WO2021107249A1 - Method for manufacturing prestressed girder for improvement of transverse curvature, and method for constructing girder bridge thereby - Google Patents

Method for manufacturing prestressed girder for improvement of transverse curvature, and method for constructing girder bridge thereby Download PDF

Info

Publication number
WO2021107249A1
WO2021107249A1 PCT/KR2019/017603 KR2019017603W WO2021107249A1 WO 2021107249 A1 WO2021107249 A1 WO 2021107249A1 KR 2019017603 W KR2019017603 W KR 2019017603W WO 2021107249 A1 WO2021107249 A1 WO 2021107249A1
Authority
WO
WIPO (PCT)
Prior art keywords
girder
tension
tension force
prestressed girder
prestressed
Prior art date
Application number
PCT/KR2019/017603
Other languages
French (fr)
Korean (ko)
Inventor
구민세
구호원
Original Assignee
주식회사 엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠에스 filed Critical 주식회사 엠에스
Publication of WO2021107249A1 publication Critical patent/WO2021107249A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed

Definitions

  • the present invention relates to a manufacturing method of a prestressed girder in which some strands are divided into two or more tensions to improve lateral curvature, and a method for constructing a girder bridge using the same, and more particularly, transverse curvature occurs when prestress is introduced into the girder. It relates to a method of manufacturing a prestressed girder for improvement of lateral curvature that can minimize lateral curvature and a construction method of a girder bridge using the same.
  • a girder using a tension strand has been developed and used to prevent deformation or deflection of the structure due to load.
  • a girder (hereinafter, abbreviated as "PS girder") that introduces a compressive stress by such a stranded wire is classified according to the composition of the material constituting the girder.
  • the PS girder is a prestressed concrete girder (PSC girder) composed of only concrete without a steel I-girder, and a prestressed steel with a steel I-girder having a predetermined stiffness inside the concrete section. It is classified as a Prestressed Steel Composite Girder.
  • the PS girder refers to a beam in which a compressive stress (prestress) is introduced in advance through a tension member disposed inside the cross section in order to offset the tensile stress occurring in the concrete by its own weight and external load.
  • a compressive stress pretress
  • FIG. 1 is a front view showing a domestic standard cross-section PSC beam used as a bridge girder.
  • FIG. 2 is a cross-sectional view showing the arrangement of the tension member in the central portion of the PSC beam of FIG.
  • the tension member is fixed at the end of the beam and a large concentrated load is applied, so a large concrete cross section is required. Therefore, as shown in Fig. 1, since a large acupressure stress is generated at the anchoring position, anchoring tools are vertically arranged in a line on the cross section of the concrete beam. This is to secure a large anchoring cross-section capable of resisting acupressure stress, and to respond to an external force moment generated in a parabolic shape.
  • the tension member is disposed at the lower part of the section as far away from the horizontal neutral axis (HNA) as possible through the center of the concrete section. Therefore, when each tension member is sequentially tensioned, the tension members 13 and 14 arranged eccentrically on the vertical neutral axis (VNA) generate an eccentric load, and thus have a structural defect in which transverse curvature occurs.
  • the transverse stiffness of the beam (the stiffness of the beam resisting transverse bending) must be increased to prevent transverse bending or to fabricate the PS beam within an allowable transverse displacement.
  • the cross-section is enlarged, its own weight is greatly increased, which tends to become uneconomical. Therefore, there is a need for a method capable of minimizing lateral curvature while increasing the stiffness of the cross section to a minimum.
  • the recently improved PS beam minimizes its own weight and selects the optimal cross-section that maximizes the flexural rigidity, so the cross-section is very small and the height is low, so the lateral rigidity is very small.
  • the reality is that there is a high risk of damage and safety accidents, as well as a decrease in the load-bearing capacity of the bridge and the occurrence of a collapse accident during construction or construction of beams due to transverse bending.
  • the first object of the present invention is to effectively suppress the transverse curvature of the girder that occurs when the prestress is introduced. Therefore, the prestressed girder is manufactured by dividing the tension of the left and right strands causing eccentricity to improve the transverse curvature. is to provide a way.
  • a second object of the present invention is to provide a method of constructing a girder bridge using a method of manufacturing a prestressed girder for improving transverse curvature so as to secure stability against transverse curvature during construction of the girder bridge.
  • a method for tensioning a girder in which two or more side strands disposed on the left and right of a girder vertical neutral axis (VNA) are installed the side strands are to be connected
  • a beam production step of manufacturing a beam by installing two or more anchorages, a first tension force introduction step of tensioning the first side stranded wire with a first tension force that is less than the design tension force, and a first tension force that exceeds the first tension force and is less than the design tension force
  • an embodiment of the present invention provides a construction method of a girder bridge using the manufacturing method of the prestressed girder for improving the lateral curvature described above.
  • the initial strand can be used as it is because the strand is tensioned multiple times at a level that is not damaged.
  • the present invention makes it possible to manufacture a high-quality PS girder that minimizes the amount of lateral curvature, which is a problem, especially when lengthening the span.
  • FIG. 1 is a front view showing a domestic standard cross-section PSC beam used as a bridge girder.
  • Figure 2 is a cross-sectional view showing the arrangement of the tension member in the central portion of the PSC beam of Figure 1;
  • FIG. 3 is a flowchart for explaining a method of manufacturing a PS girder according to the present invention.
  • Figure 4 is a perspective view for explaining the PS girder according to the present invention.
  • FIG. 5 is a cross-sectional view showing a first embodiment of the PS girder according to the present invention.
  • FIG. 6 is a cross-sectional view showing a second embodiment of the PS girder according to the present invention.
  • FIG. 7 is a cross-sectional view showing a third embodiment of the PS girder according to the present invention.
  • FIG. 8 is a cross-sectional view showing the arrangement of the tension member in the central part of the PS girder of FIG.
  • FIG. 9 is a cross-sectional view showing a fourth embodiment of the PS girder according to the present invention.
  • FIG. 10 is a cross-sectional view showing a fifth embodiment of the PS girder according to the present invention.
  • FIG. 11 is a cross-sectional view showing a sixth embodiment of the PS girder according to the present invention.
  • FIG. 12 is a cross-sectional view showing a seventh embodiment of the PS girder according to the present invention.
  • FIG. 13 is a cross-sectional view showing an eighth embodiment of the PS girder according to the present invention.
  • FIG. 14 is a plan view showing a PS girder provided with a concrete protrusion according to the present invention.
  • FIG. 15 is a cross-sectional view showing a PS girder provided with a concrete protrusion according to the present invention.
  • 16 is a schematic diagram for explaining the compressive force generated during tension of the strand installed on the existing PS girder.
  • 17 is a schematic view for explaining the compressive force generated during tension of the strand installed on the PS girder according to the present invention.
  • FIG. 18 is a flowchart for explaining the construction method of the girder bridge according to the first embodiment of the present invention.
  • 19 is a flowchart for explaining the construction method of the girder bridge according to the first embodiment of the present invention.
  • 20 is a flowchart for explaining the construction method of the girder bridge according to the second embodiment of the present invention.
  • 21 is a flowchart for explaining the construction method of the girder bridge according to the second embodiment of the present invention.
  • FIG. 22 is a flowchart for explaining the construction method of the girder bridge according to the third embodiment of the present invention.
  • FIG. 23 is a flowchart for explaining the construction method of the girder bridge according to the third embodiment of the present invention.
  • 'PS girder manufacturing method' a method of manufacturing a prestressed girder for improving lateral curvature according to preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 3 is a flowchart for explaining a method of manufacturing a PS girder according to the present invention
  • FIG. 4 is a perspective view for explaining a PS girder according to the present invention
  • FIG. 5 is a first embodiment of a PS girder according to the present invention It is a cross-sectional view showing
  • the method of manufacturing a PS girder according to the present invention is 2 on the left and right sides of the vertical neutral axis so as to deviate from the vertical neutral axis (VNA) with respect to the vertical neutral axis (VNA) of the girder, respectively.
  • VNA vertical neutral axis
  • VNA vertical neutral axis
  • the girder may be configured to include an upper flange and an abdomen connected to the lower portion of the upper flange. And the girder may be configured to include an upper flange and a lower flange and an abdomen connecting the upper flange and the lower flange.
  • the abdomen connected to the lower part of the upper flange may be formed to have a reduced left and right width than the upper flange.
  • the abdomen connecting the upper flange and the lower flange may be formed to have a reduced left and right width than the upper flange and the lower flange.
  • the girder has a first central strand 111 installed so as to be positioned on a vertical neutral axis between the first side strand 112 and the second side strand 113, and a vertical lower portion of the first central strand 111.
  • the second central strand 114 installed to be positioned on the neutral axis
  • the third side strand 115 installed to be positioned in a diagonal direction of the second side strand 113 with respect to the vertical neutral axis
  • the first side with respect to the vertical neutral axis
  • the fourth side strand 116 installed to be positioned in the diagonal direction of the strand 112, the third central strand 117 installed to be positioned on the vertical neutral axis of the lower part of the second central strand 114, and the second central strand 117 based on the vertical neutral axis
  • the fifth side strand 118 installed to be positioned in the diagonal direction of the 4 side strand 116 and the sixth side strand 119 installed to be positioned in the diagonal direction of the third side strand 115
  • the central strand installed on the vertical neutral axis of the girder or the side strand installed outside the vertical neutral axis may be installed so as to be directly embedded in the concrete.
  • the side strands may be placed inside the concrete through a sheath duct, and after being tensioned, they may be embedded through an attachment mortar or an adhesive mortar in the interior of the sheath pipe.
  • the manufacturing method of the girder according to the present invention as shown in Fig. 3, the beam manufacturing step (S1), the first tension force introduction step (S10), the second tension force introduction step (S20), and the third tension force introduction Step S30 is included.
  • the first tension force introduction step (S10) the first side strand 112 is tensioned with a first tension force less than the design tension force.
  • the second tension force introduction step (S20) the second side strand 113 positioned in the opposite direction to the first side strand 112 with respect to the vertical neutral axis exceeds the first tension force and is less than or equal to the design tension.
  • the third tension force introduction step (S30) the first side strand 112 is tensioned again with a third tension force that is overlapped with the first tension force and is less than the design tension force while exceeding the second tension force.
  • the girder means a girder capable of introducing a compressive stress using the tension of the stranded wire.
  • the PS girder 100 means a girder in which a compressive stress is introduced using the tension of a strand.
  • the side strands and the central strands may be provided in the entire section of the girder.
  • the anchorage installed at the distal end of the side strand and the central strand to fix the side strand and the central strand to the girder is preferably installed at the end of the girder.
  • the manufacturing method of the PS girder according to the present invention includes a beam manufacturing step (S1).
  • the beam manufacturing step (S1) is a fixture to be connected to the first side strand 112 and the second side strand 113 so that the first side strand 112 and the second side strand 113 can be fixed to the end of the girder. is installed at the end of the girder.
  • an anchorage to which each strand will be connected is installed at the end of the girder.
  • the center of the anchorage to which the strand will be connected is installed to almost coincide with the Horizontal Neutral Axis (HNA) of the cross section of the beam, and the error range is 16.67% to prevent tensile stress from occurring at the top and bottom of the end.
  • the neutral axis means a straight line connecting the points where the normal stress generated in the cross section becomes 0 when the bending moment acts on the girder.
  • A cross-sectional area
  • M length of beam cross-section
  • ⁇ h up-and-down length of beam cross-section
  • M length due to P
  • P tension
  • ⁇ e eccentric distance
  • c h
  • I second moment of cross-section
  • the eccentric distance is formed to be 0.1667h or less according to the following [Equation 1].
  • the manufacturing method of the PS girder according to the present invention may further include a first central strand tension step (S5) after the beam fabrication step (S1).
  • the first central strand tension step (S5) is a step of tensioning the first central strand 111 located on the vertical neutral axis between the first side strand 112 and the second side strand 113 with a preset design tension.
  • the manufacturing method of the PS girder according to the present invention includes a first tension force introduction step (S10).
  • the first tension force introduction step (S10) is a step of tensioning the first side strand 112 with a first tension force that is less than the design tension force.
  • the first side strand 112 is tensioned to a level where the number of tensions of the first side strand 112 is reduced while reducing the difference in the eccentric moment between the left and right sides of the girder based on the vertical neutral axis of the girder.
  • the first side strand 112 can be tensioned using a jack for tension.
  • this step (S10) it is possible to tension the first side strand 112 with a tension of 40% to 60% of the desired design tension. This tension is to minimize the transverse bending displacement occurring on one side of the girder with respect to the vertical neutral axis and to reduce the number of tensions of the first side strand 112 .
  • the design tension of the first side strand 112 is 200 tons
  • a tension of 80 tons to 120 tons is introduced into the first side strand 112 through a jack for tension.
  • the present invention is not limited thereto.
  • the manufacturing method of the PS girder according to the present invention includes a secondary tension force introduction step (S20).
  • the second tension force introduction step (S20) is a step of introducing a second tension force exceeding the first tension force to the second side strand 113. In this step (S20), while recovering the transverse displacement generated by the first side strand 112, the transverse displacement generated on the other side of the girder with respect to the vertical neutral axis is minimized.
  • the second side strand 113 is tensioned with a second tension force that is less than the design tension while exceeding the first tension force.
  • the second side strand 113 can be tensioned using a jack for tension.
  • the second side strand 113 may be tensioned with a tension of 75% to 100% of the desired design tension.
  • the design tension of the second side strand 113 is 200 tons in the second tension force introduction step (S20)
  • a tension force of 200 tons is introduced into the second side strand 113 through a tension jack.
  • the tension of the second side strand 113 becomes unnecessary in the future.
  • the number of tensions is minimized to 1 total.
  • a step of additionally tensioning the second side strand 113 after the third tension force introduction step (S30) is required, but it occurs on the other side of the girder The resulting lateral curvature displacement is reduced.
  • the step of additionally straining is a process for introducing a total design tension of 100% to the second side strand 113 .
  • the manufacturing method of the PS girder according to the present invention includes a third tension force introduction step (S30).
  • the third tension force introduction step (S30) is a step of introducing a third tension force that is superimposed on the first tension force on the first side strand 112 and is greater than or equal to the second tension force and less than or equal to the design tension force. In this step (S30), while recovering the transverse displacement generated by the second side strand 113, the transverse displacement generated on one side of the girder with respect to the vertical neutral axis is minimized.
  • a value combined with the first tension force is equal to or less than the design tension force, and is greater than or equal to a value obtained by subtracting the first tension force from the second tension force.
  • this step (S30) it is possible to tension the first side strand 112 to a tension of 40% to 60% of the desired design tension.
  • the present invention tensions the first side strand 112 with 50% of the design tension in the first tension force introduction step (S10), and 100% tension in the second tension force introduction step (S20). It is preferable to tension the two side strands 113 . Then, in the present invention, it is preferable to tension the first side strand 112 with the remaining 50% of the design tension in the third tension force introduction step (S30). This is because, since the process of tensioning the first side strand 112 and the second side strand 113 is minimized, the manufacturing time of the prestressed girder is reduced.
  • the design tension of the first side strand 112 and the second side strand 113 is 200 tons
  • the first tension force is 100 tons
  • the second tension force is 200 tons.
  • 100 tons can be introduced as the third tension force. That is, if the third tension force is 100 tons, it overlaps with the first tension force 100 tons and is 200 tons, so that the condition of not less than the second tension force and less than the design tension force is satisfied.
  • the first side strand 112 is tensioned to 50% of the design tension, and then, in the third tension force introduction step (S30), the first side strand 112 is 50% of the If it is tensioned with the design tension, tension of the first side strand 112 becomes unnecessary in the future. Accordingly, the number of tensions of the first side strand 112 is reduced to two.
  • FIG. 6 is a cross-sectional view showing a second embodiment of the PS girder according to the present invention.
  • the second central strand tensioning step S35 is a step of tensioning the second central strand 114 located on the vertical neutral axis under the first central strand 111 with a preset design tension.
  • the second central strand 114 is tensioned using a jack for tension.
  • a tension force of 200 tons is introduced into the second central strand 114 .
  • This second central strand tension step (S35) may be performed after tensioning the first side strand 112 through the third tension force introduction step (S30) as shown in FIG. 6 . And the second central strand tension step (S35) may proceed between the first central strand tension step (S5) and the first tension force introduction step (S10).
  • Figure 7 is a cross-sectional view showing a third embodiment of the PS girder according to the present invention
  • Figure 8 is a cross-sectional view showing the arrangement of the tension member in the central part of the PS girder of
  • FIG. 9 is a cross-sectional view showing a fourth embodiment of the PS girder according to the present invention.
  • the method of manufacturing a PS girder according to the present invention further includes a fourth tension force introduction step (S40) after the third tension force introduction step (S30) or the second central strand tension step (S35) can do.
  • the fourth tension force introduction step (S40) is a step of tensioning the third side strand 115 located in the diagonal direction of the first side strand 112 with respect to the vertical neutral axis to a fourth tension force that is less than the design tension.
  • the third side strand 115 is tensioned to a level where the number of tensions of the third side strand 115 is reduced while reducing the difference in the eccentric moment between the left and right sides of the girder based on the vertical neutral axis of the girder.
  • the third side strand 115 may be tensioned using a jack for tension.
  • this step (S40) it is possible to tension the third side strand 115 to a tension of 40% to 60% of the desired design tension. This is to minimize the transverse bending displacement occurring on the other side of the girder with respect to the vertical neutral axis and to reduce the number of tensions of the third side strand 115 .
  • a tension of 80 to 120 tons can be introduced to the third side stranded wire 115 through the tension jack, but this not limited
  • the method for manufacturing a PS girder according to the present invention may further include a fifth tension force introduction step (S50).
  • the fifth tension force introduction step (S50) is a step of introducing a fifth tension force exceeding the fourth tension force to the fourth side strand 116 located in the diagonal direction of the second side strand 113 with respect to the vertical neutral axis. to be. In this step (S50), while recovering the transverse displacement generated by the third side strand 115, the transverse displacement generated on the other side of the girder with respect to the vertical neutral axis is minimized.
  • the fourth side strand 116 is tensioned with a fifth tension force that is less than the design tension while exceeding the fourth tension.
  • the fourth side strand 116 can be tensioned using a jack for tension.
  • the fourth side strand 116 may be tensioned with a tension of 75% to 100% of the desired design tension.
  • a tension of 200 tons is introduced into the fourth side strand 116 through a tension jack.
  • a step of additionally tensioning the fourth side strand 116 is required after the 6th tension introduction step (S60), but on the other side of the girder The resulting lateral curvature displacement is reduced.
  • the step of additionally straining is a process for introducing a total design tension of 100% to the fourth side strand 116 .
  • the method of manufacturing a PS girder according to the present invention may further include a sixth tension force introduction step (S60).
  • the sixth tension force introduction step (S60) is a step of introducing a sixth tension force that is superimposed on the fourth tension force on the third side strand 115 and is equal to or greater than the fifth tension force and less than or equal to the design tension force. In this step (S60), while recovering the transverse displacement generated by the fourth side strand 116, the transverse displacement generated on one side of the girder with respect to the vertical neutral axis is minimized.
  • the value combined with the fourth tension force is equal to or less than the design tension force, and is greater than or equal to the value obtained by subtracting the fourth tension force from the fifth tension force.
  • the third side strand 115 may be tensioned with a tension of 40% to 60% of the desired design tension, but is not limited thereto.
  • the present invention tensions the third side strand 115 with a tension of 50% of the design tension in the fourth tension force introduction step (S40), and in the fifth tension force introduction step (S50), 100% tension. It is desirable to tension the four side strands 116 . Subsequently, in the present invention, it is preferable to tension the third side strand 115 with the remaining 50% of the design tension in the sixth tension force introduction step (S60). This is to provide the effect that the manufacturing time of the prestressed girder is shortened since the process of tensioning the third side strand 115 and the fourth side strand 116 is minimized.
  • the design tension of the third side strand 115 and the fourth side strand 116 is 200 tons
  • the fourth tension is 100 tons
  • the fifth tension is 200 tons.
  • 100 tons can be introduced as the sixth tension force. That is, if the sixth tension force is 100 tons, the fourth tension force is overlapped with 100 tons and is 200 tons, so the condition of being equal to or greater than the fifth tension force and less than the design tension force is satisfied.
  • FIG. 10 is a cross-sectional view showing a fifth embodiment of the PS girder according to the present invention.
  • the method of manufacturing a PS girder according to the present invention may further include a third central strand tension step (S65) after the sixth tension force introduction step (S60).
  • the third central strand tension step (S65) is a step of tensioning the third central strand 117 positioned on the vertical neutral axis under the second central strand 114 with a preset design tension.
  • FIG. 11 is a cross-sectional view showing a sixth embodiment of the PS girder according to the present invention.
  • the method of manufacturing a PS girder according to the present invention may further include a seventh tension force introduction step (S70) after the sixth tension force introduction step (S60) or the third central strand tension step (S65). .
  • the seventh tension force introduction step (S70) is a step of tensioning the fifth side strand 118 with a seventh tension force that is less than the design tension force.
  • the fifth side strand 118 is tensioned to a level where the number of tensions of the fifth side strand 118 is reduced while reducing the difference in the eccentric moment between the left and right sides of the girder with respect to the vertical neutral axis of the girder.
  • the fifth side strand 118 can be tensioned using a jack for tension.
  • the fifth side strand 118 may be tensioned with a tension of 40% to 60% of the desired design tension, but is not limited thereto. This is to minimize the transverse bending displacement occurring on one side of the girder with respect to the vertical neutral axis and to reduce the number of tensions of the fifth side strand 118 .
  • the design tension of the fifth side strand 118 is 200 tons in the seventh tension introduction step (S70)
  • a tension of 80 tons to 120 tons is introduced into the fifth side strand 118 through a tension jack.
  • the method of manufacturing a PS girder according to the present invention may further include an 8th tension force introduction step (S80) after the 7th tension force introduction step (S70).
  • the eighth tension force introduction step (S80) is a step of introducing an eighth tension force exceeding the seventh tension force to the sixth side strand 119. In this step (S80), while recovering the transverse displacement generated by the fifth side strand 118, the transverse displacement generated on the other side of the girder with respect to the vertical neutral axis is minimized.
  • the sixth side strand 119 is tensioned with the eighth tension force that is less than the design tension while exceeding the seventh tension.
  • the sixth side strand 119 can be tensioned using a jack for tension.
  • the sixth side strand 119 may be tensioned with a tension of 75% to 100% of the desired design tension.
  • the design tension of the sixth side strand 119 is 200 tons
  • a tension force of 200 tons is introduced into the sixth side strand 119 through a tension jack.
  • the sixth side strand 119 is tensioned to 100% of the design tension in the 8th tension force introduction step (S80), the tension of the sixth side strand 119 becomes unnecessary later, so the sixth side strand ( 119) is minimized to 1 total.
  • a step of additionally tensioning the sixth side strand 119 is required after the ninth tension introduction step (S90), but on the other side of the girder The resulting lateral curvature displacement is reduced.
  • the step of additionally straining is a process for introducing a total design tension of 100% to the sixth side strand 119 .
  • the method of manufacturing a PS girder according to the present invention may further include a ninth tension introduction step (S90) after the eighth tension force introduction step (S80).
  • the ninth tension force introduction step (S90) is a step of introducing a ninth tension force that overlaps the seventh tension force and is equal to or greater than the eighth tension force and less than or equal to the design tension force to the fifth side strand 118. In this step (S90), while recovering the transverse displacement generated by the sixth side strand 119, the transverse displacement generated on one side of the girder with respect to the vertical neutral axis is minimized.
  • a value combined with the seventh tension force is equal to or less than the design tension force, and is greater than or equal to a value obtained by subtracting the seventh tension force from the eighth tension force.
  • the fifth side strand 118 may be tensioned with a tension of 40% to 60% of the desired design tension, but is not limited thereto.
  • the present invention tensions the fifth side strand 118 with a tension of 50% of the design tension in the 7th tension force introduction step (S70), and 100% tension in the 8th tension force introduction step (S80). It is desirable to tension the 6 side strands 119 . Next, in the present invention, it is preferable to tension the fifth side strand 118 with the remaining 50% of the design tension in the ninth tension force introduction step (S90).
  • the first to fourth side strands 112, 113, 115, and 116 are preferably tensioned at the ends in the same direction. This is the minimum that must be introduced to the entire girder even if the loss of tension force occurs overlappingly along the longitudinal direction of the girder when the tension force is introduced to all strands with 100% design tension at one end of the girder when the length of the girder is 40m or less. This is because a compressive force greater than the compressive force is introduced to the other end of the girder.
  • the first side strand 112 and the second side strand 113 are preferably tensioned at one end of the girder.
  • the third side strand 115 and the fourth side strand 116 are preferably tensioned at the other end of the girder opposite to the one end.
  • first and second side strands 112 and 113 and the third and fourth side strands 115 and 116 are in opposite directions to each other, when the tension force is introduced at the end of the girder with 100% of the design tension, the compressive force greater than the desired value in the entire girder. This is introduced This is because the tension of the first and second side strands 112 and 113 and the tension of the third and fourth side strands 115 and 116 complement each other.
  • the first central strand 111, the first side strand 112, and the second side strand 113 are tensioned at one end of the girder and the second central strand ( 114), the third side strand 115, the fourth side strand 116, and the third central strand 117 are preferably tensioned at the other end of the girder opposite to the one end.
  • the first central strand 111, the first side strand 112, the second side strand 113, and the second central strand 114 are tensioned at one end of the girder.
  • the third side strand 115, the fourth side strand 116, the fifth side strand 118, and the sixth side strand 119 are preferably tensioned at the other end of the girder opposite to the one end.
  • FIG. 12 is a cross-sectional view showing a seventh embodiment of a PS girder according to the present invention
  • FIG. 13 is a cross-sectional view showing an eighth embodiment of a PS girder according to the present invention.
  • the aforementioned PS girder 100 may be installed such that the transverse curved reinforcement 120 for suppressing the occurrence of buckling of the girder in the center of the girder along the longitudinal direction of the girder is interpolated as shown in FIGS. 12 and 13 .
  • Any one of steel bars, H-beams, L-beams, T-beams, and C-beams may be used as the transverse curved reinforcing material 120 .
  • the transverse curvature reinforcing material 120 functions to minimize transverse curvature displacement that may occur due to the difference in tensile force in the tension force introduction steps ( S10 , S20 , S30 ).
  • a pair of transverse curvature reinforcing materials 120 may be provided so as to be symmetrical on both left and right sides with respect to the vertical neutral axis (VNA) of the girder in order to inhibit the occurrence of transverse curvature.
  • the pair of buckling reinforcement 120 may be provided on the upper part of the girder, the lower part of the girder, or both in order to prevent the occurrence of buckling of the girder.
  • the transverse curvature reinforcing material 120 is interpolated in a 'L' shape at the right end of the upper flange of the girder to prevent transverse curvature and maximize the cross-sectional rigidity in the vertical direction, as shown in FIG. 13 .
  • the L-beam is interpolated to the left end of the upper flange so as to be symmetrical with respect to the vertical neutral axis (VNA).
  • the transverse curved reinforcement 120 is preferably formed in a length of 0.1 to 0.3 times the length of the girder. At this time, if the transverse curved reinforcing material 120 is formed to be less than 0.1 times the length of the girder, there may be a problem that the function of preventing buckling is not expressed. And when the transverse curved reinforcing material 120 is formed to exceed 0.3 times the length of the girder, the improvement in the function of preventing buckling is insignificant, but the manufacturing cost increases and thus economic efficiency may be reduced.
  • FIG. 14 is a plan view showing a PS girder provided with a concrete protrusion according to the present invention
  • FIG. 15 is a cross-sectional view showing a PS girder provided with a concrete protrusion according to the present invention.
  • the girder according to the present invention may include a concrete protrusion provided to protrude from the upper flange at the center of the upper flange along the longitudinal direction of the upper flange in order to inhibit the occurrence of lateral curvature.
  • the concrete protrusion may be provided on the side surface or the bottom surface at both ends of the upper flange based on the longitudinal direction of the upper flange.
  • such a concrete protrusion is formed with a length of 0.1 to 0.3 times the length of the girder. At this time, if the concrete protrusion is formed to be less than 0.1 times the length of the girder, there may be a problem that the function to prevent buckling is not expressed. And when the concrete protrusion is formed to exceed 0.3 times the length of the girder, the improvement of the function to prevent buckling is insignificant, but the manufacturing cost increases, so that economic efficiency is deteriorated and workability is deteriorated.
  • the upper limit of the width of the concrete protrusion provided to the side at both ends of the upper flange may be determined according to the distance between the girders and the width of the girders installed parallel to the girders. More specifically, the width of the concrete protrusion is formed to have a length of (interval between girders - the width of the girder)/2 or less. For example, if the interval between the girder and the adjacent girder is 2.6m and the width of the girder is 1.2m, it is preferable that the concrete protrusion be formed to have a width of 0.7m or less.
  • Figure 16 is a plan view for explaining the compressive force generated when the tension of the strand installed in the existing PS girder
  • Figure 17 is a plan view for explaining the compressive force generated when the tension of the strand installed in the PS girder according to the present invention.
  • the PS girder manufactured by the method of manufacturing a PS girder according to the present invention does not coincide with the central axis of the girder and the tension axis of the strand when tensioning the strand as shown in FIG. 17, so the center of the girder depends on the position of the strand. Compressive forces of different magnitudes are introduced respectively in the axial direction and in the opposite direction. Thereby, the PS girder suppresses the occurrence of lateral curvature during tension of the strand.
  • the present invention provides a method of constructing a girder bridge using the prestressed girder manufactured by the manufacturing method of the prestressed girder for improving lateral curvature.
  • FIG. 18 is a flowchart for explaining the construction method of the girder bridge according to the first embodiment of the present invention
  • FIG. 19 is a flowchart for explaining the construction method of the girder bridge according to the first embodiment of the present invention.
  • the construction method of the girder bridge according to the first embodiment of the present invention is a construction method of a short span girder bridge, and one end of the prestressed girder is mounted on the first abutment 310, and the one end A mounting step (S110) of mounting the other end opposite to the second abutment 320 (S110), a coupling step (S120) of fixing one end of the prestressed girder to the first abutment 310, and an upper portion of the prestressed girder
  • the slab pouring step (S130) of pouring and curing the slab concrete 400, and raising the other end of the prestressed girder mounted on the second abutment 320 compressive force on the slab concrete 400 integrated into the prestressed girder Including a compressive force introduction step (S140) to introduce.
  • one end of the prestressed girder is mounted on the first abutment 310 in order to be fixed to the first abutment 310, and the other end opposite to the one end is mounted on the first abutment 310. It is mounted on the height adjusting device installed on the second abutment 320 .
  • a connecting means is installed between one end of the prestressed girder and the first abutment 310 to connect one end of the prestressed girder and the first abutment 310.
  • a plurality of steel rods are embedded in the first abutment 310 in the vertical direction, and a connection steel plate having a connection hole is installed in the lower part of one end of the prestress girder, and the connection of the connection steel plate Assemble the connecting steel plate and the steel rod so that the steel rod is inserted into the hole.
  • the slab pouring step (S130) constituting the construction method of the girder bridge according to the present invention, sleeve concrete is installed so that vehicles, etc. can pass through the upper part of the prestressed girder. If necessary, in the slab pouring step (S130), concrete is poured from the upper surface of the first abutment 310 to the lower surface of the slab concrete 400 so that the prestressed girder, the first abutment 310, and the slab concrete 400 are integrated. and curing.
  • the other end of the prestressed girder mounted on the second abutment 320 is raised through the height adjusting device to introduce the compressive force to the slab concrete 400. make it As described above, the compressive force previously introduced into the slab concrete 400 can offset the tensile force generated in the slab concrete 400 according to the use of the girder bridge, thereby preventing cracks in the slab concrete 400 .
  • Figure 21 is a flowchart for explaining the construction method of the girder bridge according to the second embodiment of the present invention.
  • the construction method of the girder bridge according to the second embodiment of the present invention is a construction method of a two-span girder bridge.
  • the construction method of such a girder bridge consists of a first prestressed girder (hereinafter abbreviated as 'first PS girder') and a second prestressed girder composed of a prestressed girder manufactured by a manufacturing method of a prestressed girder for improving lateral curvature.
  • a lifting step (S210) of raising the end of the second PS girder 200 adjacent to the, and the raised first PS girder 100 end and the second PS girder 200 end of the upper end of the slab concrete 400 is poured It includes a slab installation step (S220), and a lowering step (S230) of lowering the end of the raised first PS girder 100 and the end of the second PS girder 200.
  • the ascending step (S210) constituting the construction method of the girder bridge according to the present invention includes a mounting process, a coupling process, and an ascending process.
  • the mounting process is a process of mounting the first PS girder 100 and the second PS girder 200 on the first abutment 310 and the second abutment 320 and the pier 330 so as to face each other in a straight line.
  • the height adjusting device 500 is installed on the upper portion of the pier 330 located between the first abutment 310 and the second abutment 320 .
  • the height adjusting device 500 is installed between the first PS girder 100 and the pier 330 and between the second PS girder 200 and the pier 330 , respectively.
  • the bonding process is a process performed after the deferment process.
  • one end of the first PS girder 100 is fixed to the first abutment 310
  • one end of the second PS girder 200 is fixed to the second abutment 320 .
  • the ascent process is a process performed after the bonding process.
  • This ascending process is a process to recover the loss of pre-stress force generated in the central part of the PS girder after the production of the PS girder, and to offset the tensile stress generated in the central part of the girder by subsequent descent.
  • the adjacent first PS girder 100 and the second PS girder 200 are connected, and the first PS girder 100 and the second The sleeve concrete 400 is installed so that a vehicle, etc. can pass through the upper part of the PS girder 200 so that the first PS girder 100 and the second PS girder 200 are continuous with each other.
  • the slab concrete 400 is poured and cured on the upper portions of the first PS girder 100 and the second PS girder 200 .
  • crossbeam concrete may be poured and cured between the first PS girder 100 and the second PS girder 200 .
  • This crossbeam concrete provides a function of connecting the spaced apart spaces of the first PS girder 100 and the second PS girder 200, while connecting the neighboring girders in the left and right directions.
  • the slab concrete 400 is a crossbeam provided between the upper part of the first PS girder 100 , the upper part of the second PS girder 200 , and the first PS girder 100 and the second PS girder 200 . It can be poured integrally on top of concrete.
  • the first and second girders (100, 200) disposed at a higher position than the other end (the end located in the opposite direction to the neighboring girder) through the ascending step (S210) It is a step of lowering one end (the end facing the neighboring girder) to the position of the other end.
  • one end of the first and second girders 100 and 200 is lowered through the height adjusting device 500 to introduce a compressive force to the slab concrete 400 .
  • the tensile stress may be introduced into the slab concrete 400 and cracking may occur, but the tensile stress is resolved by the compressive stress introduced through the ascending step (S210).
  • FIG. 22 is a flowchart for explaining the construction method of the girder bridge according to the third embodiment of the present invention
  • FIG. 23 is a flowchart for explaining the construction method of the girder bridge according to the third embodiment of the present invention.
  • the construction method of the girder bridge according to the third embodiment of the present invention is a construction method of a three-span girder bridge.
  • the construction method of such a girder bridge consists of a first PS girder 100, a third PS girder 600, and a second PS girder 200 composed of a prestressed girder manufactured by a manufacturing method of a prestressed girder for improving lateral curvature.
  • the first PS girder 100 and the third PS girder 600 and the third PS girder 600 and the adjacent portion of the second PS girder 200 is raised to raise Step (S310), the first PS girder 100, the second PS girder 200, and the third PS girder 600, the slab installation step of pouring the slab concrete 400 on the top (S320), and the raised and a lowering step 3230 of lowering the adjacent portions of the first PS girder 100 and the third PS girder 600 and the adjacent portions of the third PS girder 600 and the second PS girder 200 .
  • the ascending step (S310) constituting the construction method of the girder bridge according to the present invention includes a mounting process, a coupling process, and an ascending process.
  • the mounting process constituting the raising step (S310) is sequentially performed with the first shift 310 and the first PS girder 100, the third PS girder 600, and the second PS girder 200 to face each other on a straight line. It is a process of mounting on the second abutment 320 and the pier 330 .
  • the pier 330 may be composed of a first pier and a second pier provided at the front end and the rear end of the third PS girder 600 .
  • the first pier 330 and the upper portion of the second pier 330 is a height adjustment device 500 is installed.
  • the height adjusting device 500 is installed between the first PS girder 100 and the first pier 330 and between the second PS girder 200 and the second pier 330 , respectively.
  • the bonding process constituting the rising step (S310) is a process that proceeds after the mounting process, and one end of the first PS girder 100 is fixed to the first abutment 310, and the second PS girder 200 is fixed. One end of the is fixed to the second abutment (320).
  • the ascending process constituting the ascending step (S310) is a process performed after the combining process.
  • This ascending process the end of the first PS girder 100 and the third PS girder 600 adjacent to the third PS girder 600 together with both ends of the third PS girder 600 through the height adjusting device 500 ) to raise the end of the second PS girder 200 adjacent to.
  • This ascending process is a process to recover the loss of pre-stress force generated in the central part of the PS girder after the production of the PS girder, and to offset the tensile stress generated in the central part of the girder by subsequent descent.
  • the adjacent first PS girder 100 and the third PS girder 600 are connected, and the third PS girder 600 and the second It connects between the PS girder 200, and the sleeve concrete 400 is formed so that a vehicle can pass through the upper part of the first PS girder 100, the second PS girder 200, and the third PS girder 600.
  • the first PS girder 100, the second PS girder 200, and the third PS girder 600 are serialized with each other.
  • the first PS girder 100, the second PS girder 200, and the slab concrete 400 is poured and cured on the upper portion of the PS girder 600.
  • crossbeam concrete may be poured and cured between the first PS girder 100 and the third PS girder 600 , and also between the third PS girder 600 and the second PS girder 200 . It is also possible to pour and cure cross-beam concrete.
  • This crossbeam concrete connects the separation space of the first PS girder 100 and the third PS girder 600, and connects the separation space of the third PS girder 600 and the second PS girder 200, in the left and right direction It provides the function of connecting neighboring girders with
  • the slab concrete 400 is the upper part of the first PS girder 100 , the upper part of the third PS girder 600 , the upper part of the second PS girder 200 , and the first PS girder 100 and It may be integrally poured on the upper part of the crossbeam concrete provided between the third PS girder 600 and the upper part of the crossbeam concrete provided between the third PS girder 600 and the second PS girder 200 .
  • the descending step (S330) constituting the construction method of the girder bridge according to the present invention, it is a step of lowering the adjacent portion of each PS girder raised through the ascending step (S310) to the initial position.
  • both ends of the third PS girder 600 through the height adjustment device 500 in order to introduce a compressive force to the slab concrete 400, the front end of the first PS girder 100 and the second PS girder Both ends of the third PS girder 600 are lowered to be positioned on the same line as the rear end of the 200 .
  • tensile stress may be introduced into the slab concrete 400 to cause cracking, but the tensile stress is resolved by the compressive stress introduced through the ascending step (S210).

