WO2021107340A1 - 자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬 - Google Patents

자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬 Download PDF

Info

Publication number
WO2021107340A1
WO2021107340A1 PCT/KR2020/011365 KR2020011365W WO2021107340A1 WO 2021107340 A1 WO2021107340 A1 WO 2021107340A1 KR 2020011365 W KR2020011365 W KR 2020011365W WO 2021107340 A1 WO2021107340 A1 WO 2021107340A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure roller
unit
carbon fiber
thermoplastic
fiber tape
Prior art date
Application number
PCT/KR2020/011365
Other languages
English (en)
French (fr)
Inventor
강정석
강창수
정근성
고관호
오윤
Original Assignee
재단법인 한국탄소융합기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소융합기술원 filed Critical 재단법인 한국탄소융합기술원
Publication of WO2021107340A1 publication Critical patent/WO2021107340A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts

Definitions

  • the present invention relates to an automatic fiber laminating apparatus and an aircraft thermoplastic reinforcing panel manufactured using the same.
  • thermoplastic carbon fiber tape is cut and placed on a mold, and the cut thermoplastic carbon fiber tape is heated and pressurized to produce a carbon fiber reinforced composite. There is a way.
  • the automatic fiber lamination apparatus includes a cutting unit for cutting the thermoplastic carbon fiber tape and placing it on a mold, a heating unit for heating the cut thermoplastic carbon fiber tape, and a pressure roller for pressing the heated thermoplastic carbon fiber tape.
  • the carbon fiber-reinforced composite material has a curved portion as well as a flat portion, when the pressure roller presses the thermoplastic carbon fiber tape, the pressure roller must be elastically deformed along the curve.
  • the pressure roller is made of a flexible material such as polyurethane.
  • a pressure roller made of a hard material there is a problem in that it is more susceptible to thermal deformation than a pressure roller made of a hard material.
  • thermoplastic carbon fiber tape For example, PEEK (polyether ether ketone), a thermoplastic resin included in the thermoplastic carbon fiber tape, has a melting temperature of 400°C. For this reason, if the heating unit heats the thermoplastic carbon fiber tape to a temperature reaching 400° C., and repeats the process of pressing the heated thermoplastic carbon fiber tape by the pressure roller, as shown in FIG. 1, the pressure roller is subjected to thermal shock. deformed, cracked, and burned.
  • Ash produced by burning the pressure roller flows into the carbon fiber-reinforced composite material, and deteriorates the quality of the carbon fiber-reinforced composite material. In addition, the cost due to frequent replacement of the pressure roller damaged by thermal shock increases.
  • Another object of the present invention is to provide a high-quality aircraft thermoplastic reinforcing panel manufactured by the automatic fiber lamination apparatus described above.
  • thermoplastic carbon fiber tape a thermoplastic carbon fiber tape
  • a robot unit for moving the head unit to a set position
  • It is installed in the head unit, characterized in that it comprises a cooling unit for cooling the pressure roller by spraying air toward the pressure roller.
  • thermoplastic reinforcing panel manufactured using such an automatic fiber laminating device.
  • the cooling unit provided in the automatic fiber lamination apparatus cools the pressure roller by spraying air toward the pressure roller. For this reason, even if the pressure roller repeats the process of pressing the thermoplastic carbon fiber tape, the pressure roller is deformed by thermal shock, cracks, and the surface is not burned. In addition, the ash generated by burning the pressure roller does not flow into the carbon fiber reinforced composite material, thereby degrading the quality of the carbon fiber reinforced composite material, so that a reinforcing panel of excellent quality can be manufactured. In addition, since the replacement cycle of the pressure roller can be increased, it is possible to prevent costly waste due to frequent replacement of the damaged pressure roller.
  • the present invention installs planar heating elements on the lower surface of the mold in order to reduce the temperature difference between the upper side and the lower side of the aircraft thermoplastic reinforcing panel under manufacture when making an aircraft thermoplastic reinforcing panel with this automatic fiber lamination device. Due to this, it is possible to strengthen the interlayer adhesion, it is possible to produce a high-quality aircraft thermoplastic reinforcing panel.
  • 1 is a photograph taken before and after damage to a conventional pressure roller.
  • FIG. 2 is a view showing an automatic fiber laminating apparatus according to an embodiment of the present invention.
  • FIG. 3 is an enlarged view of the head unit and the cooling unit shown in FIG. 2 .
  • FIG. 4 is an actual photograph of the pressure roller and the cooling unit shown in FIG. 2 .
  • FIG. 5 is an enlarged view of the pressure roller and the cooling unit shown in FIG. 3 .
  • FIG. 6 is an enlarged view of the nozzle and the guide shown in FIG. 4 .
  • FIG. 7 is a view showing a cooling unit according to a modified example.
  • FIG. 9 is a view showing a planar heating element installed on the lower surface of the mold and a control unit for controlling the temperature thereof.
  • FIG. 10 is a view showing a mold according to a first modification.
  • FIG. 11 is a view showing a mold according to a second modification.
  • the automatic fiber lamination apparatus 10 includes a supply unit 100 , a head unit 200 , a robot unit 300 , and a cooling unit 400 . do.
  • the supply unit 100 supplies the thermoplastic carbon fiber tape T to the head unit 200 .
  • the supply unit 100 is composed of a frame, a cover, a bobbin, a motor, a power source, an electric wire, and the like.
  • the supply unit 100 may be configured in various ways using known techniques.
  • the thermoplastic carbon fiber tape (T) is composed of carbon fibers and a thermoplastic resin.
  • the thermoplastic carbon fiber tape (T) is a tape impregnated with a thermoplastic resin in a state in which carbon fibers are arranged in one direction.
  • a thermoplastic resin PPS, PEI, PEEK, PEKK, etc. are used.
  • thermosetting resins have higher toughness than thermosetting resins, so they have high damage resistance and shock absorption capacity. Therefore, it is suitable for manufacturing aircraft reinforcement panels.
  • thermoplastic resin can be repeatedly melted, allowing re-molding, and has a high operating temperature (180°C).
  • thermoplastic resins have the advantages of excellent incombustibility, faster processing time (within minutes) than thermosetting resins, and storage at room temperature. Due to these advantages, in the present invention, a thermoplastic carbon fiber tape (T) is used.
  • the head unit 200 cuts the thermoplastic carbon fiber tape T supplied from the supply unit 100, puts it on the mold 11, heats it with a laser to melt the thermoplastic resin, and presses it with a pressure roller 231 By repeating this, a carbon fiber-reinforced composite material having a shape and thickness set on the mold 11 is produced.
  • the mold 11 is made of a ceramic or metal material.
  • the head unit 200 includes a cutting unit 210 , a laser unit 220 , and a pressing unit 230 .
  • the cutting unit 210 cuts the thermoplastic carbon fiber tape T to a set length.
  • the cutting unit 210 is composed of a frame, a cover, a blade, a motor, a link, a power source, an electric wire, and the like.
  • the cut portion 210 may be variously configured using known techniques.
  • the laser unit 220 melts the thermoplastic resin contained in the thermoplastic carbon fiber tape (T) by irradiating a laser to the thermoplastic carbon fiber tape (T).
