WO2021107409A1 - Method for filling via hole of circuit board and circuit board manufactured using same - Google Patents

Method for filling via hole of circuit board and circuit board manufactured using same Download PDF

Info

Publication number
WO2021107409A1
WO2021107409A1 PCT/KR2020/014487 KR2020014487W WO2021107409A1 WO 2021107409 A1 WO2021107409 A1 WO 2021107409A1 KR 2020014487 W KR2020014487 W KR 2020014487W WO 2021107409 A1 WO2021107409 A1 WO 2021107409A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
hole
circuit board
bridge
filling
Prior art date
Application number
PCT/KR2020/014487
Other languages
French (fr)
Korean (ko)
Inventor
전성욱
정보묵
김정일
김대근
Original Assignee
와이엠티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 와이엠티 주식회사 filed Critical 와이엠티 주식회사
Priority to JP2022531644A priority Critical patent/JP7438578B2/en
Priority to CN202080094807.XA priority patent/CN115053641A/en
Publication of WO2021107409A1 publication Critical patent/WO2021107409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating

Definitions

  • the present invention relates to a method for filling a through-hole of a circuit board and a circuit board manufactured thereby, and more particularly, to a method for filling a conductive material in a through-hole in order to electrically connect circuits formed on different surfaces of the substrate; Thereby, it relates to a circuit board manufactured.
  • a circuit board in which a predetermined circuit is integrated is widely used in electronic devices such as mobile terminals and display devices.
  • a circuit board is a board in which a wiring pattern is formed on an insulating board by using a printing technique, a plating technique, an etching technique, or the like.
  • Circuit boards are divided into single-sided printed circuit boards, double-sided printed circuit boards, multilayer printed circuit boards, and the like according to the formation structure of the wiring pattern.
  • a through-hole or a via hole processed by a CNC drill or a laser drill is formed in order to connect the wiring patterns of different layers.
  • Various methods have been used to form a conductive material on a resin of an inner wall of a through hole or a via hole.
  • an aspect ratio which means a ratio of a diameter to a depth of the hole.
  • an aspect ratio which means a ratio of a diameter to a depth of the hole.
  • One of the methods for filling the through-holes of the circuit board with a conductive material is to form an electroless plating layer on the inner surface of the through-hole by electroless plating, and then apply an electric current to the electroless plating layer to perform electroplating.
  • Korean Patent Registration No. 1418034 is a prior document on a technique for filling a conductive material in a through hole of a circuit board.
  • the prior literature discloses A) a step of preparing a multilayer printed circuit board in which a plurality of conductors and insulators are cross-stacked and having through holes formed therein, and B) an anionic oxide film by oxidizing the surface of the conductor exposed through the through holes in the substrate.
  • a technique for a method of manufacturing a multilayer printed circuit board comprising the steps of removing and E) electroplating the substrate to electrically connect the plurality of conductors.
  • the technique disclosed in the prior art has a disadvantage in that the process cost is high because the pretreatment step before the electroplating step is complicated, and does not include a technical feature for suppressing the generation of pores in the through-hole in the electroplating step.
  • the first problem to be solved by the present invention is to reduce the process cost in the plating process for filling the conductive material inside the through hole of the circuit board, and to achieve complete filling so that pores are not formed inside the through hole. To provide a hole filling method.
  • a second problem to be solved by the present invention is to provide a circuit board manufactured by using the method for filling the through-holes of the circuit board.
  • the present invention is a method of filling a through hole of a circuit board with a conductive material, the method comprising: forming a through hole in the substrate; and electroless plating on the inner surface of the through hole to a predetermined thickness forming an electroless plating layer by using a method, performing bridge plating on the electroless plating layer to form a bridge in a partial region of the through hole by electroplating the through hole through electroplating in the through hole on which the bridge plating is made and performing fill plating, wherein the bridge plating and the through-hole fill plating are performed using the same plating solution.
  • a reverse pulse waveform may be applied to the bridge plating.
  • the reverse pulse waveform may be applied to the upper and lower portions of the circuit board under different conditions.
  • a reverse pulse waveform may be applied to the through-hole filling plating.
  • a circuit board manufactured by the method for filling the through-holes of the circuit board.
  • the method for filling the through-holes of the circuit board of the present invention has the following effects.
  • reverse pulse waveforms of different timings are applied to the upper and lower surfaces of the substrate to generate a bridge in the inner central portion of the through hole.
  • a plating film having a predetermined thickness may be formed in the through-hole and the peripheral portion after filling the through-hole by applying a predetermined reverse pulse waveform.
  • 1 is a sequential view of a through-hole filling process of a circuit board.
  • FIG. 2 illustrates a process in which the inside of the through-hole is filled with a conductive material by the through-hole filling process shown in FIG. 1 .
  • FIG. 3 is a sequential view of the circuit board through-hole filling process of the present invention.
  • FIG. 4 illustrates a process in which the inside of the through-hole is filled with a conductive material by the through-hole filling process shown in FIG. 3 .
  • FIG 7 shows the current waveform applied in the through-hole filling plating step of the circuit board through-hole filling method of the present invention.
  • FIG. 8 is a view showing a current waveform applied in the overcoat plating step of the circuit board through-hole filling method of the present invention.
  • the present invention provides a method for filling a conductive material inside a through hole of a circuit board, comprising the steps of: forming a through hole in a substrate; forming an electroless plating layer to a predetermined thickness on an inner surface of the through hole by electroless plating; , performing bridge plating on the electroless plating layer so that a bridge is generated in a partial region inside the through hole by electroplating, and performing through-hole filling plating by electrolytic plating on the through hole on which the bridge plating is made, , The bridge plating and the through-hole filling plating are performed using the same plating solution.
  • a circuit board is an electronic device in which a predetermined circuit pattern is implemented on a board.
  • the circuit pattern of the circuit board is composed of a single layer, it is also composed of multiple layers to improve the degree of integration, and in this case, a means for electrically connecting the circuit patterns formed on different layers is required.
  • a method of connecting the circuit patterns of different layers is to form a through hole in a substrate by a method such as laser drilling, and to fill the inside of the through hole with a conductor. At this time, since the surface of the through-hole formed in the substrate is made of an insulator, a thin electroless plating layer is formed on the surface using electroless plating, and an electric current is applied to the electroless plating layer to perform electroplating.
  • FIG. 1 shows a through-hole filling process of a circuit board sequentially
  • FIG. 2 shows a process in which the inside of the through-hole is filled with a conductive material by the through-hole filling process shown in FIG. 1 . 1 and 2
  • electroless plating is performed to form the electroless plating layer 103 on the inner surface of the through hole 102 .
  • the electroless plating layer 103 is formed not only on the inside of the through hole, but also on the upper and lower surfaces of the substrate.
  • bridge plating is performed using the first plating solution.
  • the through-hole filling part 104 is formed by filling the inside of the through-hole by electroplating using the second plating solution.
  • the second plating solution has a different component and composition from the first plating solution.
  • two types of plating solution divided into a plating solution for the bridge forming step and a plating solution for filling are used, which causes inconvenience in plating solution management and process.
  • one type of plating solution is used. have.
  • the method for filling through-holes in a circuit board of the present invention is characterized in that the electrolytic plating process after electroless plating consists of bridge plating and through-hole filling plating, and a plating solution having the same component and composition is used in the bridge plating and through-hole filling plating process. do.
  • the plating solution includes copper sulfate, sulfuric acid, chlorine, a brightener, a carrier and a leveler.
  • the bridge plating solution does not include a leveler, but in the through-hole filling plating of the present invention, a leveler is included in both the bridge plating solution and the through-hole filling plating solution, and the composition ratio of the leveler is low.
  • a preferred composition of the bridge plating solution and the through-hole filling plating solution is 200 to 300 parts by weight of copper sulfate, 0.5 to 4 parts by weight of a brightener, 70 to 130 parts by weight of a carrier, and 2 to 8 parts by weight of a leveler based on 100 parts by weight of sulfuric acid. 50 to 100 ppm of chlorine relative to the total plating solution may be included in the plating solution.
  • reverse pulse waveforms with different timings are applied to the front and back surfaces of the substrate in the bridge plating process, and predetermined reverse pulse waveforms are applied in the through-hole filling plating process and the overcoat plating process.
  • FIG. 3 sequentially shows the circuit board through-hole filling process of the present invention
  • FIG. 4 shows a process in which the inside of the through-hole is filled with a conductive material by the through-hole filling process shown in FIG. 3 .
  • a through hole 202 is formed in the substrate 201 .
  • an electroless plating layer 203 is formed on the through hole 202 and the surface of the substrate 201 .
  • the electroless plating layer 203 may be made of copper.
  • a plating solution having a known component and composition may be used as the electroless plating solution.
  • the electroless plating solution contains a copper ion source, a copper ion complexing agent, a copper ion reducing agent and a pH adjusting agent, and further contains an additive for the purpose of improving the mechanical properties of the plating film(s) or the stability of the plating solution.
  • the main required technology of such electroless plating is to ensure uniformity of the entire surface of the inner wall of the through hole.
  • the uniform precipitation property is improved by using one or more additives, It is possible to ensure a constant plating thickness of the inner wall of the hole.
  • Copper sulfate may be used as the copper ion source, and EDTA may be used as a complexing agent for stabilization in an alkali plating solution.
  • the redox potential of the reducing agent is lower than the copper redox potential and the reaction occurs, it does not actually create a decomposition reaction in the plating solution and does not form an insoluble precipitate by combining with other compositions, and there is a condition that the reaction rate as a catalyst must be fast.
  • formalin or sodium borohydride may be used as such a reducing agent.
  • the pH adjusting agent is used for the purpose of supplying OH required for the oxidation reaction of formalin, and sodium hydroxide, potassium hydroxide, etc. may be used.
  • ethylenediaminetetraacetic acid hydroxyethylethylenetriacetic acid, cyclohexanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, tetrakis(2-hydroxypropyl)ethyldiamine, and the like may be used.
  • the plating operation conditions are a temperature of 20 to 60° C., a pH of 11 to 14, and it is preferable to work at a pH as high as possible in terms of plating speed.
  • the plating rate is 10 ⁇ m/Hr, and copper ions can easily precipitate under conditions where the plating rate is too fast, and thus solution stability tends to be poor.
  • bridge plating is performed to bridge the copper plating film in the through hole 202 (the electroless plating layer 203 ).
  • the bridge plating may be performed by an electrolytic plating method, and a pulse and/or a reverse pulse waveform may be applied during the electrolytic plating process.
  • the application of the reverse pulse waveform is to keep the thickness of the plating film constant, and in particular, it reduces the dog bone effect that may occur at the edges of the upper and lower regions of the through hole 202 , ) can prevent the bridge from rising first.
  • the plating solution used for the bridge plating may include sulfuric acid, copper sulfate, chlorine, a brightener, a carrier, and a leveler.
  • the composition ratio of the plating solution is 200 to 300 parts by weight of copper sulfate based on 100 parts by weight of sulfuric acid, 50 to 150 parts by weight of a carrier (specifically 70 to 130 parts by weight), 0.5 to 5 parts by weight of a brightener (specifically 0.5 to 4 parts by weight), Leveler may be 1 to 10 parts by weight (specifically 2 to 8 parts by weight), and chlorine is preferably 30 to 120 ppm (specifically 50 to 100 ppm) based on the total weight of the plating solution.
  • the chlorine refers to chlorine ions generated by adding diluted hydrochloric acid to the plating solution.
  • the brightener is (O-ethyldithiocarbonato)-S-(3-sulfopropyl)-ester, 3-[(amino-iminomethyl)-thiol]-1-propane sulfonic acid, 3-(benzothiazole- 2-Mercapto)-propyl sulfonic acid, sodium bis-(sulfopropyl)-disulfide, N,N-dimethyl dithiocarbamile propyl sulfonic acid, 3,3-thiobis(1-propane sulfonic acid), 2-hydroxy-3 -[tris(hydroxymethyl)methylamino]-1-propane sulfonic acid, sodium 2,3-dimercaptopropane sulfonic acid, 3-mercapto-1-propane sulfonic acid, 5,5'-dithiobis(2-nitrobenzoic acid) ), DL-cysteine, 4-mercapto-benzene sul
  • the carrier comprises polyoxyalkylene glycol, carboxymethylcellulose, octanediol bis glycol ether, oleic acid polyglycol ester, polyethylene glycol, polyethylene glycol dimethyl ether, polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol, polypropylene glycol, Polyvinyl alcohol, stearyl alcohol polyglycol ether, stearic acid polyglycol ester, 3-methyl-1-butyn-3-ol, 3-methyl-penten-3-ol, L-ethynylcyclohexanol, phenyl propynol , 3-phenyl-1-butyn-3-ol, propargyl alcohol, methyl butynol-ethylene oxide, 2-methyl-4-chloro-3-butain-2-ol, dimethyl hexaindiol, dimethylocta and at least one of the group consisting of indiol, phenylbutinol
  • the leveler is a saturated heterocyclic compound containing one or two of nitrogen, oxygen, sulfur, and phosphorus, aziridine, oxirane, thiirane, diaziridine, oxaziridine, dioxirane, azetidine, ox Cetane, thietane, diazetidine, dioxetane, dithiethane, pyrrolidine, thiolane, phosphorane, imidazolidine, pyrazolidine, oxazolidine, isoxazolidine, thiazolidine, isothiazolidine , dioxolane, dithiolane, piperidine, oxane, thiane, phosphinan, piperazine, morpholine, thiomorpholine, dioxane, dithiane, azepane, homopyrerazine, azocan, oxocan, thiocane, It may be an organic compound comprising at least
  • FIG. 5 and 6 show an example of the reverse pulse waveform applied in the bridge plating step of the circuit board through-hole filling method of the present invention.
  • FIG. 5 is a waveform applied to the upper portion (front) of the substrate 201
  • FIG. 6 illustrates a waveform applied to the lower portion (rear) of the substrate 201 with a predetermined timing difference from the upper portion (front).
  • the reverse pulse waveform applied during the bridge plating process maintains the positive current I 1 for a time t 1 , and then maintains the positive current I 2 for a time t 2 , followed by the positive current I 1 .
  • I 1 is preferably in the range of 1.5 to 2.5 ASD
  • I 2 is preferably in the range of 0.5 to 1.5 ASD. More preferably, I 1 is in the range of 1.7 to 2.3 ASD, and I 2 is preferably in the range of 0.7 to 1.3 ASD. Within the above range, I 1 is preferably 1.5 to 2.5 times that of I 2 , and more preferably 1.7 to 2.3 times that of I 2 .
  • t 1 , t 2 , t 3 , t 4 and t 5 are preferably 5 to 20 ms, more preferably 7 to 13 ms, respectively, and t 1 , t 2 , t 3 , t 4 and t 5 may be the same time.
  • I 3 is preferably in the range of 3 to 5 ASD, more preferably 3.5 to 4.5 ASD.
  • t 6 is preferably 0.5 to 1.5 ms, more preferably 0.7 to 1.3 ms.
  • the reverse pulse waveform may be continuously applied for 1 to 3 hours.
  • the voltage can be selected in the range of 5 to 6 V.
  • Bridge plating process the circuit on the upper (front) and lower (back) of the substrate there with each other to apply a reverse pulse waveform of the different timings, of the substrate at the time of t 1 is the start of the waveform corresponding to the upper (front) of the substrate
  • the same waveform may be applied to the rear side with a difference in timing at which t 4 starts.
  • the reason for applying current waveforms at different timings to the upper (front) and lower (rear) of the substrate in the bridge plating process is to further improve the bridging and filling effect of the through hole.
  • the reason is that if current is supplied to the upper and lower parts in the same waveform, plating and dissolution of the plating layer occur simultaneously, and voids may occur inside.
  • the main cause of the formation of voids inside the through-hole is that metal ions are rapidly consumed in the limited space inside the through-hole, and an overvoltage is formed during plating, which increases the generation of hydrogen, and the increased generation of hydrogen interferes with the normal plating layer growth process in the plating film. As a result, voids are formed inside. Therefore, if a certain copper metal ion can be sufficiently supplied into the thick through-hole, hydrogen generation due to overvoltage can be suppressed, and a normal plating layer growth process can be helped.
  • a preferred composition of the bridge plating solution includes 200 to 300 parts by weight of copper sulfate, 0.5 to 5 parts by weight of a brightener, 50 to 150 parts by weight of a carrier, and 1 to 10 parts by weight of a leveler based on 100 parts by weight of sulfuric acid, and 30 to 120 ppm of chlorine compared to the total plating solution It may contain ions.
  • the reason why the leveler is included in the plating solution used in the bridge plating process of the through-hole filling method of the present invention as described above is that the bridge delay effect caused by the leveler can be suppressed due to the application of the waveform having the special configuration.
  • the leveler suppresses the growth of the entrance of the through-hole, and can preferentially help the growth in the interior where the current distribution is not sufficiently supplied. That is, a certain amount of the leveler serves to help the plating growth on the inner wall of the through-hole where the current distribution is not sufficient, so that void-free filling plating can be performed.
  • the through-hole filling part 204 is formed by performing through-hole filling plating.
  • the through-hole filling plating since a plating solution having the same components and composition as the plating solution used in the bridge plating process is used, the bridge plating and the through-hole filling plating can be performed in a continuous process without replacing the plating bath.
  • the same pulse and/or reverse pulse waveform may be applied to upper and lower portions (front and back surfaces) of the substrate at the same timing. 7 shows an example of the reverse pulse waveform applied to the through-hole filling plating. Referring to FIG.
  • the reverse pulse waveform applied to the through-hole filling plating is a waveform in which the positive current I 4 is maintained for a time t 7 , and then the negative current I 5 is maintained for a time t 8 .
  • I 4 is preferably in the range of 1.5 to 2.5 ASD, more preferably 1.7 to 2.3 ASD.
  • t 7 is preferably in the range of 30 to 60 ms, more preferably 40 to 50 ms.
  • I 5 is preferably in the range of 3 to 4 ASD, more preferably 3.2 to 3.8.
  • t 8 is preferably in the range of 1 to 3 ms, more preferably 1.7 to 2.3 ms.
  • the overcoat plating is performed to form the overcoat in the upper and lower regions of the through hole.
  • the same pulse and/or reverse pulse waveform may be applied to upper and lower portions (front and back surfaces) of the substrate.
  • 8 shows an example of the reverse pulse waveform applied to the overcoat plating.
  • the waveform applied to the overcoat plating is a waveform in which a positive current I 6 is maintained for a time t 9 , and then a negative current I 7 is maintained for a time t 10 .
  • I 6 is preferably in the range of 1.6 to 2.8 ASD
  • t 9 is preferably in the range of 70 to 130 ms.
  • I 7 is preferably in the range of 1.5 to 2.5 ASD
  • t 10 is preferably in the range of 1 to 3 ms.
  • a through hole with a diameter of 170 microns was processed with a laser in an epoxy resin substrate of 200 microns in thickness.
  • Plating was performed as a method for filling the through-holes, and the plating steps were as follows. First, electroless plating was performed, and then electrolytic plating was performed. At this time, the electrolytic plating step is divided into a bridge plating step, a through-hole filling plating step for filling copper inside the through-holes of the upper and lower sides of the bridge, and a covering film plating step to secure the plating thickness after finally filling the through-holes. was carried out. The same electrolytic plating solution was used for the bridge plating, the through-hole filling plating, and the overcoat plating.
  • an electroless copper plating film was formed on the surface of the substrate and inside the through hole by using the electroless plating method.
  • the electroless plating solution 30 parts by weight of copper sulfate, 85 parts by weight of ethylenediaminetetraacetic acid (EDTA) as a complexing agent, and 22 parts by weight of formalin as a reducing agent, together with OH required for the oxidation reaction of the ethylenediaminetetraacetic acid and formalin.
  • a plating solution containing a trace amount of caustic soda was used.
  • the acidity of the plating operation condition was pH 12, and the bath temperature was 65 °C.
  • copper electroplating which is a bridge plating process, was performed after the degreasing process and the pickling process.
  • the electrolytic plating solution 100 parts by weight of sulfuric acid, 200 parts by weight of copper sulfate, 0.5 parts by weight of a brightener, 70 parts by weight of a carrier, 2 parts by weight of a leveler, and a plating solution containing 50 ppm of chlorine ions compared to the total plating solution were used.
  • the temperature of the plating solution was 27°C, and the plating time was 4.5 hours.
  • (O-ethyldithiocarbonato)-S-(3-sulfopropyl)-ester was used as a brightener
  • polyoxyalkylene glycol was used as a carrier
  • aziridine was used as a leveler.
  • the current waveform of the bridge plating is in FIG. 5, I 1 is 2 ASD, I 2 is 1 ASD, I 3 is 4 ASD, t 1 , t 2 , t 3 , t 4 , t 5 was 10 ms, t 6 was 1 ms.
  • the voltage was selected in the range of 5-6 V. At this time, current waveforms were applied at different timings to the upper (front) and lower (rear) surfaces of the substrate, and there was a difference in timing as shown in FIG. 6 .
  • the through-hole filling plating conditions were a forward current density of 2 ASD (I 4 in FIG. 7 ), a reverse current density of 3.5 ASD (I 5 in FIG. 7 ), and the forward current application time was 50 ms (t 7 in FIG. 7 ), and the The time for applying the verse current was 2 ms (t 8 in FIG. 7 ).
  • the voltage was selected in the range of 5 to 6 V, and the plating time was set to 1 hour. At this time, the same waveform was applied to the upper (front) and lower (rear) surfaces of the substrate at the same timing.
  • the overcoat plating was performed with an electrolytic plating solution.
  • the overcoat plating conditions were a forward current density of 2.2 ASD (I 6 in FIG. 8 ), a time of 100 ms ( t 9 in FIG. 8 ), a reverse current density of 2 ASD (I 7 in FIG. 8 ), and a time of 2 ms ( t 10 in FIG. 8 ).
  • the voltage was selected in the range of 5 to 6 V, and the plating time was set to 1 hour. At this time, the same waveform was applied to the upper (front) and lower (rear) surfaces of the substrate at the same timing.
  • through-hole filling plating was performed in the same manner as in Example 1, except that t 8 was set to 1.8 ms.
  • through-hole filling plating was performed in the same manner as in Example 1, except that t 8 was set to 2.2 ms.
  • through-hole filling plating was performed in the same manner as in Example 1, except that t 8 was set to 0.8 ms.
  • through-hole filling plating was performed in the same manner as in Example 1, except that t 8 was set to 3.5 ms.
  • the through-hole filling plating was performed in the same manner as in Example 1, except that an electrolytic plating solution without a leveler was used.
  • the control of the waveform during the plating process is very important, and from this, the adsorption and desorption of metal ions are induced according to the current waveform, and the leveler in the plating solution is adsorbed to the outside of the through hole to control the plating. It can be seen that it plays a role that can preferentially do internal plating. In addition, it can be seen that the existence and type of the leveler also plays an important role in filling the through hole.
  • FIG. 9 (a) is a cross-sectional photograph of a through-hole on which the through-hole filling plating was performed according to Example 1, and it can be seen that plating was performed well without voids formed inside the through-hole.
  • FIG. 9(b) is a cross-sectional photograph of a through-hole on which the through-hole filling plating was performed according to Comparative Example 7, and it can be seen that the through-hole filling was incompletely performed.
  • Example 1 none - - Example 2 none - - Example 3 none - - Example 4 has exist less than 10 microns center
  • Example 5 has exist less than 10 microns center
  • Example 6 none - - Example 7 none - - Example 8 has exist less than 10 microns center
  • Example 9 has exist less than 10 microns center
  • Example 10 none - - Example 11 none - - Comparative Example 1 has exist 20 microns or more from the surface to the center Comparative Example 2 has exist 20 microns or more from the surface to the center Comparative Example 3 has exist 20 microns or more from the surface to the center Comparative Example 4 has exist 20 microns or more from the surface to the center Comparative Example 5 has exist over 20 microns in length from the surface to the center Comparative Example 6 has exist over 20 microns in length from the surface to the center Comparative Example 7 unfilled unfilled unfilled unfilled unfilled