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

Disclosed are a method for manufacturing a prestressed girder for improving transverse curvature that can minimize the occurrence of transverse curvature when introducing prestress to a girder, and a method for constructing a girder bridge thereby. To this end, provided is a method for manufacturing a prestressed girder for improving transverse curvature and, more particularly, a method for manufacturing a girder with two side steel strands arranged on the left and right sides of the vertical neutral axis of the girder, the method comprising: a beam manufacturing step of manufacturing a beam by installing two or more anchorages to which the side steel strands are to be connected; a step of introducing a first prestressing force for prestressing the first side steel strand with the first prestressing force which is weaker than a design prestressing force; a step of introducing a second prestressing force for prestressing the second side steel strand with the second prestressing force which is equal to or weaker than the design prestressing force and exceeds the first prestressing force; and a step of introducing a third prestressing force for prestressing the first side steel strand again with the third prestressing force that overlaps with the first prestressing force and is equal to or weaker than the design prestressing force and is equal to or greater than the second prestressing force. According to the present invention, instead of increasing the cross-sectional area of the prestressed girder or installing a separate steel material, it is possible to suppress the occurrence of eccentricity that causes transverse curvature of the girder by only prestressing some steel strands twice or more than twice, thereby minimizing a difference between the left and right gaps of the prestressed girder.