  • the laser unit 220 is composed of a frame, a cover, a laser generator, a power source, an electric wire, a cable bear, and the like.
  • the laser unit 220 may be variously configured using known techniques.
  • the laser unit 220 adjusts the laser output according to the speed at which the robot unit 300 moves the head unit 200 .
  • the robot unit 300 increases the speed of the head unit 200 in the section where the shape of the carbon fiber reinforced composite material is gentle, and reduces the speed of the head unit 200 in the section where the shape is abruptly changed.
  • the laser output is increased to melt the thermoplastic resin in a short time
  • the output of the laser is lowered to melt the thermoplastic resin over a relatively long time
  • the pressing unit 230 includes a pressing roller 231 for pressing the thermoplastic carbon fiber tape (T) heated by irradiating the laser.
  • the pressing unit 230 is composed of a frame, a cover, and the like.
  • the pressing unit 230 may be variously configured using known techniques.
  • the pressure roller 231 is made of a flexible material that is elastically deformable by compression.
  • Flexible materials include non-expandable elastomeric materials such as silicones, polysiloxanes, and polyurethanes.
  • the robot unit 300 moves the head unit 200 to a set position.
  • the robot unit 300 is composed of a frame, a cover, a motor, a link, a power source, an electric wire, a cable bear, and the like.
  • the robot unit 300 may be configured in various ways using known techniques.
  • the cooling unit 400 is installed in the head unit 200 to cool the pressure roller 231 by spraying air toward the pressure roller 231 .
  • the cooling unit 400 is disposed on both sides with the pressure roller 231 interposed therebetween.
  • the cooling unit 400 includes a nozzle 410 and a guide 420 .
  • the cooling unit 400 adjusts the amount of air injected from the nozzle 410 according to the output of the laser unit 220 .
  • the temperature of the pressure roller 231 is also increased to increase the amount of air injected from the nozzle 410 to the pressure roller 231, If the temperature at which the laser unit 220 heats the thermoplastic carbon fiber tape T is low, the temperature of the pressure roller 231 is also lowered to reduce the amount of air injected into the nozzle 410 by the pressure roller 231 .
  • the nozzle 410 is disposed obliquely toward the pressure roller 231, and sprays air.
  • a slit 411 through which air is sprayed is long formed at the lower end of the nozzle 410 .
  • the width and length of the slit 411 may vary depending on the length of the pressure roller 231 .
  • discharge holes 411 ′ through which air is sprayed are formed at regular intervals at the lower end of the nozzle 410 .
  • the diameter and number of the discharge holes 411 ′ may vary depending on the length of the pressure roller 231 .
  • Guide 420 is installed at the end of the nozzle 410, the air sprayed toward the pressure roller 231, not toward the thermoplastic carbon fiber tape (T), as in the direction of the arrow shown in Fig. 5, the pressure roller (231) is made to face the upper side. The reason is that, when the air injected from the nozzle 410 is directed toward the thermoplastic carbon fiber tape T, the thermoplastic carbon fiber tape T heated by the laser is rapidly cooled, so that the thermoplastic resin is not easily melted. Because. Thanks to this guide 420, the surface temperature of the pressure roller 231 falls rapidly, while the temperature of the thermoplastic carbon fiber tape T does not fall.
  • the distance between the nozzle 410 and the pressure roller 231 is adjusted according to the temperature of the pressure roller 231 . For this reason, according to the temperature of the pressure roller 231 , the position at which the air is sprayed is precisely controlled, and the optimum cooling position of the pressure roller 231 can be found.
  • a temperature sensor (not shown) for measuring the temperature of the pressure roller 231 , a driving unit 412 , an elastic body 413 , and a stopper 414 are further installed in the head unit 200 .
  • the driving unit 412 adjusts the distance between the nozzle 410 and the pressure roller 231 by rotating the nozzle 410 .
  • the stopper 414 prevents the nozzle 410 from hitting the pressure roller 231 . Nevertheless, when the nozzle 410 collides with the pressure roller 231 , the elastic body 413 absorbs the impact.
  • the pressure roller of the conventional automatic fiber laminating apparatus is deformed, cracked, and burned due to thermal shock, so that not only the release film but also the carbon fiber-reinforced composite material is contaminated.
  • FIG. 8(b) since the pressure roller 231 of the automatic fiber lamination apparatus according to the present invention is sufficiently cooled by the cooling unit 400, this phenomenon does not occur. Therefore, the release film and the carbon fiber-reinforced composite are not contaminated, and a high-quality carbon fiber-reinforced composite can be manufactured.
  • the mold 11 is covered with a protective film 12 .
  • the protective film 12 is made of polyimide, Teflon, etc., which can withstand a temperature of 350° C. or higher at which the thermoplastic resin melts.
  • planar heating elements 13 are installed on the lower surface of the mold.
  • the planar heating elements 13 are respectively installed for each zone of the mold 11 .
  • the mold 11 is divided into zones A, B, C, D, E, F, G, H, and I.
  • the planar heating elements 13 are, the planar heating element 13a installed in the A zone, the planar heating element 13b installed in the B zone, the planar heating element 13c installed in the C zone, the planar heating element 13d installed in the D zone, the E zone It consists of a planar heating element (13e) installed in area F, a planar heating element installed in area F (13f), a planar heating element installed in area G (13g), a planar heating element installed in area H (13h), and a planar heating element (13i) installed in area I .
  • Each of the planar heating elements 13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h, 13i is a power supply unit for supplying electricity to the two insulating layers, the heating layer disposed between the two insulating layers, and the heating layer is composed
  • the insulating layer is made of a polymer material or rubber.
  • the heating layer is composed of a nichrome wire disposed between two insulating layers, carbon black applied to the inner surface of the two insulating layers, or carbon fibers randomly distributed between the insulating layers.
  • the power supply supplies electricity to the nichrome wire, carbon black, and carbon fibers, the nichrome wire, carbon black, and carbon fibers generate heat.
  • the mold 11 may be divided into more zones, and accordingly, the number, size and arrangement of the planar heating elements 13 may be varied.
  • the control unit 14 controls the temperature for each zone of the mold 11 by adjusting the temperature of each of the planar heating elements 13 . To this end, the control unit 14 adjusts the amount of electricity supplied to the nichrome wire, carbon black, and carbon fibers to control the amount of heat generated by the nichrome wire, carbon black, and carbon fibers. In this way, by controlling the temperature for each zone of the mold 11, the temperature difference between the upper side and the lower side of the aircraft thermoplastic reinforcing panel being manufactured is reduced.
  • the planar heating elements 13 arranged for each zone of the mold 11 by placing vacuum suction holes 11 a at the zone boundary of the mold 11 . ) can inhibit mutual heat transfer. For this reason, it is possible to more precisely control the temperature for each zone of the mold 11 .
  • thermoplastic reinforcing panel is made directly on the mold (11).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

