltage based on feedback signal corresponding to output voltage
JPH09140145A (ja) 力率補償回路を備えた昇圧型コンバータ
EP2333946B1 (en) Timing controlled AC to DC converter
CN102938611B (zh) 斜坡补偿电压生成电路及方法,开关调节器及电源
US10069406B2 (en) EMI filter and switching power supply with the same
CN108809063B (zh) 一种全片内集成的驱动自举电路
CN105071651A (zh) 一种环路补偿方法及电路
TWI759862B (zh) 開關穩壓器控制系統和開關穩壓器
CN108900082B (zh) 开关电源变换系统
TWI418129B (zh) 電荷幫浦裝置及其穩壓方法
US20110051475A1 (en) Regulator circuitry for reducing ripple resulted from line voltage transmitting to secondary side of power transformer
CN210776361U (zh) 一种电压调节电路及超声设备
CN110299843B (zh) 一种复合dcdc电路
JP2013162539A (ja) Led駆動回路およびこれを用いた電子機器
TWI406486B (zh) 用於反激式電源變換器的初級側感測和調整的系統和方法
CN220440549U (zh) 一种电源适配器
TWM420118U (en) Power regulator for power management
US20220360228A1 (en) Envelope tracking method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897465

Country of ref document: EP

Kind code of ref document: A1