Description

횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법 및 이를 이용한 거더교의 시공방법Manufacturing method of prestressed girder for improvement of transverse curvature and construction method of girder bridge using the same
본 발명은 횡만곡의 개선을 위해 일부 강연선을 2회 이상 나누어 긴장하는 프리스트레스트 거더의 제작방법 및 이를 이용한 거더교의 시공방법에 관한 것으로, 보다 상세하게는 거더에 프리스트레스를 도입할 때 횡만곡이 발생하는 것을 최소화할 수 있는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법 및 이를 이용한 거더교의 시공방법에 관한 것이다. The present invention relates to a manufacturing method of a prestressed girder in which some strands are divided into two or more tensions to improve lateral curvature, and a method for constructing a girder bridge using the same, and more particularly, transverse curvature occurs when prestress is introduced into the girder. It relates to a method of manufacturing a prestressed girder for improvement of lateral curvature that can minimize lateral curvature and a construction method of a girder bridge using the same.
거더교의 상부 구조물에는 하중으로 인한 구조물의 변형이나 처짐을 방지하기 위하여 긴장용 강연선을 사용하는 거더가 개발되어 사용되고 있다.For the upper structure of the girder bridge, a girder using a tension strand has been developed and used to prevent deformation or deflection of the structure due to load.
즉, 이 강연선의 양단부에 힘을 가하여 강연선을 긴장시킴으로써 하중으로 인한 구조물의 처짐을 줄이고, 외부하중에 의하여 구조물에 가해지는 지나친 인장응력에 의해 구조물이 파괴되는 것을 방지할 수 있다.That is, it is possible to reduce the deflection of the structure due to the load by applying a force to both ends of the strand to tension the strand, and to prevent the structure from being destroyed by excessive tensile stress applied to the structure by an external load.
예를 들면, 이러한 강연선에 의하여 압축응력을 도입하는 거더(이하, "PS 거더"라고 약칭함)는 거더를 이루는 재료의 구성에 따라 구분된다. 구체적으로, PS 거더는 강재 I-거더가 내설되지 않고 콘크리트만으로 구성된 프리스트레스트 콘크리트 거더(Prestressed Concrete Girder; PSC 거더)와, 콘크리트 단면 내부에 소정의 강성을 갖는 강재 I-거더가 내설된 프리스트레스트 강합성 거더(Prestressed Steel Composite Girder)로 구분된다.For example, a girder (hereinafter, abbreviated as "PS girder") that introduces a compressive stress by such a stranded wire is classified according to the composition of the material constituting the girder. Specifically, the PS girder is a prestressed concrete girder (PSC girder) composed of only concrete without a steel I-girder, and a prestressed steel with a steel I-girder having a predetermined stiffness inside the concrete section. It is classified as a Prestressed Steel Composite Girder.
보다 구체적으로, 상기 PS 거더란 자중 및 외부하중에 의해 콘크리트에 일어나는 인장응력을 상쇄하기 위해 단면 내부에 배치된 긴장재를 통해 미리 압축응력(프리스트레스)을 도입한 빔을 말한다.More specifically, the PS girder refers to a beam in which a compressive stress (prestress) is introduced in advance through a tension member disposed inside the cross section in order to offset the tensile stress occurring in the concrete by its own weight and external load.
도 1은 교량의 거더로 사용되는 국내 표준 단면의 PSC 빔을 나타내는 정면도이다. 그리고 도 2는 도 1의 PSC 빔 중앙부에서의 긴장재 배치를 나타내는 단면도이다.1 is a front view showing a domestic standard cross-section PSC beam used as a bridge girder. And FIG. 2 is a cross-sectional view showing the arrangement of the tension member in the central portion of the PSC beam of FIG.
일반적으로 긴장재는 빔의 단부에서 정착되며 큰 집중하중이 작용하기 때문에 넓은 면적의 콘크리트 단면이 필요하다. 그러므로 도 1과 같이 정착위치에서는 큰 지압응력이 발생하기 때문에 콘크리트 빔 단면에 정착구가 일렬로 수직하게 배치된다. 이는, 지압응력에 저항할 수 있는 큰 정착단면을 확보하고, 포물선 형태로 발생하는 외력모멘트에 대응하기 위함이다. 반면 PSC 빔의 중앙부에서는 도 2와 같이 편심효과를 최대한 발휘하기 위해 콘크리트 단면의 도심을 지나는 수평중립축(HNA)에서 최대한 멀리 떨어져 단면의 하부에 긴장재를 배치한다. 따라서 각각의 긴장재를 순차적으로 긴장할 때 수직중립축(VNA)에 편심되어 배치된 긴장재(13,14)는 편심하중을 발생하기 때문에 횡만곡이 발생하는 구조적인 결함을 갖고 있다.In general, the tension member is fixed at the end of the beam and a large concentrated load is applied, so a large concrete cross section is required. Therefore, as shown in Fig. 1, since a large acupressure stress is generated at the anchoring position, anchoring tools are vertically arranged in a line on the cross section of the concrete beam. This is to secure a large anchoring cross-section capable of resisting acupressure stress, and to respond to an external force moment generated in a parabolic shape. On the other hand, in the central part of the PSC beam, as shown in FIG. 2, in order to maximize the eccentric effect, the tension member is disposed at the lower part of the section as far away from the horizontal neutral axis (HNA) as possible through the center of the concrete section. Therefore, when each tension member is sequentially tensioned, the tension members 13 and 14 arranged eccentrically on the vertical neutral axis (VNA) generate an eccentric load, and thus have a structural defect in which transverse curvature occurs.
즉, 1번째 긴장재(11)와 2번째 긴장재(12)를 긴장시킬 때는 긴장재가 수직중립축(VNA) 위에 위치하기 때문에 횡만곡이 거의 발생하지 않는다. That is, when the first tension member 11 and the second tension member 12 are tensioned, since the tension member is located on the vertical neutral axis (VNA), lateral curvature hardly occurs.
그러나 3번째 긴장재(13)를 긴장시킬 때는 긴장재가 수직중립축(VNA)을 벗어나도록 배치되기 때문에 필연적으로 긴장력과 편심의 크기에 비례하여 횡만곡이 발생하게 된다. 그리고 마지막으로 4번째 긴장재(14)를 긴장시키면 3번째 긴장재(13)와 대응되는 긴장력이 도입되기 때문에 3번째 긴장재(13)에 의해 발생된 횡만곡 변위가 회복되어 수직중립축(VNA)이 원래의 위치로 돌아오는 것이 피에스씨 빔의 제작원리이다.However, when tensioning the third tension member 13, since the tension member is disposed so as to deviate from the vertical neutral axis (VNA), transverse curvature is inevitably generated in proportion to the magnitude of tension and eccentricity. And finally, when the fourth tension member 14 is tensioned, since a tension force corresponding to the third tension member 13 is introduced, the transverse bending displacement generated by the third tension member 13 is recovered, and the vertical neutral axis (VNA) is restored to its original state. Returning to the position is the manufacturing principle of the PSC beam.
다만, 이론적으로는 수직중립축(VNA)에 대해 대칭으로 배치된 어느 하나의 긴장재를 긴장시키고 그와 대칭되는 긴장재를 긴장시켜 횡만곡 변위가 회복되는 것을 기대할 수 있다. 그러나, 실제 시공에서는 어느 하나의 긴장재에 의해 횡만곡 변위가 발생한 후에 그와 대칭되는 긴장재를 긴장시키더라도 최종적으로 수직중립축이 원위치로 돌아오지 않고 영구히 횡만곡이 남아있게 된다. 이는, 3번째 긴장재와 4번째 긴장재가 동일한 힘으로 긴장되더라도 3번째 긴장재는 빔에 횡만곡이 발생되기 전의 상태에서 긴장되는 반면, 4번째 긴장재는 빔에 횡만곡이 발생된 초기 조건이 다른 상태에서 긴장되기 때문이다. However, theoretically, it can be expected that the transverse bending displacement will be recovered by tensioning any one tension member symmetrically arranged with respect to the vertical neutral axis (VNA) and tensioning the tension member symmetrical with it. However, in actual construction, even if the tension member symmetrical with the tension member is tensioned after the transverse bending displacement is generated by any one of the tension members, the vertical neutral axis does not return to its original position and the horizontal curve remains permanently. This means that even if the 3rd and 4th tension members are tensioned with the same force, the 3rd tension member is tensioned in the state before transverse curvature occurs in the beam, whereas the 4th tension member is in a state where the initial condition of the transverse curvature in the beam is different. because it's tense.
또한, 수직중립축(VNA)에 대해 대칭으로 배치된 제1 긴장재(13)와, 상기 제1 긴장재와 대칭되는 제2 긴장재(14)를 한꺼번에 긴장시키면 횡만곡의 발생이 원천적으로 차단될 수 있다. 그러나, 긴장재를 긴장시키는 긴장용 잭의 무게와 크기 상 제1 긴장재와 제2 긴장재를 동시에 긴장시키는 것은 어려운 실정이다.In addition, when the first tension member 13 symmetrically disposed with respect to the vertical neutral axis VNA and the second tension member 14 symmetrical to the first tension member are tensioned at once, the occurrence of lateral curvature may be fundamentally blocked. However, it is difficult to simultaneously tension the first tension member and the second tension member in view of the weight and size of the tensioning jack for tensioning the tension member.
이에 따라, 횡만곡을 방지하거나 허용 횡방향 변위 내에서 PS 빔을 제작하기 위해서는 빔의 횡방향 강성(횡만곡에 대해 저항하는 빔의 강성)을 증가시켜야 한다. 하지만 단면을 크게 할 경우 자중이 크게 늘어나 비경제적으로 되기 쉽다. 따라서, 단면의 강성을 최소로 증대 시키면서 횡만곡을 최소화 시킬 수 있는 방법이 필요하다. Accordingly, the transverse stiffness of the beam (the stiffness of the beam resisting transverse bending) must be increased to prevent transverse bending or to fabricate the PS beam within an allowable transverse displacement. However, if the cross-section is enlarged, its own weight is greatly increased, which tends to become uneconomical. Therefore, there is a need for a method capable of minimizing lateral curvature while increasing the stiffness of the cross section to a minimum.
특히, 최근 개량된 PS 빔은 자중을 최소화하고 휨강성을 가장 크게 하는 최적의 단면을 선정하기 때문에 단면이 매우 작고 높이가 낮아 횡방향 강성이 매우 작다. 그럼에도 불구하고 장지간의 교량에 적용하기 때문에 현장에서 긴장력을 도입할 때 횡만곡이 빈번하게 발생하고 있으며, 이에 대한 설계검토가 이루어지지 않고 있다. 따라서 횡만곡에 의해서 빔 제작 또는 가설 시에 파손과 안전사고의 위험뿐만 아니라 향후 교량의 내하력 저하와 붕괴사고 발생의 위험도 높은 것이 현실이다.In particular, the recently improved PS beam minimizes its own weight and selects the optimal cross-section that maximizes the flexural rigidity, so the cross-section is very small and the height is low, so the lateral rigidity is very small. Nevertheless, since it is applied to bridges between long spans, lateral bending occurs frequently when tension is introduced in the field, and design reviews for this are not made. Therefore, the reality is that there is a high risk of damage and safety accidents, as well as a decrease in the load-bearing capacity of the bridge and the occurrence of a collapse accident during construction or construction of beams due to transverse bending.
따라서, 본 발명의 제1 목적은 프리스트레스를 도입할 때 발생하는 거더의 횡만곡을 유효하게 억제할 수 있도록 편심을 유발하는 좌우 강연선의 긴장을 나누어 진행하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법을 제공하는데 있다.Therefore, the first object of the present invention is to effectively suppress the transverse curvature of the girder that occurs when the prestress is introduced. Therefore, the prestressed girder is manufactured by dividing the tension of the left and right strands causing eccentricity to improve the transverse curvature. is to provide a way.
또한, 본 발명의 제2 목적은 거더교의 시공 중 횡만곡에 대한 안정성을 확보할 수 있도록 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법을 이용한 거더교의 시공방법을 제공하는데 있다.In addition, a second object of the present invention is to provide a method of constructing a girder bridge using a method of manufacturing a prestressed girder for improving transverse curvature so as to secure stability against transverse curvature during construction of the girder bridge.
상술한 본 발명의 제1 목적을 달성하기 위하여, 본 발명의 일 실시예에서는 거더 수직중립축(VNA)의 좌우에 배치된 2개 이상의 측면 강연선이 설치된 거더의 긴장방법에 있어서, 상기 측면 강연선이 연결될 정착구를 2개 이상 설치하여 빔을 제작하는 빔 제작단계와, 설계긴장력의 미만인 제1 긴장력으로 제1 측면 강연선을 긴장시키는 1차 긴장력 도입단계와, 상기 제1 긴장력을 초과하면서 상기 설계긴장력 이하인 제2 긴장력으로 제2 측면 강연선을 긴장시키는 2차 긴장력 도입단계, 및 상기 제1 긴장력에 중첩되어 상기 제2 긴장력 이상이면서 상기 설계긴장력 이하인 제3 긴장력으로 상기 제1 측면 강연선을 재차 긴장시키는 3차 긴장력 도입단계를 포함하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법을 제공한다.In order to achieve the first object of the present invention described above, in an embodiment of the present invention, in a method for tensioning a girder in which two or more side strands disposed on the left and right of a girder vertical neutral axis (VNA) are installed, the side strands are to be connected A beam production step of manufacturing a beam by installing two or more anchorages, a first tension force introduction step of tensioning the first side stranded wire with a first tension force that is less than the design tension force, and a first tension force that exceeds the first tension force and is less than the design tension force A secondary tension force introduction step of tensioning the second side strand with a second tension force, and a tertiary tension of re-tensioning the first side strand with a third tension that is overlapped with the first tension force and is equal to or greater than the second tension force and less than or equal to the design tension force It provides a method of manufacturing a prestressed girder for improving lateral curvature, including an introduction step.
또한, 본 발명의 제2 목적을 달성하기 위하여, 본 발명의 일 실시예에서는 전술한 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법을 이용한 거더교의 시공방법을 제공한다.In addition, in order to achieve the second object of the present invention, an embodiment of the present invention provides a construction method of a girder bridge using the manufacturing method of the prestressed girder for improving the lateral curvature described above.
본 발명에 의하면, 일부 강연선을 2회 이상 나누어 긴장시키는 것만으로 거더의 횡만곡을 유발하는 편심발생을 억지시킬 수 있으므로, PS 거더의 좌우 갭 차이를 최소화시킬 수 있다.According to the present invention, it is possible to suppress the occurrence of eccentricity that causes lateral curvature of the girder only by dividing and straining some strands twice or more, thereby minimizing the gap between the left and right of the PS girder.
또한, 본 발명은 강연선이 손상되지 않는 수준에서 복수회로 긴장되기 때문에 초기 강연선을 그대로 사용할 수 있다. In addition, in the present invention, the initial strand can be used as it is because the strand is tensioned multiple times at a level that is not damaged.
아울러, 본 발명은 지간 길이를 길게 할 시 특히 문제가 되는 횡만곡의 발생양을 최소화한 고품질 PS 거더의 제작이 가능하다.In addition, the present invention makes it possible to manufacture a high-quality PS girder that minimizes the amount of lateral curvature, which is a problem, especially when lengthening the span.
도 1은 교량의 거더로 사용되는 국내 표준 단면의 PSC 빔을 나타내는 정면도이다.1 is a front view showing a domestic standard cross-section PSC beam used as a bridge girder.
도 2는 도 1의 PSC 빔 중앙부에서의 긴장재 배치를 나타내는 단면도이다.Figure 2 is a cross-sectional view showing the arrangement of the tension member in the central portion of the PSC beam of Figure 1;
도 3은 본 발명에 따른 PS 거더의 제작방법을 설명하기 위한 순서도이다.3 is a flowchart for explaining a method of manufacturing a PS girder according to the present invention.
도 4는 본 발명에 따른 PS 거더를 설명하기 위한 사시도이다.Figure 4 is a perspective view for explaining the PS girder according to the present invention.
도 5는 본 발명에 따른 PS 거더의 제1 실시예를 나타내는 단면도이다.5 is a cross-sectional view showing a first embodiment of the PS girder according to the present invention.
도 6은 본 발명에 따른 PS 거더의 제2 실시예를 나타내는 단면도이다.6 is a cross-sectional view showing a second embodiment of the PS girder according to the present invention.
도 7은 본 발명에 따른 PS 거더의 제3 실시예를 나타내는 단면도이다.7 is a cross-sectional view showing a third embodiment of the PS girder according to the present invention.
도 8은 도 7의 PS 거더 중앙부에서의 긴장재 배치를 나타내는 단면도이다.8 is a cross-sectional view showing the arrangement of the tension member in the central part of the PS girder of FIG.
도 9는 본 발명에 따른 PS 거더의 제4 실시예를 나타내는 단면도이다.9 is a cross-sectional view showing a fourth embodiment of the PS girder according to the present invention.
도 10은 본 발명에 따른 PS 거더의 제5 실시예를 나타내는 단면도이다.10 is a cross-sectional view showing a fifth embodiment of the PS girder according to the present invention.
도 11은 본 발명에 따른 PS 거더의 제6 실시예를 나타내는 단면도이다.11 is a cross-sectional view showing a sixth embodiment of the PS girder according to the present invention.
도 12는 본 발명에 따른 PS 거더의 제7 실시예를 나타내는 단면도이다.12 is a cross-sectional view showing a seventh embodiment of the PS girder according to the present invention.
도 13은 본 발명에 따른 PS 거더의 제8 실시예를 나타내는 단면도이다.13 is a cross-sectional view showing an eighth embodiment of the PS girder according to the present invention.
도 14는 본 발명에 따른 콘크리트 돌출부가 구비된 PS 거더를 나타내는 평면도이다.14 is a plan view showing a PS girder provided with a concrete protrusion according to the present invention.
도 15는 본 발명에 따른 콘크리트 돌출부가 구비된 PS 거더를 나타내는 단면도이다.15 is a cross-sectional view showing a PS girder provided with a concrete protrusion according to the present invention.
도 16은 기존 PS 거더에 설치된 강연선의 긴장 시에 발생되는 압축력을 설명하기 위한 개략도이다.16 is a schematic diagram for explaining the compressive force generated during tension of the strand installed on the existing PS girder.
도 17은 본 발명에 따른 PS 거더에 설치된 강연선의 긴장 시에 발생되는 압축력을 설명하기 위한 개략도이다.17 is a schematic view for explaining the compressive force generated during tension of the strand installed on the PS girder according to the present invention.
도 18은 본 발명의 제1 실시예에 따른 거더교의 시공방법을 설명하기 위한 순서도이다.18 is a flowchart for explaining the construction method of the girder bridge according to the first embodiment of the present invention.
도 19는 본 발명의 제1 실시예에 따른 거더교의 시공방법을 설명하기 위한 흐름도이다.19 is a flowchart for explaining the construction method of the girder bridge according to the first embodiment of the present invention.
도 20은 본 발명의 제2 실시예에 따른 거더교의 시공방법을 설명하기 위한 순서도이다.20 is a flowchart for explaining the construction method of the girder bridge according to the second embodiment of the present invention.
도 21은 본 발명의 제2 실시예에 따른 거더교의 시공방법을 설명하기 위한 흐름도이다. 21 is a flowchart for explaining the construction method of the girder bridge according to the second embodiment of the present invention.
도 22은 본 발명의 제3 실시예에 따른 거더교의 시공방법을 설명하기 위한 순서도이다. 22 is a flowchart for explaining the construction method of the girder bridge according to the third embodiment of the present invention.
도 23은 본 발명의 제3 실시예에 따른 거더교의 시공방법을 설명하기 위한 흐름도이다. 23 is a flowchart for explaining the construction method of the girder bridge according to the third embodiment of the present invention.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예들에 의한 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법(이하, 'PS 거더의 제작방법'이라 약칭함)을 상세하게 설명한다. Hereinafter, a method of manufacturing a prestressed girder (hereinafter, abbreviated as 'PS girder manufacturing method') for improving lateral curvature according to preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명에 따른 PS 거더의 제작방법을 설명하기 위한 순서도이고, 도 4는 본 발명에 따른 PS 거더를 설명하기 위한 사시도이며, 도 5는 본 발명에 따른 PS 거더의 제1 실시예를 나타내는 단면도이다.3 is a flowchart for explaining a method of manufacturing a PS girder according to the present invention, FIG. 4 is a perspective view for explaining a PS girder according to the present invention, and FIG. 5 is a first embodiment of a PS girder according to the present invention It is a cross-sectional view showing
도 4 및 도 5를 참조하면, 본 발명에 따른 PS 거더의 제작방법은 거더의 수직중립축(Vertical Neutral Axis, VNA)을 기준으로 수직중립축(VNA)을 벗어나도록 수직중립축의 좌측과 우측에 각각 2개의 측면 강연선이 설치된 거더를 이용한다. 4 and 5, the method of manufacturing a PS girder according to the present invention is 2 on the left and right sides of the vertical neutral axis so as to deviate from the vertical neutral axis (VNA) with respect to the vertical neutral axis (VNA) of the girder, respectively. A girder with side strands installed is used.
이때, 상기 거더는 상부플랜지 및 상부플랜지의 하부에 연결된 복부를 포함하여 구성될 수 있다. 그리고 거더는 상부플랜지와 하부플랜지 및 상기 상부플랜지와 하부플랜지를 연결하는 복부를 포함하여 구성될 수 있다. At this time, the girder may be configured to include an upper flange and an abdomen connected to the lower portion of the upper flange. And the girder may be configured to include an upper flange and a lower flange and an abdomen connecting the upper flange and the lower flange.
여기서, 상부플랜지의 하부에 연결된 복부는 상부플랜지보다 축소된 좌우 너비를 갖도록 형성될 수 있다. 그리고 상부플랜지와 하부플랜지를 연결하는 복부는 상부플랜지 및 하부플랜지보다 축소된 좌우 너비를 갖도록 형성될 수 있다.Here, the abdomen connected to the lower part of the upper flange may be formed to have a reduced left and right width than the upper flange. And the abdomen connecting the upper flange and the lower flange may be formed to have a reduced left and right width than the upper flange and the lower flange.
필요에 따라, 상기 거더에는 제1 측면 강연선(112)과 제2 측면 강연선(113) 사이의 수직중립축에 위치하도록 설치된 제1 중앙 강연선(111)과, 상기 제1 중앙 강연선(111) 하부의 수직중립축에 위치하도록 설치된 제2 중앙 강연선(114)과, 수직중립축을 기준으로 제2 측면 강연선(113)의 대각선 방향에 위치도록 설치된 제3 측면 강연선(115)과, 수직중립축을 기준으로 제1 측면 강연선(112)의 대각선 방향에 위치하도록 설치된 제4 측면 강연선(116)과, 제2 중앙 강연선(114) 하부의 수직중립축에 위치하도록 설치된 제3 중앙 강연선(117)과, 수직중립축을 기준으로 제4 측면 강연선(116)의 대각선 방향에 위치도록 설치된 제5 측면 강연선(118)과, 수직중립축을 기준으로 제3 측면 강연선(115)의 대각선 방향에 위치하도록 설치된 제6 측면 강연선(119)이 선택적으로 더 포함될 수 있다. If necessary, the girder has a first central strand 111 installed so as to be positioned on a vertical neutral axis between the first side strand 112 and the second side strand 113, and a vertical lower portion of the first central strand 111. The second central strand 114 installed to be positioned on the neutral axis, the third side strand 115 installed to be positioned in a diagonal direction of the second side strand 113 with respect to the vertical neutral axis, and the first side with respect to the vertical neutral axis The fourth side strand 116 installed to be positioned in the diagonal direction of the strand 112, the third central strand 117 installed to be positioned on the vertical neutral axis of the lower part of the second central strand 114, and the second central strand 117 based on the vertical neutral axis The fifth side strand 118 installed to be positioned in the diagonal direction of the 4 side strand 116 and the sixth side strand 119 installed to be positioned in the diagonal direction of the third side strand 115 with respect to the vertical neutral axis are optional may be further included.
이러한 거더의 수직중립축 상에 설치된 중앙 강연선이나 수직중립축의 외부에 설치된 측면 강연선은 직접 콘크리트에 내부에 매립되도록 설치될 수도 있다. 그리고 측면 강연선은 쉬스관(sheath duct)을 통해 콘크리트의 내부에 배치되다가 긴장된 후 쉬스관의 내부에서 부착 몰탈 또는 접착 몰탈을 통해 매립될 수 있다.The central strand installed on the vertical neutral axis of the girder or the side strand installed outside the vertical neutral axis may be installed so as to be directly embedded in the concrete. In addition, the side strands may be placed inside the concrete through a sheath duct, and after being tensioned, they may be embedded through an attachment mortar or an adhesive mortar in the interior of the sheath pipe.
한편, 본 발명에 따른 거더의 제작방법은 도 3에 도시된 바와 같이 빔 제작단계(S1)와, 1차 긴장력 도입단계(S10)와, 2차 긴장력 도입단계(S20)와, 3차 긴장력 도입단계(S30)를 포함한다. On the other hand, the manufacturing method of the girder according to the present invention, as shown in Fig. 3, the beam manufacturing step (S1), the first tension force introduction step (S10), the second tension force introduction step (S20), and the third tension force introduction Step S30 is included.
상기 빔 제작단계(S1)에서는 거더의 일면에 수직중립축의 좌우 방향으로 측면 강연선이 연결된 정착구를 2개 이상 설치한다. 상기 1차 긴장력 도입단계(S10)에서는 설계긴장력 미만의 제1 긴장력으로 제1 측면 강연선(112)을 긴장시킨다. 상기 2차 긴장력 도입단계(S20)에서는 수직중립축을 기준으로 상기 제1 측면 강연선(112)과 반대 방향에 위치한 제2 측면 강연선(113)을 상기 제1 긴장력을 초과하면서 상기 설계긴장력 이하인 제2 긴장력으로 긴장시킨다. 상기 3차 긴장력 도입단계(S30)에서는 제1 긴장력에 중첩되어 제2 긴장력을 초과하면서 설계긴장력 이하인 제3 긴장력으로 제1 측면 강연선(112)을 재차 긴장시킨다.In the beam manufacturing step (S1), two or more anchorages to which side strands are connected in the left and right directions of the vertical neutral axis are installed on one surface of the girder. In the first tension force introduction step (S10), the first side strand 112 is tensioned with a first tension force less than the design tension force. In the second tension force introduction step (S20), the second side strand 113 positioned in the opposite direction to the first side strand 112 with respect to the vertical neutral axis exceeds the first tension force and is less than or equal to the design tension. tense with In the third tension force introduction step (S30), the first side strand 112 is tensioned again with a third tension force that is overlapped with the first tension force and is less than the design tension force while exceeding the second tension force.