본 발명에 따르면, 자동섬유적층장치에 구비된 냉각유닛이 가압롤러를 향해 공기를 분사하여 가압롤러를 냉각시킨다. 이로 인해, 가압롤러가 열가소성 탄소섬유테이프를 가압하는 과정을 반복하더라도, 가압롤러가 열 충격으로 변형되고 갈라지고 표면이 타는 현상이 발생하지 않는다. 또한, 가압롤러가 타서 생긴 재(ash)가 탄소섬유강화복합재로 유입되어, 탄소섬유강화복합재의 품질을 저하시키는 일이 발생하지 않아, 우수한 품질의 보강판넬을 만들 수 있다. 또한, 가압롤러의 교체주기를 늘릴 수 있어, 손상된 가압롤러의 잦은 교체로 인한 비용 낭비를 방지할 수 있다.

Description

자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬
본 발명은 자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬에 관한 것이다.
탄소섬유강화복합재를 만드는 다양한 방법 중에, 자동섬유적층장치(Automated Fiber Placement Machine)로, 몰드 상에서 열가소성 탄소섬유테이프를 절단하여 놓고, 절단된 열가소성 탄소섬유테이프를 가열 및 가압하여 탄소섬유강화복합재를 만드는 방법이 있다.
이를 위해, 자동섬유적층장치는, 열가소성 탄소섬유테이프를 절단하여 몰드에 올려놓는 절단부와, 절단된 열가소성 탄소섬유테이프를 가열하는 가열부와, 가열된 열가소성 탄소섬유테이프를 가압하는 가압롤러를 구비한다.
탄소섬유강화복합재에는 평면부 뿐만 아니라 곡면부가 존재하므로, 가압롤러가 열가소성 탄소섬유테이프를 가압시, 가압롤러는 굴곡을 따라 탄성적으로 변형되어야 한다.
이를 위해, 가압롤러는 폴리우레탄과 같은 가요성 재료로 만들어진다. 이 경우, 딱딱한 재질로 만들어진 가압롤러 보다, 열 변형에 취약하다는 문제가 발생한다.
일 예로, 열가소성 탄소섬유테이프에 포함된 열가소성 수지인 PEEK(폴리에테르에테르케톤)는, 그 용융온도가 400℃에 달한다. 이로 인해, 가열부가 400℃에 달하는 온도로 열가소성 탄소섬유테이프를 가열하고, 이렇게 가열된 열가소성 탄소섬유테이프를 가압롤러가 가압하는 과정을 반복하면, 도 1에 도시된 바와 같이, 가압롤러가 열 충격으로 변형되고 갈라지고 타게 된다.
가압롤러가 타서 생긴 재(ash)는 탄소섬유강화복합재로 유입되어, 탄소섬유강화복합재의 품질을 저하시킨다. 또한, 열 충격으로 손상된 가압롤러의 잦은 교체로 인한 비용이 증가한다.
본 발명의 목적은 상술한 문제점을 해결할 수 있는 자동섬유적층장치를 제공하는 데 있다.
본 발명의 다른 목적은 상술한 자동섬유적층장치로 제조된 고품질의 항공기 열가소성 보강판넬을 제공하는 데 있다.
상기 목적을 달성하기 위한 자동적층장치는,
열가소성 탄소섬유테이프를 공급하는 공급유닛;
상기 공급유닛으로부터 공급받은 상기 열가소성 탄소섬유테이프를 절단하여 몰드에 올려놓는 절단부와, 상기 절단된 열가소성 탄소섬유테이프에 레이저를 조사하여 가열하는 레이저부와, 상기 레이저가 조사되어 가열된 열가소성 탄소섬유테이프를 가압하는 가압롤러를 구비한 가압부를 포함하는 헤드유닛;
상기 헤드유닛을 설정된 위치로 이동시키는 로봇유닛; 및
상기 헤드유닛에 설치되며, 상기 가압롤러를 향해 공기를 분사하여 상기 가압롤러를 냉각시키는 냉각유닛을 포함하는 것을 특징으로 한다.
또한, 상기 다른 목적은, 이러한 자동섬유적층장치를 이용하여 제조된 항공기 열가소성 보강판넬에 의해서 달성된다.
본 발명에 따르면, 자동섬유적층장치에 구비된 냉각유닛이 가압롤러를 향해 공기를 분사하여 가압롤러를 냉각시킨다. 이로 인해, 가압롤러가 열가소성 탄소섬유테이프를 가압하는 과정을 반복하더라도, 가압롤러가 열 충격으로 변형되고 갈라지고 표면이 타는 현상이 발생하지 않는다. 또한, 가압롤러가 타서 생긴 재(ash)가 탄소섬유강화복합재로 유입되어, 탄소섬유강화복합재의 품질을 저하시키는 일이 발생하지 않아, 우수한 품질의 보강판넬을 만들 수 있다. 또한, 가압롤러의 교체주기를 늘릴 수 있어, 손상된 가압롤러의 잦은 교체로 인한 비용 낭비를 막을 수 있다.
