WO2021109032A1 - 具有两级阻尼的减振结构及车辆用减振器和离合器从动盘 - Google Patents

具有两级阻尼的减振结构及车辆用减振器和离合器从动盘 Download PDF

Info

Publication number
WO2021109032A1
WO2021109032A1 PCT/CN2019/123038 CN2019123038W WO2021109032A1 WO 2021109032 A1 WO2021109032 A1 WO 2021109032A1 CN 2019123038 W CN2019123038 W CN 2019123038W WO 2021109032 A1 WO2021109032 A1 WO 2021109032A1
Authority
WO
WIPO (PCT)
Prior art keywords
side plate
flange
friction member
ring
damping structure
Prior art date
Application number
PCT/CN2019/123038
Other languages
English (en)
French (fr)
Inventor
肖荣亭
包顺程
Original Assignee
舍弗勒技术股份两合公司
肖荣亭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 肖荣亭 filed Critical 舍弗勒技术股份两合公司
Priority to DE112019007934.4T priority Critical patent/DE112019007934T5/de
Priority to CN201980099570.1A priority patent/CN114286902B/zh
Priority to PCT/CN2019/123038 priority patent/WO2021109032A1/zh
Publication of WO2021109032A1 publication Critical patent/WO2021109032A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/1236Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/129Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by friction-damping means
    • F16F15/1295Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by friction-damping means characterised by means for interconnecting driven plates and retainer, cover plates