여기서, 상기 거더는 강연선의 긴장을 이용해 압축응력을 도입할 수 있는 거더를 의미한다. 그리고 PS 거더(100)는 강연선의 긴장을 이용해 압축응력을 도입한 거더를 의미한다. 이때, 측면 강연선과 중앙 강연선은 거더의 전 구간에 구비될 수 있다. Here, the girder means a girder capable of introducing a compressive stress using the tension of the stranded wire. And the PS girder 100 means a girder in which a compressive stress is introduced using the tension of a strand. In this case, the side strands and the central strands may be provided in the entire section of the girder.
이를 위해, 측면 강연선과 중앙 강연선을 거더에 고정시키기 위해 측면 강연선과 중앙 강연선의 말단부에 설치된 정착구는 거더의 말단에 설치되는 것이 바람직하다. To this end, the anchorage installed at the distal end of the side strand and the central strand to fix the side strand and the central strand to the girder is preferably installed at the end of the girder.
이하, 도면을 참조하여 각 구성요소별로 보다 구체적으로 설명한다. Hereinafter, each component will be described in more detail with reference to the drawings.
본 발명에 따른 PS 거더의 제작방법은 빔 제작단계(S1)를 포함한다.The manufacturing method of the PS girder according to the present invention includes a beam manufacturing step (S1).
상기 빔 제작단계(S1)는 제1 측면 강연선(112)과 제2 측면 강연선(113)이 거더의 단부에 고정될 수 있도록 제1 측면 강연선(112)과 제2 측면 강연선(113)에 연결될 정착구를 거더의 말단에 설치하는 단계이다.The beam manufacturing step (S1) is a fixture to be connected to the first side strand 112 and the second side strand 113 so that the first side strand 112 and the second side strand 113 can be fixed to the end of the girder. is installed at the end of the girder.
상기 빔 제작단계(S1)에서는 거더의 수직중립축에 위치하도록 설치된 제1 중앙 강연선(111)이 구비된 경우 상기 제1 중앙 강연선(111)에 연결될 정착구도 거더의 말단에 설치한다. In the beam manufacturing step (S1), when the first central strand 111 installed to be positioned on the vertical neutral axis of the girder is provided, an anchorage to be connected to the first central strand 111 is also installed at the end of the girder.
상기 빔 제작단계(S1)에서는 제1 중앙 강연선(111), 제2 중앙 강연선(114), 제3 측면 강연선(115), 제4 측면 강연선(116), 제3 중앙 강연선(117), 제5 측면 강연선(118), 제6 측면 강연선(119)이 거더에 설치될 경우, 각각의 강연선이 연결될 정착구를 거더의 말단에 설치한다.In the beam manufacturing step (S1), the first central strand 111, the second central strand 114, the third side strand 115, the fourth side strand 116, the third central strand 117, and the fifth When the side strands 118 and the sixth side strands 119 are installed on the girder, an anchorage to which each strand will be connected is installed at the end of the girder.
이때, 강연선이 연결될 정착구의 중심은 빔 단면의 수평중립축(Horizontal Neutral Axis, HNA)과 거의 일치하도록 설치되며, 단부의 상단 및 하단에 인장응력이 발생되지 않도록 그 오차범위 16.67% 이내로 한다. 여기서, 중립축(neutral axis)은 거더에 휨모멘트가 작용할 때 그 단면에 생기는 수직응력이 0이 되는 점을 연결하는 직선을 의미한다.At this time, the center of the anchorage to which the strand will be connected is installed to almost coincide with the Horizontal Neutral Axis (HNA) of the cross section of the beam, and the error range is 16.67% to prevent tensile stress from occurring at the top and bottom of the end. Here, the neutral axis means a straight line connecting the points where the normal stress generated in the cross section becomes 0 when the bending moment acts on the girder.
보다 구체적으로, 빔에 작용하는 단부응력 f = (-P/A)+(Mc/I)이다.More specifically, the end stress f = (-P/A)+(Mc/I) acting on the beam.
여기서, A(단면적)는 b(빔 단면의 좌우길이)× h(빔 단면의 상하길이)이고, M(P에 의한 모멘트)은 P(긴장력)× e(편심거리)이고, c는 h(빔 단면의 상하길이)/2이고, I(단면 2차 모멘트)는 bh3/12이다.Here, A (cross-sectional area) is b (left and right length of beam cross-section) × h (up-and-down length of beam cross-section), M (moment due to P) is P (tension) × e (eccentric distance), c is h ( The vertical length of the beam cross-section)/2, and I (second moment of cross-section) is bh 3 /12.
이에 따라, 빔에 작용하는 단부응력(f)의 응력 한계는 0이하여야 하므로, 아래의 [수학식 1]에 따라 편심거리는 0.1667h 이하로 형성된다.Accordingly, since the stress limit of the end stress (f) acting on the beam must be 0 or less, the eccentric distance is formed to be 0.1667h or less according to the following [Equation 1].
Figure PCTKR2019017603-appb-M000001
Figure PCTKR2019017603-appb-M000001
Figure PCTKR2019017603-appb-I000001
Figure PCTKR2019017603-appb-I000001
Figure PCTKR2019017603-appb-I000002
Figure PCTKR2019017603-appb-I000002
그 다음, 본 발명에 따른 PS 거더의 제작방법은 빔 제작단계(S1) 이후에 제1 중앙 강연선 긴장단계(S5)를 더 포함할 수 있다. Then, the manufacturing method of the PS girder according to the present invention may further include a first central strand tension step (S5) after the beam fabrication step (S1).
상기 제1 중앙 강연선 긴장단계(S5)는 제1 측면 강연선(112)과 제2 측면 강연선(113) 사이의 수직중립축에 위치한 제1 중앙 강연선(111)을 미리 설정된 설계긴장력으로 긴장시키는 단계이다.The first central strand tension step (S5) is a step of tensioning the first central strand 111 located on the vertical neutral axis between the first side strand 112 and the second side strand 113 with a preset design tension.
이 단계(S5)에서는 제1 중앙 강연선(111)이 수직중립축에 위치하기 때문에 긴장시키더라도 횡만곡이 발생하지 않으므로, 제1 중앙 강연선(111)을 긴장용 잭을 사용해 긴장시킨다. In this step (S5), since the first central strand 111 is located on the vertical neutral axis, even if it is tensioned, lateral curvature does not occur, so the first central strand 111 is tensioned using a jack for tension.
이어서, 본 발명에 따른 PS 거더의 제작방법은 1차 긴장력 도입단계(S10)를 포함한다.Then, the manufacturing method of the PS girder according to the present invention includes a first tension force introduction step (S10).
상기 1차 긴장력 도입단계(S10)는 설계긴장력의 미만인 제1 긴장력으로 제1 측면 강연선(112)을 긴장시키는 단계이다. 이 단계(S10)에서는 거더의 수직중립축을 기준으로 거더의 좌측과 우측의 편심 모멘트 차이를 줄여주면서 제1 측면 강연선(112)의 긴장 횟수가 줄어드는 수준으로 제1 측면 강연선(112)을 긴장시킨다. 이때, 제1 측면 강연선(112)은 긴장용 잭을 사용해 긴장시킬 수 있다.The first tension force introduction step (S10) is a step of tensioning the first side strand 112 with a first tension force that is less than the design tension force. In this step (S10), the first side strand 112 is tensioned to a level where the number of tensions of the first side strand 112 is reduced while reducing the difference in the eccentric moment between the left and right sides of the girder based on the vertical neutral axis of the girder. At this time, the first side strand 112 can be tensioned using a jack for tension.
이 단계(S10)에서는 목적하는 설계긴장력 중 40% 내지 60%의 긴장력으로 제1 측면 강연선(112)을 긴장시킬 수 있다. 이러한 긴장은 수직중립축을 기준으로 거더의 일측에 발생되는 횡만곡 변위를 최소화 하며 제1 측면 강연선(112)의 긴장 횟수를 줄이기 위한 것이다. 예컨대, 상기 1차 긴장력 도입단계(S10)에서는 제1 측면 강연선(112)의 설계긴장력이 200톤인 경우, 긴장용 잭을 통해 제1 측면 강연선(112)에 80톤 내지 120톤의 긴장력을 도입할 수 있으나, 이에 한정되지는 않는다.In this step (S10), it is possible to tension the first side strand 112 with a tension of 40% to 60% of the desired design tension. This tension is to minimize the transverse bending displacement occurring on one side of the girder with respect to the vertical neutral axis and to reduce the number of tensions of the first side strand 112 . For example, in the first tension force introduction step (S10), when the design tension of the first side strand 112 is 200 tons, a tension of 80 tons to 120 tons is introduced into the first side strand 112 through a jack for tension. However, the present invention is not limited thereto.
그 다음, 본 발명에 따른 PS 거더의 제작방법은 2차 긴장력 도입단계(S20)를 포함한다.Then, the manufacturing method of the PS girder according to the present invention includes a secondary tension force introduction step (S20).
상기 2차 긴장력 도입단계(S20)는 제2 측면 강연선(113)에 상기 제1 긴장력을 초과하는 제2 긴장력을 도입하는 단계이다. 이 단계(S20)에서는 제1 측면 강연선(112)에 의해 발생된 횡만곡 변위를 회복시키는 한편 수직중립축을 기준으로 거더의 타측에 발생되는 횡만곡 변위를 최소화한다.The second tension force introduction step (S20) is a step of introducing a second tension force exceeding the first tension force to the second side strand 113. In this step (S20), while recovering the transverse displacement generated by the first side strand 112, the transverse displacement generated on the other side of the girder with respect to the vertical neutral axis is minimized.
이를 위해, 본 단계(S20)에서는 제1 긴장력을 초과하면서 설계긴장력 이하인 제2 긴장력으로 제2 측면 강연선(113)을 긴장시킨다. 이때, 제2 측면 강연선(113)은 긴장용 잭을 사용해 긴장시킬 수 있다.To this end, in this step (S20), the second side strand 113 is tensioned with a second tension force that is less than the design tension while exceeding the first tension force. At this time, the second side strand 113 can be tensioned using a jack for tension.
특정 양태로서, 본 발명에 따른 2차 긴장력 도입단계(S20)에서는 목적하는 설계긴장력 중 75% 내지 100%의 긴장력으로 제2 측면 강연선(113)을 긴장시킬 수 있다. 예를 들면, 상기 2차 긴장력 도입단계(S20)에서는 제2 측면 강연선(113)의 설계긴장력이 200톤인 경우, 긴장용 잭을 통해 제2 측면 강연선(113)에 200톤의 긴장력을 도입한다.As a specific aspect, in the second tension force introduction step (S20) according to the present invention, the second side strand 113 may be tensioned with a tension of 75% to 100% of the desired design tension. For example, when the design tension of the second side strand 113 is 200 tons in the second tension force introduction step (S20), a tension force of 200 tons is introduced into the second side strand 113 through a tension jack.
이와 같이, 이 단계(S20)에서 제2 측면 강연선(113)을 100%의 설계긴장력으로 긴장시키면, 추후에는 제2 측면 강연선(113)의 긴장이 불필요하게 되므로, 제2 측면 강연선(113)의 긴장 횟수가 총 1회로 최소화된다. 그리고 제2 측면 강연선(113)을 100% 미만의 설계긴장력으로 긴장시키면, 3차 긴장력 도입단계(S30) 이후 제2 측면 강연선(113)을 추가적으로 긴장시키는 단계가 필요하게 되지만, 거더의 타측에 발생된 횡만곡 변위가 감소된다. 이때, 추가적으로 긴장시키는 단계는 제2 측면 강연선(113)에 총 100%의 설계긴장력을 도입하기 위한 과정이다. In this way, if the second side strand 113 is tensioned to 100% of the design tension in this step (S20), the tension of the second side strand 113 becomes unnecessary in the future. The number of tensions is minimized to 1 total. And when the second side strand 113 is tensioned to a design tension of less than 100%, a step of additionally tensioning the second side strand 113 after the third tension force introduction step (S30) is required, but it occurs on the other side of the girder The resulting lateral curvature displacement is reduced. At this time, the step of additionally straining is a process for introducing a total design tension of 100% to the second side strand 113 .
이후, 본 발명에 따른 PS 거더의 제작방법은 3차 긴장력 도입단계(S30)를 포함한다.Then, the manufacturing method of the PS girder according to the present invention includes a third tension force introduction step (S30).
상기 3차 긴장력 도입단계(S30)는 제1 측면 강연선(112)에 제1 긴장력에 중첩되어 제2 긴장력 이상이면서 설계긴장력 이하인 제3 긴장력을 도입하는 단계이다. 이 단계(S30)에서는 제2 측면 강연선(113)에 의해 발생된 횡만곡 변위를 회복시키는 한편 수직중립축을 기준으로 거더의 일측에 발생되는 횡만곡 변위를 최소화한다.The third tension force introduction step (S30) is a step of introducing a third tension force that is superimposed on the first tension force on the first side strand 112 and is greater than or equal to the second tension force and less than or equal to the design tension force. In this step (S30), while recovering the transverse displacement generated by the second side strand 113, the transverse displacement generated on one side of the girder with respect to the vertical neutral axis is minimized.
다시 말해, 제3 긴장력은 제1 긴장력과 결합한 수치가 설계긴장력 이하이며, 상기 제2 긴장력에 제1 긴장력을 차감한 수치 이상이다.In other words, as for the third tension force, a value combined with the first tension force is equal to or less than the design tension force, and is greater than or equal to a value obtained by subtracting the first tension force from the second tension force.
구체적으로, 이 단계(S30)에서는 목적하는 설계긴장력 중 40% 내지 60%의 긴장력으로 제1 측면 강연선(112)을 긴장시킬 수 있다. Specifically, in this step (S30), it is possible to tension the first side strand 112 to a tension of 40% to 60% of the desired design tension.
특정 양태로서, 본 발명은 1차 긴장력 도입단계(S10)에서 설계긴장력 중 50%의 긴장력으로 제1 측면 강연선(112)을 긴장시키고, 2차 긴장력 도입단계(S20)에서 100%의 긴장력으로 제2 측면 강연선(113)을 긴장시키는 것이 바람직하다. 이어서 본 발명은 3차 긴장력 도입단계(S30)에서 설계긴장력 중 나머지 50%의 긴장력으로 제1 측면 강연선(112)을 긴장시키는 것이 바람직하다. 이는, 제1 측면 강연선(112)과 제2 측면 강연선(113)을 긴장시키는 공정이 최소화되므로, 프리스트레스트 거더의 제작시간이 단축되는 효과를 제공하기 때문이다.As a specific aspect, the present invention tensions the first side strand 112 with 50% of the design tension in the first tension force introduction step (S10), and 100% tension in the second tension force introduction step (S20). It is preferable to tension the two side strands 113 . Then, in the present invention, it is preferable to tension the first side strand 112 with the remaining 50% of the design tension in the third tension force introduction step (S30). This is because, since the process of tensioning the first side strand 112 and the second side strand 113 is minimized, the manufacturing time of the prestressed girder is reduced.
예컨대, 상기 3차 긴장력 도입단계(S30)에서는 제1 측면 강연선(112) 및 제2 측면 강연선(113)의 설계긴장력이 200톤이고, 제1 긴장력이 100톤이며, 제2 긴장력이 200톤인 경우, 제3 긴장력으로는 100톤을 도입할 수 있다. 즉, 제3 긴장력이 100톤이면 제1 긴장력 100톤과 중첩되어 200톤이므로, 제2 긴장력 이상이면서 설계긴장력 이하인 조건을 충족하게 된다.For example, in the third tension force introduction step (S30), the design tension of the first side strand 112 and the second side strand 113 is 200 tons, the first tension force is 100 tons, and the second tension force is 200 tons. , 100 tons can be introduced as the third tension force. That is, if the third tension force is 100 tons, it overlaps with the first tension force 100 tons and is 200 tons, so that the condition of not less than the second tension force and less than the design tension force is satisfied.
이와 같이, 1차 긴장력 도입단계(S10)에서 제1 측면 강연선(112)을 50%의 설계긴장력으로 긴장시킨 다음에 3차 긴장력 도입단계(S30)에서 제1 측면 강연선(112)을 50%의 설계긴장력으로 긴장시키면, 추후에는 제1 측면 강연선(112)의 긴장이 불필요하게 된다. 이에 따라, 제1 측면 강연선(112)의 긴장 횟수는 2회로 감소된다. In this way, in the first tension force introduction step (S10), the first side strand 112 is tensioned to 50% of the design tension, and then, in the third tension force introduction step (S30), the first side strand 112 is 50% of the If it is tensioned with the design tension, tension of the first side strand 112 becomes unnecessary in the future. Accordingly, the number of tensions of the first side strand 112 is reduced to two.
도 6은 본 발명에 따른 PS 거더의 제2 실시예를 나타내는 단면도이다.6 is a cross-sectional view showing a second embodiment of the PS girder according to the present invention.
도 6을 참조하면, 상기 제2 중앙 강연선 긴장단계(S35)는 제1 중앙 강연선(111)의 아래에서 수직중립축에 위치한 제2 중앙 강연선(114)을 미리 설정된 설계긴장력으로 긴장시키는 단계이다.Referring to FIG. 6 , the second central strand tensioning step S35 is a step of tensioning the second central strand 114 located on the vertical neutral axis under the first central strand 111 with a preset design tension.
본 단계(S35)에서는 제2 중앙 강연선(114)이 수직중립축에 위치하기 때문에 긴장시키더라도 횡만곡이 발생하지 않으므로, 제2 중앙 강연선(114)을 긴장용 잭을 사용해 긴장시킨다. 예컨대, 제2 중앙 강연선 긴장단계(S35)에서는 제2 중앙 강연선(114)의 설계긴장력이 200톤이면, 제2 중앙 강연선(114)에 200톤의 긴장력을 도입한다. In this step (S35), since the second central strand 114 is located on the vertical neutral axis, no lateral curvature occurs even when tensioned, the second central strand 114 is tensioned using a jack for tension. For example, in the second central strand tension step ( S35 ), if the design tension of the second central strand 114 is 200 tons, a tension force of 200 tons is introduced into the second central strand 114 .
이러한 제2 중앙 강연선 긴장단계(S35)는 도 6에 도시된 바와 같이 3차 긴장력 도입단계(S30)를 통해 제1 측면 강연선(112)을 긴장시킨 다음 진행될 수도 있다. 그리고 제2 중앙 강연선 긴장단계(S35)는 제1 중앙 강연선 긴장단계(S5)와 1차 긴장력 도입단계(S10)의 사이에서 진행될 수도 있다.This second central strand tension step (S35) may be performed after tensioning the first side strand 112 through the third tension force introduction step (S30) as shown in FIG. 6 . And the second central strand tension step (S35) may proceed between the first central strand tension step (S5) and the first tension force introduction step (S10).
도 7은 본 발명에 따른 PS 거더의 제3 실시예를 나타내는 단면도이고, 도 8은 도 7의 PS 거더 중앙부에서의 긴장재 배치를 나타내는 단면도이며. 도 9는 본 발명에 따른 PS 거더의 제4 실시예를 나타내는 단면도이다.Figure 7 is a cross-sectional view showing a third embodiment of the PS girder according to the present invention, Figure 8 is a cross-sectional view showing the arrangement of the tension member in the central part of the PS girder of FIG. 9 is a cross-sectional view showing a fourth embodiment of the PS girder according to the present invention.
도 7 내지 도 9를 참조하면, 본 발명에 따른 PS 거더의 제작방법은 3차 긴장력 도입단계(S30)나 제2 중앙 강연선 긴장단계(S35) 이후에 4차 긴장력 도입단계(S40)를 더 포함할 수 있다. 7 to 9, the method of manufacturing a PS girder according to the present invention further includes a fourth tension force introduction step (S40) after the third tension force introduction step (S30) or the second central strand tension step (S35) can do.
상기 4차 긴장력 도입단계(S40)는 수직중립축을 기준으로 상기 제1 측면 강연선(112)의 대각선 방향에 위치한 제3 측면 강연선(115)을 설계긴장력의 미만인 제4 긴장력으로 긴장시키는 단계이다. 이 단계(S40)에서는 거더의 수직중립축을 기준으로 거더의 좌측과 우측의 편심 모멘트 차이를 줄여주면서 제3 측면 강연선(115)의 긴장 횟수가 줄어드는 수준으로 제3 측면 강연선(115)을 긴장시킨다. 이때, 제3 측면 강연선(115)은 긴장용 잭을 사용해 긴장시킬 수 있다.The fourth tension force introduction step (S40) is a step of tensioning the third side strand 115 located in the diagonal direction of the first side strand 112 with respect to the vertical neutral axis to a fourth tension force that is less than the design tension. In this step (S40), the third side strand 115 is tensioned to a level where the number of tensions of the third side strand 115 is reduced while reducing the difference in the eccentric moment between the left and right sides of the girder based on the vertical neutral axis of the girder. At this time, the third side strand 115 may be tensioned using a jack for tension.
또한, 이 단계(S40)에서는 목적하는 설계긴장력 중 40% 내지 60%의 긴장력으로 제3 측면 강연선(115)을 긴장시킬 수 있다. 이는, 수직중립축을 기준으로 거더의 타측에 발생되는 횡만곡 변위를 최소화 하며 제3 측면 강연선(115)의 긴장 횟수를 줄이기 위함이다. 예컨대, 이 단계(S40)에서는 제3 측면 강연선(115)의 설계긴장력이 200톤인 경우, 긴장용 잭을 통해 제3 측면 강연선(115)에 80톤 내지 120톤의 긴장력을 도입할 수 있으나, 이에 한정되지는 않는다.In addition, in this step (S40), it is possible to tension the third side strand 115 to a tension of 40% to 60% of the desired design tension. This is to minimize the transverse bending displacement occurring on the other side of the girder with respect to the vertical neutral axis and to reduce the number of tensions of the third side strand 115 . For example, in this step (S40), when the design tension of the third side stranded wire 115 is 200 tons, a tension of 80 to 120 tons can be introduced to the third side stranded wire 115 through the tension jack, but this not limited
도 7 내지 도 9를 참조하면, 본 발명에 따른 PS 거더의 제작방법은 5차 긴장력 도입단계(S50)를 더 포함할 수 있다. 7 to 9 , the method for manufacturing a PS girder according to the present invention may further include a fifth tension force introduction step (S50).
상기 5차 긴장력 도입단계(S50)는 수직중립축을 기준으로 상기 제2 측면 강연선(113)의 대각선 방향에 위치한 제4 측면 강연선(116)에 상기 제4 긴장력을 초과하는 제5 긴장력을 도입하는 단계이다. 이 단계(S50)에서는 제3 측면 강연선(115)에 의해 발생된 횡만곡 변위를 회복시키는 한편 수직중립축을 기준으로 거더의 타측에 발생되는 횡만곡 변위를 최소화한다.The fifth tension force introduction step (S50) is a step of introducing a fifth tension force exceeding the fourth tension force to the fourth side strand 116 located in the diagonal direction of the second side strand 113 with respect to the vertical neutral axis. to be. In this step (S50), while recovering the transverse displacement generated by the third side strand 115, the transverse displacement generated on the other side of the girder with respect to the vertical neutral axis is minimized.
이를 위해, 본 단계(S50)에서는 제4 긴장력을 초과하면서 설계긴장력 이하인 제5 긴장력으로 제4 측면 강연선(116)을 긴장시킨다. 이때, 제4 측면 강연선(116)은 긴장용 잭을 사용해 긴장시킬 수 있다.To this end, in this step (S50), the fourth side strand 116 is tensioned with a fifth tension force that is less than the design tension while exceeding the fourth tension. At this time, the fourth side strand 116 can be tensioned using a jack for tension.
특정 양태로서, 본 발명에 따른 5차 긴장력 도입단계(S50)에서는 목적하는 설계긴장력 중 75% 내지 100%의 긴장력으로 제4 측면 강연선(116)을 긴장시킬 수 있다. 예를 들면, 상기 5차 긴장력 도입단계(S50)에서는 제4 측면 강연선(116)의 설계긴장력이 200톤인 경우, 긴장용 잭을 통해 제4 측면 강연선(116)에 200톤의 긴장력을 도입한다.As a specific aspect, in the fifth tension force introduction step (S50) according to the present invention, the fourth side strand 116 may be tensioned with a tension of 75% to 100% of the desired design tension. For example, in the fifth tension introduction step (S50), when the design tension of the fourth side strand 116 is 200 tons, a tension of 200 tons is introduced into the fourth side strand 116 through a tension jack.
이와 같이, 5차 긴장력 도입단계(S50)에서 제4 측면 강연선(116)을 100%의 설계긴장력으로 긴장시키면, 추후에는 제4 측면 강연선(116)의 긴장이 불필요하게 되므로, 제4 측면 강연선(116)의 총 긴장 횟수가 1회로 최소화된다. In this way, if the fourth side strand 116 is tensioned to 100% of the design tension in the fifth tension force introduction step (S50), the tension of the fourth side strand 116 becomes unnecessary later, so the fourth side strand ( 116) is minimized to one total number of tensions.
그리고 제4 측면 강연선(116)을 100% 미만의 설계긴장력으로 긴장시키면, 6차 긴장력 도입단계(S60) 이후에 제4 측면 강연선(116)을 추가적으로 긴장시키는 단계가 필요하게 되지만, 거더의 타측에 발생된 횡만곡 변위가 감소된다. 이때, 추가적으로 긴장시키는 단계는 제4 측면 강연선(116)에 총 100%의 설계긴장력을 도입하기 위한 과정이다. And if the fourth side strand 116 is tensioned to a design tension of less than 100%, a step of additionally tensioning the fourth side strand 116 is required after the 6th tension introduction step (S60), but on the other side of the girder The resulting lateral curvature displacement is reduced. At this time, the step of additionally straining is a process for introducing a total design tension of 100% to the fourth side strand 116 .
도 7 내지 도 9를 참조하면, 본 발명에 따른 PS 거더의 제작방법은 6차 긴장력 도입단계(S60)를 더 포함할 수 있다. 7 to 9 , the method of manufacturing a PS girder according to the present invention may further include a sixth tension force introduction step (S60).
상기 6차 긴장력 도입단계(S60)는 제3 측면 강연선(115)에 제4 긴장력에 중첩되어 제5 긴장력 이상이면서 설계긴장력 이하인 제6 긴장력을 도입하는 단계이다. 이 단계(S60)에서는 제4 측면 강연선(116)에 의해 발생된 횡만곡 변위를 회복시키는 한편 수직중립축을 기준으로 거더의 일측에 발생되는 횡만곡 변위를 최소화한다.The sixth tension force introduction step (S60) is a step of introducing a sixth tension force that is superimposed on the fourth tension force on the third side strand 115 and is equal to or greater than the fifth tension force and less than or equal to the design tension force. In this step (S60), while recovering the transverse displacement generated by the fourth side strand 116, the transverse displacement generated on one side of the girder with respect to the vertical neutral axis is minimized.
