WO2021109225A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2021109225A1
WO2021109225A1 PCT/CN2019/125570 CN2019125570W WO2021109225A1 WO 2021109225 A1 WO2021109225 A1 WO 2021109225A1 CN 2019125570 W CN2019125570 W CN 2019125570W WO 2021109225 A1 WO2021109225 A1 WO 2021109225A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
sublayer
display panel
fluoride
Prior art date
Application number
PCT/CN2019/125570
Other languages
English (en)
French (fr)
Inventor
孙锋
李金川
魏锋
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/625,777 priority Critical patent/US11515508B2/en
Publication of WO2021109225A1 publication Critical patent/WO2021109225A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • This application relates to the technical field of display panels, and in particular to a display panel and a manufacturing method thereof.
  • OLED display technology has been widely used due to its advantages of self-luminescence, wide viewing angle, low power consumption, and extremely high response speed.
  • OLED organic light-emitting diodes
  • its internal efficiency can basically be It reaches 100%, but because the refractive index matching of each dielectric layer is relatively poor, most of the light cannot be emitted into the air, and the light loss is relatively large.
  • the embodiments of the application provide a display panel and a manufacturing method thereof, so as to solve the problem of the OLED display panel at the interface between the glass substrate and the light-emitting functional layer (specifically, the ITO of the anode in the light-emitting functional layer), and the interface between the glass substrate and the outside air. It is easy to produce total reflection, causing the problem of greater light loss in the OLED display panel.
  • the embodiment of the present application provides a display panel, including:
  • the one-dimensional photonic crystal layer is arranged on the glass substrate and includes a plurality of crystal unit layers stacked and arranged, each of the crystal unit layers includes: a low refractive index located in the crystal unit layer on the side close to the glass substrate A low-frequency sub-layer, and a high-refractive-index sub-layer located on the side of the crystal unit layer away from the glass substrate; and
  • the light-emitting function layer is arranged on the one-dimensional photonic crystal layer.
  • the refractive index of the high refractive index sublayer is greater than or equal to 1.8, and the refractive index of the low refractive index sublayer is less than or equal to 1.5.
  • the material of the high refractive index sub-layer is tantalum pentoxide, titanium dioxide, zirconium dioxide, tin oxide, ceria, niobium pentoxide, chromium oxide, zinc selenide, One or more of zinc sulfide, barium sulfide, gadolinium oxide, barium titanate, calcium oxide, boron nitride, and zinc germanide.
  • the material of the low refractive index sub-layer is silicon dioxide, magnesium fluoride, yttrium fluoride, ytterbium fluoride, calcium fluoride, aluminum fluoride, barium fluoride, fluoride One or more of lithium, sodium fluoride, and thorium fluoride.
  • the crystal unit further includes a transition sublayer disposed on the high refractive index sublayer and the low refractive index sublayer, and the refractive index of the transition sublayer is smaller than that of the transition sublayer.
  • the refractive index of the high refractive index sublayer, and the refractive index of the transition sublayer is greater than the refractive index of the low refractive index sublayer.
  • the material of the transition sublayer is one or more of silicon monoxide, yttrium oxide, aluminum oxide, magnesium oxide, hafnium dioxide, indium tin oxide, and lead fluoride.
  • the thickness of the high refractive index sublayer, low refractive index sublayer or transition sublayer in the crystal unit layer is:
  • is the center wavelength of the light emitted by the light-emitting functional layer, m ⁇ (1, 2, 3), D 1 is the thickness of the high refractive index sublayer , and n 1 is the high refractive index sublayer D 2 is the thickness of the low refractive index sublayer, n 2 is the refractive index of the low refractive index sublayer; D 3 is the thickness of the transition sublayer , n 3 is the transition sublayer The refractive index.
  • the number of the crystal unit layers is 10 layers.
  • the light-emitting function layer includes: an anode layer disposed on the one-dimensional photonic crystal layer, an organic layer disposed on the anode layer, and an organic layer disposed on the organic layer The cathode layer.
  • the present application also provides a manufacturing method of a display panel, which includes the following steps:
  • a one-dimensional photonic crystal layer is formed on the glass substrate, the one-dimensional photonic crystal layer includes a plurality of crystal unit layers laminated and formed on the glass substrate in sequence, and each of the crystal unit layers includes: The low refractive index sublayer in the crystal unit layer on the side close to the glass substrate, and the high refractive index sublayer formed in the crystal unit layer on the side away from the glass substrate; and
  • a light-emitting function layer is formed on the one-dimensional photonic crystal layer.