Definitions

  • the present invention relates to a vibration damping structure with two-stage damping for a vehicle, and a vehicle shock absorber and a clutch driven disc including the vibration damping structure.
  • a flywheel as a shock absorber for a vehicle is usually installed between the engine crankshaft of the vehicle and the input shaft of the transmission. It is used to effectively dampen the torque of the engine crankshaft while effectively damping the torsional vibration of the engine crankshaft. It is transmitted to the input shaft of the transmission, thereby reducing the influence of the torsional vibration of the engine crankshaft on the transmission.
  • the flywheel of the prior art usually includes a friction sleeve/friction plate and a diaphragm between the side plate and the hub flange in addition to the flywheel mass, side plate, hub flange and damping spring. Leaf spring.
  • the purpose of the present invention is to overcome or at least alleviate the above-mentioned shortcomings of the prior art.
  • the present invention provides a new type of damping structure with two-stage damping, which realizes different damping effects for the two states of the engine's normal working state and idling working state.
  • the present invention also provides a vehicle shock absorber and a clutch driven disc including the above-mentioned shock-absorbing structure.
  • the present invention provides the following damping structure with two-stage damping, and the damping structure includes:
  • a first side plate and a second side plate spaced apart and fixed together in the axial direction of the vibration damping structure
  • the flange is located between the first side plate and the second side plate in the axial direction and can be in the reduction direction relative to the first side plate and the second side plate A predetermined range of rotation in the circumferential direction of the vibrating structure;
  • annular friction member and an elastic member are located between the first side plate and the second side plate, and at least one of them is under the action of the elastic force of the elastic member
  • the ring-shaped friction member abuts against the first side plate and the flange with different pressures, so that: during the operation of the vibration damping structure, at least one of the ring-shaped The friction member can perform a predetermined range of relative rotation of the side plate relative to the flange and generate frictional damping between at least one of the ring-shaped friction members and the flange. After the member and the flange are engaged, the two synchronously rotate and generate frictional damping between at least one of the ring-shaped friction members and the first side plate.
  • the flange may be a disc hub flange, which is connected with a disc hub on the radially inner side.
  • the ring-shaped friction member includes a first ring-shaped friction member and the elastic member includes a first elastic member and a second elastic member,
  • the ring-shaped friction portion of the first ring-shaped friction member is located between the first side plate and the hub flange in the axial direction, and the ring-shaped friction member of the first ring-shaped friction member The protruding portion of the friction portion penetrates the hub flange in the axial direction, and
  • the first elastic member is fixed to the second side plate and pressed against the protruding portion
  • the second elastic member is fixed to the second side plate and pressed against the hub flange, thereby Under the action of the elastic force of the first elastic piece and the second elastic piece, the annular friction portion is pressed against the first side plate, and under the action of the elastic force of the second elastic piece The hub flange is pressed against the annular friction part.
  • the ring-shaped friction member includes a second ring-shaped friction member, and the second ring-shaped friction member is located between the second elastic member and the hub flange in the axial direction.
  • the second elastic member is pressed against the second ring-shaped friction member, so that the second ring-shaped friction member is pressed against the flange of the disk hub.
  • the ring-shaped friction member further includes a third ring-shaped friction member, at least a part of the third ring-shaped friction member is sandwiched between the protruding portion and the first elastic member, and the first elastic member An elastic member is pressed against the third ring-shaped friction member, and the third ring-shaped friction member is pressed against the protruding portion.
  • the hub flange is formed with a plurality of arc-shaped through holes distributed in the circumferential direction, and each of the protrusions of the first annular friction member can pass through the corresponding arc-shaped Through holes, and
  • the arc-shaped through holes and the protrusions both extend along the circumferential direction, and the size of each of the protrusions in the circumferential direction is smaller than that of the corresponding arc-shaped through holes in the circumferential direction.
  • the size of the first ring-shaped friction member can make a predetermined range of relative rotation relative to the hub flange in the circumferential direction.
  • the dimension of the protrusion in the axial direction is greater than the dimension of the hub flange in the axial direction.
  • the elastic force of the first elastic member is greater than the elastic force of the second elastic member.
  • the second annular friction member is fixed to the hub flange, or the second annular friction member is fixed to the second side plate.
  • the present invention also provides the following vehicle shock absorber, the vehicle shock absorber comprising:
  • the mass of the flywheel, the mass of the flywheel is fixed to one of the hub flange and the side plate of the damping structure for receiving torque from the outside, the other of the hub flange and the side plate It is used to transmit torque to the outside.
  • the present invention also provides a clutch driven disc as follows, the clutch driven disc includes:
  • the friction buffer mechanism is provided on the radially outer side of one of the disk hub flange and the side plate and fixed to the one for receiving torque from the outside, the disk hub flange The other of the side plates is used to transmit torque to the outside.
  • the present invention provides a new type of damping structure with two-stage damping, and a vehicle shock absorber and clutch driven disc including the damping structure.
  • the damping structure includes a hub flange, two side plates and a plurality of damping springs, and a ring-shaped friction member and an elastic member are arranged between the disk hub flange and the two side plates. Under the action of the elastic force of the elastic element, the pressure of at least one of the above-mentioned annular friction elements abutting against the flange of the disc hub and one of the side plates are different.
  • the ring-shaped friction member can be relatively rotated with respect to the hub flange by using the difference in pressure.
  • the ring-shaped friction member After the ring-shaped friction member is engaged with the hub flange, the ring-shaped friction member The friction member and the hub flange rotate synchronously, so that the ring friction member and the hub flange generate friction damping during the above relative rotation process, and the ring friction member and a side plate generate friction damping during the above synchronous rotation process, thereby achieving A two-stage damping effect is achieved.
  • the damping structure according to the present invention can achieve a two-stage damping effect with only one hub flange, and can produce different damping effects in the two states of the engine's normal working state and idling working state, taking into account both The vibration reduction in these two states improves the attenuation effect of torsional vibration.
  • Figure 1a is a schematic front view of a damping structure with two-stage damping according to an embodiment of the present invention, in which part of the structure is omitted in order to show its internal structure;
  • Figure 1b is an exploded schematic view of the damping structure in Figure 1a
  • Figure 1c is a schematic cross-sectional view of the damping structure in Figure 1a taken along the line L1-L1 including the central axis O;
  • Figure 1d is an enlarged schematic view of the area M in Figure 1c;
  • Figure 1e is the damping in Figure 1a A three-dimensional schematic diagram of the first ring-shaped friction member of the structure.
  • Figure 2a is a schematic front view of a vehicle shock absorber according to an embodiment of the present invention, in which only half of the structure of the shock absorber is shown;
  • Figure 2b is the vehicle shock absorber in Figure 2a along the line L2-L2 A cutaway schematic diagram of a partial structure including the central axis O.
  • the axial, radial and circumferential directions respectively refer to the axial, radial and circumferential directions of the damping structure according to the present invention
  • the axial side refers to Figure 1c, Figure 1d, The left side in Figure 2b, for example, the side where the engine is located
  • the other axial side refers to the right side in Figures 1c, 1d, and 2b, such as the side where the transmission is located
  • the radially outer side refers to the side that is away from the central axis O in the radial direction. That side (the lower side in FIG. 1d, the upper side in FIG. 2b), the radially inner side refers to the side close to the central axis O in the radial direction (the upper side in FIG. 1d, the lower side in FIG. 2b).
  • the damping structure with two-stage damping has a disc shape as a whole and includes a hub flange 1, two side plates (the first One side plate 21 and second side plate 22), multiple (four in this embodiment) connecting pieces 23, multiple (four in this embodiment) damping spring 3, multiple (in this embodiment)
  • the hub flange 1 has a circular plate shape, and the hub flange 1 is located between the two side plates 21 and 22 in the axial direction A and can be installed after the entire damping structure is installed. In the circumferential direction C, it rotates within a predetermined range relative to the two side plates 21 and 22.
  • the hub flange 1 is formed with a mounting hole 1h1 penetrating in the axial direction A for mounting the damping spring 3, a first arc-shaped through hole 1h2 corresponding to the first annular friction member 41, and a first arc-shaped through hole 1h2 corresponding to the connecting member 23.
  • the number of mounting holes 1h1 is the same as the number of damping springs 3, and the four mounting holes 1h1 are evenly distributed in the circumferential direction C.
  • the length of the mounting hole 1h1 is approximately the same as the initial length of the damping spring 3 when it is not compressed.
  • the first arc-shaped through hole 1h2 extends along the circumferential direction C for a predetermined length.
  • the number of the first arc-shaped through holes 1h2 is the same as the number of the protrusions 412 of the first ring-shaped friction member 41.
  • the length of the first arc-shaped through hole 1h2 in the circumferential direction C is greater than the length of the corresponding protrusion 412 in the circumferential direction C.
  • the cooperation of the first arc-shaped through hole 1h2 with the extension 412 defines the maximum range in which the first annular friction member 41 can rotate relative to the hub flange 1 in the circumferential direction C.
  • the number of the plurality of first arc-shaped through holes 1h2 and the plurality of protrusions 412 are both eight.
  • the four first arc-shaped through holes 1h2 are respectively located on the radial inner side of the corresponding mounting hole 1h1 and are formed integrally with the corresponding mounting hole 1h1, and the other four first arc-shaped through holes 1h2 are respectively located on the corresponding second arc-shaped through holes.
  • the hole 1h3 is radially inside and spaced apart from the corresponding second arc-shaped through hole 1h3.
  • the second arc-shaped through hole 1h3 extends along the circumferential direction C for a predetermined length.
  • the number of the second arc-shaped through holes 1h3 is the same as the number of the connecting pieces 23, the four second arc-shaped through holes 1h3 are evenly distributed in the circumferential direction C, and the four second arc-shaped through holes 1h3 and the four mounting holes 1h1 are in Alternately arranged in the circumferential direction C.
  • the second arc-shaped through hole 1h3 cooperates with the connecting member 23 to define the maximum range that the hub flange 1 can rotate relative to the two side plates 21 and 22 in the circumferential direction C.