다시 말해, 제6 긴장력은 제4 긴장력과 결합한 수치가 설계긴장력 이하이며, 상기 제5 긴장력에 제4 긴장력을 차감한 수치 이상이다.In other words, as for the sixth tension force, the value combined with the fourth tension force is equal to or less than the design tension force, and is greater than or equal to the value obtained by subtracting the fourth tension force from the fifth tension force.
구체적으로, 본 발명에 따른 6차 긴장력 도입단계(S60)에서는 목적하는 설계긴장력 중 40% 내지 60%의 긴장력으로 제3 측면 강연선(115)을 긴장시킬 수 있으나, 이에 한정되지는 않는다.Specifically, in the sixth tension force introduction step (S60) according to the present invention, the third side strand 115 may be tensioned with a tension of 40% to 60% of the desired design tension, but is not limited thereto.
특정 양태로서, 본 발명은 4차 긴장력 도입단계(S40)에서 설계긴장력 중 50%의 긴장력으로 제3 측면 강연선(115)을 긴장시키고, 5차 긴장력 도입단계(S50)에서 100%의 긴장력으로 제4 측면 강연선(116)을 긴장시키는 것이 바람직하다. 이어서 본 발명은 6차 긴장력 도입단계(S60)에서 설계긴장력 중 나머지 50%의 긴장력으로 제3 측면 강연선(115)을 긴장시키는 것이 바람직하다. 이는, 제3 측면 강연선(115)과 제4 측면 강연선(116)을 긴장시키는 공정이 최소화되므로, 프리스트레스트 거더의 제작시간이 단축되는 효과를 제공하기 위한 것이다.As a specific aspect, the present invention tensions the third side strand 115 with a tension of 50% of the design tension in the fourth tension force introduction step (S40), and in the fifth tension force introduction step (S50), 100% tension. It is desirable to tension the four side strands 116 . Subsequently, in the present invention, it is preferable to tension the third side strand 115 with the remaining 50% of the design tension in the sixth tension force introduction step (S60). This is to provide the effect that the manufacturing time of the prestressed girder is shortened since the process of tensioning the third side strand 115 and the fourth side strand 116 is minimized.
예컨대, 상기 6차 긴장력 도입단계(S60)에서는 제3 측면 강연선(115) 및 제4 측면 강연선(116)의 설계긴장력이 200톤이고, 제4 긴장력이 100톤이며, 제5 긴장력이 200톤인 경우, 제6 긴장력으로는 100톤을 도입할 수 있다. 즉, 제6 긴장력이 100톤이면 제4 긴장력 100톤과 중첩되어 200톤이므로, 제5 긴장력 이상이면서 설계긴장력 이하인 조건을 충족하게 된다.For example, in the sixth tension introduction step (S60), the design tension of the third side strand 115 and the fourth side strand 116 is 200 tons, the fourth tension is 100 tons, and the fifth tension is 200 tons. , 100 tons can be introduced as the sixth tension force. That is, if the sixth tension force is 100 tons, the fourth tension force is overlapped with 100 tons and is 200 tons, so the condition of being equal to or greater than the fifth tension force and less than the design tension force is satisfied.
이와 같이, 6차 긴장력 도입단계(S60)에서 제3 측면 강연선(115)을 50%의 설계긴장력으로 긴장시키면, 추후에는 제3 측면 강연선(115)의 긴장이 불필요하게 되므로, 제3 측면 강연선(115)의 긴장 횟수가 2회로 감소된다. In this way, if the third side strand 115 is tensioned to 50% of the design tension in the sixth tension force introduction step (S60), the tension of the third side strand 115 becomes unnecessary later, so the third side strand ( 115) is reduced to 2 times.
도 10은 본 발명에 따른 PS 거더의 제5 실시예를 나타내는 단면도이다.10 is a cross-sectional view showing a fifth embodiment of the PS girder according to the present invention.
도 10을 참조하면, 본 발명에 따른 PS 거더의 제작방법은 6차 긴장력 도입단계(S60) 이후에 제3 중앙 강연선 긴장단계(S65)를 더 포함할 수 있다. Referring to FIG. 10 , the method of manufacturing a PS girder according to the present invention may further include a third central strand tension step (S65) after the sixth tension force introduction step (S60).
상기 제3 중앙 강연선 긴장단계(S65)는 제2 중앙 강연선(114)의 아래에서 수직중립축에 위치한 제3 중앙 강연선(117)을 미리 설정된 설계긴장력으로 긴장시키는 단계이다.The third central strand tension step (S65) is a step of tensioning the third central strand 117 positioned on the vertical neutral axis under the second central strand 114 with a preset design tension.
본 단계(S65)에서는 제3 중앙 강연선(117)이 수직중립축에 위치하기 때문에 긴장시키더라도 횡만곡이 발생하지 않으므로, 제3 중앙 강연선(117)을 긴장용 잭을 사용해 3열에 이웃한 측면 강연선과 상관없이 긴장시킨다. 예컨대, 제3 중앙 강연선(117) 긴장단계에서는 제3 중앙 강연선(117)의 설계긴장력이 200톤이면, 제3 중앙 강연선(117)에 200톤의 긴장력을 도입한다. In this step (S65), since the third central strand 117 is located on the vertical neutral axis, lateral curvature does not occur even when tensioned, so the third central strand 117 is connected to the side strands adjacent to the third row using a jack for tension. tense no matter what. For example, in the tensioning step of the third central strand 117 , if the design tension of the third central strand 117 is 200 tons, a tension of 200 tons is introduced into the third central strand 117 .
도 11은 본 발명에 따른 PS 거더의 제6 실시예를 나타내는 단면도이다.11 is a cross-sectional view showing a sixth embodiment of the PS girder according to the present invention.
도 11을 참조하면, 본 발명에 따른 PS 거더의 제작방법은 6차 긴장력 도입단계(S60)나 제3 중앙 강연선 긴장단계(S65) 이후에 7차 긴장력 도입단계(S70)를 더 포함할 수 있다. Referring to FIG. 11 , the method of manufacturing a PS girder according to the present invention may further include a seventh tension force introduction step (S70) after the sixth tension force introduction step (S60) or the third central strand tension step (S65). .
상기 7차 긴장력 도입단계(S70)는 설계긴장력 미만인 제7 긴장력으로 제5 측면 강연선(118)을 긴장시키는 단계이다. 이 단계(S70)에서는 거더의 수직중립축을 기준으로 거더의 좌측과 우측의 편심 모멘트 차이를 줄여주면서 제5 측면 강연선(118)의 긴장 횟수가 줄어드는 수준으로 제5 측면 강연선(118)을 긴장시킨다. 이때, 제5 측면 강연선(118)은 긴장용 잭을 사용해 긴장시킬 수 있다.The seventh tension force introduction step (S70) is a step of tensioning the fifth side strand 118 with a seventh tension force that is less than the design tension force. In this step (S70), the fifth side strand 118 is tensioned to a level where the number of tensions of the fifth side strand 118 is reduced while reducing the difference in the eccentric moment between the left and right sides of the girder with respect to the vertical neutral axis of the girder. At this time, the fifth side strand 118 can be tensioned using a jack for tension.
본 발명에 따른 7차 긴장력 도입단계(S70)에서는 목적하는 설계긴장력 중 40% 내지 60%의 긴장력으로 제5 측면 강연선(118)을 긴장시킬 수 있으나, 이에 한정되지는 않는다. 이는, 수직중립축을 기준으로 거더의 일측에 발생되는 횡만곡 변위를 최소화 하며 제5 측면 강연선(118)의 긴장 횟수를 줄이기 위함이다. 예컨대, 상기 7차 긴장력 도입단계(S70)에서는 제5 측면 강연선(118)의 설계긴장력이 200톤인 경우, 긴장용 잭을 통해 제5 측면 강연선(118)에 80톤 내지 120톤의 긴장력을 도입할 수 있다.In the seventh tension introduction step (S70) according to the present invention, the fifth side strand 118 may be tensioned with a tension of 40% to 60% of the desired design tension, but is not limited thereto. This is to minimize the transverse bending displacement occurring on one side of the girder with respect to the vertical neutral axis and to reduce the number of tensions of the fifth side strand 118 . For example, when the design tension of the fifth side strand 118 is 200 tons in the seventh tension introduction step (S70), a tension of 80 tons to 120 tons is introduced into the fifth side strand 118 through a tension jack. can
도 11을 참조하면, 본 발명에 따른 PS 거더의 제작방법은 7차 긴장력 도입단계(S70) 이후에 8차 긴장력 도입단계(S80)를 더 포함할 수 있다. Referring to FIG. 11 , the method of manufacturing a PS girder according to the present invention may further include an 8th tension force introduction step (S80) after the 7th tension force introduction step (S70).
상기 8차 긴장력 도입단계(S80)는 제6 측면 강연선(119)에 상기 제7 긴장력을 초과하는 제8 긴장력을 도입하는 단계이다. 이 단계(S80)에서는 제5 측면 강연선(118)에 의해 발생된 횡만곡 변위를 회복시키는 한편 수직중립축을 기준으로 거더의 타측에 발생되는 횡만곡 변위를 최소화한다.The eighth tension force introduction step (S80) is a step of introducing an eighth tension force exceeding the seventh tension force to the sixth side strand 119. In this step (S80), while recovering the transverse displacement generated by the fifth side strand 118, the transverse displacement generated on the other side of the girder with respect to the vertical neutral axis is minimized.
이를 위해, 본 단계(S80)에서는 제7 긴장력을 초과하면서 설계긴장력 이하인 제8 긴장력으로 제6 측면 강연선(119)을 긴장시킨다. 이때, 제6 측면 강연선(119)은 긴장용 잭을 사용해 긴장시킬 수 있다.To this end, in this step (S80), the sixth side strand 119 is tensioned with the eighth tension force that is less than the design tension while exceeding the seventh tension. At this time, the sixth side strand 119 can be tensioned using a jack for tension.
특정 양태로서, 본 발명에 따른 8차 긴장력 도입단계(S80)에서는 목적하는 설계긴장력 중 75% 내지 100%의 긴장력으로 제6 측면 강연선(119)을 긴장시킬 수 있다. 예를 들면, 상기 8차 긴장력 도입단계(S80)에서는 제6 측면 강연선(119)의 설계긴장력이 200톤인 경우, 긴장용 잭을 통해 제6 측면 강연선(119)에 200톤의 긴장력을 도입한다.As a specific aspect, in the eighth tension force introduction step (S80) according to the present invention, the sixth side strand 119 may be tensioned with a tension of 75% to 100% of the desired design tension. For example, in the eighth tension introduction step (S80), when the design tension of the sixth side strand 119 is 200 tons, a tension force of 200 tons is introduced into the sixth side strand 119 through a tension jack.
이와 같이, 8차 긴장력 도입단계(S80)에서 제6 측면 강연선(119)을 100%의 설계긴장력으로 긴장시키면, 추후에는 제6 측면 강연선(119)의 긴장이 불필요하게 되므로, 제6 측면 강연선(119)의 긴장 횟수가 총 1회로 최소화된다. 그리고 제6 측면 강연선(119)을 100% 미만의 설계긴장력으로 긴장시키면, 9차 긴장력 도입단계(S90) 이후에 제6 측면 강연선(119)을 추가적으로 긴장시키는 단계가 필요하게 되지만, 거더의 타측에 발생된 횡만곡 변위가 감소된다. 이때, 추가적으로 긴장시키는 단계는 제6 측면 강연선(119)에 총 100%의 설계긴장력을 도입하기 위한 과정이다. As such, if the sixth side strand 119 is tensioned to 100% of the design tension in the 8th tension force introduction step (S80), the tension of the sixth side strand 119 becomes unnecessary later, so the sixth side strand ( 119) is minimized to 1 total. And if the sixth side strand 119 is tensioned to a design tension of less than 100%, a step of additionally tensioning the sixth side strand 119 is required after the ninth tension introduction step (S90), but on the other side of the girder The resulting lateral curvature displacement is reduced. At this time, the step of additionally straining is a process for introducing a total design tension of 100% to the sixth side strand 119 .
도 11을 참조하면, 본 발명에 따른 PS 거더의 제작방법은 8차 긴장력 도입단계(S80) 이후에 9차 긴장력 도입단계(S90)를 더 포함할 수 있다. Referring to FIG. 11 , the method of manufacturing a PS girder according to the present invention may further include a ninth tension introduction step (S90) after the eighth tension force introduction step (S80).
상기 9차 긴장력 도입단계(S90)는 제7 긴장력에 중첩되어 제8 긴장력 이상이면서 설계긴장력 이하인 제9 긴장력을 제5 측면 강연선(118)에 도입하는 단계이다. 이 단계(S90)에서는 제6 측면 강연선(119)에 의해 발생된 횡만곡 변위를 회복시키는 한편 수직중립축을 기준으로 거더의 일측에 발생되는 횡만곡 변위를 최소화한다.The ninth tension force introduction step (S90) is a step of introducing a ninth tension force that overlaps the seventh tension force and is equal to or greater than the eighth tension force and less than or equal to the design tension force to the fifth side strand 118. In this step (S90), while recovering the transverse displacement generated by the sixth side strand 119, the transverse displacement generated on one side of the girder with respect to the vertical neutral axis is minimized.
다시 말해, 제9 긴장력은 제7 긴장력과 결합한 수치가 설계긴장력 이하이며, 상기 제8 긴장력에 제7 긴장력을 차감한 수치 이상이다.In other words, as for the ninth tension force, a value combined with the seventh tension force is equal to or less than the design tension force, and is greater than or equal to a value obtained by subtracting the seventh tension force from the eighth tension force.
구체적으로, 본 발명에 따른 9차 긴장력 도입단계(S90)에서는 목적하는 설계긴장력 중 40% 내지 60%의 긴장력으로 제5 측면 강연선(118)을 긴장시킬 수 있으나, 이에 한정되지는 않는다. Specifically, in the ninth tension introduction step (S90) according to the present invention, the fifth side strand 118 may be tensioned with a tension of 40% to 60% of the desired design tension, but is not limited thereto.
특정 양태로서, 본 발명은 7차 긴장력 도입단계(S70)에서 설계긴장력 중 50%의 긴장력으로 제5 측면 강연선(118)을 긴장시키고, 8차 긴장력 도입단계(S80)에서 100%의 긴장력으로 제6 측면 강연선(119)을 긴장시키는 것이 바람직하다. 이어서 본 발명은 9차 긴장력 도입단계(S90)에서 설계긴장력 중 나머지 50%의 긴장력으로 제5 측면 강연선(118)을 긴장시키는 것이 바람직하다. As a specific aspect, the present invention tensions the fifth side strand 118 with a tension of 50% of the design tension in the 7th tension force introduction step (S70), and 100% tension in the 8th tension force introduction step (S80). It is desirable to tension the 6 side strands 119 . Next, in the present invention, it is preferable to tension the fifth side strand 118 with the remaining 50% of the design tension in the ninth tension force introduction step (S90).
일 실시 양태로서, 본 발명에 따른 거더의 길이가 40m 이하, 예컨대 20m 내지 40m인 경우 제1 측면 강연선 내지 제4 측면 강연선(112,113,115,116)은 동일 방향의 말단에서 긴장시키는 것이 바람직하다. 이는, 거더의 길이가 40m 이하인 경우에 거더의 일단에서 100%의 설계긴장력으로 모든 강연선에 긴장력을 도입하면, 거더의 길이 방향에 따라 긴장력의 손실이 중첩적으로 발생하더라도 거더 전체에 도입되어야 하는 최소의 압축력 이상의 압축력이 거더의 타단 부분에 도입되기 때문이다. As an embodiment, when the length of the girder according to the present invention is 40 m or less, for example, 20 m to 40 m, the first to fourth side strands 112, 113, 115, and 116 are preferably tensioned at the ends in the same direction. This is the minimum that must be introduced to the entire girder even if the loss of tension force occurs overlappingly along the longitudinal direction of the girder when the tension force is introduced to all strands with 100% design tension at one end of the girder when the length of the girder is 40m or less. This is because a compressive force greater than the compressive force is introduced to the other end of the girder.
다른 실시 양태로서, 본 발명에 따른 거더의 길이가 40m를 초과하면, 예컨대 40m 내지 60m이면 제1 측면 강연선(112) 및 제2 측면 강연선(113)은 거더의 일단에서 긴장시키는 것이 바람직하다. 이어서 상기 제3 측면 강연선(115) 및 제4 측면 강연선(116)은 상기 일단에 대향되는 거더의 타단에서 긴장시키는 것이 바람직하다. 이는, 거더의 길이가 40m를 초과하는 경우 거더의 일단에서 100%의 설계긴장력으로 모든 강연선에 긴장력을 도입하면, 거더의 타단 부분에서 거더 전체에 도입되어야 하는 최소의 압축력 미만의 압축력이 도입되는 문제가 발생할 수도 있기 때문이다. 그러나 제1,2 측면 강연선(112,113)과 제3,4 측면 강연선(115,116)이 서로 반대 방향에 위치한 거더의 말단에서 100%의 설계긴장력으로 긴장력을 도입하면, 거더의 전체에서 목적하는 수치 이상의 압축력이 도입된다. 이는, 제1,2 측면 강연선(112,113)의 긴장력과 제3,4 측면 강연선(115,116)의 긴장력이 상호 보완하기 때문이다. As another embodiment, if the length of the girder according to the present invention exceeds 40m, for example, 40m to 60m, the first side strand 112 and the second side strand 113 are preferably tensioned at one end of the girder. Then, the third side strand 115 and the fourth side strand 116 are preferably tensioned at the other end of the girder opposite to the one end. This is a problem that, when the length of the girder exceeds 40m, when the tension force is introduced to all strands at 100% of the design tension at one end of the girder, a compressive force less than the minimum compressive force that must be introduced to the entire girder at the other end of the girder is introduced. because it may occur. However, if the first and second side strands 112 and 113 and the third and fourth side strands 115 and 116 are in opposite directions to each other, when the tension force is introduced at the end of the girder with 100% of the design tension, the compressive force greater than the desired value in the entire girder. This is introduced This is because the tension of the first and second side strands 112 and 113 and the tension of the third and fourth side strands 115 and 116 complement each other.
보다 구체적으로, 도 10에서 거더의 길이가 40m를 초과하면 제1 중앙 강연선(111), 제1 측면 강연선(112), 제2 측면 강연선(113)은 거더의 일단에서 긴장시키고 제2 중앙 강연선(114), 제3 측면 강연선(115), 제4 측면 강연선(116), 제3 중앙 강연선(117)은 상기 일단에 대향되는 거더의 타단에서 긴장시키는 것이 바람직하다.More specifically, in FIG. 10, when the length of the girder exceeds 40 m, the first central strand 111, the first side strand 112, and the second side strand 113 are tensioned at one end of the girder and the second central strand ( 114), the third side strand 115, the fourth side strand 116, and the third central strand 117 are preferably tensioned at the other end of the girder opposite to the one end.
또한, 도 11에서 거더의 길이가 40m를 초과하면 제1 중앙 강연선(111), 제1 측면 강연선(112), 제2 측면 강연선(113), 제2 중앙 강연선(114)은 거더의 일단에서 긴장시키고 제3 측면 강연선(115), 제4 측면 강연선(116), 제5 측면 강연선(118), 제6 측면 강연선(119)은 상기 일단에 대향되는 거더의 타단에서 긴장시키는 것이 바람직하다. In addition, when the length of the girder in FIG. 11 exceeds 40m, the first central strand 111, the first side strand 112, the second side strand 113, and the second central strand 114 are tensioned at one end of the girder. and the third side strand 115, the fourth side strand 116, the fifth side strand 118, and the sixth side strand 119 are preferably tensioned at the other end of the girder opposite to the one end.
도 12는 본 발명에 따른 PS 거더의 제7 실시예를 나타내는 단면도이며, 도 13은 본 발명에 따른 PS 거더의 제8 실시예를 나타내는 단면도이다.12 is a cross-sectional view showing a seventh embodiment of a PS girder according to the present invention, and FIG. 13 is a cross-sectional view showing an eighth embodiment of a PS girder according to the present invention.
한편, 전술한 PS 거더(100)는 도 12 및 도 13과 같이 거더의 길이 방향을 따라 거더의 중앙에 거더의 좌굴 발생을 억지시키기 위한 횡만곡 보강재(120)가 내삽되도록 설치될 수 있다. 이러한 횡만곡 보강재(120)로는 강봉, H형강, L형강, T형강, ㄷ형강 중 어느 하나를 사용할 수 있다. On the other hand, the aforementioned PS girder 100 may be installed such that the transverse curved reinforcement 120 for suppressing the occurrence of buckling of the girder in the center of the girder along the longitudinal direction of the girder is interpolated as shown in FIGS. 12 and 13 . Any one of steel bars, H-beams, L-beams, T-beams, and C-beams may be used as the transverse curved reinforcing material 120 .
이러한 횡만곡 보강재(120)는 긴장력 도입단계(S10,S20,S30)의 인장력 차이로 인하여 발생할 수 있는 횡만곡 변위를 최소화하는 기능을 한다. The transverse curvature reinforcing material 120 functions to minimize transverse curvature displacement that may occur due to the difference in tensile force in the tension force introduction steps ( S10 , S20 , S30 ).
또한, 횡만곡 보강재(120)는 횡만곡의 발생을 억지시키기 위해 거더의 수직중립축(VNA)을 기준으로 좌우 양측에 대칭되도록 한 쌍이 구비될 수 있다. 그리고 한 쌍의 좌굴 보강재(120)는 거더의 좌굴 발생을 방지하기 위해 거더의 상부, 거더의 하부, 또는 이들 모두에 구비될 수 있다. In addition, a pair of transverse curvature reinforcing materials 120 may be provided so as to be symmetrical on both left and right sides with respect to the vertical neutral axis (VNA) of the girder in order to inhibit the occurrence of transverse curvature. And the pair of buckling reinforcement 120 may be provided on the upper part of the girder, the lower part of the girder, or both in order to prevent the occurrence of buckling of the girder.
구체적으로, 횡만곡 보강재(120)인 H형강은 상하 방향의 좌굴 방지에 적합한 *?*형으로 거더에 내삽시키는 대신 횡만곡을 방지하기 위해 도 12와 같이 H형으로 거더에 내삽시키는 것이 바람직하다.Specifically, instead of interpolating the H-beam steel, which is the transverse curvature reinforcing material 120, into the girder in a *?* shape suitable for vertical buckling prevention, it is preferable to interpolate into the girder in an H-shape as shown in FIG. 12 to prevent transverse curvature. .
그리고 횡만곡 보강재(120)인 L형강은 도 13과 같이 횡만곡의 방지와 함께 상하 방향의 단면강성을 극대화하도록 거더의 상부플랜지의 우측 말단에 'ㄱ'자형으로 내삽된다. 그리고 L형강은 상부플랜지의 좌측 말단에 수직중립축(VNA)을 기준으로 좌우 대칭되도록 내삽된다.And the transverse curvature reinforcing material 120, the L-beam, is interpolated in a 'L' shape at the right end of the upper flange of the girder to prevent transverse curvature and maximize the cross-sectional rigidity in the vertical direction, as shown in FIG. 13 . And the L-beam is interpolated to the left end of the upper flange so as to be symmetrical with respect to the vertical neutral axis (VNA).
아울러, 상기 횡만곡 보강재(120)는 거더 길이의 0.1 내지 0.3배의 길이로 형성되는 것이 바람직하다. 이때, 횡만곡 보강재(120)가 거더 길이의 0.1배 미만으로 형성되면 좌굴의 방지하는 기능이 발현되지 않는 문제가 발생될 수 있다. 그리고 횡만곡 보강재(120)가 거더 길이의 0.3배를 초과하도록 형성되면 좌굴을 방지하는 기능의 향상은 미미하지만 제작비용이 증가하여 경제성이 떨어질 수 있다. In addition, the transverse curved reinforcement 120 is preferably formed in a length of 0.1 to 0.3 times the length of the girder. At this time, if the transverse curved reinforcing material 120 is formed to be less than 0.1 times the length of the girder, there may be a problem that the function of preventing buckling is not expressed. And when the transverse curved reinforcing material 120 is formed to exceed 0.3 times the length of the girder, the improvement in the function of preventing buckling is insignificant, but the manufacturing cost increases and thus economic efficiency may be reduced.
도 14는 본 발명에 따른 콘크리트 돌출부가 구비된 PS 거더를 나타내는 평면도이며, 도 15는 본 발명에 따른 콘크리트 돌출부가 구비된 PS 거더를 나타내는 단면도이다.14 is a plan view showing a PS girder provided with a concrete protrusion according to the present invention, and FIG. 15 is a cross-sectional view showing a PS girder provided with a concrete protrusion according to the present invention.
도 14 및 도 15를 참조하면, 본 발명에 따른 거더는 횡만곡의 발생을 억지시키기 위해 상부플랜지의 길이 방향을 따라 상부플랜지의 중앙에서 상부플랜지로부터 돌출되도록 구비된 콘크리트 돌출부가 포함될 수 있다. 14 and 15, the girder according to the present invention may include a concrete protrusion provided to protrude from the upper flange at the center of the upper flange along the longitudinal direction of the upper flange in order to inhibit the occurrence of lateral curvature.
상기 콘크리트 돌출부는 도 15에 도시된 바와 같이 상기 상부플랜지의 길이 방향을 기준으로 상부플랜지의 양측 말단에서 측면 또는 밑면에 구비될 수 있다.As shown in FIG. 15 , the concrete protrusion may be provided on the side surface or the bottom surface at both ends of the upper flange based on the longitudinal direction of the upper flange.
이러한 콘크리트 돌출부는 거더 길이의 0.1 내지 0.3배의 길이로 형성되는 것이 바람직하다. 이때, 콘크리트 돌출부가 거더 길이의 0.1배 미만으로 형성되면 좌굴의 방지하는 기능이 발현되지 않는 문제가 발생될 수 있다. 그리고 콘크리트 돌출부가 거더 길이의 0.3배를 초과하도록 형성되면 좌굴을 방지하는 기능의 향상은 미미하지만 제작비용이 증가하여 경제성이 떨어지고, 시공성이 저하되는 문제가 발생될 수 있다. It is preferable that such a concrete protrusion is formed with a length of 0.1 to 0.3 times the length of the girder. At this time, if the concrete protrusion is formed to be less than 0.1 times the length of the girder, there may be a problem that the function to prevent buckling is not expressed. And when the concrete protrusion is formed to exceed 0.3 times the length of the girder, the improvement of the function to prevent buckling is insignificant, but the manufacturing cost increases, so that economic efficiency is deteriorated and workability is deteriorated.
또한, 상부플랜지의 양측 말단에서 측면으로 구비된 콘크리트 돌출부의 폭은 거더와 평행하도록 설치되는 거더와의 사이간격과 거더의 폭에 따라 상한치가 결정될 수 있다. 보다 구체적으로, 콘크리트 돌출부의 너비는 (거더 끼리의 사이간격-거더의 너비)/2 이하의 길이를 갖도록 형성된다. 예컨대, 거더와 이웃한 거더의 사이간격이 2.6m이고 거더의 폭이 1.2m이면 콘크리트 돌출부는 0.7m 이하의 폭을 갖도록 형성되는 것이 바람직하다. In addition, the upper limit of the width of the concrete protrusion provided to the side at both ends of the upper flange may be determined according to the distance between the girders and the width of the girders installed parallel to the girders. More specifically, the width of the concrete protrusion is formed to have a length of (interval between girders - the width of the girder)/2 or less. For example, if the interval between the girder and the adjacent girder is 2.6m and the width of the girder is 1.2m, it is preferable that the concrete protrusion be formed to have a width of 0.7m or less.