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention provides a method for filling a via hole of a circuit board with a conductive material, comprising the steps of: forming a via hole in a board; forming an electroless plating layer with a predetermined thickness on the inner surface of the via hole by means of electroless plating; performing bridge plating such that a bridge is formed in a partial area inside the via hole by means of electroplating that applies a pulse waveform to the electroless plating layer; and performing via hole fill plating in the via hole on which the bridge plating has been formed by electroplating, wherein the bridge plating and the via hole fill plating are performed using the same plating solution as each other.

Description

회로기판의 관통홀 충진 방법 및 이를 이용하여 제조된 회로기판Method for filling through-holes in circuit boards and circuit boards manufactured using the same
본 발명은 회로기판의 관통홀 충진 방법 및 이에 의하여 제조된 회로기판에 관한 것으로서, 보다 상세하게는 기판의 서로 다른 면에 형성된 회로들을 전기적으로 연결시키기 위하여 관통홀 내부에 전도성 물질을 충진하는 방법 및 이에 의하여 제조된 회로기판에 관한 것이다.The present invention relates to a method for filling a through-hole of a circuit board and a circuit board manufactured thereby, and more particularly, to a method for filling a conductive material in a through-hole in order to electrically connect circuits formed on different surfaces of the substrate; Thereby, it relates to a circuit board manufactured.
모바일 단말기, 디스플레이 소자와 같은 전자기기에는 소정의 회로를 집적시킨 형태의 회로기판이 널리 이용된다. 회로기판은 인쇄 기술, 도금 기술, 에칭 기술 등을 이용하여 절연성 기판에 배선패턴을 형성한 기판이다. 회로기판은 배선패턴의 형성 구조에 따라 단면 인쇄회로기판, 양면 인쇄회로기판, 다층 인쇄회로기판 등으로 나누어진다. 양면 인쇄회로기판과 다층 인쇄회로기판 등에서는 서로 다른 층의 배선패턴을 연결하기 위하여 CNC 드릴 또는 레이저 드릴에 의해 가공된 쓰루 홀(though-hole) 또는 비아 홀(via hole)이 형성되어 있는데, 이러한 쓰루 홀 또는 비아 홀 내벽의 레진 상에 도전성 물질을 형성하기 위하여 다양한 방법이 이용되고 있다. A circuit board in which a predetermined circuit is integrated is widely used in electronic devices such as mobile terminals and display devices. A circuit board is a board in which a wiring pattern is formed on an insulating board by using a printing technique, a plating technique, an etching technique, or the like. Circuit boards are divided into single-sided printed circuit boards, double-sided printed circuit boards, multilayer printed circuit boards, and the like according to the formation structure of the wiring pattern. In a double-sided printed circuit board and a multi-layer printed circuit board, a through-hole or a via hole processed by a CNC drill or a laser drill is formed in order to connect the wiring patterns of different layers. Various methods have been used to form a conductive material on a resin of an inner wall of a through hole or a via hole.
최근에는 전자기기가 소형화되고 있어 회로기판에 적용되는 쓰루 홀 또는 비아 홀의 직경도 함께 작아지고 있으며, 이에 따라 홀의 직경과 깊이의 비를 의미하는 종횡비(aspect ratio)도 함께 커지고 있다. 높은 종횡비를 가지는 관통홀 내부에 전도성 물질을 충진하는 과정에서는 내부에 기공이 형성되지 않는 것이 중요하다. 관통홀 내부에 기공이 형성되면 전기적 연결이 이루어지지 않는 불량이 발생하거나 부분적으로 전기적 저항이 커져 회로가 정상적으로 작동하지 않거나 열이 많이 발생하는 원인이 된다. Recently, due to the miniaturization of electronic devices, the diameter of a through hole or a via hole applied to a circuit board is also decreasing, and accordingly, an aspect ratio, which means a ratio of a diameter to a depth of the hole, is also increasing. In the process of filling the conductive material inside the through hole having a high aspect ratio, it is important that pores are not formed therein. When pores are formed inside the through-hole, a defect in which electrical connection is not made occurs or electrical resistance is partially increased, which causes the circuit not to operate normally or to generate a lot of heat.
회로기판의 관통홀에 도전성 물질을 충진하는 방법 중 하나는 무전해 도금으로 관통홀 내부 표면에 무전해 도금층을 형성하고, 상기 무전해 도금층에 전류를 인가하여 전해도금을 수행하는 것이다. 회로기판의 관통홀에 전도성 물질을 충진하는 기술에 관한 선행문헌으로는 한국등록특허 제1418034호가 있다. 상기 선행문헌은 A) 다수의 도체와 부도체가 교차 적층되며, 관통홀이 형성된 다층 인쇄 회로 기판을 준비하는 단계와, B) 상기 기판에서 상기 관통홀을 통해 노출된 도체 표면을 산화시켜 음이온성 산화막층을 형성하는 단계와, C) 상기 관통홀을 포함한 기판 전체를 전도성 음이온 탄소로 코팅하는 단계와, D) 마이크로 에칭 용액을 이용하여 상기 관통홀을 포함한 기판 전체의 도체 표면에 코팅된 전도성 음이온 탄소를 제거하는 단계와, E) 상기 기판을 전기 도금하여 상기 다수의 도체를 전기적으로 연결하는 단계를 포함하여 이루어지는 것을 특징으로 하는 다층 인쇄 회로 기판의 제조방법에 관한 기술을 개시하고 있다. 그러나 상기 선행문헌에 개시된 기술은 전기 도금 단계 이전의 전처리 단계가 복잡하여 공정비용이 높다는 단점을 가지고, 전기 도금 단계에서 관통홀의 기공 생성을 억제하기 위한 기술적 특징을 포함하고 있지 않다.One of the methods for filling the through-holes of the circuit board with a conductive material is to form an electroless plating layer on the inner surface of the through-hole by electroless plating, and then apply an electric current to the electroless plating layer to perform electroplating. Korean Patent Registration No. 1418034 is a prior document on a technique for filling a conductive material in a through hole of a circuit board. The prior literature discloses A) a step of preparing a multilayer printed circuit board in which a plurality of conductors and insulators are cross-stacked and having through holes formed therein, and B) an anionic oxide film by oxidizing the surface of the conductor exposed through the through holes in the substrate. Forming a layer, C) coating the entire substrate including the through hole with conductive anionic carbon, and D) using a micro-etching solution to coat the conductive anion carbon on the entire conductor surface of the substrate including the through hole Disclosed is a technique for a method of manufacturing a multilayer printed circuit board, comprising the steps of removing and E) electroplating the substrate to electrically connect the plurality of conductors. However, the technique disclosed in the prior art has a disadvantage in that the process cost is high because the pretreatment step before the electroplating step is complicated, and does not include a technical feature for suppressing the generation of pores in the through-hole in the electroplating step.
따라서, 관통홀 내부 충진 전단계의 구성을 간단히 하여 공정비용을 절감시키면서도 전기도금 과정에서의 공정 조건 제어로 관통홀 내부의 기공 생성을 억제할 수 있는 새로운 기술 개발의 필요성이 크다.Therefore, there is a great need to develop a new technology capable of suppressing the generation of pores inside the through-hole by controlling the process conditions in the electroplating process while simplifying the configuration of the pre-filling step of the through-hole and reducing the process cost.
본 발명이 해결하고자 하는 첫 번째 과제는 회로기판의 관통홀 내부에 전도성 물질을 충진하는 도금과정에서 공정 비용을 절감시키고, 관통홀 내부에 기공이 형성되지 않도록 완전한 충진을 구현할 수 있는 회로기판의 관통홀 충진 방법을 제공하는 것이다.The first problem to be solved by the present invention is to reduce the process cost in the plating process for filling the conductive material inside the through hole of the circuit board, and to achieve complete filling so that pores are not formed inside the through hole. To provide a hole filling method.
본 발명이 해결하고자 하는 두 번째 과제는 상기 회로기판의 관통홀 충진 방법을 이용하여 제조된 회로기판을 제공하는 것이다.A second problem to be solved by the present invention is to provide a circuit board manufactured by using the method for filling the through-holes of the circuit board.
본 발명은 상기 첫 번째 과제를 달성하기 위하여, 회로기판의 관통홀 내부에 전도성 물질을 충진하는 방법으로서, 기판에 관통홀을 형성하는 단계와, 무전해 도금으로 상기 관통홀 내부 표면에 소정의 두께로 무전해 도금층을 형성하는 단계와, 상기 무전해 도금층에 전해 도금으로 상기 관통홀 내부 일부 영역에서 브릿지가 생성되도록 브릿지 도금을 수행하는 단계와, 상기 브릿지 도금이 이루어진 관통홀에 전해 도금으로 관통홀 충진 도금을 수행하는 단계를 포함하고, 상기 브릿지 도금과 상기 관통홀 충진 도금은 동일한 도금액을 이용하여 수행되는 것을 특징으로 하는 회로기판의 관통홀 충진 방법을 제공한다.In order to achieve the first object, the present invention is a method of filling a through hole of a circuit board with a conductive material, the method comprising: forming a through hole in the substrate; and electroless plating on the inner surface of the through hole to a predetermined thickness forming an electroless plating layer by using a method, performing bridge plating on the electroless plating layer to form a bridge in a partial region of the through hole by electroplating the through hole through electroplating in the through hole on which the bridge plating is made and performing fill plating, wherein the bridge plating and the through-hole fill plating are performed using the same plating solution.
본 발명의 일 구현예에 따르면, 상기 브릿지 도금에 역펄스 파형이 인가될 수 있다.According to one embodiment of the present invention, a reverse pulse waveform may be applied to the bridge plating.
본 발명의 다른 구현예에 따르면, 상기 역펄스 파형은 회로기판의 상부와 하부에서 서로 다른 조건으로 인가될 수 있다.According to another embodiment of the present invention, the reverse pulse waveform may be applied to the upper and lower portions of the circuit board under different conditions.
본 발명의 또 다른 구현예에 따르면, 상기 관통홀 충진 도금에 역펄스 파형이 인가될 수 있다.According to another embodiment of the present invention, a reverse pulse waveform may be applied to the through-hole filling plating.
본 발명은 상기 두 번째 과제를 달성하기 위하여, 상기 회로기판의 관통홀 충진 방법에 의하여 제조된 회로기판을 제공한다.In order to achieve the second object of the present invention, there is provided a circuit board manufactured by the method for filling the through-holes of the circuit board.
본 발명의 회로기판의 관통홀 충진 방법은 아래의 효과를 가진다.The method for filling the through-holes of the circuit board of the present invention has the following effects.
한 가지 종류의 도금액을 이용하여 브릿지 도금과 관통홀 충진 도금을 수행하므로, 공정을 단순화시킬 수 있고 도금액 교체에 의한 공정 비용의 상승을 억제할 수 있다. Since bridge plating and through-hole filling plating are performed using one type of plating solution, the process can be simplified and an increase in process cost due to replacement of the plating solution can be suppressed.
브릿지 도금 과정에서 기판의 상부면과 하부면에 서로 다른 타이밍의 역펄스 파형을 인가하여 관통홀의 내부 중앙부에서 브릿지가 발생할 수 있도록 한다.In the bridge plating process, reverse pulse waveforms of different timings are applied to the upper and lower surfaces of the substrate to generate a bridge in the inner central portion of the through hole.
관통홀 충진 도금 과정에서 소정의 역펄스 파형을 인가하여 관통홀 충진 과정에서 관통홀 내부에 기공이 형성되는 것을 억제할 수 있다.By applying a predetermined reverse pulse waveform during the through-hole filling plating process, it is possible to suppress the formation of pores inside the through-hole during the through-hole filling process.
덮힘막 도금에서 소정의 역펄스 파형을 인가하여 관통홀 충진 후에 관통홀 및 주변부에 소정의 두께를 가지는 도금막을 형성할 수 있다.In the overcoat plating, a plating film having a predetermined thickness may be formed in the through-hole and the peripheral portion after filling the through-hole by applying a predetermined reverse pulse waveform.
도 1은 회로기판의 관통홀 충진 공정을 순차적으로 나타낸 것이다.1 is a sequential view of a through-hole filling process of a circuit board.
도 2는 도 1에 도시된 관통홀 충진 공정에 의하여 관통홀 내부가 전도성 물질로 충진되는 과정을 나타낸 것이다.FIG. 2 illustrates a process in which the inside of the through-hole is filled with a conductive material by the through-hole filling process shown in FIG. 1 .