  • first side plate 21 and the second side plate 22 are oppositely arranged in the axial direction A across the hub flange 1, and the first side plate 21 is located on the axial direction of the hub flange 1.
  • the second side plate 22 is located on the other axial side of the hub flange 1.
  • the first side plate 21 and the second side plate 22 are fixedly connected together by four connecting members 23 evenly distributed in the circumferential direction C, so that the two side plates 21 and 22 can act as a whole.
  • the first side plate 21 is formed with a first window 21h for installing the damping spring 3.
  • the number of first windows 21h is the same as the number of damping springs 3, and the four first windows 21h are evenly distributed in the circumferential direction C.
  • the length of the first window 21h in the circumferential direction C is substantially equal to the length of the damping spring 3.
  • the second side plate 22 is formed with a second window 22h for installing the damping spring 3.
  • the number of second windows 22h is the same as the number of damping springs 3, and the four second windows 22h are evenly distributed in the circumferential direction C.
  • the length of the second window 22h in the circumferential direction C is approximately equal to the length of the damping spring 3.
  • the damping spring 3 When the first side plate 21 and the second side plate 22 are fixedly connected together, the first window 21h and the second window 22h are opposite to each other in the axial direction A, and a pair of the first window 21h and the second window 22h are connected to a mounting hole 1h1 corresponds to form a damping spring installation part.
  • the damping spring 3 When the damping spring 3 is installed in the damping spring installation part, the damping spring 3 is restricted in the radial direction R, the axial direction A, and the circumferential direction C.
  • the damping springs 3 are all cylindrical coil springs and have the same size.
  • the four damping springs 3 are respectively installed in the corresponding damping spring mounting parts, so that the damping spring 3 is compressed when the first side plate 21 and the second side plate 22 rotate relative to the hub flange 1, so that the When torque is transmitted between the first side plate 21 and the second side plate 22 and the hub flange 1 via the damping spring 3, the damping spring 3 can play a role in damping torsional vibration.
  • the damping structure of the damping structure according to an embodiment of the present invention includes three ring-shaped friction members 41, 42, 43 and two diaphragm springs 51, 52.
  • the first ring-shaped friction member 41 has a ring shape as a whole.
  • the first ring-shaped friction member 41 can not only perform a predetermined range of relative rotation in the circumferential direction C with respect to the hub flange 1, but also perform a relative rotation in the first ring-shaped friction member. 41 can rotate synchronously with the hub flange 1 after being joined with the hub flange 1.
  • the first ring-shaped friction member 41 includes a ring-shaped friction portion 411 and a plurality of protrusions 412 extending from the ring-shaped friction portion 411 toward the other side in the axial direction.
  • the annular friction portion 411 of the first annular friction member 41 is located between the first side plate 21 and the hub flange 1 in the axial direction A.
  • the plurality of protrusions 412 are evenly distributed in the circumferential direction C and the protrusions 412 pass through the first arc-shaped through hole 1h2 of the hub flange 1 in the axial direction A.
  • the size of each extension 412 in the axial direction A is greater than the size of the hub flange 1 in the axial direction A, so each extension 412 can span the entire hub flange 1 and extend to the hub method.
  • Lan 1 is on the other side of the axis.
  • the extension 412 is located at the approximate center of the first arc-shaped through hole 1h2 (as shown in FIG. 1a) when the damping spring 3 is in the uncompressed initial state, the circumferential end of the extension 412 is aligned with the first arc
  • the angle of the central angle corresponding to the arc between the corresponding circumferential ends of the through hole 1h2 is ⁇ .
  • the following first annular friction member 41 is used with the hub flange 1 and the second
  • the difference in friction between the side plates 21 makes the first ring-shaped friction member 41 rotate the same angle relative to the hub flange 1; as the hub flange 1 rotates relative to the side plate by an angle equal to ⁇ , The first ring-shaped friction member 41 is engaged with the hub flange 1, and the first ring-shaped friction member 41 will rotate with the hub flange 1, and there will be no relative rotation between the two.
  • protrusion 412, the first annular friction member 41 and the hub flange 1 mentioned in the present application are joined to mean that they cannot be opposed to each other in at least one circumferential direction (clockwise or counterclockwise). Rotate. After the protrusion 412 and the first annular friction member 41 are engaged with the hub flange 1, due to the rotation of the side plates 21, 22 relative to the hub flange 1, the engaged state can be released and formed again.
  • a reset component (not shown) can be provided so that the extension 412 can return to the approximate center of the first arc-shaped through hole 1h2 after the damping structure is completed; or the connecting member 23 can be connected to the second
  • the maximum relative rotation angle of the hub flange 1 with respect to the two side plates 21 and 22 defined by the arc-shaped through hole 1h3 and the central angle corresponding to the maximum compression of the damping spring 3 are both greater than 2 ⁇ . In this way, it can be ensured that the damping structure according to the present invention normally exerts a two-stage damping effect.
  • the second annular friction member 42 is annular as a whole, and is located between the second diaphragm spring 52 and the hub flange 1 in the axial direction A, so that the hub flange 1 abuts against the second from one side in the axial direction.
  • the annular friction member 42 and the second diaphragm spring 52 abut against the second annular friction member 42 from the other side in the axial direction.
  • the third annular friction member 43 has a ring shape as a whole, and is fixed to the second side plate 22 (not able to rotate relative to the second side plate 22), and a part of the third annular friction member 43 is sandwiched and extended in the axial direction A Between the portion 412 and the first diaphragm spring 51, the protruding portion 412 abuts against the third annular friction member 43 from one side in the axial direction, and the first diaphragm spring 51 abuts against the third ring-shaped friction member 43 from the other side in the axial direction. Ring friction member 43.
  • the first diaphragm spring 51 is fixed to the second side plate 22 (not able to rotate relative to the second side plate 22) and is pressed against the extension 412 from the other side in the axial direction.
  • the second diaphragm spring 52 is fixed to the second side plate 22 (not able to rotate relative to the second side plate 22) and presses against the second annular friction member 42 from the other side in the axial direction.
  • the elastic force of the first diaphragm spring 51 is greater than the elastic force of the second diaphragm spring 52 to further ensure that the hub flange 1 rotates relative to the two side plates 21, 22 from the initial state.
  • the first annular friction member 41 can rotate with the two side plates 21 and 22 instead of rotating with the hub flange 1.
  • the second ring-shaped friction member 42 may be fixed to the hub flange 1, or the second ring-shaped friction member 42 may be fixed to the second side plate 22.
  • the first ring-shaped friction member 41 generates relative to the hub flange. 1's relative rotation. Only when the protruding portion 412 of the first annular friction member 41 abuts the circumferential end of the first arc-shaped through hole 1h2 of the disc hub flange 1, that is, when the protruding portion 412 engages with the disc hub flange 1, the first An annular friction member 41 rotates synchronously with the hub flange 1. At this time, the first annular friction member 41 rotates relative to the side plate 21. In the above two processes of relative rotation and synchronous rotation, the following different frictions act on each other, thus producing a two-stage damping effect.
  • the first annular friction member 41 follows the first side
  • the plate 21 rotates, so on one axial side of the disc hub flange 1, the third friction acts as a damping effect on the FP3; on the other axial side of the disc hub flange 1, the second annular friction member 42 is fixed to the disc
  • the hub flange 1 is still fixed to the second side plate 22, and the fourth friction acts on FP4 or the fifth friction on FP5.
  • the above-mentioned damping effect mainly plays a role in the idling state of the engine.
  • the first annular friction member 41 rotates with the hub flange 1, Therefore, on the axial side of the disc hub flange 1, the second friction acts as a damping lease for FP2; on the other axial side of the disc hub flange 1, the first friction acts as a damping effect on FP1.
  • the fourth friction pair FP4 or the fifth friction pair FP5 has a damping effect.
  • the above-mentioned damping effect mainly plays a role in the normal working state of the engine.
  • the damping structure according to the present invention can take into account the normal working state and the idling state of the engine, and exert a two-stage damping effect.
  • the present invention also provides a shock absorber for a vehicle as follows.
  • the shock absorber for a vehicle includes a flywheel mass 6 and a hub core 7 in addition to the vibration damping structure having the above-mentioned structure.
  • the hub flange 1 of the damping structure is fixedly connected to the flywheel mass 6 and the engine crankshaft of the vehicle for receiving torque from the engine; the second side plate 22 of the damping structure is fixedly connected to the hub core 7 ,
  • the hub core 7 is drivingly coupled with the transmission input shaft of the vehicle for transmitting torque to the transmission input shaft.
  • the aforementioned transmission may be various types of transmissions such as a dual-clutch transmission, a manual automatic transmission, and the like.
  • a plurality of centrifugal pendulum units 8 are located on the radially outer side of the hub flange 1 and are installed on the first side plate 21 and the second side plate 22 for further damping torsional vibration from the engine.
  • the damping structure of the present invention can also be used for clutch driven discs, wherein the friction buffer mechanism is arranged on the radially outer side of the disc hub flange 1 and is connected to the disc hub The flange 1 is fixedly connected, the friction buffer mechanism is used to receive torque from the outside of the clutch driven disc, and the hub core 7 is fixed to the first side plate 21 or the second side plate 22 of the damping structure and is used to drive the clutch The outside of the disc transmits torque.
  • damping spring 3 can be not only a linear cylindrical coil spring as described above, but also an arc-shaped coil spring.
  • each damping spring 3 is stored in the above-mentioned damping spring in such a manner that its length direction coincides with the direction of a tangent to the circumferential direction C of the damping structure Spring mounting part; when the damping spring 3 is an arc-shaped coil spring, preferably, each damping spring 3 is stored in the above-mentioned damping spring installation in such a way that its length direction is consistent with the circumferential direction C of the damping structure unit.
  • the mounting hole 1h of the hub flange 1 may form a convex arc profile toward the radially outer side.
  • the friction members 41, 42, 43 and the diaphragm springs 51, 52 may be arranged on the radially inner side of the damping spring mounting portion, or may be disposed on the inner side of the damping spring mounting portion. Radial outside.
  • the vehicle shock absorber or clutch driven disc further includes a torque limiter, and the torque limiter can be set At the input end of the torque and/or the output end of the torque of the vehicle shock absorber or clutch disc, or at other positions of the vehicle shock absorber or clutch disc.
  • the torque limiter can be provided between the flywheel mass and the flange as the input member, or between the side plate as the output member and the output shaft. between.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