  • the forming a light-emitting function layer on the one-dimensional photonic crystal layer includes:
  • a cathode layer is formed on the organic layer.
  • the organic layer and the cathode layer are both manufactured by evaporation.
  • the low refractive index sublayer and the high refractive index sublayer are both manufactured by evaporation.
  • the material for forming the low refractive index sub-layer is silicon dioxide, magnesium fluoride, yttrium fluoride, ytterbium fluoride, calcium fluoride, aluminum fluoride, barium fluoride , Lithium fluoride, sodium fluoride, and thorium fluoride.
  • the material for forming the high refractive index sub-layer is tantalum pentoxide, titanium dioxide, zirconium dioxide, tin oxide, ceria, niobium pentoxide, chromium oxide, selenium
  • tantalum pentoxide titanium dioxide, zirconium dioxide, tin oxide, ceria, niobium pentoxide, chromium oxide, selenium
  • zinc sulfide, zinc sulfide, barium sulfide, gadolinium oxide, barium titanate, calcium oxide, boron nitride, and zinc germanide is tantalum pentoxide, titanium dioxide, zirconium dioxide, tin oxide, ceria, niobium pentoxide, chromium oxide, selenium
  • a one-dimensional photonic crystal layer is arranged between the glass substrate and the light-emitting function layer, and the optical waveguide coupling effect of the one-dimensional photonic crystal layer is used to adjust the propagation of light, which reduces the light loss of the display panel caused by total reflection and improves the display
  • the light extraction efficiency of the panel in addition, the production of the one-dimensional photonic crystal layer is also relatively simple, does not affect the production of other structures in the display panel, is also suitable for mass production, and is better in large-area display applications.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a one-dimensional photonic crystal layer in a display panel provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of another one-dimensional photonic crystal layer in a display panel provided by an embodiment of the application.
  • FIG. 4 is a schematic block diagram of a flow of a manufacturing method of a display panel provided by an embodiment of the application.
  • a display panel which may specifically be an OLED display panel with a bottom emission structure, including:
  • the one-dimensional photonic crystal layer 200 is disposed on the glass substrate 100 and includes a plurality of crystal unit layers 210 stacked and arranged.
  • Each of the crystal unit layers 210 includes: located in the crystal unit layer 210 and close to the glass substrate The low refractive index sublayer 211 on the side of 100, and the high refractive index sublayer 212 on the side of the crystal unit layer 210 away from the glass substrate 100; and
  • the light-emitting function layer 300 is disposed on the one-dimensional photonic crystal layer 200.
  • the light-emitting function layer 300 includes: an anode layer disposed on the one-dimensional photonic crystal layer 200, an organic layer disposed on the anode layer, and a cathode layer disposed on the organic layer Specifically, the organic layer in turn includes: a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), an electron transport layer (ETL), an electron injection layer (EIL) and other functional layers;
  • the anode layer may be laminated with ITO/Ag/ITO on the one-dimensional photonic crystal layer 200.
  • the one-dimensional photonic crystal layer 200 is a one-dimensional photonic crystal (1D PC).
  • a one-dimensional photonic crystal is introduced in between to release the photons in the waveguide effect of the relevant functional layer of the display panel, reduce the absorption of light, and reduce the light loss of the display panel due to total reflection, and improve the light extraction efficiency of the display panel.
  • the refractive index of the high refractive index sublayer 212 is greater than or equal to 1.8, and the refractive index of the low refractive index sublayer 211 is less than or equal to 1.5.
  • the material of the high refractive index sublayer 212 is Tantalum pentoxide Ta 2 O 5 , titanium dioxide TiO 2 , zirconium dioxide ZrO 2 , tin oxide SnO 2 , ceria CeO 2 , niobium pentoxide Nb 2 O 5 , chromium oxide Cr 2 O 3 , zinc selenide ZnSe One or more of zinc sulfide ZnS, barium sulfide BaS, gadolinium oxide Gd 2 O 3 , barium titanate BaTiO 3 , calcium oxide CaO, boron nitride BN, and ZnGe zinc germanide; the low refractive index sub-layer
  • the materials of 211 are silicon dioxide SiO 2 , magnesium fluoride Mg
  • the number of the crystal unit layer 210 is 10 layers. Obviously, when the number of the crystal unit layer 210 is too large, the overall thickness of the display panel becomes higher, which affects the lightness and thinness of the display panel. When the number of the crystal unit layers 210 is too small, the specific effect of increasing the light extraction rate will be affected.