도 3은 본 발명의 회로기판 관통홀 충진 공정을 순차적으로 나타낸 것이다.3 is a sequential view of the circuit board through-hole filling process of the present invention.
도 4는 도 3에 도시된 관통홀 충진 공정에 의하여 관통홀 내부가 전도성 물질로 충진되는 과정을 나타낸 것이다.FIG. 4 illustrates a process in which the inside of the through-hole is filled with a conductive material by the through-hole filling process shown in FIG. 3 .
도 5와 도 6은 본 발명의 회로기판 관통홀 충진 방법의 브릿지 도금 단계에서 적용되는 전류 파형을 나타낸 것이다.5 and 6 show current waveforms applied in the bridge plating step of the circuit board through-hole filling method of the present invention.
도 7은 본 발명의 회로기판 관통홀 충진 방법의 관통홀 충진 도금 단계에서 적용되는 전류 파형을 나타낸 것이다.7 shows the current waveform applied in the through-hole filling plating step of the circuit board through-hole filling method of the present invention.
도 8은 본 발명의 회로기판 관통홀 충진 방법의 덮힘막 도금 단계에서 적용되는 전류 파형을 나타낸 것이다.8 is a view showing a current waveform applied in the overcoat plating step of the circuit board through-hole filling method of the present invention.
도 9는 도금으로 회로기판 관통홀을 충진한 후의 단면 사진이다.9 is a cross-sectional photograph after filling the circuit board through-holes by plating.
본 발명은 회로기판의 관통홀 내부에 전도성 물질을 충진하는 방법으로서, 기판에 관통홀을 형성하는 단계와, 무전해 도금으로 상기 관통홀 내부 표면에 소정의 두께로 무전해 도금층을 형성하는 단계와, 상기 무전해 도금층에 전해 도금으로 상기 관통홀 내부 일부 영역에서 브릿지가 생성되도록 브릿지 도금을 수행하는 단계와, 상기 브릿지 도금이 이루어진 관통홀에 전해 도금으로 관통홀 충진 도금을 수행하는 단계를 포함하고, 상기 브릿지 도금과 상기 관통홀 충진 도금은 동일한 도금액을 이용하여 수행되는 것을 특징으로 한다.The present invention provides a method for filling a conductive material inside a through hole of a circuit board, comprising the steps of: forming a through hole in a substrate; forming an electroless plating layer to a predetermined thickness on an inner surface of the through hole by electroless plating; , performing bridge plating on the electroless plating layer so that a bridge is generated in a partial region inside the through hole by electroplating, and performing through-hole filling plating by electrolytic plating on the through hole on which the bridge plating is made, , The bridge plating and the through-hole filling plating are performed using the same plating solution.
회로기판은 기판 상에 소정의 회로패턴을 구현한 전자소자이다. 회로기판의 회로패턴은 단층으로 구성되기도 하지만, 집적도 향상을 위하여 다층으로 구성되기도 하고, 이 경우에는 서로 다른 층에 형성된 회로패턴을 전기적으로 연결시키는 수단이 필요하다. 서로 다른 층의 회로패턴을 연결하는 방법은 레이저 드릴링 등의 방법으로 기판에 관통홀을 형성하고, 관통홀 내부에 도전체를 충진하는 것이다. 이때 기판에 형성된 관통홀 표면은 부도체로 이루어져 있으므로 무전해 도금을 이용하여 표면에 얇은 무전해 도금층을 형성하고, 무전해 도금층에 전류를 인가하여 전기도금을 수행한다. 도금법을 이용하여 관통홀 내부에 전도성 물질을 충진하는 과정에서 관통홀의 상부나 하부의 도금막 성장속도가 빠르면 관통홀 중간 영역에 전도성 물질을 충진하는 것이 어려워지므로, 관통홀 충진의 도금법에는 특별한 테크닉이 필요하다.A circuit board is an electronic device in which a predetermined circuit pattern is implemented on a board. Although the circuit pattern of the circuit board is composed of a single layer, it is also composed of multiple layers to improve the degree of integration, and in this case, a means for electrically connecting the circuit patterns formed on different layers is required. A method of connecting the circuit patterns of different layers is to form a through hole in a substrate by a method such as laser drilling, and to fill the inside of the through hole with a conductor. At this time, since the surface of the through-hole formed in the substrate is made of an insulator, a thin electroless plating layer is formed on the surface using electroless plating, and an electric current is applied to the electroless plating layer to perform electroplating. In the process of filling the conductive material inside the through-hole using the plating method, if the growth rate of the plating film on the upper or lower part of the through-hole is fast, it becomes difficult to fill the conductive material in the middle area of the through-hole. Therefore, a special technique is required for the plating method for through-hole filling. need.
도 1은 회로기판의 관통홀 충진 공정을 순차적으로 나타낸 것이고, 도 2는 도 1에 도시된 관통홀 충진 공정에 의하여 관통홀 내부가 전도성 물질로 충진되는 과정을 나타낸 것이다. 도 1 및 도 2를 참조하면, 먼저 기판(101)에 드릴링을 하여 소정의 직경을 가지는 관통홀(102)을 형성한다. 이어서, 무전해 도금을 수행하여 관통홀(102) 내부의 표면에 무전해 도금층(103)을 형성한다. 이때 무전해 도금층(103)은 관통홀 내부뿐만 아니라 기판의 상부면과 하부면에도 함께 형성된다. 이어서, 제1도금액을 이용하여 브릿지 도금을 수행한다. 브릿지 도금 과정에서는 무전해 도금층(103)에 전류가 인가되고, 관통홀(102) 내부의 중간 깊이 영역에서 도금막이 성장하여 브릿지 도금부(104a)가 형성된다. 이어서, 제2도금액을 이용하여 전기도금으로 관통홀 내부를 충진하여 관통홀 충진부(104)를 형성한다. 이때 제2도금액은 제1도금액과 성분 및 조성이 상이한 것이 일반적이다. 이와 같이 기존 관통홀 충진 방식은 브릿지 형성 단계를 위한 도금액과 충진을 위한 도금액으로 구분되는 두 종류의 도금액이 이용되어 도금액 관리 및 공정 상에 불편함이 있다. 그러나 본 발명은 두 종류의 도금액(2액형 용액)을 이용하는 경우와 달리, 한 종류의 도금액(1액형 용액)을 이용하는 경우로, 도금액을 구분하여 관리하거나 공정이 나누어질 필요가 없으며 단순화된 장점이 있다.FIG. 1 shows a through-hole filling process of a circuit board sequentially, and FIG. 2 shows a process in which the inside of the through-hole is filled with a conductive material by the through-hole filling process shown in FIG. 1 . 1 and 2 , first, a through hole 102 having a predetermined diameter is formed by drilling a substrate 101 . Then, electroless plating is performed to form the electroless plating layer 103 on the inner surface of the through hole 102 . At this time, the electroless plating layer 103 is formed not only on the inside of the through hole, but also on the upper and lower surfaces of the substrate. Next, bridge plating is performed using the first plating solution. In the bridge plating process, a current is applied to the electroless plating layer 103 , and a plating film is grown in an intermediate depth region inside the through hole 102 to form the bridge plating portion 104a. Next, the through-hole filling part 104 is formed by filling the inside of the through-hole by electroplating using the second plating solution. In this case, it is common that the second plating solution has a different component and composition from the first plating solution. As described above, in the existing through-hole filling method, two types of plating solution divided into a plating solution for the bridge forming step and a plating solution for filling are used, which causes inconvenience in plating solution management and process. However, in the present invention, unlike the case of using two types of plating solution (two-component solution), one type of plating solution (one-component solution) is used. have.
본 발명의 회로기판 관통홀 충진 방법은 무전해 도금 후의 전해 도금 과정이 브릿지 도금과 관통홀 충진 도금으로 이루어지고, 브릿지 도금과 관통홀 충진 도금 과정에서 동일한 성분과 조성을 가지는 도금액을 사용하는 것을 특징으로 한다. 상기 도금액은 황산구리, 황산, 염소, 광택제, 캐리어 및 레벨러를 포함한다. 관통홀을 충진하는 종래의 도금 기술에서는 브릿지 도금액이 레벨러를 포함하지 않지만, 본 발명의 관통홀 충진 도금에서는 브릿지 도금액과 관통홀 충진 도금액 모두에 레벨러가 포함되고, 레벨러의 조성비가 낮은 것이 특징이다. 이와 같이 브릿지 도금액과 관통홀 충진 도금액 모두에 레벨러가 포함되므로 2개의 단계적인 도금을 하나의 도금조에서 수행할 수 있으므로 공정 비용을 절감할 수 있다. 브릿지 도금액과 관통홀 충진 도금액의 바람직한 조성은 황산 100중량부를 기준으로 황산구리 200 내지 300중량부, 광택제 0.5 내지 4중량부, 캐리어 70 내지 130중량부 및 레벨러 2 내지 8중량부를 포함하는 조성일 수 있고, 전체 도금액 대비 50 내지 100ppm의 염소가 도금액에 포함될 수 있다. 또한 본 발명의 관통홀 충진 방법에서는 브릿지 도금 과정에 기판의 앞뒷면에 서로 다른 타이밍의 역펄스 파형을 적용하고, 관통홀 충진 도금 과정 및 덮힘막 도금 과정에서는 소정의 역펄스 파형을 적용한다.The method for filling through-holes in a circuit board of the present invention is characterized in that the electrolytic plating process after electroless plating consists of bridge plating and through-hole filling plating, and a plating solution having the same component and composition is used in the bridge plating and through-hole filling plating process. do. The plating solution includes copper sulfate, sulfuric acid, chlorine, a brightener, a carrier and a leveler. In the conventional plating technique for filling through-holes, the bridge plating solution does not include a leveler, but in the through-hole filling plating of the present invention, a leveler is included in both the bridge plating solution and the through-hole filling plating solution, and the composition ratio of the leveler is low. As described above, since the leveler is included in both the bridge plating solution and the through-hole filling plating solution, two-step plating can be performed in one plating bath, thereby reducing process costs. A preferred composition of the bridge plating solution and the through-hole filling plating solution is 200 to 300 parts by weight of copper sulfate, 0.5 to 4 parts by weight of a brightener, 70 to 130 parts by weight of a carrier, and 2 to 8 parts by weight of a leveler based on 100 parts by weight of sulfuric acid. 50 to 100 ppm of chlorine relative to the total plating solution may be included in the plating solution. In addition, in the through-hole filling method of the present invention, reverse pulse waveforms with different timings are applied to the front and back surfaces of the substrate in the bridge plating process, and predetermined reverse pulse waveforms are applied in the through-hole filling plating process and the overcoat plating process.
도 3은 본 발명의 회로기판 관통홀 충진 공정을 순차적으로 나타낸 것이고, 도 4는 도 3에 도시된 관통홀 충진 공정에 의하여 관통홀 내부가 전도성 물질로 충진되는 과정을 나타낸 것이다. FIG. 3 sequentially shows the circuit board through-hole filling process of the present invention, and FIG. 4 shows a process in which the inside of the through-hole is filled with a conductive material by the through-hole filling process shown in FIG. 3 .
도 3과 도 4를 참조하면, 먼저 기판(201)에 관통홀(202)을 형성한다.3 and 4 , first, a through hole 202 is formed in the substrate 201 .