一种具有两级阻尼的减振结构,包括:第一侧板(21)和第二侧板(22),第一侧板(21)和第二侧板(22)在减振结构的轴向(A)上彼此隔开地固定在一起;法兰(1),其在轴向(A)上位于第一侧板(21)和第二侧板(22)之间且能够相对于第一侧板(21)和第二侧板(22)在减振结构的周向(C)上进行预定范围的转动;环状摩擦件(41、42、43)和弹性件(51、52),位于第一侧板(21)和第二侧板(22)之间,在弹性件(51、52)的弹性力的作用下至少一个环状摩擦件(41)以不同的压力抵接于第一侧板(21)和法兰(1),从而使得在减振结构工作的过程中,由于压力不同使至少一个环状摩擦件(41)能够随着侧板(21、22)相对于法兰(1)进行预定范围的相对转动并在至少一个环状摩擦件(41)与法兰(1)之间产生摩擦阻尼,在至少一个环状摩擦件(41)与法兰(1)接合之后二者同步转动并在至少一个环状摩擦件(41)与第一侧板(21)之间产生摩擦阻尼。这样,根据本发明的减振结构能够在仅包括一个盘毂法兰的情况下实现两级阻尼作用,能够兼顾发动机的正常工作状态和怠速工作状态这两种状态下的减振,提高了对扭振的衰减效果。另外,还涉及包括上述减振结构的车辆用减振器和离合器从动盘。