  • the crystal unit further includes a transition sublayer 213 disposed on the high refractive index sublayer 212 and the low refractive index sublayer 211, and the transition sublayer 213
  • the refractive index of is smaller than the refractive index of the high refractive index sublayer 212, and the refractive index of the transition sublayer 213 is greater than the refractive index of the low refractive index sublayer 211; it is understandable that the transition sublayer 213
  • the refractive index of the transition sublayer 213 is between 1.5 and 1.8.
  • the material of the transition sublayer 213 is silicon monoxide SiO, yttrium oxide Y 2 O 3 , aluminum oxide Al 2 O 3 , magnesium oxide MgO, and hafnium dioxide HfO 2 , Indium tin oxide ITO, lead fluoride PbF 2 one or more.
  • the high refractive index sub-layer 212 and the low refractive index sub-layer 211 can be arranged in a multilayer structure. Specifically, the multilayer structure extends from the high refractive index sub-layer 212 to the The refractive index in the direction of the low refractive index sublayer 211 gradually decreases.
  • the thickness of the high refractive index sublayer 212, the low refractive index sublayer 211, or the transition sublayer 213 in the crystal unit layer 210 is:
  • is the center wavelength of the light wave emitted by the light-emitting function layer 300, m ⁇ (1, 2, 3), D 1 is the thickness of the high refractive index sub-layer 212, and n 1 is the high refractive index
  • the refractive index of the sublayer 212; D 2 is the thickness of the low refractive index sublayer 211, n 2 is the refractive index of the low refractive index sublayer 211; D 3 is the thickness of the transition sublayer 213, n 3 Is the refractive index of the transition sublayer 213.
  • the center wavelength of the light wave is relatively stable. From the above formula, it can be known that the larger refractive index corresponds to the smaller layer thickness.
  • This application also provides a method for manufacturing a display panel, as shown in FIG. 4, including the following steps:
  • Step S10 Provide a glass substrate 100
  • Step S20 A one-dimensional photonic crystal layer 200 is formed on the glass substrate 100, each of the crystal unit layers 210 includes: a low refractive index photonic crystal layer formed in the crystal unit layer 210 on the side close to the glass substrate 100 Layer 211, and a high refractive index sub-layer 212 formed in the crystal unit layer 210 on the side away from the glass substrate 100; and
  • Step S30 forming a light-emitting function layer 300 on the one-dimensional photonic crystal layer 200.
  • Layer 210 specifically includes:
  • Step S21 forming a low refractive index sub-layer 211.
  • Step S23 forming a high refractive index sublayer 212 on the low refractive index sublayer 211 to form the crystal unit layer 210.
  • step S21 and the step S23 are repeated on the previous crystal unit layer 210 in sequence to form the next crystal unit layer 210; until the crystal unit layer 210 reaches the required number, The one-dimensional photonic crystal layer 200 is formed; obviously, the low refractive index sub-layer 211 is formed on the glass substrate 100 during the formation of the crystal unit layer 210 of the first layer.
  • the manufacturing step of the crystal unit layer 210 is to sequentially form the low refractive index sublayer 211, the transition sublayer 213, and the high refractive index sublayer 213.
  • Refractive index sublayer 212 when the crystal unit layer 210 has the aforementioned three-layer structure, the manufacturing step of the crystal unit layer 210 is to sequentially form the low refractive index sublayer 211, the transition sublayer 213, and the high refractive index sublayer 213.
  • Refractive index sublayer 212 Refractive index sublayer 212.
  • the low refractive index sub-layer 211, the transition sub-layer 213, and the high refractive sub-layer 212 can all be fabricated and formed by evaporation, and the fabrication of the light-emitting functional layer 300 in step S30 includes:
  • a cathode layer is formed on the organic layer.
  • the organic layer and the cathode layer can be made by evaporation.
  • the one-dimensional photonic crystal provided between the anode layer and the glass substrate 100 in the display panel of the present application is simpler than the two-dimensional photonic crystal structure and manufacturing process.
  • the requirements for the period, grating depth, and duty cycle are relatively high, while the structure of one-dimensional photonic crystals is relatively simple. It only needs to be manufactured in multiple layers without additional patterning or other steps.
  • a process can be used (such as evaporation) production, without circulation and replacement of machine equipment, the process is simple, very suitable for batch production.
  • a one-dimensional photonic crystal layer 200 is arranged between the glass substrate 100 and the light-emitting function layer 300, and the optical waveguide coupling effect of the one-dimensional photonic crystal layer 200 is used to adjust the propagation of light, thereby reducing the display panel caused by total reflection.
  • the light loss of the display panel improves the light extraction efficiency of the display panel.