다음, 관통홀(202)과 기판(201) 표면에 무전해 도금층(203)을 형성한다. 무전해 도금층(203)은 구리로 이루어질 수 있다. 무전해 도금액은 공지된 성분과 조성의 도금액을 사용할 수 있다. 무전해 도금액은 구리 이온 공급원, 구리 이온 착화제, 구리 이온 환원제 및 pH 조절제를 함유하고, 도금막(들)의 기계적 특성 또는 도금액의 안정성을 향상시킬 목적으로 첨가제를 추가로 함유한다. 이러한 무전해 도금의 주요 요구 기술은 관통홀 내벽 전면에 균일 전착성이 확보될 수 있도록 하는 것이다. 사용된 도금액의 대류가 충분히 행해지지 않는 관통홀 내부와 같은 부분에서는 도금 반응의 주성분인 구리 이온(착체), 환원제 및 수산화물의 농도가 감소하며, 균일 석출성이 크게 저하된다. 이러한 문제를 해결하기 위해, 본 발명에서는 무전해 도금액의 구리 이온 공급원(구리 염), 구리 이온 착화제, 구리 이온 환원제 및 pH 조절제 이외에, 1 종 이상의 첨가제를 사용함으로써 균일 석출성을 개선하며, 관통홀 내벽의 도금 두께를 일정하게 확보할 수 있다. 상기 구리 이온 공급원으로는 황산 구리가 사용될 수 있으며, 착화제로는 알카리 도금액에서 안정화하기 위해 EDTA가 사용될 수 있다. 상기 환원제는 산화 환원 전위가 구리 산화 환원 전위보다 낮게 되어 반응이 일어나지만 실제로 도금액 중에서 분해 반응을 만들지 않고 다른 조성과 결합하여 불용성 침전을 만들지 않으며, 촉매로서의 반응 속도가 빨라야 하는 조건이 있다. 이러한 환원제로는 포르말린 또는 붕수소화소다가 사용될 수 있다. 상기 pH 조절제는 포르말린의 산화 반응에 필요한 OH를 공급하기 위한 목적으로 사용되며, 수산화나트륨, 수산화칼륨 등이 사용될 수 있다. 상기 첨가제로는 에틸렌디아민테트라아세트산, 히드록시에틸에틸렌트리아세트산, 시클로헥산디아민테트라아세트산, 디에틸렌트리아민펜타아세트산, 테트라키스(2-히드록시프로필)에틸디아민 등이 사용될 수 있다. 도금 작업 조건은 온도 20~60℃이며, pH 11~14이고, 도금 속도 측면에서는 가능한 높은 pH 조건에서 작업하는 것이 바람직하다. 도금 속도는 10㎛/Hr이며, 도금 속도가 너무 빠른 조건은 구리 이온이 쉽게 석출될 수 있어 용액 안정성이 떨어지는 경향이 있다. Next, an electroless plating layer 203 is formed on the through hole 202 and the surface of the substrate 201 . The electroless plating layer 203 may be made of copper. As the electroless plating solution, a plating solution having a known component and composition may be used. The electroless plating solution contains a copper ion source, a copper ion complexing agent, a copper ion reducing agent and a pH adjusting agent, and further contains an additive for the purpose of improving the mechanical properties of the plating film(s) or the stability of the plating solution. The main required technology of such electroless plating is to ensure uniformity of the entire surface of the inner wall of the through hole. In a portion such as inside a through hole where convection of the used plating solution is not sufficiently performed, the concentrations of copper ions (complex), reducing agents and hydroxides, which are the main components of the plating reaction, decrease, and the uniform precipitation property is greatly reduced. In order to solve this problem, in the present invention, in addition to the copper ion source (copper salt), copper ion complexing agent, copper ion reducing agent, and pH adjusting agent of the electroless plating solution, the uniform precipitation property is improved by using one or more additives, It is possible to ensure a constant plating thickness of the inner wall of the hole. Copper sulfate may be used as the copper ion source, and EDTA may be used as a complexing agent for stabilization in an alkali plating solution. Although the redox potential of the reducing agent is lower than the copper redox potential and the reaction occurs, it does not actually create a decomposition reaction in the plating solution and does not form an insoluble precipitate by combining with other compositions, and there is a condition that the reaction rate as a catalyst must be fast. As such a reducing agent, formalin or sodium borohydride may be used. The pH adjusting agent is used for the purpose of supplying OH required for the oxidation reaction of formalin, and sodium hydroxide, potassium hydroxide, etc. may be used. As the additive, ethylenediaminetetraacetic acid, hydroxyethylethylenetriacetic acid, cyclohexanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, tetrakis(2-hydroxypropyl)ethyldiamine, and the like may be used. The plating operation conditions are a temperature of 20 to 60° C., a pH of 11 to 14, and it is preferable to work at a pH as high as possible in terms of plating speed. The plating rate is 10 μm/Hr, and copper ions can easily precipitate under conditions where the plating rate is too fast, and thus solution stability tends to be poor.
다음, 브릿지 도금을 수행하여 관통홀(202) 내부(무전해 도금층(203))에서 구리 도금막을 브릿지시킨다. 이때 브릿지 도금은 전해 도금 방법으로 수행될 수 있고, 전해 도금 과정에서 펄스 및/또는 역펄스 파형이 인가될 수 있다. 상기 역펄스 파형의 인가는 도금막의 두께를 일정하게 유지하기 위함이고, 특히 관통홀(202)의 상부와 하부 영역 모서리에서 발생할 수 있는 도그 본 효과(dog bone effect)를 감소시켜, 관통홀(202)의 모서리에서 브릿지가 먼저 일어나는 것을 방지할 수 있다. 브릿지 도금에 이용된 도금액은 황산, 황산구리, 염소, 광택제, 캐리어 및 레벨러를 포함할 수 있다. 상기 도금액의 조성비는 황산 100중량부를 기준으로 황산구리 200 내지 300중량부, 캐리어 50 내지 150중량부(구체적으로 70 내지 130중량부), 광택제 0.5 내지 5중량부(구체적으로 0.5 내지 4중량부), 레벨러 1 내지 10중량부(구체적으로 2 내지 8중량부)일 수 있고, 염소는 전체 도금액 중량 대비 30 내지 120ppm(구체적으로 50 내지 100ppm)인 것이 바람직하다. 이때, 상기 염소는 희석된 염산을 도금액에 첨가하여 생성된 염소 이온을 말한다.Next, bridge plating is performed to bridge the copper plating film in the through hole 202 (the electroless plating layer 203 ). In this case, the bridge plating may be performed by an electrolytic plating method, and a pulse and/or a reverse pulse waveform may be applied during the electrolytic plating process. The application of the reverse pulse waveform is to keep the thickness of the plating film constant, and in particular, it reduces the dog bone effect that may occur at the edges of the upper and lower regions of the through hole 202 , ) can prevent the bridge from rising first. The plating solution used for the bridge plating may include sulfuric acid, copper sulfate, chlorine, a brightener, a carrier, and a leveler. The composition ratio of the plating solution is 200 to 300 parts by weight of copper sulfate based on 100 parts by weight of sulfuric acid, 50 to 150 parts by weight of a carrier (specifically 70 to 130 parts by weight), 0.5 to 5 parts by weight of a brightener (specifically 0.5 to 4 parts by weight), Leveler may be 1 to 10 parts by weight (specifically 2 to 8 parts by weight), and chlorine is preferably 30 to 120 ppm (specifically 50 to 100 ppm) based on the total weight of the plating solution. In this case, the chlorine refers to chlorine ions generated by adding diluted hydrochloric acid to the plating solution.
상기 광택제는 (O-에틸디티오카보네이토)-S-(3-설포프로필)-에스테르, 3- [(아미노-이미노메틸)-티올]-1-프로판 술폰산, 3-(벤조티아졸-2-머캅토)-프로필 술폰산, 소디움 비스-(술포프로필)-디설파이드, N,N-디메틸 디티오카바마일 프로필 술폰산, 3,3-티오비스(1-프로판 술폰산), 2-히드록시-3-[트리스(히드록시메틸)메틸아미노]-1-프로판 술폰산, 소디움 2,3-디머캡토프로판 술폰산, 3-머캅토-1-프로판 설폰산, 5,5'-디티오비스(2-니트로 벤조산), DL-시스테인, 4-머캅토-벤젠 설폰산 및 5-머캅토-1H-테트라졸-1-메탄 술폰산으로 이루어진 물질 군 중 하나 이상을 포함하는 전해 구리 도금용 유기첨가제일 수 있다.The brightener is (O-ethyldithiocarbonato)-S-(3-sulfopropyl)-ester, 3-[(amino-iminomethyl)-thiol]-1-propane sulfonic acid, 3-(benzothiazole- 2-Mercapto)-propyl sulfonic acid, sodium bis-(sulfopropyl)-disulfide, N,N-dimethyl dithiocarbamile propyl sulfonic acid, 3,3-thiobis(1-propane sulfonic acid), 2-hydroxy-3 -[tris(hydroxymethyl)methylamino]-1-propane sulfonic acid, sodium 2,3-dimercaptopropane sulfonic acid, 3-mercapto-1-propane sulfonic acid, 5,5'-dithiobis(2-nitrobenzoic acid) ), DL-cysteine, 4-mercapto-benzene sulfonic acid and 5-mercapto-1H-tetrazole-1-methane sulfonic acid.
상기 캐리어는 폴리옥시알킬렌 글리콜, 카복시메틸셀룰로스, 옥탄디올 비스 글리콜 에테르, 올레산 폴리글리콜 에스테르, 폴리에틸렌 글리콜, 폴리에틸렌 글리콜 디메틸 에테르, 폴리에틸렌 글리콜-블록-폴리프로필렌 글리콜-블록-폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 폴리비닐 알코올, 스테아릴알코올 폴리글리콜 에테르, 스테아린산 폴리글리콜 에스테르, 3-메틸-1-뷰타인-3-올, 3-메틸-펜텐-3-올, L-에틴일사이클로헥사놀, 페닐 프로피놀, 3-페닐-1-뷰타인-3-올, 프로파길 알코올, 메틸 뷰타이놀-에틸렌옥사이드, 2-메틸-4-클로로-3-뷰타인-2-올, 디메틸 헥사인디올, 디메틸옥타인디올, 페닐뷰타이놀 및 1,4-부탄디올 디글리시딜 에테르로 이루어진 물질 군 중 하나 이상을 포함할 수 있다. The carrier comprises polyoxyalkylene glycol, carboxymethylcellulose, octanediol bis glycol ether, oleic acid polyglycol ester, polyethylene glycol, polyethylene glycol dimethyl ether, polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol, polypropylene glycol, Polyvinyl alcohol, stearyl alcohol polyglycol ether, stearic acid polyglycol ester, 3-methyl-1-butyn-3-ol, 3-methyl-penten-3-ol, L-ethynylcyclohexanol, phenyl propynol , 3-phenyl-1-butyn-3-ol, propargyl alcohol, methyl butynol-ethylene oxide, 2-methyl-4-chloro-3-butain-2-ol, dimethyl hexaindiol, dimethylocta and at least one of the group consisting of indiol, phenylbutinol and 1,4-butanediol diglycidyl ether.
상기 레벨러는 질소, 산소, 황, 인 중 하나 또는 두 개의 원소를 포함하는 포화 헤테로 고리 화합물로, 아지리딘, 옥시란, 티이란, 디아지리딘, 옥사지리딘, 디옥시란, 아제티딘, 옥세탄, 티에탄, 디아제티딘, 디옥세탄, 디티에탄, 피롤리딘, 티올란, 포스포란, 이미다졸리딘, 피라졸리딘, 옥사졸리딘, 이소옥사졸리딘, 티아졸리딘, 이소티아졸리딘, 디옥솔란, 디티올란, 피페리딘, 옥산, 티안, 포스피난, 피페라진, 모르폴린, 티오모르폴린, 디옥산, 디티안, 아제판, 호모피레라진, 아조칸, 옥소칸, 티오칸, 아조난, 옥소난 및 티오난으로 이루어진 물질 군 중 하나 이상을 포함하는 유기 화합물일 수 있다.The leveler is a saturated heterocyclic compound containing one or two of nitrogen, oxygen, sulfur, and phosphorus, aziridine, oxirane, thiirane, diaziridine, oxaziridine, dioxirane, azetidine, ox Cetane, thietane, diazetidine, dioxetane, dithiethane, pyrrolidine, thiolane, phosphorane, imidazolidine, pyrazolidine, oxazolidine, isoxazolidine, thiazolidine, isothiazolidine , dioxolane, dithiolane, piperidine, oxane, thiane, phosphinan, piperazine, morpholine, thiomorpholine, dioxane, dithiane, azepane, homopyrerazine, azocan, oxocan, thiocane, It may be an organic compound comprising at least one of the group of substances consisting of azonane, oxonane and thionane.
도 5와 도 6은 본 발명의 회로기판 관통홀 충진 방법의 브릿지 도금 단계에서 적용되는 역펄스 파형의 일례를 나타낸 것이다. 도 5는 기판(201)의 상부(앞면)에 인가되는 파형이고, 도 6은 상부(앞면)과 소정의 타이밍 차이를 가지며, 기판(201)의 하부(뒷면)에 인가되는 파형을 나타낸 것이다. 도 5 및 도 6을 참조하면, 브릿지 도금 과정에서 적용되는 역펄스 파형은 플러스 전류 I 1을 시간 t 1동안 유지하고, 이어서 플러스 전류 I 2를 시간 t 2동안 유지하고, 이어서 플러스 전류 I 1을 시간 t 3동안 유지하고, 이어서 플러스 전류 I 2를 시간 t 4동안 유지하고, 이어서 플러스 전류 I 1을 시간 t 5동안 유지하고, 이어서 마이너스 전류 I 3를 시간 t6동안 유지하는 파형이고, 상기 파형은 주기적으로 소정의 시간 동안 적용한다. 이때, I 1은 1.5 내지 2.5 ASD의 범위에 있는 것이 바람직하고, I 2는 0.5 내지 1.5 ASD의 범위에 있는 것이 바람직하다. 더욱 바람직하게 I 1은 1.7 내지 2.3 ASD의 범위, I 2는 0.7 내지 1.3 ASD의 범위에 있는 것이 좋다. 상기 범위 내에서 I 1은 I 2의 1.5 내지 2.5 배인 것이 바람직하고, 더욱 바람직하게는 1.7 내지 2.3 배인 것이 좋다. t 1, t 2, t 3, t 4 및 t 5는 각각 5 내지 20 ms인 것이 바람직하고, 더욱 바람직하게는 7 내지 13 ms인 것이 좋으며, t 1, t 2, t 3, t 4 및 t 5는 동일한 시간일 수 있다. I 3은 3 내지 5 ASD의 범위에 있는 것이 바람직하며, 더욱 바람직하게는 3.5 내지 4.5 ASD인 것이 좋다. t 6은 0.5 내지 1.5 ms인 것이 바람직하고, 더욱 바람직하게는 0.7 내지 1.3 ms인 것이 좋다. 상기 역펄스 파형은 't 1+t 2+t 3+t 4+t 5+t 6'의 주기를 갖는 것으로, 구체적으로 파형의 두티 싸이글(Duty cycle = ton / (ton+toff))은 0.6~1.2의 범위에 있을 수 있다. 브릿지 도금 과정에서는 상기 역펄스 파형이 1~3시간 동안 연속적으로 인가될 수 있다. 전압은 5~6 V의 범위에서 선택될 수 있다. 브릿지 도금 과정에서는 회로기판의 상부(앞면)와 하부(뒷면)에 서로 다른 타이밍의 역펄스 파형을 인가할 수 있는데, 기판의 상부(앞면)에 해당하는 파형의 t 1이 시작되는 시점에서 기판의 뒷면에는 t 4가 시작되는 타이밍의 차이를 가지고 동일한 파형이 인가될 수 있다. 브리지 도금 과정에서 기판의 상부(앞면)와 하부(뒷면)에 전류 파형을 서로 다른 타이밍으로 인가하는 이유는 관통홀의 브릿지 및 충진 효과를 더욱 개선하기 위한 것으로, 상부에 포워드 전류가 인가되면서 관통홀 내부 브릿지가 형성되고 있는 동안 하부는 리버스로 내부 관통홀의 박리가 일어나면서 보이드 없이 유리한 충진 효과를 얻을 수 있다. 반대로 상부와 하부의 전류 파형이 같은 경우에는 내부 관통홀이 브릿지 및 충진 중에 과도한 성장으로 내부 중심부에 보이드가 크게 형성될 수 있다. 기존의 기술에서는 관통홀 내부 도금층 형성을 위해 펄스 리벌스 도금을 수행하였는데, 관통홀 두께가 0.4 t 이하에서는 기판의 상부와 하부에 동일한 파형의 펄스 리벌스 도금을 진행하였으나, 관통홀 두께가 0.4t 이상이 되면서, 동일한 파형의 펄스/리벌스 도금을 통한 방법에서 내부 보이드가 형성되었다. 그 이유는 상부와 하부에 전류를 동일한 파형으로 공급한다면, 도금과 도금층의 용해 과정이 동시에 일어나며 내부에 보이드가 발생할 수 있기 때문이다. 관통홀 내부 보이드 형성의 주요 원인은 관통홀 내부 제한된 공간에 금속 이온이 빠르게 소모되며 도금 시 과전압이 형성되며, 이로 인해 수소 발생이 증가하며, 증가하는 수소 발생은 도금 피막에 정상적인 도금층 성장 과정을 방해하게 되어 내부에 보이드가 형성되는 것이다. 따라서 두께가 두꺼운 관통홀 내부에 일정 구리 금속 이온이 충분히 공급될 수 있다면, 과전압에 의한 수소 발생도 억제할 수 있으며, 정상적인 도금층 성장 과정을 도와줄 수 있다. 이러한 일정한 구리 이온 공급 방법으로 외부에서 교반을 하는 방법도 있으나, 미세 구멍에 충분한 양이 교반되어 공급되기 어렵다. 따라서 상부와 하부에 전류 파형을 달리하여 상부가 포워드로 구리 이온으로 도금이 되고 있으면, 하부는 리벌스로 도금 피막에서 용해되어 구리 이온이 나오게 된다. 하부에서 나오게 된 구리 이온은 상부 도금에 소모되며 이에 충분한 금속 이온을 공급받게 되어 관통홀 내부에 보이드 없이 도금 충진을 형성할 수 있다. 5 and 6 show an example of the reverse pulse waveform applied in the bridge plating step of the circuit board through-hole filling method of the present invention. FIG. 5 is a waveform applied to the upper portion (front) of the substrate 201, and FIG. 6 illustrates a waveform applied to the lower portion (rear) of the substrate 201 with a predetermined timing difference from the upper portion (front). 