Description

具有两级阻尼的减振结构及车辆用减振器和离合器从动盘 技术领域
本发明涉及用于车辆的具有两级阻尼的减振结构以及包括该减振结构的车辆用减振器和离合器从动盘。
背景技术
在现有技术中,作为车辆用减振器的飞轮通常安装在车辆的发动机曲轴和变速器的输入轴之间,用于在对发动机曲轴的扭振进行有效的衰减的情况下将发动机曲轴的扭矩传递到变速器的输入轴,从而减小发动机曲轴的扭振对变速器的影响。为了实现上述目的,现有技术的飞轮通常除了包括飞轮质量、侧板、盘毂法兰和减振弹簧之外还包括位于侧板和盘毂法兰之间的摩擦套筒/摩擦盘和膜片弹簧。这些摩擦套筒/摩擦盘和膜片弹簧不仅对侧板和盘毂法兰在轴向上进行限位,而且在车辆用减振器工作时提供了对应的阻尼作用。但是,在现有的包括一个盘毂法兰的飞轮中仅能够实现一级阻尼作用,不能兼顾发动机的正常工作状态和怠速工作状态这两种状态下的减振。
类似地,在现有的车辆用离合器从动盘中也存在类似的问题。
发明内容
基于上述现有技术的缺陷,本发明的目的在于克服或至少减轻上述现有技术存在的不足。为此,本发明提供了一种新型的具有两级阻尼的减振结构,该减振结构针对发动机的正常工作状态和怠速工作状态这两种状态实现不同的阻尼作用。本发明还提供了一种包括上述减振结构的车辆用减振器和离合器从动盘。
为了实现上述发明目的,本发明采用如下的技术方案。
本发明提供了一种如下的具有两级阻尼的减振结构,所述减振结构包括:
第一侧板和第二侧板,所述第一侧板和所述第二侧板在所述减振结构的轴向上彼此隔开地固定在一起;
法兰,所述法兰在所述轴向上位于所述第一侧板和所述第二侧板之间且能够相对于所述第一侧板和所述第二侧板在所述减振结构的周向上进行预定范围的转动;
环状摩擦件和弹性件,所述环状摩擦件和所述弹性件位于所述第一侧板和所述第二侧板之间,在所述弹性件的弹性力的作用下至少一个所述环状摩擦件以不同的压力抵接于所述第一侧板和所述法兰,从而使得:在所述减振结构工作的过程中,由于所述压力不同使至少一个所述环状摩擦件能够随着所述侧板相对于所述法兰进行预定范围的相对转动并在至少一个所述环状摩擦件与所述法兰之间产生摩擦阻尼,在至少一个所述环状摩擦件与所述法兰接合之后二者同步转动并在至少一个所述环状摩擦件与所述第一侧板之间产生摩擦阻尼。
优选地,所述法兰可以是盘毂法兰,其在径向内侧连接有盘毂。
优选地,所述环状摩擦件包括第一环状摩擦件并且所述弹性件包括第一弹性件和第二弹性件,
所述第一环状摩擦件的环状摩擦部在所述轴向上位于所述第一侧板和所述盘毂法兰之间,所述第一环状摩擦件的从所述环状摩擦部伸出的伸出部在所述轴向上穿过所述盘毂法兰,并且
所述第一弹性件固定于所述第二侧板并压抵于所述伸出部,所述第二弹性件固定于所述第二侧板并压抵于所述盘毂法兰,从而在所述第一弹性件和所述第二弹性件的弹性力的作用下所述环状摩擦部压抵于所述第一侧板,并 且在所述第二弹性件的弹性力的作用下所述盘毂法兰压抵于所述环状摩擦部。
更优选地,所述环状摩擦件包括第二环状摩擦件,所述第二环状摩擦件在所述轴向上位于所述第二弹性件和所述盘毂法兰之间,所述第二弹性件压抵于所述第二环状摩擦件,使得所述第二环状摩擦件压抵于所述盘毂法兰。
更优选地,所述环状摩擦件还包括第三环状摩擦件,所述第三环状摩擦件的至少一部分夹在所述伸出部和所述第一弹性件之间,所述第一弹性件压抵于所述第三环状摩擦件,所述第三环状摩擦件压抵于所述伸出部。
更优选地,所述盘毂法兰形成有在所述周向上分布的多个弧形通孔,所述第一环状摩擦件的各所述伸出部能够穿过对应的所述弧形通孔,并且
所述弧形通孔和所述伸出部均沿着所述周向延伸,各所述伸出部的在所述周向上的尺寸小于对应的所述弧形通孔的在所述周向上的尺寸,使得所述第一环状摩擦件能够相对于所述盘毂法兰在所述周向上进行预定范围的相对转动。
更优选地,所述伸出部的在所述轴向上的尺寸大于所述盘毂法兰的在所述轴向上的尺寸。
更优选地,所述第一弹性件的弹性力大于所述第二弹性件的弹性力。
更优选地,所述第二环状摩擦件固定于所述盘毂法兰,或者所述第二环状摩擦件固定于所述第二侧板。
本发明还提供了一种如下的车辆用减振器,所述车辆用减振器包括:
以上技术方案中任意一项技术方案所述的减振结构;以及
飞轮质量,所述飞轮质量固定于所述减振结构的盘毂法兰和侧板中的一者以用于接收来自外部的扭矩,所述盘毂法兰和所述侧板中的另一者用于向外部传递扭矩。
本发明还提供了一种如下的离合器从动盘,所述离合器从动盘包括:
以上技术方案中任意一项技术方案所述的减振结构;以及
摩擦缓冲机构,所述摩擦缓冲机构设置于所述盘毂法兰和侧板中的一者的径向外侧且固定于所述一者以用于接收来自外部的扭矩,所述盘毂法兰和所述侧板中的另一者用于向外部传递扭矩。
通过采用上述的技术方案,本发明提供了一种新型的具有两级阻尼的减振结构及包括该减振结构的车辆用减振器和离合器从动盘。该减振结构包括一个盘毂法兰、两个侧板和多个减振弹簧,在盘毂法兰和两个侧板之间设置环状摩擦件和弹性件。在弹性件的弹性力的作用下,至少一个上述环状摩擦件抵接于盘毂法兰和一个侧板的压力不同。这样,在根据本发明的减振结构的工作过程中,利用压力的不同该环状摩擦件能够相对于盘毂法兰进行相对转动,在该环状摩擦件与盘毂法兰接合之后环状摩擦件与盘毂法兰同步转动,从而在上述相对转动过程中环状摩擦件与盘毂法兰产生摩擦阻尼而在上述同步转动过程中环状摩擦件与一个侧板产生摩擦阻尼,进而实现了两级阻尼作用。
这样,根据本发明的减振结构能够在仅包括一个盘毂法兰的情况下实现两级阻尼作用,能够在发动机的正常工作状态和怠速工作状态这两种状态下产生不同的阻尼作用,兼顾了这两种状态下的减振,提高了对扭振的衰减效果。
附图说明
图1a是根据本发明的一实施方式的具有两级阻尼的减振结构的主视示意图,其中为了示出其内部构造而省略了部分结构;图1b是图1a中的减振结构的爆炸示意图;图1c是图1a中的减振结构沿着线L1-L1截取的包括中心轴线O的剖视示意图;图1d是图1c中的区域M的放大示意图;图1e是图1a中的 减振结构的第一环状摩擦件的立体示意图。
图2a是根据本发明的一实施方式的车辆用减振器的主视示意图,其中仅示出了减振器一半结构;图2b是图2a中的车辆用减振器沿着线L2-L2截取的包括中心轴线O的局部结构剖视示意图。
附图标记说明
1盘毂法兰 1h1安装孔 1h2第一弧形通孔 1h3第二弧形通孔
21第一侧板 21h第一窗口 22第二侧板 22h第二窗口 23连接件
3减振弹簧
41第一环状摩擦件 411环状摩擦部 412伸出部 42第二环状摩擦件 43第三环状摩擦件 FP1第一摩擦对 FP2第二摩擦对 FP3第三摩擦对 FP4第四摩擦对 FP5第五摩擦对
51第一膜片弹簧 52第二膜片弹簧
6飞轮质量 7毂芯 8离心摆单元
R径向 A轴向 C周向 O中心轴线。
具体实施方式
以下参照附图说明本发明的具体实施方式。在附图中,除非另有说明,轴向、径向和周向分别是指根据本发明的减振结构的轴向、径向和周向;轴向一侧是指图1c、图1d、图2b中的左侧,例如发动机所在侧;轴向另一侧是指图1c、图1d、图2b中的右侧,例如变速器所在侧;径向外侧是指在径向上远离中心轴线O的那侧(图1d中的下侧,图2b中的上侧),径向内侧是指在径向上接近中心轴线O的那侧(图1d中的上侧,图2b中的下侧)。
以下将首先结合说明书附图说明根据本发明的一实施方式的具有两级 阻尼的减振结构的构造和工作原理。
(根据本发明的一实施方式的具有两级阻尼的减振结构)
如图1a至图1d所示,根据本发明的一实施方式的具有两级阻尼的减振结构整体具有圆盘形状并且包括彼此组装在一起的一个盘毂法兰1、两个侧板(第一侧板21和第二侧板22)、多个(在本实施方式中为四个)连接件23、多个(在本实施方式中为四个)减振弹簧3、多个(在本实施方式中为三个)环形摩擦件41、42、43和多个(在本实施方式中为两个)膜片弹簧51、52。
具体地,在本实施方式中,盘毂法兰1具有圆板形状,盘毂法兰1在轴向A上位于两个侧板21、22之间并且当整个减振结构安装完成之后能够在周向C上相对于两个侧板21、22在预定范围内转动。
盘毂法兰1形成有在轴向A上贯通的用于安装减振弹簧3的安装孔1h1,以及对应于第一环状摩擦件41的第一弧形通孔1h2和对应于连接件23的第二弧形通孔1h3。
安装孔1h1的数量与减振弹簧3的数量相同,四个安装孔1h1在周向C上均匀分布。安装孔1h1的长度与减振弹簧3未压缩时的初始长度大致一致。
第一弧形通孔1h2沿着周向C延伸预定长度。第一弧形通孔1h2的数量与第一环状摩擦件41的伸出部412的数量相同。第一弧形通孔1h2的在周向C上的长度大于对应的伸出部412的在周向C上的长度。通过第一弧形通孔1h2与伸出部412配合限定了第一环状摩擦件41能够在周向C上相对于盘毂法兰1转动的最大范围。此外,在图示的非限制性的示例中,多个第一弧形通孔1h2和多个伸出部412的数量均为八个。四个第一弧形通孔1h2分别位于对应的安装孔1h1的径向内侧且与对应的安装孔1h1形成为一体,另外四个第一弧形通孔1h2分别位于对应的第二弧形通孔1h3的径向内侧且与对应的第二弧形通孔1h3间隔开。
第二弧形通孔1h3沿着周向C延伸预定长度。第二弧形通孔1h3的数量与连接件23的数量相同,四个第二弧形通孔1h3在周向C上均匀分布且四个第二弧形通孔1h3与四个安装孔1h1在周向C上交替布置。通过第二弧形通孔1h3与连接件23配合限定了盘毂法兰1能够在周向C上相对于两个侧板21、22转动的最大范围。
进一步地,在本实施方式中,第一侧板21和第二侧板22在轴向A上隔着盘毂法兰1相对设置,第一侧板21位于盘毂法兰1的轴向一侧,第二侧板22位于盘毂法兰1的轴向另一侧。第一侧板21和第二侧板22通过在周向C上均匀分布的四个连接件23固定连接在一起,使得两个侧板21、22能够作为一个整体进行动作。