본 발명은, 이러한 자동섬유적층장치로 항공기 열가소성 보강판넬을 만들 때, 제조 중인 항공기 열가소성 보강판넬의 상측과 하측의 온도 차이를 줄이기 위해, 몰드의 하면에 면상발열체들을 설치한다. 이로 인해, 층간 접착력을 강화시킬 수 있어, 고품질의 항공기 열가소성 보강판넬을 만들어낼 수 있다.
도 1은 종래 가압롤러의 손상 전과 후를 찍은 사진이다.
도 2는 본 발명의 일 실시예에 따른 자동섬유적층장치를 나타낸 도면이다.
도 3은 도 2에 도시된 헤드유닛과 냉각유닛을 확대한 도면이다.
도 4는 도 2에 도시된 가압롤러와 냉각유닛의 실제 사진이다.
도 5는 도 3에 도시된 가압롤러와 냉각유닛을 확대한 도면이다.
도 6은 도 4에 도시된 노즐과 가이드의 확대도이다.
도 7은 변형예에 따른 냉각유닛을 나타낸 도면이다.
도 8은 종래 자동섬유적층장치로 만들어진 탄소섬유강화복합재와, 본 발명에 따른 자동섬유적층장치로 만들어진 탄소섬유강화복합재를 비교한 사진이다.
도 9는 몰드의 하면에 설치된 면상발열체와 이의 온도를 제어하는 제어부를 나타낸 도면이다.
도 10은 제1변형예에 따른 몰드를 나타낸 도면이다.
도 11은 제2변형예에 따른 몰드를 나타낸 도면이다.
이하, 본 발명의 일 실시예에 따른 자동섬유적층장치를 자세히 설명한다.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 자동섬유적층장치(10)는, 공급유닛(100), 헤드유닛(200), 로봇유닛(300), 냉각유닛(400)으로 구성된다.
공급유닛(100)은 헤드유닛(200)으로 열가소성 탄소섬유테이프(T)를 공급한다. 공급유닛(100)은 프레임, 커버, 보빈, 모터, 전원, 전선 등으로 구성된다. 물론, 공급유닛(100)은 공지된 기술을 사용하여 다양하게 구성될 수 있다.
열가소성 탄소섬유테이프(T)는 탄소섬유와 열가소성수지로 구성된다. 열가소성 탄소섬유테이프(T)는 탄소섬유가 일방향으로 배치된 상태에서 열가소성수지가 함침된 테이프다. 열가소성 수지로는 PPS, PEI, PEEK, PEKK 등이 사용된다.
열가소성수지는 열경화성 수지에 비해서 높은 인성을 가지고 있어 높은 손상 저항과 충격 흡수 능력을 가진다. 따라서, 항공기 보강판넬 제작에 적합하다. 또한, 열가소성수지는 반복적으로 녹일 수 있어 재 성형이 가능하고, 높은 사용온도(180℃)를 가진다. 또한, 열가소성수지는 우수한 불연성, 열경화성수지 보다 빠른 공정시간(수분 내), 실온에서 보관할 수 있는 장점을 가지고 있다. 이러한 장점으로 인해, 본 발명에서는 열가소성 탄소섬유테이프(T)가 사용된다.
헤드유닛(200)은 공급유닛(100)로부터 공급받은 열가소성 탄소섬유테이프(T)를, 절단하여 몰드(11) 위에서 올려놓고, 레이저로 가열하여 열가소성 수지를 녹이고, 가압롤러(231)로 가압하는 것을 반복하여, 몰드(11) 위에 설정된 형상과 두께를 가진 탄소섬유강화복합재를 만들어낸다. 몰드(11)는 세라믹이나 금속 재질로 만들어진다.
도 3에 도시된 바와 같이, 헤드유닛(200)은 절단부(210), 레이저부(220), 가압부(230)로 구성된다.
절단부(210)는 열가소성 탄소섬유테이프(T)를 설정된 길이로 절단한다. 절단부(210)는 프레임, 커버, 칼날, 모터, 링크, 전원, 전선 등으로 구성된다. 물론, 절단부(210)는 공지된 기술을 사용하여 다양하게 구성될 수 있다.
레이저부(220)는 열가소성 탄소섬유테이프(T)에 레이저를 조사하여 열가소성 탄소섬유테이프(T)에 포함된 열가소성 수지를 녹인다. 레이저부(220)는 프레임, 커버, 레이저발생기, 전원, 전선, 케이블베어 등으로 구성된다. 물론, 레이저부(220)는 공지된 기술을 사용하여 다양하게 구성될 수 있다.