도 16은 기존 PS 거더에 설치된 강연선의 긴장 시에 발생되는 압축력을 설명하기 위한 평면도이며, 도 17은 본 발명에 따른 PS 거더에 설치된 강연선의 긴장 시에 발생되는 압축력을 설명하기 위한 평면도이다.Figure 16 is a plan view for explaining the compressive force generated when the tension of the strand installed in the existing PS girder, Figure 17 is a plan view for explaining the compressive force generated when the tension of the strand installed in the PS girder according to the present invention.
도 16에 도시된 바와 같이, 거더의 상하 방향을 기준으로 정착구가 일렬로 형성된 기존의 거더는 정착구를 통해 강연선을 긴장시킬 때 거더의 중심축과 강연선의 긴장축이 일치하기 때문에 강연선에 의한 긴장력이 일측 방향(중심축 방향)으로만 도입되므로, 강연선의 긴장 시에 횡만곡이 발생된다. As shown in FIG. 16, in the existing girder, in which anchorages are formed in a line based on the vertical direction of the girder, when tensioning the strand through the anchorage, the central axis of the girder and the tension axis of the strand coincide, so the tension by the strand is Since it is introduced only in one direction (central axis direction), transverse curvature occurs when the strand is tensioned.
반면, 본 발명에 따른 PS 거더의 제작방법을 통해 제작된 PS 거더는 도 17에 도시된 바와 같이 강연선을 긴장시킬 때 거더의 중심축과 강연선의 긴장축이 일치하지 않기 때문에 강연선의 위치에 따라 중심축 방향과 이의 반대 방향으로 각각 서로 다른 크기의 압축력이 도입된다. 이에 따라, PS 거더는 강연선의 긴장 시에 횡만곡의 발생이 억제된다. On the other hand, the PS girder manufactured by the method of manufacturing a PS girder according to the present invention does not coincide with the central axis of the girder and the tension axis of the strand when tensioning the strand as shown in FIG. 17, so the center of the girder depends on the position of the strand. Compressive forces of different magnitudes are introduced respectively in the axial direction and in the opposite direction. Thereby, the PS girder suppresses the occurrence of lateral curvature during tension of the strand.
본 발명은 전술한 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법으로 제작된 프리스트레스트 거더를 이용한 거더교의 시공방법을 제공한다.The present invention provides a method of constructing a girder bridge using the prestressed girder manufactured by the manufacturing method of the prestressed girder for improving lateral curvature.
도 18은 본 발명의 제1 실시예에 따른 거더교의 시공방법을 설명하기 위한 순서도이고, 도 19는 본 발명의 제1 실시예에 따른 거더교의 시공방법을 설명하기 위한 흐름도이다. 18 is a flowchart for explaining the construction method of the girder bridge according to the first embodiment of the present invention, and FIG. 19 is a flowchart for explaining the construction method of the girder bridge according to the first embodiment of the present invention.
도 18 및 도 19를 참조하면, 본 발명의 제1 실시예에 따른 거더교의 시공방법은 단경간 거더교의 시공방법으로, 상기 프리스트레스트 거더의 일단을 제1 교대(310)에 거치시키고, 상기 일단에 대향되는 타단을 제2 교대(320)에 거치시키는 거치단계(S110)와, 상기 프리스트레스트 거더의 일단을 제1 교대(310)에 고정시키는 결합단계(S120)와, 상기 프리스트레스트 거더의 상부에 슬래브 콘크리트(400)를 타설 및 양생하는 슬래브 타설단계(S130), 및 상기 제2 교대(320)에 거치된 프리스트레스트 거더의 타단을 상승시켜 프리스트레스트 거더에 일체화된 슬래브 콘크리트(400)에 압축력을 도입하는 압축력 도입단계(S140)를 포함한다.18 and 19, the construction method of the girder bridge according to the first embodiment of the present invention is a construction method of a short span girder bridge, and one end of the prestressed girder is mounted on the first abutment 310, and the one end A mounting step (S110) of mounting the other end opposite to the second abutment 320 (S110), a coupling step (S120) of fixing one end of the prestressed girder to the first abutment 310, and an upper portion of the prestressed girder In the slab pouring step (S130) of pouring and curing the slab concrete 400, and raising the other end of the prestressed girder mounted on the second abutment 320, compressive force on the slab concrete 400 integrated into the prestressed girder Including a compressive force introduction step (S140) to introduce.
본 발명에 따른 거더교의 시공방법을 구성하는 거치단계(S110)에서는 프리스트레스트 거더의 일단을 제1 교대(310)에 고정시키기 위해 제1 교대(310)에 거치시키고, 상기 일단에 대향되는 타단을 제2 교대(320)에 설치된 높이조절장치에 거치시킨다.In the mounting step (S110) constituting the construction method of the girder bridge according to the present invention, one end of the prestressed girder is mounted on the first abutment 310 in order to be fixed to the first abutment 310, and the other end opposite to the one end is mounted on the first abutment 310. It is mounted on the height adjusting device installed on the second abutment 320 .
본 발명에 따른 거더교의 시공방법을 구성하는 결합단계(S120)에서는 프리스트레스트 거더의 일단과 제1 교대(310)의 사이에 연결수단을 설치하여 프리스트레스트 거더의 일단과 제1 교대(310)를 결합시킨다. In the coupling step (S120) constituting the construction method of the girder bridge according to the present invention, a connecting means is installed between one end of the prestressed girder and the first abutment 310 to connect one end of the prestressed girder and the first abutment 310. combine
예를 들면, 결합단계(S120)에서는 제1 교대(310)에 상하 방향으로 복수개의 강봉을 매설하고, 프리스트레스트 거더 일단의 하부에 연결구멍이 구비된 연결강판을 설치하며, 상기 연결강판의 연결구멍에 강봉이 내삽되도록 연결강판과 강봉을 조립한다. For example, in the coupling step (S120), a plurality of steel rods are embedded in the first abutment 310 in the vertical direction, and a connection steel plate having a connection hole is installed in the lower part of one end of the prestress girder, and the connection of the connection steel plate Assemble the connecting steel plate and the steel rod so that the steel rod is inserted into the hole.
본 발명에 따른 거더교의 시공방법을 구성하는 슬래브 타설단계(S130)에서는 프리스트레스트 거더의 상부로 차량 등이 통행할 수 있도록 슬리브 콘크리트를 설치한다. 필요에 따라, 슬래브 타설단계(S130)에서는 프리스트레스트 거더와 제1 교대(310) 및 슬래브 콘크리트(400)가 일체화되도록 제1 교대(310)의 상면부터 슬래브 콘크리트(400)의 하면까지 콘크리트를 타설 및 양생할 수 있다.In the slab pouring step (S130) constituting the construction method of the girder bridge according to the present invention, sleeve concrete is installed so that vehicles, etc. can pass through the upper part of the prestressed girder. If necessary, in the slab pouring step (S130), concrete is poured from the upper surface of the first abutment 310 to the lower surface of the slab concrete 400 so that the prestressed girder, the first abutment 310, and the slab concrete 400 are integrated. and curing.
본 발명에 따른 거더교의 시공방법을 구성하는 압축력 도입단계(S140)에서는 슬래브 콘크리트(400)에 압축력을 도입하기 위해 높이조절장치를 통해 제2 교대(320)에 거치된 프리스트레스트 거더의 타단을 상승시킨다. 이와 같이 슬래브 콘크리트(400)에 미리 도입된 압축력은 거더교의 사용에 따라 슬래브 콘크리트(400)에 발생하게 되는 인장력을 상쇄시킬 수 있으므로, 슬래브 콘크리트(400)의 균열 발생을 방지할 수 있다.In the compressive force introduction step (S140) constituting the construction method of the girder bridge according to the present invention, the other end of the prestressed girder mounted on the second abutment 320 is raised through the height adjusting device to introduce the compressive force to the slab concrete 400. make it As described above, the compressive force previously introduced into the slab concrete 400 can offset the tensile force generated in the slab concrete 400 according to the use of the girder bridge, thereby preventing cracks in the slab concrete 400 .
도 20은 본 발명의 제2 실시예에 따른 거더교의 시공방법을 설명하기 위한 순서도이고, 도 21은 본 발명의 제2 실시예에 따른 거더교의 시공방법을 설명하기 위한 흐름도이다. 20 is a flowchart for explaining the construction method of the girder bridge according to the second embodiment of the present invention, and Figure 21 is a flowchart for explaining the construction method of the girder bridge according to the second embodiment of the present invention.
도 20 및 도 21을 참조하면, 본 발명의 제2 실시예에 따른 거더교의 시공방법은 2경간 거더교의 시공방법이다.20 and 21, the construction method of the girder bridge according to the second embodiment of the present invention is a construction method of a two-span girder bridge.
이러한 거더교의 시공방법은 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법으로 제작된 프리스트레스트 거더로 구성된 제1 프리스트레스트 거더(이하, '제1 PS 거더'로 약칭함)와 제2 프리스트레스트 거더(이하, '제2 PS 거더'로 약칭함)를 일직선상에서 서로 마주보도록 배치하고, 상기 제2 PS 거더(200)에 인접한 제1 PS 거더(100)의 말단과 상기 제1 PS 거더(100)에 인접한 제2 PS 거더(200)의 말단을 상승시키는 상승단계(S210)와, 상승된 제1 PS 거더(100) 말단과 제2 PS 거더(200) 말단의 상부에 슬래브 콘크리트(400)를 타설하는 슬래브 설치단계(S220), 및 상승된 제1 PS 거더(100)의 말단과 제2 PS 거더(200)의 말단을 하강시키는 하강단계(S230)를 포함한다.The construction method of such a girder bridge consists of a first prestressed girder (hereinafter abbreviated as 'first PS girder') and a second prestressed girder composed of a prestressed girder manufactured by a manufacturing method of a prestressed girder for improving lateral curvature. (hereinafter abbreviated as 'second PS girder') are arranged to face each other on a straight line, and the end of the first PS girder 100 adjacent to the second PS girder 200 and the first PS girder 100 A lifting step (S210) of raising the end of the second PS girder 200 adjacent to the, and the raised first PS girder 100 end and the second PS girder 200 end of the upper end of the slab concrete 400 is poured It includes a slab installation step (S220), and a lowering step (S230) of lowering the end of the raised first PS girder 100 and the end of the second PS girder 200.
본 발명에 따른 거더교의 시공방법을 구성하는 상승단계(S210)는 거치과정과, 결합과정, 및 상승과정을 포함한다.The ascending step (S210) constituting the construction method of the girder bridge according to the present invention includes a mounting process, a coupling process, and an ascending process.
상기 거치과정은 제1 PS 거더(100)와 제2 PS 거더(200)를 일직선상에서 서로 마주보도록 제1 교대(310)와 제2 교대(320) 및 교각(330)에 거치시키는 과정이다. 이때, 제1 교대(310)와 제2 교대(320) 사이에 위치한 교각(330)의 상부에는 높이조절장치(500)가 설치된다. 다시 말해, 제1 PS 거더(100)와 교각(330)의 사이 및 제2 PS 거더(200)와 교각(330)의 사이에는 각각 높이조절장치(500)가 설치된다.The mounting process is a process of mounting the first PS girder 100 and the second PS girder 200 on the first abutment 310 and the second abutment 320 and the pier 330 so as to face each other in a straight line. At this time, the height adjusting device 500 is installed on the upper portion of the pier 330 located between the first abutment 310 and the second abutment 320 . In other words, the height adjusting device 500 is installed between the first PS girder 100 and the pier 330 and between the second PS girder 200 and the pier 330 , respectively.
상기 결합과정은 상기 거치과정의 이후에 진행되는 과정이다. 이 결합과정에서는 제1 PS 거더(100)의 일단을 제1 교대(310)에 고정시키고, 제2 PS 거더(200)의 일단을 제2 교대(320)에 고정시킨다.The bonding process is a process performed after the deferment process. In this coupling process, one end of the first PS girder 100 is fixed to the first abutment 310 , and one end of the second PS girder 200 is fixed to the second abutment 320 .
상기 상승과정은 상기 결합과정 이후에 진행되는 과정이다. 이 상승과정에서는 높이조절장치(500)를 통해 상기 제2 PS 거더(200)에 인접한 제1 PS 거더(100)의 말단과 상기 제1 PS 거더(100)에 인접한 제2 PS 거더(200)의 말단을 상승시킨다. 이러한 상승과정은 PS 거더의 제작 후 PS 거더의 중앙부에서 발생되는 프리스트레스력의 손실을 다시 만회시키고, 추후 하강에 의해 거더의 중앙부에서 발생하는 인장응력을 상쇄시키기 위한 과정이다.The ascent process is a process performed after the bonding process. In this ascending process, the end of the first PS girder 100 adjacent to the second PS girder 200 and the second PS girder 200 adjacent to the first PS girder 100 through the height adjusting device 500. raise the end. This ascending process is a process to recover the loss of pre-stress force generated in the central part of the PS girder after the production of the PS girder, and to offset the tensile stress generated in the central part of the girder by subsequent descent.
본 발명에 따른 거더교의 시공방법을 구성하는 슬래브 설치단계(S220)에서는 인접한 제1 PS 거더(100)와 제2 PS 거더(200)의 사이를 연결하고, 제1 PS 거더(100) 및 제2 PS 거더(200)의 상부로 차량 등이 통행할 수 있도록 슬리브 콘크리트(400)를 설치하여 제1 PS 거더(100)와 제2 PS 거더(200)를 서로 연속화시킨다.In the slab installation step (S220) constituting the construction method of the girder bridge according to the present invention, the adjacent first PS girder 100 and the second PS girder 200 are connected, and the first PS girder 100 and the second The sleeve concrete 400 is installed so that a vehicle, etc. can pass through the upper part of the PS girder 200 so that the first PS girder 100 and the second PS girder 200 are continuous with each other.
보다 구체적으로, 슬래브 설치단계(S220)에서는 제1 PS 거더(100) 및 제2 PS 거더(200)의 상부에 슬래브 콘크리트(400)를 타설 및 양생한다. More specifically, in the slab installation step (S220), the slab concrete 400 is poured and cured on the upper portions of the first PS girder 100 and the second PS girder 200 .
필요에 따라, 제1 PS 거더(100)와 제2 PS 거더(200)의 사이에는 가로보 콘크리트를 타설 및 양생할 수도 있다. 이러한 가로보 콘크리트는 제1 PS 거더(100)와 제2 PS 거더(200)의 이격 공간을 연결하는 한편, 좌우 방향으로 이웃한 거더를 연결하는 기능을 제공한다.If necessary, crossbeam concrete may be poured and cured between the first PS girder 100 and the second PS girder 200 . This crossbeam concrete provides a function of connecting the spaced apart spaces of the first PS girder 100 and the second PS girder 200, while connecting the neighboring girders in the left and right directions.
상기 슬래브 콘크리트(400)는 제1 PS 거더(100)의 상부와, 제2 PS 거더(200)의 상부, 및 제1 PS 거더(100)와 제2 PS 거더(200)의 사이에 구비된 가로보 콘크리트의 상부에 일체로 타설될 수 있다. The slab concrete 400 is a crossbeam provided between the upper part of the first PS girder 100 , the upper part of the second PS girder 200 , and the first PS girder 100 and the second PS girder 200 . It can be poured integrally on top of concrete.
본 발명에 따른 거더교의 시공방법을 구성하는 하강단계(S230)에서는 상승단계(S210)를 통해 타단(이웃한 거더의 반대방향에 위치한 말단)보다 높은 위치에 배치된 제1,2 거더(100,200)의 일단(이웃한 거더에 마주보는 말단)을 상기 타단의 위치까지 하강시키는 단계이다. 이 단계(S230)에서는 슬래브 콘크리트(400)에 압축력을 도입시키기 위해 높이조절장치(500)를 통해 제1,2 거더(100,200)의 일단을 하강시킨다.In the descending step (S230) constituting the construction method of the girder bridge according to the present invention, the first and second girders (100, 200) disposed at a higher position than the other end (the end located in the opposite direction to the neighboring girder) through the ascending step (S210) It is a step of lowering one end (the end facing the neighboring girder) to the position of the other end. In this step (S230), one end of the first and second girders 100 and 200 is lowered through the height adjusting device 500 to introduce a compressive force to the slab concrete 400 .
이러한 하강단계(S230)에서는 슬래브 콘크리트(400)에 인장응력이 도입되어 깨짐이 발생될 수 있지만, 상승단계(S210)를 통해 도입된 압축응력에 의해 인장응력이 해소된다.In this descending step (S230), the tensile stress may be introduced into the slab concrete 400 and cracking may occur, but the tensile stress is resolved by the compressive stress introduced through the ascending step (S210).
도 22은 본 발명의 제3 실시예에 따른 거더교의 시공방법을 설명하기 위한 순서도이고, 도 23은 본 발명의 제3 실시예에 따른 거더교의 시공방법을 설명하기 위한 흐름도이다. 22 is a flowchart for explaining the construction method of the girder bridge according to the third embodiment of the present invention, and FIG. 23 is a flowchart for explaining the construction method of the girder bridge according to the third embodiment of the present invention.
도 22 및 도 23을 참조하면, 본 발명의 제3 실시예에 따른 거더교의 시공방법은 3경간 거더교의 시공방법이다.22 and 23, the construction method of the girder bridge according to the third embodiment of the present invention is a construction method of a three-span girder bridge.
이러한 거더교의 시공방법은 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법으로 제작된 프리스트레스트 거더로 구성된 제1 PS 거더(100)와 제3 PS 거더(600) 및 제2 PS 거더(200)를 일직선상에서 서로 마주보도록 배치하고, 상기 제1 PS 거더(100) 및 제3 PS 거더(600)의 인접부분과 제3 PS 거더(600) 및 제2 PS 거더(200)의 인접부분을 상승시키는 상승단계(S310)와, 제1 PS 거더(100)와 제2 PS 거더(200) 및 제3 PS 거더(600)의 상부에 슬래브 콘크리트(400)를 타설하는 슬래브 설치단계(S320), 및 상승된 제1 PS 거더(100) 및 제3 PS 거더(600)의 인접부분과 제3 PS 거더(600) 및 제2 PS 거더(200)의 인접부분을 하강시키는 하강단계(3230)를 포함한다.The construction method of such a girder bridge consists of a first PS girder 100, a third PS girder 600, and a second PS girder 200 composed of a prestressed girder manufactured by a manufacturing method of a prestressed girder for improving lateral curvature. Arranged to face each other on a straight line, the first PS girder 100 and the third PS girder 600 and the third PS girder 600 and the adjacent portion of the second PS girder 200 is raised to raise Step (S310), the first PS girder 100, the second PS girder 200, and the third PS girder 600, the slab installation step of pouring the slab concrete 400 on the top (S320), and the raised and a lowering step 3230 of lowering the adjacent portions of the first PS girder 100 and the third PS girder 600 and the adjacent portions of the third PS girder 600 and the second PS girder 200 .
본 발명에 따른 거더교의 시공방법을 구성하는 상승단계(S310)는 거치과정과, 결합과정, 및 상승과정을 포함한다.The ascending step (S310) constituting the construction method of the girder bridge according to the present invention includes a mounting process, a coupling process, and an ascending process.
상기 상승단계(S310)를 구성하는 거치과정은 순차적으로 제1 PS 거더(100)와 제3 PS 거더(600) 및 제2 PS 거더(200)를 일직선상에서 서로 마주보도록 제1 교대(310)와 제2 교대(320) 및 교각(330)에 거치시키는 과정이다. The mounting process constituting the raising step (S310) is sequentially performed with the first shift 310 and the first PS girder 100, the third PS girder 600, and the second PS girder 200 to face each other on a straight line. It is a process of mounting on the second abutment 320 and the pier 330 .
이때, 교각(330)은 제3 PS 거더(600)의 선단과 후단에 구비된 제1 교각과 제2 교각으로 구성될 수 있다. 그리고 제1 교각(330)과 제2 교각(330)의 상부에는 높이조절장치(500)가 설치된다. 다시 말해, 제1 PS 거더(100)와 제1 교각(330)의 사이 및 제2 PS 거더(200)와 제2 교각(330)의 사이에는 각각 높이조절장치(500)가 설치된다.At this time, the pier 330 may be composed of a first pier and a second pier provided at the front end and the rear end of the third PS girder 600 . And the first pier 330 and the upper portion of the second pier 330 is a height adjustment device 500 is installed. In other words, the height adjusting device 500 is installed between the first PS girder 100 and the first pier 330 and between the second PS girder 200 and the second pier 330 , respectively.
상기 상승단계(S310)를 구성하는 결합과정은 상기 거치과정의 이후에 진행되는 과정으로, 제1 PS 거더(100)의 일단을 제1 교대(310)에 고정시키고, 제2 PS 거더(200)의 일단을 제2 교대(320)에 고정시킨다.The bonding process constituting the rising step (S310) is a process that proceeds after the mounting process, and one end of the first PS girder 100 is fixed to the first abutment 310, and the second PS girder 200 is fixed. One end of the is fixed to the second abutment (320).
상기 상승단계(S310)를 구성하는 상승과정은 상기 결합과정 이후에 진행되는 과정이다. 이 상승과정에서는 높이조절장치(500)를 통해 상기 제3 PS 거더(600)의 양측 말단과 함께 제3 PS 거더(600)에 인접한 제1 PS 거더(100)의 말단과 제3 PS 거더(600)에 인접한 제2 PS 거더(200)의 말단을 상승시킨다. 이러한 상승과정은 PS 거더의 제작 후 PS 거더의 중앙부에서 발생되는 프리스트레스력의 손실을 다시 만회시키고, 추후 하강에 의해 거더의 중앙부에서 발생하는 인장응력을 상쇄시키기 위한 과정이다.The ascending process constituting the ascending step (S310) is a process performed after the combining process. In this ascending process, the end of the first PS girder 100 and the third PS girder 600 adjacent to the third PS girder 600 together with both ends of the third PS girder 600 through the height adjusting device 500 ) to raise the end of the second PS girder 200 adjacent to. This ascending process is a process to recover the loss of pre-stress force generated in the central part of the PS girder after the production of the PS girder, and to offset the tensile stress generated in the central part of the girder by subsequent descent.
본 발명에 따른 거더교의 시공방법을 구성하는 슬래브 설치단계(S320)에서는 인접한 제1 PS 거더(100)와 제3 PS 거더(600)의 사이를 연결하고, 제3 PS 거더(600)와 제2 PS 거더(200)의 사이를 연결하며, 제1 PS 거더(100)와 제2 PS 거더(200) 및 제3 PS 거더(600)의 상부로 차량 등이 통행할 수 있도록 슬리브 콘크리트(400)를 설치하여 제1 PS 거더(100)와 제2 PS 거더(200) 및 제3 PS 거더(600)를 서로 연속화시킨다.In the slab installation step (S320) constituting the construction method of the girder bridge according to the present invention, the adjacent first PS girder 100 and the third PS girder 600 are connected, and the third PS girder 600 and the second It connects between the PS girder 200, and the sleeve concrete 400 is formed so that a vehicle can pass through the upper part of the first PS girder 100, the second PS girder 200, and the third PS girder 600. By installing the first PS girder 100, the second PS girder 200, and the third PS girder 600 are serialized with each other.
보다 구체적으로, 슬래브 설치단계(S320)에서는 제1 PS 거더(100) 및 제2 PS 거더(200) 및 제3 PS 거더(600)의 상부에 슬래브 콘크리트(400)를 타설 및 양생한다. More specifically, in the slab installation step (S320), the first PS girder 100, the second PS girder 200, and the slab concrete 400 is poured and cured on the upper portion of the PS girder 600.
필요에 따라, 제1 PS 거더(100)와 제3 PS 거더(600)의 사이에는 가로보 콘크리트를 타설 및 양생할 수도 있으며, 제3 PS 거더(600)와 제2 PS 거더(200)의 사이에도 가로보 콘크리트를 타설 및 양생할 수도 있다. 이러한 가로보 콘크리트는 제1 PS 거더(100)와 제3 PS 거더(600)의 이격 공간을 연결하고, 제3 PS 거더(600)와 제2 PS 거더(200)의 이격 공간을 연결하며, 좌우 방향으로 이웃한 거더를 연결하는 기능을 제공한다.If necessary, crossbeam concrete may be poured and cured between the first PS girder 100 and the third PS girder 600 , and also between the third PS girder 600 and the second PS girder 200 . It is also possible to pour and cure cross-beam concrete. This crossbeam concrete connects the separation space of the first PS girder 100 and the third PS girder 600, and connects the separation space of the third PS girder 600 and the second PS girder 200, in the left and right direction It provides the function of connecting neighboring girders with
이 경우, 슬래브 콘크리트(400)는 제1 PS 거더(100)의 상부와, 제3 PS 거더(600)의 상부와, 제2 PS 거더(200)의 상부와, 제1 PS 거더(100)와 제3 PS 거더(600)의 사이에 구비된 가로보 콘크리트의 상부, 및 제3 PS 거더(600)와 제2 PS 거더(200)의 사이에 구비된 가로보 콘크리트의 상부에 일체로 타설될 수 있다. In this case, the slab concrete 400 is the upper part of the first PS girder 100 , the upper part of the third PS girder 600 , the upper part of the second PS girder 200 , and the first PS girder 100 and It may be integrally poured on the upper part of the crossbeam concrete provided between the third PS girder 600 and the upper part of the crossbeam concrete provided between the third PS girder 600 and the second PS girder 200 .
본 발명에 따른 거더교의 시공방법을 구성하는 하강단계(S330)에서는 상승단계(S310)를 통해 상승된 각 PS 거더의 인접부분을 초기 위치까지 하강시키는 단계이다. 이 단계(S330)에서는 슬래브 콘크리트(400)에 압축력을 도입시키기 위해 높이조절장치(500)를 통해 제3 PS 거더(600)의 양측 말단이 제1 PS 거더(100)의 선단 및 제2 PS 거더(200)의 후단과 동일 선상에 위치하도록 제3 PS 거더(600)의 양측 말단을 하강시킨다.In the descending step (S330) constituting the construction method of the girder bridge according to the present invention, it is a step of lowering the adjacent portion of each PS girder raised through the ascending step (S310) to the initial position. In this step (S330), both ends of the third PS girder 600 through the height adjustment device 500 in order to introduce a compressive force to the slab concrete 400, the front end of the first PS girder 100 and the second PS girder Both ends of the third PS girder 600 are lowered to be positioned on the same line as the rear end of the 200 .
이러한 하강단계(S330)에서는 슬래브 콘크리트(400)에 인장응력이 도입되어 깨짐이 발생될 수 있지만, 상승단계(S210)를 통해 도입된 압축응력에 의해 인장응력이 해소된다.In this descending step (S330), tensile stress may be introduced into the slab concrete 400 to cause cracking, but the tensile stress is resolved by the compressive stress introduced through the ascending step (S210).
이상에서 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention as set forth in the following claims. You will understand that you can.