更具体地,第一侧板21形成有用于安装减振弹簧3的第一窗口21h。第一窗口21h的数量与减振弹簧3的数量相同,四个第一窗口21h在周向C上均匀分布。第一窗口21h的在周向C上的长度与减振弹簧3的长度大致相等。
第二侧板22形成有用于安装减振弹簧3的第二窗口22h。第二窗口22h的数量与减振弹簧3的数量相同,四个第二窗口22h在周向C上均匀分布。第二窗口22h的在周向C上的长度与减振弹簧3的长度大致相等。
当第一侧板21和第二侧板22固定连接在一起时,第一窗口21h和第二窗口22h在轴向A上彼此相对,一对第一窗口21h和第二窗口22h与一个安装孔1h1对应以形成一个减振弹簧安装部。当减振弹簧3安装于该减振弹簧安装部中时,减振弹簧3在径向R、轴向A和周向C上均受到限位。
进一步地,在本实施方式中,减振弹簧3均为圆柱螺旋弹簧且具有相同的尺寸。四个减振弹簧3分别安装在对应的减振弹簧安装部中,使得在第一侧板21和第二侧板22相对于盘毂法兰1转动时减振弹簧3被压缩,从而使得在第一侧板21和第二侧板22与盘毂法兰1之间经由减振弹簧3传递扭矩时减振 弹簧3能够起到衰减扭振的作用。
进一步地,在本实施方式中,根据本发明的一实施方式的减振结构的阻尼结构包括三个环状摩擦件41、42、43和两个膜片弹簧51、52。
具体地,第一环状摩擦件41整体呈环状,第一环状摩擦件41不仅能够相对于盘毂法兰1在周向C上进行预定范围的相对转动而且在第一环状摩擦件41与盘毂法兰1接合之后能够随着盘毂法兰1同步转动。如图1e所示,第一环状摩擦件41包括环状摩擦部411和从该环状摩擦部411朝向轴向另一侧伸出的多个伸出部412。第一环状摩擦件41的环状摩擦部411在轴向A上位于第一侧板21和盘毂法兰1之间。多个伸出部412在周向C上均匀分布并且伸出部412在轴向A上穿过盘毂法兰1的第一弧形通孔1h2。各伸出部412的在轴向A上的尺寸大于盘毂法兰1的在轴向A上的尺寸,因此各伸出部412能够跨过整个盘毂法兰1而伸出到盘毂法兰1的轴向另一侧。
假设在减振弹簧3处于未压缩的初始状态下伸出部412位于第一弧形通孔1h2的大致中央位置(如图1a所示),则伸出部412的周向端部与第一弧形通孔1h2的对应的周向端部之间的圆弧对应的圆心角的角度为α。这样,当盘毂法兰1从初始状态(减振弹簧3未压缩时)相对于侧板转动小于α的角度时,利用下述的第一环状摩擦件41与盘毂法兰1和第一侧板21之间的摩擦力不同使得第一环状摩擦件41也相对于盘毂法兰1转动了相同的角度;随着盘毂法兰1相对于侧板转动等于α的角度之后,第一环状摩擦件41与盘毂法兰1接合,第一环状摩擦件41将随着盘毂法兰1一起转动,两者之间将不存在相对转动。
应当理解,本申请中提到的伸出部412、第一环状摩擦件41与盘毂法兰1接合是指二者在至少一个周向方向(顺时针方向或逆时针方向)上不能相对转动。在伸出部412、第一环状摩擦件41与盘毂法兰1接合之后,由于侧板21、22相对于盘毂法兰1的转动,该接合状态可被解除及再次形成。
另外,优选地,可以设置复位组件(未示出)使得伸出部412在减振结构工作完成之后能够回到第一弧形通孔1h2的大致中央位置;或者可以使得连接件23与第二弧形通孔1h3限定的盘毂法兰1相对于两个侧板21、22的最大相对转动角度以及减振弹簧3的最大压缩量对应的圆心角均大于2α。这样,能够保证根据本发明的减振结构正常发挥两级阻尼作用。
第二环状摩擦件42整体呈环状,并且在轴向A上位于第二膜片弹簧52和盘毂法兰1之间,使得盘毂法兰1从轴向一侧抵接于第二环状摩擦件42并且第二膜片弹簧52从轴向另一侧抵接于第二环状摩擦件42。第三环状摩擦件43整体呈环状,并且固定于第二侧板22(不能相对于第二侧板22转动),第三环状摩擦件43的一部分在轴向A上夹在伸出部412和第一膜片弹簧51之间,使得伸出部412从轴向一侧抵接于第三环状摩擦件43并且第一膜片弹簧51从轴向另一侧抵接于第三环状摩擦件43。
第一膜片弹簧51固定于第二侧板22(不能相对于第二侧板22转动)并从轴向另一侧压抵于伸出部412。第二膜片弹簧52固定于第二侧板22(不能相对于第二侧板22转动)并从轴向另一侧压抵于第二环状摩擦件42。这样,在第一膜片弹簧51和第二膜片弹簧52两者的弹簧力的作用下,使得环状摩擦部411从轴向另一侧压抵于第一侧板21;在第二膜片弹簧52单独的弹簧力的作用下,使得盘毂法兰1从轴向另一侧压抵于环状摩擦部411。因此,环状摩擦部411与第一侧板21和盘毂法兰1之间的压力不同,在第一侧板21和盘毂法兰1的摩擦系数相同的情况下,环状摩擦部411与第一侧板21之间的(静态)摩擦力显然大于环状摩擦部411与盘毂法兰1之间的(静态)摩擦力。
需要进一步说明的是,第一膜片弹簧51的弹性力大于第二膜片弹簧52的弹性力,以进一步保证在盘毂法兰1从初始状态开始相对于两个侧板21、22转动的最初阶段第一环状摩擦件41能够随着两个侧板21、22转动而非随着盘毂法兰1转动。另外,根据设计需要,可以使得第二环状摩擦件42固定于盘 毂法兰1,或者可以使得第二环状摩擦件42固定于第二侧板22。
以上说明了根据本发明的减振结构的构造,以下将说明根据本发明的减振结构的工作原理。
因为环状摩擦部411与第一侧板21和盘毂法兰1之间的压力不同,环状摩擦部411与第一侧板21之间的(静态)摩擦力大于环状摩擦部411与盘毂法兰1之间的(静态)摩擦力。这样,当根据本发明的减振结构处于如图1a所示的初始状态时,由于上述摩擦力之间的关系,在盘毂法兰1从初始状态开始相对于两个侧板21、22转动的最初阶段,第一环状摩擦件41能够随着两个侧板21、22转动而非随着盘毂法兰1转动,因而该第一环状摩擦件41产生了相对于盘毂法兰1的相对转动。只有当第一环状摩擦件41的伸出部412与盘毂法兰1的第一弧形通孔1h2的周向端部抵接,也就是伸出部412与盘毂法兰1接合时,第一环状摩擦件41才随着盘毂法兰1同步转动,此时,第一环状摩擦件41相对于侧板21转动。在上述相对转动和同步转动两个过程中,下述的不同的摩擦对起作用,因而产生了两级阻尼作用。
基于如上的结构设计,如图1d所示,在根据本发明的减振结构的工作过程中,能够实现如下的五个摩擦对。
Figure PCTCN2019123038-appb-000001
这样,当盘毂法兰1从初始状态(减振弹簧3未压缩时)相对于两个侧板21、22转动小于α的角度的过程中,第一环状摩擦件41随着第一侧板21转动,因此在盘毂法兰1的轴向一侧,第三摩擦对FP3起阻尼作用;在盘毂法兰1的轴向另一侧,根据第二环状摩擦件42固定于盘毂法兰1还是固定于第二侧板22,第四摩擦对FP4或第五摩擦对FP5起阻尼作用。上述阻尼作用主要在发动机的怠速状态下发挥作用。
当盘毂法兰1从初始状态(减振弹簧3未压缩时)相对于两个侧板21、22转动等于α的角度之后,第一环状摩擦件41随着盘毂法兰1转动,因此在盘毂法兰1的轴向一侧,第二摩擦对FP2起阻尼租用;在盘毂法兰1的轴向另一侧,第一摩擦对FP1起阻尼作用,另外根据第二环状摩擦件42固定于盘毂法兰1还是固定于第二侧板22第四摩擦对FP4或第五摩擦对FP5起阻尼作用。上述阻尼作用主要在发动机的正常工作状态下发挥作用。
这样,根据本发明的减振结构能够兼顾发动机的正常工作状态和怠速状态,发挥两级阻尼作用。
以上说明了根据本发明的一实施方式的具有两级阻尼的减振结构的构造和工作原理,以下将说明包括该减振结构的根据本发明的一实施方式的车辆用减振器的构造。
(根据本发明的一实施方式的车辆用减振器)
如图2a和图2b所示,本发明还提供了一种如下的车辆用减振器,该车辆用减振器除了包括具有上述构造的减振结构之外还包括飞轮质量6、毂芯7和离心摆单元8。
具体地,减振结构的盘毂法兰1与飞轮质量6和车辆的发动机曲轴两者固定连接,以用于接收来自发动机的扭矩;减振结构的第二侧板22与毂芯7固定连接,毂芯7与车辆的变速器输入轴传动联接,以用于向变速器输入轴传 递扭矩。上述变速器可以是双离合变速器、手动自动变速器等各种类型的变速器。另外,多个离心摆单元8位于盘毂法兰1的径向外侧并且安装于第一侧板21和第二侧板22,用于对来自发动机的扭振进行进一步地衰减。
以上对本发明的具体技术方案进行了详细地阐述,但是还需要说明的是:
(i)虽然在以上的具体实施方式中没有明确说明,但是本发明的减振结构还可以用于离合器从动盘,其中摩擦缓冲机构设置于盘毂法兰1的径向外侧且与盘毂法兰1固定连接,摩擦缓冲机构用于接收来自离合器从动盘的外部的扭矩,并且毂芯7固定于减振结构的第一侧板21或第二侧板22并且用于向离合器从动盘的外部传递扭矩。
(ii)虽然在以上的具体实施方式中说明了减振弹簧3的数量为四个,但是减振弹簧3还可以采用其它数量。减振弹簧3不仅可以为如上所述的直线状的圆柱螺旋弹簧,还可以是弧形的螺旋弹簧。
当减振弹簧3为直线状的圆柱螺旋弹簧时,优选地,各减振弹簧3以其长度方向与减振结构的周向C的一条切线的方向一致的方式收纳于如上所述的减振弹簧安装部;当减振弹簧3为弧形的螺旋弹簧时,优选地,各减振弹簧3以其长度方向与减振结构的周向C一致的方式收纳于如上所述的减振弹簧安装部。
(iii)为了避免在直线状的减振弹簧3在盘毂法兰1相对于两个侧板21、22发生相对转动时与盘毂法兰1发生干涉,盘毂法兰1的安装孔1h的径向外侧边缘可以形成朝向径向外侧凸的弧形轮廓。
(iv)在根据本发明的减振结构中,摩擦件41、42、43和膜片弹簧51、52可以设置于减振弹簧安装部的径向内侧,也可以设置于减振弹簧安装部的径向外侧。
(v)本发明的减振结构应用到车辆用减振器或离合器从动盘时,所述的车辆用减振器或离合器从动盘还包括有扭矩限制器,所述扭矩限制器可以设置在车辆用减振器或离合器从动盘的扭矩的输入端处和/或扭矩的输出端处,或者在车辆用减振器或离合器从动盘的其他位置处。例如,对于车辆用减振器的一个非限制性的实施例中,扭矩限制器可以设置在飞轮质量与作为输入部件的法兰之间,也可以设置在作为输出部件的侧板与输出轴之间。