레이저부(220)는 로봇유닛(300)이 헤드유닛(200)을 움직이는 속도에 따라 레이저 출력을 조절한다. 일 예로, 로봇유닛(300)은 탄소섬유강화복합재의 형상이 완만한 구간에서는 헤드유닛(200)의 속도를 높이고, 급격한 형상 변경 구간에서는 헤드유닛(200)의 속도를 줄인다.
이 경우, 헤드유닛(200)의 속도가 빠른 구간에서는 레이저의 출력을 높여 짧은 시간 내에 열가소성 수지를 녹이고, 속도가 느린 구간에서는 레이저의 출력을 낮춰 상대적 긴 시간을 가지고 열가소성 수지를 녹인다.
가압부(230)는 레이저가 조사되어 가열된 열가소성 탄소섬유테이프(T)를 가압하는 가압롤러(231)를 포함한다. 이 밖에 가압부(230)는 프레임, 커버 등으로 구성된다. 물론, 가압부(230)는 공지된 기술을 사용하여 다양하게 구성될 수 있다.
가압롤러(231)는 압축에 의해 탄성적으로 변형 가능한 가요성 재료로 만들어진다. 가요성 재료로, 실리콘, 폴리실록산, 폴리우레탄과 같은 비팽창 탄성 중합체 재료가 있다.
로봇유닛(300)은 헤드유닛(200)을 설정된 위치로 이동시킨다. 로봇유닛(300)은 프레임, 커버, 모터, 링크, 전원, 전선, 케이블베어 등으로 구성된다. 물론, 로봇유닛(300)은 공지된 기술을 사용하여 다양하게 구성될 수 있다.
냉각유닛(400)은 헤드유닛(200)에 설치되어, 가압롤러(231)를 향해 공기를 분사하여 가압롤러(231)를 냉각시킨다.
도 4 및 도 5에 도시된 바와 같이, 냉각유닛(400)은 가압롤러(231)를 사이에 두고 양 쪽에 각각 배치된다.
냉각유닛(400)은 노즐(410)과 가이드(420)로 구성된다.
냉각유닛(400)은 레이저부(220)의 출력에 따라 노즐(410)에서 분사되는 공기의 분사량을 조절한다.
즉, 레이저부(220)가 열가소성 탄소섬유테이프(T)를 가열하는 온도가 높다면 가압롤러(231)의 온도도 높아져 노즐(410)에서 가압롤러(231)로 분사되는 공기의 분사량을 높이고, 레이저부(220)가 열가소성 탄소섬유테이프(T)를 가열하는 온도가 낮다면 가압롤러(231)의 온도도 낮아져 노즐(410)에 가압롤러(231)로 분사되는 공기의 분사량을 줄인다.
노즐(410)은 가압롤러(231)를 향해 비스듬히 경사지게 배치된 상태로, 공기를 분사한다.
도 6(a)에 도시된 바와 같이, 노즐(410)의 하면 끝단에는 공기가 분사되는 슬릿(411)이 길게 형성된다. 이러한, 슬릿(411)의 폭과 길이는 가압롤러(231)의 길이에 따라 달라질 수 있다.
또는, 도 6(b)에 도시된 바와 같이, 노즐(410)의 하면 끝단에는 공기가 분사되는 토출공(411')들이 일정간격으로 형성된다. 이러한, 토출공(411')의 직경과 개수는 가압롤러(231)의 길이에 따라 달라질 수 있다.
가이드(420)는 노즐(410)의 끝단에 설치되어, 가압롤러(231)를 향해 분사된 공기를, 열가소성 탄소섬유테이프(T) 쪽이 아닌, 도 5에 도시된 화살표 방향과 같이, 가압롤러(231)의 상부쪽을 향하게 만든다. 그 이유는, 노즐(410)에서 분사된 공기가, 열가소성 탄소섬유테이프(T) 쪽으로 향할 경우, 레이저에 의해 열을 받은 열가소성 탄소섬유테이프(T)가 급격하게 냉각되어, 열가소성 수지가 잘 녹지 않기 때문이다. 이러한 가이드(420) 덕분에, 가압롤러(231)의 표면온도는 신속히 떨어지는 반면, 열가소성 탄소섬유테이프(T)의 온도는 떨어지지 않게 된다.
한편, 도 7에 도시된 변형예에 따른 냉각유닛(400)에서는, 가압롤러(231)의 온도에 따라, 노즐(410)과 가압롤러(231)의 거리가 조절된다. 이로 인해, 가압롤러(231)의 온도에 따라, 공기가 분사되는 위치를 정밀하게 조절하여, 가압롤러(231)의 최적 냉각 위치를 찾을 수 있다.
이를 위해, 헤드유닛(200)에는, 가압롤러(231)의 온도를 측정하는 온도센서(미도시), 구동부(412), 탄성체(413), 스톱퍼(414)가 더 설치된다.