Claims (17)

  1. 거더 수직중립축의 좌우에 배치된 2개의 측면 강연선이 설치된 거더의 제작방법에 있어서,In the manufacturing method of a girder in which two side strands disposed on the left and right of the girder vertical neutral axis are installed,
    상기 측면 강연선이 연결될 정착구를 2개 이상 설치하여 빔을 제작하는 빔 제작단계; a beam manufacturing step of manufacturing a beam by installing two or more anchorages to which the side strands are to be connected;
    설계긴장력의 미만인 제1 긴장력으로 제1 측면 강연선을 긴장시키는 1차 긴장력 도입단계;A first tension force introduction step of tensioning the first side strand with a first tension force that is less than the design tension force;
    상기 제1 긴장력을 초과하면서 상기 설계긴장력 이하인 제2 긴장력으로 제2 측면 강연선을 긴장시키는 2차 긴장력 도입단계; 및a second tension force introduction step of tensioning the second side stranded wire with a second tension force that is less than or equal to the design tension while exceeding the first tension; and
    상기 제1 긴장력에 중첩되어 상기 제2 긴장력 이상이면서 상기 설계긴장력 이하인 제3 긴장력으로 상기 제1 측면 강연선을 재차 긴장시키는 3차 긴장력 도입단계를 포함하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. A method of manufacturing a prestressed girder for improving transverse curvature, comprising the step of introducing a third tension force overlapping the first tension force and re-tensioning the first side stranded wire with a third tension force that is greater than or equal to the second tension force and less than or equal to the design tension force .
  2. 제1 항에 있어서, 상기 정착구는According to claim 1, wherein the anchorage
    그 중심이 빔 단면의 수평중립축과 16.67% 이내의 오차범위로 일치하도록 설치된 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. A method of manufacturing a prestressed girder for improving transverse curvature, characterized in that the center is installed to coincide with the horizontal neutral axis of the beam section within an error range of 16.67%.
  3. 제1 항에 있어서,According to claim 1,
    상기 1차 긴장력 도입단계는 설계긴장력 중 50%의 긴장력으로 제1 측면 강연선을 긴장시키고,In the step of introducing the first tension force, the first side strand is tensioned with a tension of 50% of the design tension,
    상기 2차 긴장력 도입단계는 100%의 긴장력으로 제2 측면 강연선을 긴장시키며,In the step of introducing the second tension force, the second side strand is tensioned with 100% tension,
    상기 3차 긴장력 도입단계는 설계긴장력 중 나머지 50%의 긴장력으로 제1 측면 강연선을 긴장시키는 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. The third tension force introduction step is a method of manufacturing a prestressed girder for improving transverse curvature, characterized in that the first side strand is tensioned with the remaining 50% of the design tension.
  4. 제1 항에 있어서, 상기 3차 긴장력 도입단계 이후에According to claim 1, after the third tension force introduction step
    상기 수직중립축을 기준으로 상기 제1 측면 강연선의 대각선 방향에 위치한 제3 측면 강연선을 설계긴장력 미만인 제4 긴장력으로 긴장시키는 4차 긴장력 도입단계;a fourth tension force introduction step of tensioning the third side strand located in the diagonal direction of the first side strand with respect to the vertical neutral axis to a fourth tension force that is less than the design tension;
    상기 수직중립축을 기준으로 상기 제2 측면 강연선의 대각선 방향에 위치한 제4 측면 강연선을 상기 제4 긴장력을 초과하면서 설계긴장력 이하인 제5 긴장력으로 긴장시키는 5차 긴장력 도입단계; 및a fifth tension force introduction step of tensioning a fourth side strand located in a diagonal direction of the second side strand with respect to the vertical neutral axis to a fifth tension force that is less than or equal to the design tension while exceeding the fourth tension; and
    상기 제4 긴장력에 중첩되어 상기 제5 긴장력 이상이면서 상기 설계긴장력 이하인 제6 긴장력으로 상기 제3 측면 강연선을 긴장시키는 6차 긴장력 도입단계를 더 포함하는 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. Prestress for improving transverse curvature, characterized in that it further comprises the step of introducing a sixth tension force superimposed on the fourth tension force and tensioning the third side strand with a sixth tension force that is greater than or equal to the fifth tension force and less than or equal to the design tension force How to make a girder.
  5. 제4 항에 있어서, 상기 거더의 길이가 40m 이하인 경우According to claim 4, When the length of the girder is 40m or less
    상기 제1 측면 강연선 내지 제4 측면 강연선은 동일 방향의 말단에서 긴장시키는 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. The method of manufacturing a prestressed girder for improving transverse curvature, characterized in that the first to fourth side strands are tensioned at the ends in the same direction.
  6. 제4 항에 있어서, 상기 거더의 길이가 40m를 초과하면According to claim 4, If the length of the girder exceeds 40m
    상기 제1 측면 강연선 및 제2 측면 강연선은 일단에서 긴장시키고, 상기 제3 측면 강연선 및 제4 측면 강연선은 상기 일단에 대향되는 타단에서 긴장시키는 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. The first side strand and the second side strand are tensioned at one end, and the third side strand and the fourth side strand are tensioned at the other end opposite to the one end. Prestressed girder for improvement of lateral curvature production method.
  7. 제1 항에 있어서, 상기 거더는According to claim 1, wherein the girder
    거더의 길이 방향을 따라 거더의 중앙에 좌굴의 발생을 억지시키기 위한 횡만곡 보강재가 내삽되도록 설치되는 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. A method of manufacturing a prestressed girder for improving transverse curvature, characterized in that the transverse curvature reinforcement is installed to be interpolated to suppress the occurrence of buckling in the center of the girder along the longitudinal direction of the girder.
  8. 제7 항에 있어서, 상기 횡만곡 보강재는The method of claim 7, wherein the transverse curved reinforcement
    강봉, H형강, L형강, T형강, ㄷ형강 중 어느 하나인 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법.A method of manufacturing a prestressed girder for improving lateral curvature, characterized in that it is any one of steel bars, H-beams, L-beams, T-beams, and C-beams.
  9. 제7 항에 있어서, 상기 횡만곡 보강재는The method of claim 7, wherein the transverse curved reinforcement
    거더 길이의 0.1 내지 0.3배의 길이로 형성되는 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. A method of manufacturing a prestressed girder for improving lateral curvature, characterized in that it is formed with a length of 0.1 to 0.3 times the length of the girder.
  10. 제7 항에 있어서, 상기 횡만곡 보강재는The method of claim 7, wherein the transverse curved reinforcement
    횡만곡의 발생을 억지시키기 위해 거더의 수직중립축을 기준으로 좌우 양측에 대칭되도록 한 쌍이 구비되는 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. A method of manufacturing a prestressed girder for improving transverse curvature, characterized in that a pair is provided so as to be symmetrical on both left and right sides based on the vertical neutral axis of the girder in order to suppress the occurrence of transverse curvature.
  11. 제10 항에 있어서, 한 쌍의 횡만곡 보강재는11. The method of claim 10, wherein the pair of transverse curved stiffeners
    거더의 상부, 거더의 하부, 또는 이들 모두에 구비되는 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법.A method of manufacturing a prestressed girder for improving lateral curvature, characterized in that it is provided on the upper part of the girder, the lower part of the girder, or both.
  12. 제1 항에 있어서, 상기 거더는According to claim 1, wherein the girder
    상부플랜지;upper flange;
    하부플랜지; lower flange;
    상부플랜지와 하부플랜지를 연결하는 복부;Abdomen connecting the upper and lower flanges;
    횡만곡의 발생을 억지시키기 위해 상부플랜지의 길이 방향을 따라 상부플랜지의 중앙에서 상부플랜지로부터 돌출되도록 구비된 콘크리트 돌출부로 구성된 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. A method of manufacturing a prestressed girder for improving transverse curvature, characterized in that it consists of a concrete protrusion provided to protrude from the upper flange at the center of the upper flange along the longitudinal direction of the upper flange in order to suppress the occurrence of transverse curvature.
  13. 제12 항에 있어서, 상기 콘크리트 돌출부는13. The method of claim 12, wherein the concrete protrusion
    상기 상부플랜지의 길이 방향을 기준으로 상부플랜지의 양측 말단에서 측면 또는 밑면에 구비된 것을 특징으로 하는 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법. A method of manufacturing a prestressed girder for improving transverse curvature, characterized in that it is provided on the side or bottom at both ends of the upper flange based on the longitudinal direction of the upper flange.
  14. 제1 항에 따른 횡만곡의 개선을 위한 프리스트레스트 거더의 제작방법으로 제작된 프리스트레스트 거더를 이용한 거더교의 시공방법. The construction method of a girder bridge using the prestressed girder manufactured by the manufacturing method of the prestressed girder for improving lateral curvature according to claim 1 .
  15. 제14 항에 있어서, 15. The method of claim 14,
    상기 프리스트레스트 거더의 일단을 제1 교대에 거치시키고, 상기 일단에 대향되는 타단을 제2 교대에 거치시키는 거치단계;a mounting step of mounting one end of the prestressed girder on a first abutment, and mounting the other end opposite to the one end on a second abutment;
    상기 프리스트레스트 거더의 일단을 제1 교대에 고정시키는 결합단계;a coupling step of fixing one end of the prestressed girder to the first abutment;
    상기 프리스트레스트 거더의 상부에 슬래브 콘크리트를 타설 및 양생하는 슬래브 타설단계; 및Slab pouring step of pouring and curing the slab concrete on the upper part of the prestressed girder; and
    상기 제2 교대에 거치된 프리스트레스트 거더의 타단을 상승시켜 프리스트레스트 거더에 일체화된 슬래브 콘크리트에 압축력을 도입하는 압축력 도입단계를 포함하는 거더교의 시공방법. A method of constructing a girder bridge comprising the step of introducing a compressive force to the slab concrete integrated into the prestressed girder by raising the other end of the prestressed girder mounted on the second abutment.
  16. 제14 항에 있어서, 15. The method of claim 14,
    상기 프리스트레스트 거더로 구성된 제1 프리스트레스트 거더와 제2 프리스트레스트 거더를 일직선 상에서 서로 마주보도록 배치하고, 상기 제2 프리스트레스트 거더에 인접한 제1 프리스트레스트 거더의 말단과 상기 제1 프리스트레스트 거더에 인접한 제2 프리스트레스트 거더의 말단을 상승시키는 상승단계;The first prestressed girder and the second prestressed girder composed of the prestressed girder are arranged to face each other in a straight line, and the end of the first prestressed girder adjacent to the second prestressed girder and the first prestressed girder are adjacent a lifting step of raising the end of the second prestressed girder;
    상승된 제1 프리스트레스트 거더 말단과 제2 프리스트레스트 거더 말단의 상부에 슬래브 콘크리트를 타설하는 슬래브 설치단계; 및A slab installation step of pouring slab concrete on top of the raised end of the first prestressed girder and the end of the second prestressed girder; and
    상승된 제1 프리스트레스트 거더 말단과 제2 프리스트레스트 거더 말단을 하강시키는 하강단계를 포함하는 거더교의 시공방법. A method of constructing a girder bridge comprising a lowering step of lowering the raised end of the first prestressed girder and the end of the second prestressed girder.
  17. 제14 항에 있어서, 15. The method of claim 14,
    상기 프리스트레스트 거더로 구성된 제1 프리스트레스트 거더와 제3 프리스트레스트 거더 및 제2 프리스트레스트 거더를 일직선상에서 서로 마주보도록 배치하고, 상기 제1 프리스트레스트 거더 및 제3 프리스트레스트 거더의 인접부분과 제3 프리스트레스트 거더 및 제2 프리스트레스트 거더의 인접부분을 상승시키는 상승단계;The first prestressed girder, the third prestressed girder, and the second prestressed girder are arranged to face each other in a straight line, and adjacent portions of the first and third prestressed girder and the third prestressed girder are arranged to face each other in a straight line. a lifting step of raising the adjacent portions of the prestressed girder and the second prestressed girder;
    상기 제1 프리스트레스트 거더와 제2 프리스트레스트 거더 및 제3 프리스트레스트 거더의 상부에 슬래브 콘크리트를 타설하는 슬래브 설치단계; 및a slab installation step of pouring slab concrete on top of the first prestressed girder, the second prestressed girder, and the third prestressed girder; and
    상승된 제1 프리스트레스트 거더 및 제3 프리스트레스트 거더의 인접부분과 제3 프리스트레스트 거더 및 제2 프리스트레스트 거더의 인접부분을 하강시키는 하강단계를 포함하는 거더교의 시공방법.A method of constructing a girder bridge comprising a lowering step of lowering the raised adjacent portions of the first prestressed girder and the third prestressed girder and the adjacent portions of the third prestressed girder and the second prestressed girder.
PCT/KR2019/017603 2019-11-28 2019-12-12 Method for manufacturing prestressed girder for improvement of transverse curvature, and method for constructing girder bridge thereby WO2021107249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0155794 2019-11-28
KR1020190155794A KR102167843B1 (en) 2019-11-28 2019-11-28 Manufacturing method of prestressed girder for improvement of lateral curvature and construction method of girder bridge using same