5 and 6 , the reverse pulse waveform applied during the bridge plating process maintains the positive current I 1 for a time t 1 , and then maintains the positive current I 2 for a time t 2 , followed by the positive current I 1 . hold for time t 3 , then hold positive current I 2 for time t 4 , then hold positive current I 1 for time t 5 , and then hold negative current I 3 for time t6 , wherein the waveform is It is applied periodically for a predetermined period of time. In this case, I 1 is preferably in the range of 1.5 to 2.5 ASD, and I 2 is preferably in the range of 0.5 to 1.5 ASD. More preferably, I 1 is in the range of 1.7 to 2.3 ASD, and I 2 is preferably in the range of 0.7 to 1.3 ASD. Within the above range, I 1 is preferably 1.5 to 2.5 times that of I 2 , and more preferably 1.7 to 2.3 times that of I 2 . t 1 , t 2 , t 3 , t 4 and t 5 are preferably 5 to 20 ms, more preferably 7 to 13 ms, respectively, and t 1 , t 2 , t 3 , t 4 and t 5 may be the same time. I 3 is preferably in the range of 3 to 5 ASD, more preferably 3.5 to 4.5 ASD. t 6 is preferably 0.5 to 1.5 ms, more preferably 0.7 to 1.3 ms. The reverse pulse waveform has a period of 't 1 +t 2 +t 3 +t 4 +t 5 +t 6 ', specifically, the duty cycle = ton / (ton + toff) of the waveform. It can be in the range of 0.6-1.2. In the bridge plating process, the reverse pulse waveform may be continuously applied for 1 to 3 hours. The voltage can be selected in the range of 5 to 6 V. Bridge plating process, the circuit on the upper (front) and lower (back) of the substrate there with each other to apply a reverse pulse waveform of the different timings, of the substrate at the time of t 1 is the start of the waveform corresponding to the upper (front) of the substrate The same waveform may be applied to the rear side with a difference in timing at which t 4 starts. The reason for applying current waveforms at different timings to the upper (front) and lower (rear) of the substrate in the bridge plating process is to further improve the bridging and filling effect of the through hole. While the bridge is being formed, an advantageous filling effect can be obtained without voids as the inner through-hole is peeled off in reverse. Conversely, when the upper and lower current waveforms are the same, a large void may be formed in the inner center due to excessive growth of the inner through-hole during bridging and filling. In the conventional technology, pulse reversal plating was performed to form a plating layer inside the through-hole. When the through-hole thickness was 0.4 t or less, pulse reversal plating of the same waveform was performed on the upper and lower portions of the substrate, but the through-hole thickness was 0.4 t. As the above, internal voids were formed in the method through pulse/reverse plating of the same waveform. The reason is that if current is supplied to the upper and lower parts in the same waveform, plating and dissolution of the plating layer occur simultaneously, and voids may occur inside. The main cause of the formation of voids inside the through-hole is that metal ions are rapidly consumed in the limited space inside the through-hole, and an overvoltage is formed during plating, which increases the generation of hydrogen, and the increased generation of hydrogen interferes with the normal plating layer growth process in the plating film. As a result, voids are formed inside. Therefore, if a certain copper metal ion can be sufficiently supplied into the thick through-hole, hydrogen generation due to overvoltage can be suppressed, and a normal plating layer growth process can be helped. There is also a method of externally stirring as such a constant copper ion supply method, but it is difficult to stir and supply a sufficient amount to the micropores. Therefore, if the upper part is plated with copper ions in the forward direction by different current waveforms on the upper part and the lower part, the lower part is dissolved in the plating film in reverse to release copper ions. Copper ions emitted from the lower part are consumed for upper plating, and sufficient metal ions are supplied thereto, so that plating filling can be formed without voids in the through hole.
브릿지 도금액의 바람직한 조성은 황산 100중량부를 기준으로 황산구리 200 내지 300중량부, 광택제 0.5 내지 5중량부, 캐리어 50 내지 150중량부 및 레벨러 1 내지 10중량부를 포함하고, 전체 도금액 대비 30 내지 120ppm의 염소 이온을 포함할 수 있다. 이와 같이 본 발명의 관통홀 충진 방법의 브릿지 도금 과정에서 사용되는 도금액에 레벨러를 포함시킨 것은 상기 특별한 구성을 가지는 파형의 인가로 인하여 레벨러에 의한 브릿지 지연 효과를 억제할 수 있기 때문이다. 구체적으로 관통 홀 내부 충진 중에 레벨러는 관통 홀 입구의 성장을 억제하며, 전류 분포가 충분히 공급되지 못하는 내부에 성장을 우선적으로 도와줄 수 있다. 즉, 일정량의 레벨러로 전류 분포가 충분하지 못한 관통홀 내벽에 도금 성장을 도와주는 역할을 하여 보이드 없는 충진 도금을 할 수 있게 하는 것이다.A preferred composition of the bridge plating solution includes 200 to 300 parts by weight of copper sulfate, 0.5 to 5 parts by weight of a brightener, 50 to 150 parts by weight of a carrier, and 1 to 10 parts by weight of a leveler based on 100 parts by weight of sulfuric acid, and 30 to 120 ppm of chlorine compared to the total plating solution It may contain ions. The reason why the leveler is included in the plating solution used in the bridge plating process of the through-hole filling method of the present invention as described above is that the bridge delay effect caused by the leveler can be suppressed due to the application of the waveform having the special configuration. Specifically, during the filling of the through-hole, the leveler suppresses the growth of the entrance of the through-hole, and can preferentially help the growth in the interior where the current distribution is not sufficiently supplied. That is, a certain amount of the leveler serves to help the plating growth on the inner wall of the through-hole where the current distribution is not sufficient, so that void-free filling plating can be performed.
다음, 관통홀 충진 도금을 수행하여 관통홀 충진부(204)를 형성한다. 관통홀 충진 도금에서는 브릿지 도금 과정에서 사용된 도금액과 동일한 성분 및 조성을 갖는 도금액을 이용하므로, 도금조의 교체없이 연속된 공정으로 브릿지 도금과 관통홀 충진 도금을 수행할 수 있다. 관통홀 충진 도금에서는 기판의 상하부(앞뒷면)에 동일한 펄스 및/또는 역펄스 파형을 동일한 타이밍으로 인가될 수 있다. 도 7은 관통홀 충진 도금에 적용되는 역펄스 파형의 일례를 나타낸 것이다. 도 7을 참조하면, 관통홀 충진 도금에 적용되는 역펄스 파형은 플러스 전류 I 4를 시간 t 7동안 유지하고, 이어서 마이너스 전류 I 5를 시간 t 8동안 유지하는 파형을 주기로 한다. I 4는 1.5 내지 2.5 ASD의 범위에 있는 것이 바람직하고, 더욱 바람직하게는 1.7 내지 2.3 ASD인 것이 좋다. t 7은 30 내지 60 ms의 범위에 있는 것이 바람직하고, 더욱 바람직하게는 40 내지 50 ms인 것이 좋다. I 5는 3 내지 4 ASD의 범위에 있는 것이 바람직하고, 더욱 바람직하게는 3.2 내지 3.8인 것이 좋다. t 8은 1 내지 3 ms의 범위에 있는 것이 바람직하고, 더욱 바람직하게는 1.7 내지 2.3 ms인 것이 좋다. Next, the through-hole filling part 204 is formed by performing through-hole filling plating. In the through-hole filling plating, since a plating solution having the same components and composition as the plating solution used in the bridge plating process is used, the bridge plating and the through-hole filling plating can be performed in a continuous process without replacing the plating bath. In through-hole filling plating, the same pulse and/or reverse pulse waveform may be applied to upper and lower portions (front and back surfaces) of the substrate at the same timing. 7 shows an example of the reverse pulse waveform applied to the through-hole filling plating. Referring to FIG. 7 , the reverse pulse waveform applied to the through-hole filling plating is a waveform in which the positive current I 4 is maintained for a time t 7 , and then the negative current I 5 is maintained for a time t 8 . I 4 is preferably in the range of 1.5 to 2.5 ASD, more preferably 1.7 to 2.3 ASD. t 7 is preferably in the range of 30 to 60 ms, more preferably 40 to 50 ms. I 5 is preferably in the range of 3 to 4 ASD, more preferably 3.2 to 3.8. t 8 is preferably in the range of 1 to 3 ms, more preferably 1.7 to 2.3 ms.
다음, 덮힘막 도금을 수행하여 관통홀 상하부의 영역에 덮힘막을 형성한다. 덮힘막 도금에는 기판의 상하부(앞뒷면)에 동일한 펄스 및/또는 역펄스 파형이 인가될 수 있다. 도 8은 덮힘막 도금에 적용되는 역펄스 파형의 일례를 나타낸 것이다. 도 8을 참조하면, 덮힘막 도금에 적용되는 파형은 플러스 전류 I 6를 시간 t 9동안 유지하고, 이어서 마이너스 전류 I 7을 시간 t 10동안 유지하는 파형을 주기로 한다. I 6은 1.6 내지 2.8 ASD의 범위에 있는 것이 바람직하고, t 9은 70 내지 130 ms의 범위에 있는 것이 바람직하다. I 7은 1.5 내지 2.5 ASD의 범위에 있는 것이 바람직하고, t 10은 1 내지 3 ms의 범위에 있는 것이 바람직하다. Next, the overcoat plating is performed to form the overcoat in the upper and lower regions of the through hole. In the overcoat plating, the same pulse and/or reverse pulse waveform may be applied to upper and lower portions (front and back surfaces) of the substrate. 8 shows an example of the reverse pulse waveform applied to the overcoat plating. Referring to FIG. 8 , the waveform applied to the overcoat plating is a waveform in which a positive current I 6 is maintained for a time t 9 , and then a negative current I 7 is maintained for a time t 10 . I 6 is preferably in the range of 1.6 to 2.8 ASD, and t 9 is preferably in the range of 70 to 130 ms. I 7 is preferably in the range of 1.5 to 2.5 ASD, and t 10 is preferably in the range of 1 to 3 ms.
아래에서 실시예를 이용하여 본 발명을 보다 상세히 설명한다.The present invention will be described in more detail below using examples.
[실시예 1][Example 1]
두께 200미크론의 에폭시 수지 기판에 직경 170미크론의 관통홀을 레이저로 가공하였다.A through hole with a diameter of 170 microns was processed with a laser in an epoxy resin substrate of 200 microns in thickness.
관통홀을 충진하기 위한 방법으로 도금을 실시하며, 도금 단계는 다음과 같았다. 먼저, 무전해 도금을 수행하였고, 이후에 전해 도금을 수행하였다. 이때, 전해 도금 단계는 브릿지 도금 단계, 브릿지의 상부와 하부의 관통홀 내부에 구리를 충진시키기 위한 관통홀 충진 도금 단계, 최종으로 관통홀을 충진 후에 도금 두께를 확보하기 위한 덮힘막 도금 단계로 구분하여 실시하였다. 상기 브릿지 도금, 관통홀 충진 도금 및 덮힘막 도금에는 모두 동일 전해 도금액이 사용되었다.Plating was performed as a method for filling the through-holes, and the plating steps were as follows. First, electroless plating was performed, and then electrolytic plating was performed. At this time, the electrolytic plating step is divided into a bridge plating step, a through-hole filling plating step for filling copper inside the through-holes of the upper and lower sides of the bridge, and a covering film plating step to secure the plating thickness after finally filling the through-holes. was carried out. The same electrolytic plating solution was used for the bridge plating, the through-hole filling plating, and the overcoat plating.