구동부(412)는 노즐(410)을 회전시켜 노즐(410)과 가압롤러(231) 사이 거리를 조절한다. 스톱퍼(414)는 노즐(410)이 가압롤러(231)에 부딪치는 것을 방지한다. 그럼에도 불구하고, 노즐(410)이 가압롤러(231)에 부딪치는 경우, 탄성체(413)가 그 충격을 흡수한다.
도 8(a)에 도시된 바와 같이, 종래 자동섬유적층장치의 가압롤러는 열 충격으로 변형되고 갈라지고 타므로, 이형필름은 물론 탄소섬유강화복합재까지 오염된다. 반면, 도 8(b)에 도시된 바와 같이, 본 발명에 따른 자동섬유적층장치의 가압롤러(231)는 냉각유닛(400)에 의해 충분히 냉각되므로 이러한 현상이 발생하지 않는다. 따라서, 이형필름 및 탄소섬유강화복합재가 오염되지 않아, 고품질의 탄소섬유강화복합재가 제작될 수 있다.
이하, 본 발명의 일 실시예에 따른 자동섬유적층장치로, 항공기 열가소성 보강판넬을 만드는 방법을 설명한다.
도 9에 도시된 바와 같이, 보호필름(12)으로 몰드(11)를 덮는다. 보호필름(12)은 열가소성 수지가 녹는 온도 350℃ 이상에서 견딜 수 있는, 폴리이미드, 테프론 등으로 만들어진다.
제조 중인 항공기 열가소성 보강판넬의 상측과 하측의 온도 차이를 줄여, 항공기 열가소성 보강판넬에 잔류응력이 남는 것을 막기 위해, 몰드의 하면에 면상발열체들(13)을 설치한다.
면상발열체들(13)은 몰드(11)의 구역별로 각각 설치된다.
일 예로, 도 9에 도시된 바와 같이, 몰드(11)는 A, B, C, D, E, F, G, H, I 구역으로 나뉜다.
면상발열체들(13)은, A구역에 설치된 면상발열체(13a), B구역에 설치된 면상발열체(13b), C구역에 설치된 면상발열체(13c), D구역에 설치된 면상발열체(13d), E구역에 설치된 면상발열체(13e), F구역에 설치된 면상발열체(13f), G구역에 설치된 면상발열체(13g), H구역에 설치된 면상발열체(13h), I구역에 설치된 면상발열체(13i)로 구성된다.
면상발열체들(13a,13b,13c,13d,13e,13f,13g,13h,13i) 각각은, 2장의 절연층, 2장의 절연층 사이에 배치된 발열층, 발열층에 전기를 공급하는 전원부로 구성된다. 절연층은 폴리머재질이나 고무로 만들어진다. 발열층은 2장의 절연층 사이에 배치된 니크롬선 또는, 2장의 절연층의 안쪽 표면에 도포된 카본블랙 또는, 절연층 사이에 무작위로 분포된 탄소섬유들로 구성된다. 전원부가 니크롬선, 카본블랙, 탄소섬유들에 전기를 공급하면, 니크롬선, 카본블랙, 탄소섬유들은 발열한다. 물론, 몰드(11)는 더 많은 구역으로 나눠질 수 있고, 이에 따라 면상발열체들(13)의 개수와 크기와 배치도 다양할 수 있다.
제어부(14)는 면상발열체들(13) 각각의 온도를 조절하여 몰드(11)의 구역별로 온도를 제어한다. 이를 위해, 제어부(14)는 니크롬선, 카본블랙, 탄소섬유들에 공급하는 전기의 양을 조절하여, 니크롬선, 카본블랙, 탄소섬유들의 발열량을 조절한다. 이러한 방식으로, 몰드(11)의 구역별로 온도를 제어하여, 제조 중인 항공기 열가소성 보강판넬의 상측과 하측의 온도 차이를 줄인다.
한편, 도 10(a) 및 도 10(b)에 도시된 바와 같이, 몰드(11)의 구역 경계에 진공흡입공(11a)들을 두어, 몰드(11)의 구역별로 배치된 면상발열체들(13) 상호간의 열전달을 억제할 수 있다. 이로 인해, 보다 정밀하게 몰드(11)의 구역별로 온도를 제어할 수 있다.
한편, 도 11(a) 및 도 11(b)에 도시된 바와 같이, 몰드(11)의 구역 경계에 진공슬릿(11b)들을 두어, 몰드(11)의 구역별로 배치된 면상발열체들(13) 상호간의 열전달을 억제할 수 있다. 이로 인해, 보다 정밀하게 몰드(11)의 구역별로 온도를 제어할 수 있다.
이렇게 몰드(11)의 구역별로 온도를 제어하면서, 도 3에 도시된 자동섬유적층장치(10)로, 보호필름(12) 위에 탄소섬유테이프(T)를 적층, 절단, 가압 및 가열하여, 항공기 열가소성 보강판넬을 몰드(11) 위에서 직접 만들어낸다.