Publications (1)

Publication Number Publication Date
WO2021107249A1 true WO2021107249A1 (en) 2021-06-03

Family

ID=73025254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017603 WO2021107249A1 (en) 2019-11-28 2019-12-12 Method for manufacturing prestressed girder for improvement of transverse curvature, and method for constructing girder bridge thereby

Country Status (2)

Country Link
KR (1) KR102167843B1 (en)
WO (1) WO2021107249A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790694A (en) * 2022-04-24 2022-07-26 中交路桥北方工程有限公司 Large-span simply-supported T-shaped beam tensioning method and tensioning sequence

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102538558B1 (en) * 2021-12-22 2023-06-01 (주)지승씨앤아이 Prestressed concrete girder having end diaphragm
CN115199048A (en) * 2022-07-21 2022-10-18 中亿丰建设集团股份有限公司 Large-span prestressed beam invagination type one-time tensioning process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299253A (en) * 1997-04-22 1998-11-10 Fujita Corp Prestressing control device for building element made of concrete
KR20100050360A (en) * 2008-11-10 2010-05-13 이엔이건설주식회사 Psc beam construction using bracket members and the method thereof
KR101676321B1 (en) * 2015-06-23 2016-11-17 구호원 Prestressing tendon layouts for prestressed girder using mono-strand jack and manufacturing method thereof, constructing method thereof, construction method of girder bridge using the same
KR20170029714A (en) * 2015-09-07 2017-03-16 주식회사 대련건설 Method of manufacturing bridge girder and tensioning apparatus used therein
KR101934405B1 (en) * 2017-11-01 2019-01-07 김민중 Prestressed concrete box girder and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100525054B1 (en) 2003-07-10 2005-10-31 황철동 Prestressed concrete composite girder
KR100947305B1 (en) 2007-11-12 2010-03-16 최용준 Prestressed beam manufactured using preload and bridge construction method using the same
KR100912584B1 (en) 2009-01-15 2009-08-19 주식회사 한국피시 Method for preventing lateral buckling of prestressed concrete beam in prestressing and apparatus thereof
KR101682010B1 (en) 2016-05-30 2016-12-02 (주)신흥이앤지 Girder type for assembling in-site having reinforced anti-buckling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299253A (en) * 1997-04-22 1998-11-10 Fujita Corp Prestressing control device for building element made of concrete
KR20100050360A (en) * 2008-11-10 2010-05-13 이엔이건설주식회사 Psc beam construction using bracket members and the method thereof
KR101676321B1 (en) * 2015-06-23 2016-11-17 구호원 Prestressing tendon layouts for prestressed girder using mono-strand jack and manufacturing method thereof, constructing method thereof, construction method of girder bridge using the same
KR20170029714A (en) * 2015-09-07 2017-03-16 주식회사 대련건설 Method of manufacturing bridge girder and tensioning apparatus used therein
KR101934405B1 (en) * 2017-11-01 2019-01-07 김민중 Prestressed concrete box girder and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790694A (en) * 2022-04-24 2022-07-26 中交路桥北方工程有限公司 Large-span simply-supported T-shaped beam tensioning method and tensioning sequence

Also Published As

Publication number Publication date
KR102167843B1 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2021107249A1 (en) Method for manufacturing prestressed girder for improvement of transverse curvature, and method for constructing girder bridge thereby
WO2011108781A1 (en) Manufacturing method of composite steel box girder and construction method of box girder bridge using same
KR100380637B1 (en) Prestressed concrete girder of adjustable load bearing capacity for bridge and adjustment method for load bearing capacity of bridge
WO2012002642A2 (en) Steel structure including a pre-stressing bracket for improving load-carrying capacity and serviceability
WO2009102119A1 (en) Bridge-raising device incorporating a raising guide, and a bridge-raising work method using the said bridge-raising device
KR102157497B1 (en) Construction method of multi preflex composite girder
WO2018199528A1 (en) Prestressed concrete girder
WO2021157944A1 (en) Steel composite psc girder including arched reinforcement member
KR100923409B1 (en) Construction method of Spliced Prestressed Concrete Girder Bridge in consideration of the construction sequence
KR20100025161A (en) Girder bridge connected to abutment and the construction method thereof
KR19990078494A (en) Prestressed girders with adjustable tension
WO2016208934A1 (en) Free-standing retaining wall structure using two rows of h-beams and using high-strength steel plates and method for building same
WO2009104897A2 (en) Grid-type drop-panel structure, and a construction method therefor
JPH08209631A (en) Construction method for multispan continuous bridge
WO2019017598A1 (en) Arch assembly having outriggers, arch structure using same and construction method therefor
KR100402147B1 (en) The second Prestressing Method of Simple Composite Beam Using PS Steel Bar
KR20050095049A (en) Continuous bridge construction method using a psc girder
KR100391713B1 (en) Continuous Preflex Beam Structures Using External Tendon and Constructing Method thereof
KR100345978B1 (en) Method for connecting continuously slab concretes of multi-span preflex composite bridge and represtressed preflex composite bridge.
WO2011093628A2 (en) Prefabricated mold panel
WO2024090633A1 (en) Composite bridge girder having end cut portion and manufacturing method therefor
KR100283603B1 (en) Continuation Method of PSC Beam Using Point Rise and Fall
KR20040010852A (en) Method for protecting the loss of prestress in prestressed beam by temporary load
KR20040101724A (en) Width-direction connecting apparatus of bridge beam capable of reducing magnitude of negative moment in supporting point of bridge and method for constructing the apparatus
KR102120266B1 (en) A forming method for psc i girder of concrete separation installation type having a web reinforced with steel plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954292

Country of ref document: EP

Kind code of ref document: A1