Claims (10)

  1. 一种具有两级阻尼的减振结构,所述减振结构包括:
    第一侧板(21)和第二侧板(22),所述第一侧板(21)和所述第二侧板(22)在所述减振结构的轴向(A)上彼此隔开地固定在一起;
    法兰(1),所述法兰(1)在所述轴向(A)上位于所述第一侧板(21)和所述第二侧板(22)之间且能够相对于所述第一侧板(21)和所述第二侧板(22)在所述减振结构的周向(C)上进行预定范围的转动;
    环状摩擦件(41、42、43)和弹性件(51、52),所述环状摩擦件(41、42、43)和所述弹性件(51、52)位于所述第一侧板(21)和所述第二侧板(22)之间,在所述弹性件(51、52)的弹性力的作用下至少一个所述环状摩擦件(41)以不同的压力抵接于所述第一侧板(21)和所述法兰(1),从而使得:在所述减振结构工作的过程中,由于所述压力不同使至少一个所述环状摩擦件(41)能够随着所述侧板(21、22)相对于所述法兰(1)进行预定范围的相对转动并在至少一个所述环状摩擦件(41)与所述法兰(1)之间产生摩擦阻尼,在至少一个所述环状摩擦件(41)与所述法兰(1)接合之后二者同步转动并在至少一个所述环状摩擦件(41)与所述第一侧板(21)之间产生摩擦阻尼。
  2. 根据权利要求1所述的减振结构,其特征在于,所述环状摩擦件(41、42、43)包括第一环状摩擦件(41)并且所述弹性件(51、52)包括第一弹性件(51)和第二弹性件(52),
    所述第一环状摩擦件(41)的环状摩擦部(411)在所述轴向(A)上位于所述第一侧板(21)和所述法兰(1)之间,所述第一环状摩擦件(41)的从所述环状摩擦部(411)伸出的伸出部(412)在所述轴向(A)上穿过所述法兰(1),并且
    所述第一弹性件(51)固定于所述第二侧板(22)并压抵于所述伸出部 (412),所述第二弹性件(52)固定于所述第二侧板(22)并压抵于所述法兰(1),从而在所述第一弹性件(51)和所述第二弹性件(52)的弹性力的作用下所述环状摩擦部(411)压抵于所述第一侧板(21),并且在所述第二弹性件(52)的弹性力的作用下所述法兰(1)压抵于所述环状摩擦部(411)。
  3. 根据权利要求2所述的减振结构,其特征在于,所述环状摩擦件(41、42、43)包括第二环状摩擦件(42),所述第二环状摩擦件(42)在所述轴向(A)上位于所述第二弹性件(52)和所述法兰(1)之间,所述第二弹性件(52)压抵于所述第二环状摩擦件(42),使得所述第二环状摩擦件(42)压抵于所述法兰(1)。
  4. 根据权利要求3所述的减振结构,其特征在于,所述环状摩擦件(41、42、43)还包括第三环状摩擦件(43),所述第三环状摩擦件(43)的至少一部分夹在所述伸出部(412)和所述第一弹性件(51)之间,所述第一弹性件(51)压抵于所述第三环状摩擦件(43),所述第三环状摩擦件(43)压抵于所述伸出部(412)。
  5. 根据权利要求2至4中任一项所述的减振结构,其特征在于,所述法兰(1)形成有在所述周向(C)上分布的多个弧形通孔(1h2),所述第一环状摩擦件(41)的各所述伸出部(412)能够穿过对应的所述弧形通孔(1h2),并且
    所述弧形通孔(1h2)和所述伸出部(412)均沿着所述周向(C)延伸,各所述伸出部(412)的在所述周向(C)上的尺寸小于对应的所述弧形通孔(1h2)的在所述周向(C)上的尺寸,使得所述第一环状摩擦件(41)能够相对于所述法兰(1)在所述周向(C)上进行预定范围的相对转动。
  6. 根据权利要求2至5中任一项所述的减振结构,其特征在于,所述伸出部(412)的在所述轴向(A)上的尺寸大于所述法兰(1)的在所述轴向(A) 上的尺寸。
  7. 一种车辆用减振器,所述车辆用减振器包括:
    权利要求1至6中任一项所述的减振结构;以及
    飞轮质量(6),所述飞轮质量(6)固定于所述减振结构的法兰(1)和侧板(21、22)中的一者以用于接收来自外部的扭矩,所述法兰(1)和所述侧板(21、22)中的另一者用于向外部传递扭矩。
  8. 根据权利要求7所述的车辆用减振器,其特征在于,所述车辆用减振器还包括扭矩限制器。
  9. 一种离合器从动盘,所述离合器从动盘包括:
    权利要求1至6中任一项所述的减振结构;
    其中所述离合器从动盘由法兰(1)和侧板(21、22)中的一者接收来自外部的扭矩,并且由所述法兰(1)和所述侧板(21、22)中的另一者用于向外部传递扭矩。
  10. 根据权利要求9所述的离合器从动盘,其特征在于,所述离合器从动盘还包括扭矩限制器。
PCT/CN2019/123038 2019-12-04 2019-12-04 具有两级阻尼的减振结构及车辆用减振器和离合器从动盘 WO2021109032A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019007934.4T DE112019007934T5 (de) 2019-12-04 2019-12-04 Schwingungsdämpfungsstruktur mit zweistufiger Dämpfung sowie Schwingungsdämpfer für ein Fahrzeug und Kupplungsscheibe
CN201980099570.1A CN114286902B (zh) 2019-12-04 2019-12-04 具有两级阻尼的减振结构及车辆用减振器和离合器从动盘
PCT/CN2019/123038 WO2021109032A1 (zh) 2019-12-04 2019-12-04 具有两级阻尼的减振结构及车辆用减振器和离合器从动盘