Claims (5)

  1. 열가소성 탄소섬유테이프를 공급하는 공급유닛;
    상기 공급유닛으로부터 공급받은 상기 열가소성 탄소섬유테이프를 절단하여 몰드에 올려놓는 절단부와, 상기 절단된 열가소성 탄소섬유테이프에 레이저를 조사하여 가열하는 레이저부와, 상기 레이저가 조사되어 가열된 열가소성 탄소섬유테이프를 가압하는 가압롤러를 구비한 가압부를 포함하는 헤드유닛;
    상기 헤드유닛을 설정된 위치로 이동시키는 로봇유닛; 및
    상기 헤드유닛에 설치되며, 상기 가압롤러를 향해 공기를 분사하여 상기 가압롤러를 냉각시키는 냉각유닛을 포함하는 것을 특징으로 하는 자동섬유적층장치.
  2. 제1항에 있어서, 상기 냉각유닛은,
    상기 가압롤러를 향해 공기를 분사하는 노즐; 및
    상기 노즐에서 분사되는 공기를, 상기 몰드 위에 놓여진 상기 열가소성 탄소섬유테이프 쪽이 아닌, 상기 가압롤러의 상부 쪽으로 향하게 만드는 가이드로 구성된 것을 특징으로 하는 자동섬유적층장치.
  3. 제2항에 있어서,
    상기 노즐은 상기 가압롤러의 온도에 따라 상기 가압롤러와의 거리가 조절될 수 있게, 상기 헤드유닛에 회전 가능하게 설치된 것을 자동섬유적층장치.
  4. 제1항의 자동섬유적층장치로 제조된 항공기 열가소성 보강판넬.
  5. 제4항에 있어서, 상기 항공기 열가소성 보강판넬은,
    면상발열체들이 하면에 설치된 몰드 위에서 만들어진 것을 특징으로 하는 항공기 열가소성 보강판넬.
PCT/KR2020/011365 2019-11-27 2020-08-26 자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬 WO2021107340A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0154142 2019-11-27
KR1020190154142A KR102144682B1 (ko) 2019-11-27 2019-11-27 자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬

Publications (1)

Publication Number Publication Date
WO2021107340A1 true WO2021107340A1 (ko) 2021-06-03

Family

ID=72265609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011365 WO2021107340A1 (ko) 2019-11-27 2020-08-26 자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬

Country Status (2)