  • the production of the one-dimensional photonic crystal layer 200 is also relatively simple, and does not affect the production of other structures in the display panel. It is also suitable for mass production and is used in large-area display applications. The effect is better.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

显示面板及其制作方法,其中,所述显示面板包括玻璃基板、设置于玻璃基板上的一维光子晶体层、及设置于一维光子晶体层上的发光功能层,一维光子晶体层包括层叠设置的多个晶体单元层,各晶体单元层均包括位于晶体单元层内靠近所述玻璃基板一侧的低折射率子层,及位于晶体单元层内远离玻璃基板一侧的高折射率子层。

Description

显示面板及其制作方法 技术领域
本申请涉及显示面板技术领域,尤其涉及一种显示面板及其制作方法。
背景技术
随着显示技术的发展,OLED显示技术因其具有自发光、广视角、低耗电、极高的反应速度等优点得到了广泛的应用,对于有机发光二极管(OLED),其内部效率基本上能够达到100%,但由于各介质层的折射率匹配性比较差,导致大部分的光无法出射到空气中,光损失比较多。
技术问题
目前,在OLED显示面板的结构中,在玻璃基板与发光功能层(具体为发光功能层中阳极的ITO)之间的界面、以及玻璃基板与外界空气的界面中极易产生全反射,从而造成OLED显示面板较大的光损失,因此,如何减少玻璃基板两侧界面的全反射,成为亟待解决的问题。
技术解决方案
本申请实施例提供显示面板及其制作方法,以解决OLED显示面板在玻璃基板与发光功能层(具体为发光功能层中阳极的ITO)之间的界面、以及玻璃基板也外界空气的界面中极易产生全反射,造成OLED显示面板较大的光损失的问题。
本申请实施例提供了一种显示面板,包括:
玻璃基板;
一维光子晶体层,设置于所述玻璃基板上,包括层叠设置的多个晶体单元层,各所述晶体单元层均包括:位于所述晶体单元层内靠近所述玻璃基板一侧的低折射率子层,及位于所述晶体单元层内远离所述玻璃基板一侧的高折射率子层;及
发光功能层,设置于所述一维光子晶体层上。
在本申请实施例的显示面板中,所述高折射率子层的折射率大于等于1.8,所述低折射率子层的折射率小于等于1.5。
在本申请实施例的显示面板中,所述高折射率子层的材料为五氧化二钽、二氧化钛、二氧化锆、氧化锡、二氧化铈、五氧化二铌、氧化铬、硒化锌、硫化锌、硫化钡、氧化钆、钛酸钡、氧化钙、氮化硼、锗化锌中的一种或多种。
在本申请实施例的显示面板中,所述低折射率子层的材料为二氧化硅、氟化镁、氟化钇、氟化镱、氟化钙、氟化铝、氟化钡、氟化锂、氟化钠、氟化钍中的一种或多种。
在本申请实施例的显示面板中,所述晶体单元还包括一设置于所述高折射率子层和所述低折射率子层的过渡子层,所述过渡子层的折射率小于所述高折射率子层的折射率,且所述过渡子层的折射率大于所述低折射率子层的折射率。
在本申请实施例的显示面板中,所述过渡子层的材料为一氧化硅、氧化钇、氧化铝、氧化镁、二氧化铪、氧化铟锡、氟化铅中的一种或多种。
在本申请实施例的显示面板中,所述晶体单元层中所述高折射率子层、低折射率子层或过渡子层的厚度为:
D m=λ/(4Xn m)
其中,λ为所述发光功能层所发出光的光波中心波长,m∈(1、2、3),D 1为所述高折射率子层的厚度,n 1为所述高折射率子层的折射率;D 2为所述低折射率子层的厚度,n 2为所述低折射率子层的折射率;D 3为所述过渡子层的厚度,n 3为所述过渡子层的折射率。
在本申请实施例的显示面板中,所述晶体单元层的数量为10层。
在本申请实施例的显示面板中,所述发光功能层包括:设置于所述一维光子晶体层上的阳极层、设置于所述阳极层上的有机层、以及设置于所述有机层上的阴极层。
根据本申请的上述目的,本申请还提供一种显示面板的制作方法,包括如下步骤:
提供一玻璃基板;
在所述玻璃基板上形成一维光子晶体层,所述一维光子晶体层包括依次层叠形成于所述玻璃基板上的多个晶体单元层,各所述晶体单元层均包括:形成于所述晶体单元层内靠近所述玻璃基板一侧的低折射率子层,及形成于所述晶体单元层内远离所述玻璃基板一侧的高折射率子层;及
在所述一维光子晶体层上形成发光功能层。
在本申请实施例显示面板的制作方法中,所述在所述一维光子晶体层上形成发光功能层包括:
在所述一维光子晶体层上形成阳极层;
在所述阳极层上形成有机层;及
在所述有机层上形成阴极层。
在本申请实施例显示面板的制作方法中,所述有机层和所述阴极层均采用蒸镀的方式制作形成。
在本申请实施例显示面板的制作方法中,所述低折射率子层和所述高折射率子层均采用蒸镀的方式制作形成。