구체적으로 무전해 도금법을 이용하여 기판의 표면과 관통홀 내부에 무전해 동도금막을 형성하였다. 무전해 도금액으로는 황산구리 30중량부, 착화제인 에틸렌디아민테트라아세트산(EDTA) 85 중량부, 환원제인 포르말린 22중량부와 함께, 상기 에틸렌디아민테트라아세트산과 상기 포르말린의 산화반응에 필요한 OH를 공급하기 위한 미량의 가성소다를 포함하는 도금액이 사용되었다. 도금 작업 조건인 산도는 pH 12였고, 욕온(bath temperature)은 65 ℃였다.Specifically, an electroless copper plating film was formed on the surface of the substrate and inside the through hole by using the electroless plating method. As the electroless plating solution, 30 parts by weight of copper sulfate, 85 parts by weight of ethylenediaminetetraacetic acid (EDTA) as a complexing agent, and 22 parts by weight of formalin as a reducing agent, together with OH required for the oxidation reaction of the ethylenediaminetetraacetic acid and formalin. A plating solution containing a trace amount of caustic soda was used. The acidity of the plating operation condition was pH 12, and the bath temperature was 65 °C.
이어서, 탈지 과정 및 산세 과정 후에 브릿지 도금 과정인 구리 전해 도금을 실시하였다. 전해 도금액으로는 황산 100중량부, 황산구리 200중량부, 광택제 0.5 중량부, 캐리어 70중량부, 레벨러 2중량부와 함깨, 전체 도금액 대비 50 ppm의 염소 이온을 포함하는 도금액이 사용되었다. 도금액의 온도는 27 ℃, 도금 시간은 4.5시간으로 하였다. 이때 광택제는 (O-에틸디티오카보네이토)-S-(3-설포프로필)-에스테르를, 캐리어는 폴리옥시알킬렌 글리콜을, 레벌러는 아지리딘이 사용되었다. 상기 브릿지 도금의 전류 파형은 도 5에서 I 1은 2 ASD, I 2는 1 ASD, I 3는 4 ASD였고, t 1, t 2, t 3, t 4, t 5는 10 ms였고, t 6은 1 ms였다. 전압은 5~6 V의 범위에서 선택되었다. 이때, 기판의 상부(앞면)와 하부(뒷면)에는 서로 다른 타이밍으로 전류 파형이 인가되었고, 도 6에 도시한 것과 같은 타이밍의 차이가 있었다.Subsequently, copper electroplating, which is a bridge plating process, was performed after the degreasing process and the pickling process. As the electrolytic plating solution, 100 parts by weight of sulfuric acid, 200 parts by weight of copper sulfate, 0.5 parts by weight of a brightener, 70 parts by weight of a carrier, 2 parts by weight of a leveler, and a plating solution containing 50 ppm of chlorine ions compared to the total plating solution were used. The temperature of the plating solution was 27°C, and the plating time was 4.5 hours. In this case, (O-ethyldithiocarbonato)-S-(3-sulfopropyl)-ester was used as a brightener, polyoxyalkylene glycol was used as a carrier, and aziridine was used as a leveler. The current waveform of the bridge plating is in FIG. 5, I 1 is 2 ASD, I 2 is 1 ASD, I 3 is 4 ASD, t 1 , t 2 , t 3 , t 4 , t 5 was 10 ms, t 6 was 1 ms. The voltage was selected in the range of 5-6 V. At this time, current waveforms were applied at different timings to the upper (front) and lower (rear) surfaces of the substrate, and there was a difference in timing as shown in FIG. 6 .
이어서, 전해 도금액으로 관통홀 충진 도금을 실시하였다. 관통홀 충진 도금 조건은 포워드 전류 밀도 2 ASD(도 7의 I 4), 리벌스 전류 밀도 3.5 ASD(도 7의 I 5)였고, 포워드 전류 인가 시간은 50 ms(도 7의 t 7), 리벌스 전류 인가 시간은 2 ms(도 7의 t 8)였다. 전압은 5~6V의 범위에서 선택되었고, 도금 시간은 1시간으로 하였다. 이때, 기판의 상부(앞면)와 하부(뒷면)에는 동일한 파형이 동일한 타이밍으로 인가되었다.Then, through-hole filling plating was performed with an electrolytic plating solution. The through-hole filling plating conditions were a forward current density of 2 ASD (I 4 in FIG. 7 ), a reverse current density of 3.5 ASD (I 5 in FIG. 7 ), and the forward current application time was 50 ms (t 7 in FIG. 7 ), and the The time for applying the verse current was 2 ms (t 8 in FIG. 7 ). The voltage was selected in the range of 5 to 6 V, and the plating time was set to 1 hour. At this time, the same waveform was applied to the upper (front) and lower (rear) surfaces of the substrate at the same timing.
이어서 전해 도금액으로 덮힘막 도금을 실시하였다. 덮힘막 도금 조건은 포워드 전류 밀도 2.2 ASD(도 8의 I 6), 시간은 100 ms(도 8의 t 9), 리벌스 전류 밀도는 2 ASD(도 8의 I 7), 시간은 2 ms(도 8의 t 10)였다. 전압은 5~6V의 범위에서 선택되었고, 도금 시간은 1시간으로 하였다. 이때, 기판의 상부(앞면)와 하부(뒷면)에는 동일한 파형이 동일한 타이밍으로 인가되었다.Then, the overcoat plating was performed with an electrolytic plating solution. The overcoat plating conditions were a forward current density of 2.2 ASD (I 6 in FIG. 8 ), a time of 100 ms ( t 9 in FIG. 8 ), a reverse current density of 2 ASD (I 7 in FIG. 8 ), and a time of 2 ms ( t 10 in FIG. 8 ). The voltage was selected in the range of 5 to 6 V, and the plating time was set to 1 hour. At this time, the same waveform was applied to the upper (front) and lower (rear) surfaces of the substrate at the same timing.
[실시예 2][Example 2]
브릿지 도금 단계에서, t 1, t 2, t 3, t 4, t 5를 8 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 1 , t 2 , t 3 , t 4 , and t 5 were set to 8 ms.
[실시예 3][Example 3]
브릿지 도금 단계에서, t 1, t 2, t 3, t 4, t 5를 12 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 1 , t 2 , t 3 , t 4 , and t 5 were set to 12 ms.
[실시예 4][Example 4]
브릿지 도금 단계에서, t 1, t 2, t 3, t 4, t 5를 6 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 1 , t 2 , t 3 , t 4 , and t 5 were set to 6 ms.
[실시예 5][Example 5]
브릿지 도금 단계에서, t 1, t 2, t 3, t 4, t 5를 18 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 1 , t 2 , t 3 , t 4 , and t 5 were set to 18 ms.
[실시예 6][Example 6]
브릿지 도금 단계에서, t 6을 0.8 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 6 was set to 0.8 ms.
[실시예 7][Example 7]
브릿지 도금 단계에서, t 6을 1.2 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 6 was set to 1.2 ms.
[실시예 8][Example 8]
브릿지 도금 단계에서, t 6을 0.6 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 6 was set to 0.6 ms.
[실시예 9][Example 9]
브릿지 도금 단계에서, t 6을 1.4 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 6 was set to 1.4 ms.
[실시예 10][Example 10]
관통홀 충진 도금 단계에서, t 8을 1.8 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the through-hole filling plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 8 was set to 1.8 ms.
[실시예 11][Example 11]
관통홀 충진 도금 단계에서, t 8을 2.2 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the through-hole filling plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 8 was set to 2.2 ms.
[비교예 1][Comparative Example 1]
브릿지 도금 단계에서, t 1, t 2, t 3, t 4, t 5를 3 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 1 , t 2 , t 3 , t 4 , and t 5 were set to 3 ms.
[비교예 2][Comparative Example 2]
브릿지 도금 단계에서, t 1, t 2, t 3, t 4, t 5를 23 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 1 , t 2 , t 3 , t 4 , and t 5 were set to 23 ms.
[비교예 3][Comparative Example 3]
브릿지 도금 단계에서, t 6을 0.4 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 6 was set to 0.4 ms.
[비교예 4][Comparative Example 4]
브릿지 도금 단계에서, t 6을 1.7 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the bridge plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 6 was set to 1.7 ms.
[비교예 5][Comparative Example 5]
관통홀 충진 도금 단계에서, t 8을 0.8 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the through-hole filling plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 8 was set to 0.8 ms.
[비교예 6][Comparative Example 6]
관통홀 충진 도금 단계에서, t 8을 3.5 ms로 설정한 한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.In the through-hole filling plating step, through-hole filling plating was performed in the same manner as in Example 1, except that t 8 was set to 3.5 ms.
[비교예 7][Comparative Example 7]
레벨러를 포함하지 않은 전해 도금액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 관통홀 충진 도금을 수행하였다.The through-hole filling plating was performed in the same manner as in Example 1, except that an electrolytic plating solution without a leveler was used.
[평가예 1][Evaluation Example 1]
실시예 1 ~ 11 및 비교예 1 ~ 7에 의하여 관통홀 충진 도금을 수행한 회로기판의 단면을 절단하여 관통홀 내부를 광학 현미경으로 관찰하였다. 실시예 1, 2, 3, 4, 6, 7, 10, 11은 관통홀에서 보이드가 관찰되지 않았고, 실시예 4, 5, 8, 9는 직경 10미크론 이하의 보이드가 관통홀에서 관찰되었다. 비교예 1 ~ 6은 직경 20미크론 이상의 보이드가 관찰되었고, 비교예 7은 관통홀 충진이 이루어지지 않았다. 결과를 아래의 표 1에 정리하였다. 이와 같은 결과로부터, 도금 과정에서 파형의 제어가 매우 중요하다는 것을 알 수 있고, 이로부터 전류 파형에 따라 금속 이온의 흡착과 탈착을 유도하며, 도금액 내 레벨러가 관통홀 외곽에 흡착되어 도금을 제어하는 것에 의해 내부 도금을 우선적으로 할 수 있는 역할을 한다는 것을 알 수 있다. 또한 레벨러의 존재 유무 및 종류도 관통홀 충진에 중요한 역할을 한다는 것을 알 수 있다.The cross-section of the circuit board on which the through-hole filling plating was performed according to Examples 1 to 11 and Comparative Examples 1 to 7 was cut and the inside of the through-hole was observed with an optical microscope. In Examples 1, 2, 3, 4, 6, 7, 10, and 11, voids were not observed in the through-holes, and in Examples 4, 5, 8, and 9, voids with a diameter of 10 microns or less were observed in the through-holes. In Comparative Examples 1 to 6, voids with a diameter of 20 microns or more were observed, and in Comparative Example 7, through-hole filling was not performed. The results are summarized in Table 1 below. From these results, it can be seen that the control of the waveform during the plating process is very important, and from this, the adsorption and desorption of metal ions are induced according to the current waveform, and the leveler in the plating solution is adsorbed to the outside of the through hole to control the plating. It can be seen that it plays a role that can preferentially do internal plating. In addition, it can be seen that the existence and type of the leveler also plays an important role in filling the through hole.
도 9의 (a)는 실시예 1에 의하여 관통홀 충진 도금이 수행된 관통홀 단면 사진인데, 관통홀 내부에 보이드가 형성되지 않고 도금이 잘 이루어진 것을 확인할 수 있다. 반면에, 도 9의 (b)는 비교예 7에 의하여 관통홀 충진 도금이 수행된 관통홀 단면 사진인데, 관통홀의 충진이 불완전하게 이루어졌음을 확인할 수 있다.9 (a) is a cross-sectional photograph of a through-hole on which the through-hole filling plating was performed according to Example 1, and it can be seen that plating was performed well without voids formed inside the through-hole. On the other hand, FIG. 9(b) is a cross-sectional photograph of a through-hole on which the through-hole filling plating was performed according to Comparative Example 7, and it can be seen that the through-hole filling was incompletely performed.
구분division 보이드 형성 여부Whether voids are formed 보이드 직경void diameter 보이드 위치void location
실시예 1Example 1 없음none -- --
실시예 2Example 2 없음none -- --
실시예 3Example 3 없음none -- --
실시예 4Example 4 있음has exist 10미크론 내외less than 10 microns 중심부center
실시예 5Example 5 있음has exist 10미크론 내외less than 10 microns 중심부center
실시예 6Example 6 없음none -- --
실시예 7Example 7 없음none -- --
실시예 8Example 8 있음has exist 10미크론 내외less than 10 microns 중심부center
실시예 9Example 9 있음has exist 10미크론 내외less than 10 microns 중심부center
실시예 10Example 10 없음none -- --
실시예 11Example 11 없음none -- --
비교예 1Comparative Example 1 있음has exist 20미크론 이상20 microns or more 표면에서 중심방향from the surface to the center
비교예 2Comparative Example 2 있음has exist 20미크론 이상20 microns or more 표면에서 중심방향from the surface to the center
비교예 3Comparative Example 3 있음has exist 20미크론 이상20 microns or more 표면에서 중심방향from the surface to the center
비교예 4Comparative Example 4 있음has exist 20미크론 이상20 microns or more 표면에서 중심방향from the surface to the center
비교예 5Comparative Example 5 있음has exist 길이 20미크론 이상over 20 microns in length 표면에서 중심방향from the surface to the center
비교예 6Comparative Example 6 있음has exist 길이 20미크론 이상over 20 microns in length 표면에서 중심방향from the surface to the center
비교예 7Comparative Example 7 미충진unfilled 미충진unfilled 미충진unfilled