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123038 WO2021109032A1 (zh) 2019-12-04 2019-12-04 具有两级阻尼的减振结构及车辆用减振器和离合器从动盘

Publications (1)

Publication Number Publication Date
WO2021109032A1 true WO2021109032A1 (zh) 2021-06-10

Family

ID=76221360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123038 WO2021109032A1 (zh) 2019-12-04 2019-12-04 具有两级阻尼的减振结构及车辆用减振器和离合器从动盘

Country Status (3)

Country Link
CN (1) CN114286902B (zh)
DE (1) DE112019007934T5 (zh)
WO (1) WO2021109032A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014053132A1 (de) * 2012-10-02 2014-04-10 Schaeffler Technologies AG & Co. KG Torsionsschwingungsdämpfer
DE102013221103A1 (de) * 2012-10-23 2014-04-24 Schaeffler Technologies Gmbh & Co. Kg Kupplungsscheibe
US20150087430A1 (en) * 2013-09-24 2015-03-26 Schaeffler Technologies Gmbh & Co. Kg Series-to-parallel damper assembly including two flanges
CN104963992A (zh) * 2015-07-01 2015-10-07 上海萨克斯动力总成部件系统有限公司 集成三个减振器的汽车离合器从动盘
CN204985404U (zh) * 2015-07-01 2016-01-20 上海萨克斯动力总成部件系统有限公司 多级减振大阻尼汽车离合器从动盘
CN208311367U (zh) * 2018-06-07 2019-01-01 沧州巨擎汽车配件有限公司 多级扭转减振结构及具有该结构的扭转减振器和离合器片

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687749B1 (fr) * 1992-02-20 1995-09-15 Valeo Dispositif amortisseur de torsion, notamment double volant amortisseur et disque de friction d'embrayage, pour vehicules automobiles.
DE102012209471A1 (de) * 2012-06-05 2013-12-19 Zf Friedrichshafen Ag Torsionsschwingungsdämpferanordnung, insbesondere in einer Kupplungsscheibe
CN203585199U (zh) * 2013-12-12 2014-05-07 中国重汽集团济南动力有限公司 一种从动盘怠速减振装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014053132A1 (de) * 2012-10-02 2014-04-10 Schaeffler Technologies AG & Co. KG Torsionsschwingungsdämpfer
DE102013221103A1 (de) * 2012-10-23 2014-04-24 Schaeffler Technologies Gmbh & Co. Kg Kupplungsscheibe
US20150087430A1 (en) * 2013-09-24 2015-03-26 Schaeffler Technologies Gmbh & Co. Kg Series-to-parallel damper assembly including two flanges
CN104963992A (zh) * 2015-07-01 2015-10-07 上海萨克斯动力总成部件系统有限公司 集成三个减振器的汽车离合器从动盘
CN204985404U (zh) * 2015-07-01 2016-01-20 上海萨克斯动力总成部件系统有限公司 多级减振大阻尼汽车离合器从动盘
CN208311367U (zh) * 2018-06-07 2019-01-01 沧州巨擎汽车配件有限公司 多级扭转减振结构及具有该结构的扭转减振器和离合器片

Also Published As

Publication number Publication date
CN114286902B (zh) 2023-10-20
DE112019007934T5 (de) 2022-09-29
CN114286902A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
US4185728A (en) Clutch disc with variable deflection rate vibration damper
US4239097A (en) Multiple stage vibration damper assembly
US7467699B2 (en) Double mass flywheel
EP0147136B1 (en) Minimum complexity vibration damper
CN113227608B (zh) 车辆用减振器及车辆
US5059155A (en) Friction device of damper disc
WO2021109032A1 (zh) 具有两级阻尼的减振结构及车辆用减振器和离合器从动盘
US7438166B2 (en) Flywheel assembly
CN113557370B (zh) 离合器从动盘及离合器
WO2021248351A1 (zh) 车辆用减振器及车辆
US4679678A (en) Minimum complexity vibration damper
WO2021109014A1 (zh) 具有两级阻尼的减振结构及车辆用减振器和离合器从动盘
US20040206201A1 (en) Flywheel assembly
CN110382906B (zh) 具有摩擦垫圈的离合器盘
CN108953414B (zh) 离合器从动盘及离合器
CN112178124A (zh) 车辆用减振器及车辆
CN114060463A (zh) 具有两级阻尼的减振结构及车辆用减振器
US20070099710A1 (en) Flexible flywheel
CN218670401U (zh) 振动阻尼装置
WO2023029039A1 (zh) 车辆用扭矩限制机构及车辆用减振器
CN220551404U (zh) 扭矩限制器、传动组件和车辆
CN112833111B (zh) 离合器从动盘及离合器
JPH10238611A (ja) トルクコンバータのロックアップダンパー
JPS6213827A (ja) がたつき防止ダンパ−を有するクラツチ被駆動プレ−ト組立体
US8430222B2 (en) Friction clutch system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955367

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19955367

Country of ref document: EP

Kind code of ref document: A1