在本申请实施例显示面板的制作方法中,形成所述低折射率子层的材料为二氧化硅、氟化镁、氟化钇、氟化镱、氟化钙、氟化铝、氟化钡、氟化锂、氟化钠、氟化钍中的一种或多种。
在本申请实施例显示面板的制作方法中,形成所述高折射率子层的材料为五氧化二钽、二氧化钛、二氧化锆、氧化锡、二氧化铈、五氧化二铌、氧化铬、硒化锌、硫化锌、硫化钡、氧化钆、钛酸钡、氧化钙、氮化硼、锗化锌中的一种或多种。
有益效果
本申请通过在玻璃基板与发光功能层之间设置一维光子晶体层,利用一维光子晶体层光波导耦合效应调整光的传播,减少了因为全反射造成的显示面板的光损失,提高了显示面板的光取出效率;此外,一维光子晶体层的制作也较为简单,不影响显示面板中其它结构的制作,也适于大批量制作,在大面积显示的应用效果中更佳。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的一种显示面板的结构示意图;
图2为本申请实施例提供的显示面板中一种一维光子晶体层的结构示意图;
图3为本申请实施例提供的显示面板中另一种一维光子晶体层的结构示意图;及
图4为本申请实施例提供的显示面板的制作方法的流程示意框图。
本发明的实施方式
本申请提供一种实体键盘输入系统、键盘输入方法及存储介质,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和实施例对本申请作进一步说明。
如图1至图2所示,本申请实施例提供了一种显示面板,具体可以是底发射结构的OLED显示面板,包括:
玻璃基板100;
一维光子晶体层200,设置于所述玻璃基板100上,包括层叠设置的多个晶体单元层210,各所述晶体单元层210均包括:位于所述晶体单元层210内靠近所述玻璃基板100一侧的低折射率子层211,及位于所述晶体单元层210内远离所述玻璃基板100一侧的高折射率子层212;及
发光功能层300,设置于所述一维光子晶体层200上。
可以理解的是,所述发光功能层300包括:设置于所述一维光子晶体层200上的阳极层、设置于所述阳极层上的有机层、以及设置于所述有机层上的阴极层;具体的,所述有机层依次包括:空穴注入层(HIL)、空穴传输层(HTL)、发光层(EML)、电子传输层(ETL)、电子注入层(EIL)等功能层;所述阳极层可以由ITO/Ag/ITO层叠设置于所述一维光子晶体层200上,所述一维光子晶体层200为一维光子晶体(1D PC),通过在阳极层与玻璃基板100之间导入一维光子晶体,释放显示面板相关功能层波导效应中的光子,减少对光的吸收,也减少了因为全反射造成的显示面板的光损失,提高了显示面板的光取出效率。
在一实施例中,所述高折射率子层212的折射率大于等于1.8,所述低折射率子层211的折射率小于等于1.5,具体的,所述高折射率子层212的材料为五氧化二钽Ta 2O 5、二氧化钛TiO 2、二氧化锆ZrO 2、氧化锡SnO 2、二氧化铈CeO 2、五氧化二铌Nb 2O 5、氧化铬Cr 2O 3、硒化锌ZnSe、硫化锌ZnS、硫化钡BaS、氧化钆Gd 2O 3、钛酸钡BaTiO 3、氧化钙CaO、氮化硼BN、ZnGe锗化锌中的一种或多种;所述低折射率子层211的材料为二氧化硅SiO 2、氟化镁MgF 2、氟化钇YF 3、氟化镱YbF 3、氟化钙CaF 2、氟化铝AlF 3、氟化钡BaF 2、氟化锂LiF、氟化钠NaF、氟化钍ThF 4中的一种或多种。
在一实施例中,所述晶体单元层210的数量为10层,显然,当所述晶体单元层210的数量过多会使所述显示面板整体的厚度变高,影响显示面板的轻薄型,当所述晶体单元层210的数量太少会影响具体提高光取出率的效果。
在一实施例中,如图3所示,所述晶体单元还包括一设置于所述高折射率子层212和所述低折射率子层211的过渡子层213,所述过渡子层213的折射率小于所述高折射率子层212的折射率,且所述过渡子层213的折射率大于所述低折射率子层211的折射率;可以理解的是,所述过渡子层213的折射率在1.5到1.8之间,具体的,所述过渡子层213的材料为一氧化硅SiO、氧化钇Y 2O 3、氧化铝Al 2O 3、氧化镁MgO、二氧化铪HfO 2、氧化铟锡ITO、氟化铅PbF 2中的一种或多种。
值得注意的是,所述高折射率子层212与所述低折射率子层211之间可以设置为多层结构,具体的,该多层结构由所述高折射率子层212向所述低折射率子层211方向的折射率逐渐减小。
在一实施例中,所述晶体单元层210中所述高折射率子层212、低折射率子层211或过渡子层213的厚度为:
D m=λ/(4Xn m)
其中,λ为所述发光功能层300所发出光的光波中心波长,m∈(1、2、3),D 1为所述高折射率子层212的厚度,n 1为所述高折射率子层212的折射率;D 2为所述低折射率子层211的厚度,n 2为所述低折射率子层211的折射率;D 3为所述过渡子层213的厚度,n 3为所述过渡子层213的折射率。可以理解的是,在一具体的显示面板中,光波中心波长较为稳定,从上述公式中,可以得知,折射率较大这对应的层厚较小。
本申请还提供一种显示面板的制作方法,如图4所示,包括如下步骤:
步骤S10:提供一玻璃基板100;
步骤S20:在所述玻璃基板100上形成一维光子晶体层200,各所述晶体单元层210均包括:形成于所述晶体单元层210内靠近所述玻璃基板100一侧的低折射率子层211,及形成于所述晶体单元层210内远离所述玻璃基板100一侧的高折射率子层212;及
步骤S30:在所述一维光子晶体层200上形成发光功能层300。
在一实施例中,所述步骤S20:在所述玻璃基板100上形成一维光子晶体层200,所述一维光子晶体层200包括依次层叠形成于所述玻璃基板100上的多个晶体单元层210,具体包括:
步骤S21:形成一低折射率子层211;及
步骤S23:在所述低折射率子层211上形成高折射率子层212,以形成一所述晶体单元层210。
此外,依次在前一所述晶体单元层210上重复所述步骤S21和所述步骤S23,以形成下一所述晶体单元层210;至所述述晶体单元层210达到所需数量为止,以形成所述一维光子晶体层200;显然,在第一层所述晶体单元层210的形成过程中,所述低折射率子层211形成于所述玻璃基板100上。
在一实施例中,当所述晶体单元层210为前述三层结构时,所述晶体单元层210的制作步骤则为依次形成所述低折射率子层211、过渡子层213及所述高折射率子层212。
具体的,所述低折射率子层211、过渡子层213及所述高折射率子层212均可通过蒸镀的方式制作形成,并且,步骤S30中发光功能层300的制作包括:
在所述一维光子晶体层200上形成阳极层;
在所述阳极层上形成有机层;及
在所述有机层上形成阴极层。
其中,所述有机层和阴极层可采用蒸镀的方式制作。
值得注意的是,本申请显示面板中在所述阳极层与玻璃基板100之间设置的一维光子晶体,相对于二维光子晶体结构和制作工艺都较为简洁,二维光子晶体的制作对于光栅的周期、光栅深度、占空比要求比较高,而一维光子晶体的结构较为简单,只需经过多层制作,无需额外图案化或者其它步骤,在具体制作工艺中,可以采用一种工艺(如蒸镀)制作,无需流转和更换机台设备,工艺简单,非常适合批量化制作。
综上,本申请通过在玻璃基板100与发光功能层300之间设置一维光子晶体层200,利用一维光子晶体层200光波导耦合效应调整光的传播,减少了因为全反射造成的显示面板的光损失,提高了显示面板的光取出效率;此外,一维光子晶体层200的制作也较为简单,不影响显示面板中其它结构的制作,也适于大批量制作,在大面积显示的应用效果中更佳。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (15)

  1. 一种显示面板,包括:
    玻璃基板;
    一维光子晶体层,设置于所述玻璃基板上,包括层叠设置的多个晶体单元层,各所述晶体单元层均包括:位于所述晶体单元层内靠近所述玻璃基板一侧的低折射率子层,及位于所述晶体单元层内远离所述玻璃基板一侧的高折射率子层;及
    发光功能层,设置于所述一维光子晶体层上。
  2. 如权利要求1所述的显示面板,其中,所述高折射率子层的折射率大于等于1.8,所述低折射率子层的折射率小于等于1.5。
  3. 如权利要求2所述的显示面板,其中,所述高折射率子层的材料为五氧化二钽、二氧化钛、二氧化锆、氧化锡、二氧化铈、五氧化二铌、氧化铬、硒化锌、硫化锌、硫化钡、氧化钆、钛酸钡、氧化钙、氮化硼、锗化锌中的一种或多种。
  4. 如权利要求2所述的显示面板,其中,所述低折射率子层的材料为二氧化硅、氟化镁、氟化钇、氟化镱、氟化钙、氟化铝、氟化钡、氟化锂、氟化钠、氟化钍中的一种或多种。
  5. 如权利要求2所述的显示面板,其中,所述晶体单元还包括一设置于所述高折射率子层和所述低折射率子层的过渡子层,所述过渡子层的折射率小于所述高折射率子层的折射率,且所述过渡子层的折射率大于所述低折射率子层的折射率。
  6. 如权利要求5所述的显示面板,其中,所述过渡子层的材料为一氧化硅、氧化钇、氧化铝、氧化镁、二氧化铪、氧化铟锡、氟化铅中的一种或多种。
  7. 如权利要求5所述的显示面板,其中,所述晶体单元层中所述高折射率子层、低折射率子层或过渡子层的厚度为:
    D m=λ/(4Xn m)
    其中,λ为所述发光功能层所发出光的光波中心波长,m∈(1、2、3),D 1为所述高折射率子层的厚度,n 1为所述高折射率子层的折射率;D 2为所述低折射率子层的厚度,n 2为所述低折射率子层的折射率;D 3为所述过渡子层的厚度,n 3为所述过渡子层的折射率。
  8. 如权利要求1所述的显示面板,其中,所述晶体单元层的数量为10层。
  9. 如权利要求1所述的显示面板,其中,所述发光功能层包括:设置于所述一维光子晶体层上的阳极层、设置于所述阳极层上的有机层、以及设置于所述有机层上的阴极层。
  10. 一种显示面板的制作方法,包括如下步骤:
    提供一玻璃基板;
    在所述玻璃基板上形成一维光子晶体层,所述一维光子晶体层包括依次层叠形成于所述玻璃基板上的多个晶体单元层,各所述晶体单元层均包括:形成于所述晶体单元层内靠近所述玻璃基板一侧的低折射率子层,及形成于所述晶体单元层内远离所述玻璃基板一侧的高折射率子层;及