Claims (11)

  1. 기판에 관통홀을 형성하는 단계;forming a through hole in the substrate;
    무전해 도금으로 상기 관통홀 내부 표면에 소정의 두께로 무전해 도금층을 형성하는 단계;forming an electroless plating layer to a predetermined thickness on the inner surface of the through hole by electroless plating;
    상기 무전해 도금층에 전해 도금으로 상기 관통홀 내부 일부 영역에서 브릿지가 생성되도록 브릿지 도금을 수행하는 단계; 및performing bridge plating on the electroless plating layer to form a bridge in a partial region inside the through hole by electroplating; and
    상기 브릿지 도금이 이루어진 관통홀에 전해 도금으로 관통홀 충진 도금을 수행하는 단계를 포함하고,Comprising the step of performing a through-hole filling plating by electrolytic plating on the through-hole on which the bridge plating is made,
    상기 브릿지 도금과 상기 관통홀 충진 도금은 동일한 도금액을 이용하여 수행되는 것인 회로기판의 관통홀 충진 방법.The through-hole filling method of the circuit board, wherein the bridge plating and the through-hole filling plating are performed using the same plating solution.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 브릿지 도금에 역펄스 파형이 인가되는 것인 회로기판의 관통홀 충진 방법.A through-hole filling method of a circuit board in which a reverse pulse waveform is applied to the bridge plating.
  3. 청구항 2에 있어서, 3. The method according to claim 2,
    상기 역펄스 파형은 회로기판의 상부와 하부에서 서로 다른 조건으로 인가되는 것인 회로기판의 관통홀 충진 방법.The through-hole filling method of the circuit board, wherein the reverse pulse waveform is applied under different conditions from the upper part and the lower part of the circuit board.
  4. 청구항 2에 있어서,3. The method according to claim 2,
    상기 역펄스 파형은 t 1+t 2+t 3+t 4+t 5+t 6의 주기를 가지며,The reverse pulse waveform has a period of t 1 +t 2 +t 3 +t 4 +t 5 +t 6 ,
    상기 주기에서, t 1, t 2, t 3, t 4 및 t 5는 각각 플러스 전류가 인가되는 시간이고, t 6은 마이너스 전류가 인가되는 시간인 것인 회로기판의 관통홀 충진 방법.In the period, t 1 , t 2 , t 3 , t 4 and t 5 are each a time for which a positive current is applied, and t 6 is a time for which a negative current is applied.
  5. 청구항 4에 있어서,5. The method according to claim 4,
    상기 플러스 전류가 인가되는 시간은 5 내지 20 ms이고,The time for which the positive current is applied is 5 to 20 ms,
    상기 마이너스 전류가 인가되는 시간은 0.5 내지 1.5 ms인 것인 회로기판의 관통홀 충진 방법.The time for which the negative current is applied is 0.5 to 1.5 ms.
  6. 청구항 4에 있어서,5. The method according to claim 4,
    상기 t 1, t 3 및 t 5에서 각각 인가되는 전류 I 1은 1.5 내지 2.5 ASD이고,The current I 1 applied at each of t 1 , t 3 and t 5 is 1.5 to 2.5 ASD,
    상기 t 2 및 t 4에서 각각 인가되는 전류 I 2는 0.5 내지 1.5 ASD이고,The current I 2 applied at each of t 2 and t 4 is 0.5 to 1.5 ASD,
    상기 t 6에서 인가되는 전류 I 3는 3 내지 5 ASD인 것인 회로기판의 관통홀 충진 방법.The current I 3 applied at t 6 is 3 to 5 ASD of the through-hole filling method of the circuit board.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 관통홀 충진 도금에 역펄스 파형이 인가되는 것인 회로기판의 관통홀 충진 방법.A through-hole filling method of a circuit board in which a reverse pulse waveform is applied to the through-hole filling plating.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 브릿지 도금과 상기 관통홀 충진 도금은 동일한 도금조에서 수행되는 것인 회로기판의 관통홀 충진 방법.The bridge plating and the through-hole filling plating are performed in the same plating bath.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 도금액은 레벨러를 포함하고,The plating solution includes a leveler,
    상기 레벨러는 질소, 산소, 황 및 인으로 이루어진 군에서 선택되는 1종 이상의 원소를 포함하는 포화 헤테로 고리 화합물인 것인 회로기판의 관통홀 충진 방법.The leveler is a through-hole filling method of a circuit board that is a saturated heterocyclic compound containing at least one element selected from the group consisting of nitrogen, oxygen, sulfur and phosphorus.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 관통홀 충진 도금이 이루어진 관통홀에 전해 도금으로 덮힘막 도금을 수행하는 단계를 더 포함하는 것인 회로기판의 관통홀 충진 방법.The method of filling the through-holes of the circuit board further comprising the step of performing a cover film plating by electroplating on the through-holes on which the through-hole filling plating has been made.
  11. 청구항 1의 회로기판의 관통홀 충진 방법에 의하여 제조된 회로기판.A circuit board manufactured by the through-hole filling method of the circuit board of claim 1.
PCT/KR2020/014487 2019-11-27 2020-10-22 Method for filling via hole of circuit board and circuit board manufactured using same WO2021107409A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022531644A JP7438578B2 (en) 2019-11-27 2020-10-22 Method for filling through holes in a circuit board and circuit board using the same
CN202080094807.XA CN115053641A (en) 2019-11-27 2020-10-22 Through hole filling method of circuit board and circuit board using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190154040A KR102215846B1 (en) 2019-11-27 2019-11-27 Through-hole filling method for circuit board and circuit board using the same
KR10-2019-0154040 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021107409A1 true WO2021107409A1 (en) 2021-06-03