Country Link
KR (1) KR102144682B1 (ko)
WO (1) WO2021107340A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102144682B1 (ko) * 2019-11-27 2020-08-18 재단법인 한국탄소융합기술원 자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬
KR102345361B1 (ko) * 2020-10-27 2021-12-30 재단법인 한국섬유기계융합연구원 쵸프드피버 및 직물소재 적층 헤드장치
KR102322411B1 (ko) * 2020-11-02 2021-11-05 재단법인 한국탄소산업진흥원 항공기 날개 끝단 복합재 구조물 제조장치
KR102340607B1 (ko) * 2020-11-02 2021-12-17 재단법인 한국탄소산업진흥원 탄소섬유 강화 열가소성 보강판넬 제조장치
KR102340608B1 (ko) * 2020-11-02 2021-12-16 재단법인 한국탄소산업진흥원 탄소섬유 강화 열가소성 복합재 제조장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334573A (ja) * 2000-05-26 2001-12-04 Araco Corp 植物繊維と熱可塑性樹脂からなる積層材の製造装置及び製造方法
JP2003011234A (ja) * 2001-04-23 2003-01-15 Sekisui Chem Co Ltd 積層複合体の製造装置および製造方法
JP2011126011A (ja) * 2009-12-15 2011-06-30 Kao Corp シート融着体の製造方法及びレーザー式接合装置
KR20120078345A (ko) * 2010-12-31 2012-07-10 주식회사 효성 섬유보강 복합재료의 제조방법 및 그에 의해서 제조된 섬유보강 복합재료
KR102144682B1 (ko) * 2019-11-27 2020-08-18 재단법인 한국탄소융합기술원 자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934802B2 (ja) 1976-12-28 1984-08-24 伸洋 道前 腰裏地
JPS61279520A (ja) * 1985-06-06 1986-12-10 Nippon Sheet Glass Co Ltd 強化樹脂板連続製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334573A (ja) * 2000-05-26 2001-12-04 Araco Corp 植物繊維と熱可塑性樹脂からなる積層材の製造装置及び製造方法
JP2003011234A (ja) * 2001-04-23 2003-01-15 Sekisui Chem Co Ltd 積層複合体の製造装置および製造方法
JP2011126011A (ja) * 2009-12-15 2011-06-30 Kao Corp シート融着体の製造方法及びレーザー式接合装置
KR20120078345A (ko) * 2010-12-31 2012-07-10 주식회사 효성 섬유보강 복합재료의 제조방법 및 그에 의해서 제조된 섬유보강 복합재료
KR102144682B1 (ko) * 2019-11-27 2020-08-18 재단법인 한국탄소융합기술원 자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬

Also Published As

Publication number Publication date
KR102144682B1 (ko) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2021107340A1 (ko) 자동섬유적층장치 및 이를 이용해 제조된 항공기 열가소성 보강판넬
US6761783B2 (en) Process method to repair bismaleimide (BMI) composite structures
CN102648082B (zh) 包括具有热调节系统的挠性压紧辊的纤维施加机
KR101787783B1 (ko) 고온 복합재료 공구
US5126000A (en) Method and apparatus of molding laminated plates
US6861017B1 (en) Method for forming composite parts from volatile-emitting materials using breathable tooling
CN111032314B (zh) 用于增材制造物品的打印头
JP5604445B2 (ja) 複合構造を作製するためのプロセス及び装置
CN102317055A (zh) 用于对纤维增强的热塑性材料施压的施压设备、纤维布置设备以及用于布置纤维增强的热塑性材料的方法
US20130122764A1 (en) Apparatus for Resin Transfer Molding Composite Parts
US11173654B2 (en) Method for fabricating multi-material structure for 3D integrated composite structures
WO2011114592A1 (ja) 炭素繊維基材の切断方法
KR20140045583A (ko) 재생 탄소 섬유의 제조 장치 및 재생 탄소 섬유의 제조 방법
WO2010103491A1 (en) Electrical heating and air cooling system for mold
US20180093433A1 (en) Fiber application head with an infrared heating system
KR102024309B1 (ko) 경항공기 일체형 수평꼬리날개 제작방법
IL131210A (en) Thermal welding of fiber reinforced thermoplastic prepreg
NO953816L (no) Fremgangsmåte og anordning for fremstilling av termoplastplater forsterket med glassfibermatte
WO2020091267A1 (ko) 항공기 열가소성 보강판넬 제조장치 및 방법
RU2715662C1 (ru) Способ и устройство для производства композитного материала
JPH02188240A (ja) 繊維強化熱可塑性複合体―金属箔ラミネートの製造方法
WO2017146362A1 (ko) 섬유강화 복합재의 제조장치
WO2021132752A1 (ko) 복합재 제작용 프리폼 성형 장치 및 복합재 제작용 프리폼 성형 방법
KR102160094B1 (ko) 수평꼬리날개 제조장치 및 이를 이용해 제조된 수평꼬리날개
WO2014098356A1 (ko) 복합재료 제조 장치와, 이를 사용하여 제조되는 복합재료, 복합재료 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894370

Country of ref document: EP

Kind code of ref document: A1