    在所述一维光子晶体层上形成发光功能层。
  11. 如权利要求10所述显示面板的制作方法,其中,所述在所述一维光子晶体层上形成发光功能层包括:
    在所述一维光子晶体层上形成阳极层;
    在所述阳极层上形成有机层;及
    在所述有机层上形成阴极层。
  12. 如权利要求11所述显示面板的制作方法,其中,所述有机层和所述阴极层均采用蒸镀的方式制作形成。
  13. 如权利要求10所述显示面板的制作方法,其中,所述低折射率子层和所述高折射率子层均采用蒸镀的方式制作形成。
  14. 如权利要求10所述显示面板的制作方法,其中,形成所述低折射率子层的材料为二氧化硅、氟化镁、氟化钇、氟化镱、氟化钙、氟化铝、氟化钡、氟化锂、氟化钠、氟化钍中的一种或多种。
  15. 如权利要求10所述显示面板的制作方法,其中,形成所述高折射率子层的材料为五氧化二钽、二氧化钛、二氧化锆、氧化锡、二氧化铈、五氧化二铌、氧化铬、硒化锌、硫化锌、硫化钡、氧化钆、钛酸钡、氧化钙、氮化硼、锗化锌中的一种或多种。
PCT/CN2019/125570 2019-12-04 2019-12-16 显示面板及其制作方法 WO2021109225A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/625,777 US11515508B2 (en) 2019-12-04 2019-12-16 Display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911224486.6 2019-12-04
CN201911224486.6A CN111081896B (zh) 2019-12-04 2019-12-04 显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2021109225A1 true WO2021109225A1 (zh) 2021-06-10

Family

ID=70312651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125570 WO2021109225A1 (zh) 2019-12-04 2019-12-16 显示面板及其制作方法

Country Status (3)

Country Link
US (1) US11515508B2 (zh)
CN (1) CN111081896B (zh)
WO (1) WO2021109225A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310308B (zh) * 2020-10-22 2022-04-26 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197417A (zh) * 2008-01-07 2008-06-11 普光科技(广州)有限公司 氮化镓基发光二极管芯片及其制作方法
CN102347452A (zh) * 2010-07-23 2012-02-08 三星移动显示器株式会社 有机发光显示装置及其制造方法
US20120056164A1 (en) * 2010-03-18 2012-03-08 Canon Kabushiki Kaisha Display apparatus
CN103730601A (zh) * 2013-12-26 2014-04-16 京东方科技集团股份有限公司 分布布拉格反射镜结构及制备方法和有机发光二极管结构
CN109442772A (zh) * 2018-09-27 2019-03-08 青岛大学 一种提高太阳能的吸收利用效率的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683737B1 (ko) * 2004-12-13 2007-02-15 삼성에스디아이 주식회사 전계발광 디스플레이 장치
JP2008229538A (ja) * 2007-03-22 2008-10-02 Toppan Printing Co Ltd コーティングフィルムの製造方法
JP2010135212A (ja) * 2008-12-05 2010-06-17 Panasonic Corp 発光素子、それを用いた表示装置および照明装置、ならびに発光素子の製造方法
JP5510899B2 (ja) * 2009-09-18 2014-06-04 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置、及び画像形成装置
CN103346267A (zh) * 2013-06-24 2013-10-09 中国科学院长春光学精密机械与物理研究所 有源矩阵有机电致发光显示器件
JP6394968B2 (ja) * 2015-02-06 2018-09-26 豊田合成株式会社 光学多層膜および発光素子