Family

ID=74686982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014487 WO2021107409A1 (en) 2019-11-27 2020-10-22 Method for filling via hole of circuit board and circuit board manufactured using same

Country Status (4)

Country Link
JP (1) JP7438578B2 (en)
KR (2) KR102215846B1 (en)
CN (1) CN115053641A (en)
WO (1) WO2021107409A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102339867B1 (en) * 2021-07-30 2021-12-16 와이엠티 주식회사 Leveler and electroplating composition for filling via hole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093934A (en) * 2003-09-19 2005-04-07 Shinko Electric Ind Co Ltd Filling method into through-hole
KR20060078112A (en) * 2004-12-30 2006-07-05 삼성전기주식회사 Fill plating structure of inner via hole and manufacturing method thereof
JP2010077496A (en) * 2008-09-26 2010-04-08 New Japan Radio Co Ltd Throughhole filling method
KR101222627B1 (en) * 2004-09-20 2013-01-16 아토테크더치랜드게엠베하 Galvanic Process for Filling Through―Holes with Metals, in Particular of Printed Circuit Boards with Copper
KR101693588B1 (en) * 2016-04-21 2017-01-17 한국생산기술연구원 Organic additive for electrolytic copper plating including two types of leveler and electrolytic copper plating solution including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164797A (en) * 1982-03-05 1983-09-29 オリン・コ−ポレ−シヨン Bondage strength-improved copper electrochemical treatment
JP2006283072A (en) * 2005-03-31 2006-10-19 Atotech Deutsche Gmbh Method of plating microvia and through-hole
JP6079150B2 (en) * 2012-11-07 2017-02-15 凸版印刷株式会社 Copper filling method of through hole by plating
JP2015029027A (en) * 2013-07-31 2015-02-12 イビデン株式会社 Printed wiring board
JP2017152492A (en) * 2016-02-23 2017-08-31 京セラ株式会社 Plating method and plating apparatus for printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093934A (en) * 2003-09-19 2005-04-07 Shinko Electric Ind Co Ltd Filling method into through-hole
KR101222627B1 (en) * 2004-09-20 2013-01-16 아토테크더치랜드게엠베하 Galvanic Process for Filling Through―Holes with Metals, in Particular of Printed Circuit Boards with Copper
KR20060078112A (en) * 2004-12-30 2006-07-05 삼성전기주식회사 Fill plating structure of inner via hole and manufacturing method thereof
JP2010077496A (en) * 2008-09-26 2010-04-08 New Japan Radio Co Ltd Throughhole filling method
KR101693588B1 (en) * 2016-04-21 2017-01-17 한국생산기술연구원 Organic additive for electrolytic copper plating including two types of leveler and electrolytic copper plating solution including the same

Also Published As

Publication number Publication date
JP2023504254A (en) 2023-02-02
CN115053641A (en) 2022-09-13
KR102215846B9 (en) 2022-04-11
KR20210065836A (en) 2021-06-04
KR102215846B1 (en) 2021-02-16
KR102279855B1 (en) 2021-07-21
JP7438578B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2017159965A1 (en) Organic additive for electrolytic copper plating for forming high-flatness copper-plated film and electrolytic copper plating solution containing same
KR100659544B1 (en) Via-filling process
WO2017052002A1 (en) Organic additive for electrolytic copper plating comprising two types of levelers, and electrolytic copper plating solution containing same
WO2011028004A2 (en) Copper foil for an embedded pattern for forming a microcircuit
TWI410530B (en) Deposition of conductive polymer and metallization of non-conductive substrates
WO2012091373A2 (en) Method for manufacturing printed circuit board
KR20020093584A (en) Electrolytic copper plating method
US20050121314A1 (en) Electrolytic plating method and device for a wiring board
WO2021107409A1 (en) Method for filling via hole of circuit board and circuit board manufactured using same
WO2018151530A1 (en) Circuit forming method using selective etching of electrically conductive metal thin film seed layer and etching solution composition
JP3780302B2 (en) Method for plating substrate having via hole and through hole
CN105189827A (en) Method for depositing thick copper layers onto sintered materials
WO2018074883A1 (en) Silicon through-electrode void-free filling method and copper plating solution used in filling method
WO2023008963A1 (en) Leveling agent, and electroplating composition comprising same for filling via hole
WO2023008958A1 (en) Leveling agent and electroplating composition comprising same for filling via hole
TW202003926A (en) High flat copper electroplating method and copper electroplating product
WO2023013987A1 (en) A leveling agent and an electroplating composition including the same
GB2070647A (en) Selective chemical deposition and/or electrodeposition of metal coatings, especially for the production of printed circuits
KR20120095888A (en) Copper electroplating composition
WO2021241865A1 (en) Electrolytic nickel plating surface modifier and electrolytic nickel plating solution comprising same
WO2023096314A1 (en) Method for forming circuit pattern on substrate by using metal foil with low surface roughness
KR102526076B1 (en) Hole filling method of circuit board using different species metal
KR0156989B1 (en) High strength electrolytic copper foil
CN117460181B (en) PCB manufacturing process with high copper plating uniformity
KR20230131124A (en) Method of filling through-holes to reduce voids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531644

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892586

Country of ref document: EP

Kind code of ref document: A1