CN104678469B (zh) * 2015-03-17 2018-11-02 中国科学院上海高等研究院 渐变折射率材料分布式布拉格反射镜及其制造方法
WO2021041065A1 (en) * 2019-08-27 2021-03-04 Corning Incorporated Optical film structures and articles for hidden displays and display devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197417A (zh) * 2008-01-07 2008-06-11 普光科技(广州)有限公司 氮化镓基发光二极管芯片及其制作方法
US20120056164A1 (en) * 2010-03-18 2012-03-08 Canon Kabushiki Kaisha Display apparatus
CN102347452A (zh) * 2010-07-23 2012-02-08 三星移动显示器株式会社 有机发光显示装置及其制造方法
CN103730601A (zh) * 2013-12-26 2014-04-16 京东方科技集团股份有限公司 分布布拉格反射镜结构及制备方法和有机发光二极管结构
CN109442772A (zh) * 2018-09-27 2019-03-08 青岛大学 一种提高太阳能的吸收利用效率的方法

Also Published As

Publication number Publication date
US20210351380A1 (en) 2021-11-11
CN111081896A (zh) 2020-04-28
CN111081896B (zh) 2021-02-23
US11515508B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
TWI441790B (zh) A light-transmitting substrate, a method for manufacturing the same, an organic LED device, and a method for manufacturing the same
CN104037357B (zh) 一种有机发光显示装置及其制造方法
WO2020037907A1 (zh) 有机发光显示面板及其制造方法
US20220376210A1 (en) Light-Emitting Device and Fabrication Method Thereof, Display Device or Lighting Device
US20050285512A1 (en) Organic electroluminescent display panel and production method thereof
JP2008066027A (ja) 凹凸表面を有する基板およびそれを用いた有機el素子
CN103633256B (zh) 阶梯增透结构式有机电致发光器件及其制备方法
US9735395B2 (en) Organic light emitting diode device, manufacturing method thereof and display apparatus
KR20200075206A (ko) 유기 발광 표시 장치
CN1668154A (zh) 有机电激发光元件、平面显示器及可携带式电子装置
WO2021109225A1 (zh) 显示面板及其制作方法
WO2022000639A1 (zh) Oled 显示面板及显示装置
WO2022236847A1 (zh) 显示面板和显示装置
JP2002216975A (ja) 有機電界発光素子
CN112310308B (zh) 显示面板及其制备方法
CN203596372U (zh) 阶梯增透结构式有机电致发光器件
WO2022227452A1 (zh) 顶发光显示面板及显示装置
CN202749419U (zh) Oled封装结构及发光器件
CN102290532A (zh) 具有高光取出率的有机电致发光元件及其最适化方法
JP2006139932A (ja) 有機エレクトロルミネセンス素子、および有機エレクトロルミネセンス素子の製造方法
WO2019051878A1 (zh) 一种oled器件结构
WO2020155448A1 (zh) 增强光取出的白色有机发光二极管器件
KR101615524B1 (ko) 유기전계발광소자
JP2010080064A (ja) 有機発光デバイス
WO2015009073A1 (ko) 유기발광소자용 광추출 기판 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954918

Country of ref document: EP

Kind code of ref document: A1