WO2018199528A1 - Prestressed concrete girder - Google Patents

Prestressed concrete girder Download PDF

Info

Publication number
WO2018199528A1
WO2018199528A1 PCT/KR2018/004413 KR2018004413W WO2018199528A1 WO 2018199528 A1 WO2018199528 A1 WO 2018199528A1 KR 2018004413 W KR2018004413 W KR 2018004413W WO 2018199528 A1 WO2018199528 A1 WO 2018199528A1
Authority
WO
WIPO (PCT)
Prior art keywords
girder
tension
pair
abdomen
main body
Prior art date
Application number
PCT/KR2018/004413
Other languages
French (fr)
Korean (ko)
Inventor
안정생
김경원
Original Assignee
주식회사 브릿지원이엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 브릿지원이엔씨 filed Critical 주식회사 브릿지원이엔씨
Publication of WO2018199528A1 publication Critical patent/WO2018199528A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/02Bridges characterised by the cross-section of their bearing spanning structure of the I-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed

Definitions

  • the present invention relates to prestressed concrete girders that are widely used in the composite girder bridge method (referred to as "PSC") girders, more specifically, the shape of the girders to minimize the weight of the girders by reducing the thickness of the girder
  • the present invention relates to prestressed concrete girders, which have been optimized for the arrangement and settlement of tension members.
  • Precast prestressed concrete girders are constructed on the ground, and they are constructed on the substructures such as bridges and shifts, and the deck slabs are constructed on them.
  • the PSC type I girder (beam) composed of the upper flange, the lower flange and the abdomen is the most commonly used type, and there are pretension and posttension methods in the prestress introduction method. Since they are manufactured in the field, most of them use post-tension method.
  • the strands are individually arranged on the abdomen of the I-girder, but in the post-tension method, the thickness of the abdomen is greater than that of the pretension method because the sheath is arranged in the abdomen to form a duct in which the strand bundle is installed. Thickening Since the abdomen of Type I girders shares most of the shear force on the girders, the thickness should be determined by considering the shear force resistance as well as the placement of tension members.
  • FIG. 1A and 1B are typical post-tension PSC type I girder shapes.
  • FIG. 1A is a perspective view and FIG. 1B is a sectional view.
  • PSC Type I girders consist of an I-shaped section consisting of an upper flange and a lower flange, and a thin abdomen connecting the two, except for both ends of the girder (see cross-section BB in FIG. 1 (b)).
  • the cross section of an I-girder refers to this cross section.
  • the cross section must be enlarged at the end of the girder because the anchorage must be installed at the end of the girder. Both ends of the PSC type I girder of FIG.
  • the right end is a shape that is made of a nearly rectangular shape by increasing the thickness of the abdomen and is most commonly used.
  • the section in which this cross-sectional shape persists is usually called an end block.
  • the edge section is a section that gradually changes to an I-shaped cross section from the end block toward the center of the girder.
  • the end block and edge section sections are generally designed so that the sum of the two sections has a predetermined length so as to alleviate the stress concentration caused by the settlement of tension members and to effectively resist the increasing shear force toward the end of the girder, but the length occupies the entire girder The ratio of is small.
  • Figure 2 is a PSC type I girder cross section is one of the optimized cross-sectional shape has been used recently, the width of the flange is larger than the past and the thickness is thinner form. 2 shows the main reinforcing bars arranged in the cross-section together with the shear reinforcing bars (stirrup) and also shows how the sheath is arranged.
  • the abdominal thickness of PSC type I girder has been mainly used for pretensioning 180mm and 200mm for posttensioning.
  • the abdominal thickness of 200mm is used regardless of prestressing.
  • the thinner the abdominal thickness the better the structural efficiency.
  • the abdominal thickness was reduced to 150 mm in the pretension method, and the abdominal thickness was reduced to 180 mm in the post tension method.
  • the size of the sheath through the abdomen must be reduced to minimize the thickness of the abdomen. As the size of the sheath decreases, the number of sheaths that can be accommodated increases, thereby increasing the number of sheaths.
  • the method of reducing the abdominal thickness of type I girder is to reduce the thickness of the abdomen by easing the concrete covering regulations of the stirrups and tension materials (sheath) placed on the abdomen regardless of the prestressing method. The method has been mainly used.
  • the concrete bridge design standard of the road bridge design standard which defines the domestic bridge design, was originally based on the American design standard, AASHTO.
  • the recent road bridge design standard (2015) is based on the concrete bridge design standard in Europe.
  • the concrete cladding regulations have been strengthened significantly by changing to.
  • the concrete cladding regulations for reinforcing bars and prestressing tension members were strengthened, but new post-tension duct attachment rules were added.
  • the abdominal thickness of the type I girder was increased, and the abdominal thickness of the PSC type I girder, which was mainly 200 mm, was increased to 240 mm, seriously threatening the structural efficiency of the PSC type I girder. For this reason, measures to minimize the thickness of the abdomen of PSC type I girders have recently come to the fore.
  • Patent registration 10-1337330 shown in Figure 3 PSC beam with optimized abdominal cross section, a method of manufacturing the same and the bridge construction method using the same) and the section (L1, L2) and the tension member (sheath) is arranged in the abdomen in the longitudinal direction of the girder and By dividing all the tension material into the section (L3) that is disposed only in the lower flange, and gradually reducing the thickness of the abdomen from the end to the center portion, while reducing the thickness of the girder by minimizing the thickness of the abdomen of the section (L3) where the tension material is disposed only in the lower flange The method is presented.
  • FIG. 4 (a) is a conceptual diagram illustrating the limited range of the tension material downtown of the PSC girder limiting the tension material downtown (center of tension) where the concrete stress of the upper and lower girder does not exceed the allowable stress when the tension force is introduced and used in the simple beam structure The range is shown, and both upper and lower limits are parabolic convex down.
  • Figure 4 (b) is a post tension tension tension (sheath) method of placing the tension material in a parabolic form so that the center of the tension material is located within the limits of the center of the tension material, all the tension material is similar to the form of the limited range of the tension material downtown It has a simple parabolic shape with a maximum altitude at the end and a minimum altitude at the center.
  • the center of the tension member should be placed as close to the lower limit of the limit as possible to increase the length of the section through which the sheath passes only through the lower flange.
  • the problem is that the length of the lower limit of the tension limit downtown is less than the lower flange height, the length of the section is not very long, and if the girder is long, the number of sheaths increases (usually 5-6), in which case all sheaths Is virtually impossible to place on the lower flange.
  • the minimum thickness (165mm) and the minimum reinforcement of the abdomen of the road bridge design criteria were no consideration. Considering these points, the weight reduction effect is very limited.
  • the method such as the invention of FIG. 5 (a) cannot use the latest optimized type I cross-sectional shape.
  • the strand assembly requires a certain amount of space not only for the tension end but also for fixing the fixed end, the number of the strand assembly can be installed in the upper flange, but the number of the strands arranged in the upper flange is arranged in the lower flange. Since the height is very small compared to the athletes, the height to raise the center of the entire tension member by using the strand placed on the upper flange is very limited.
  • the center of the tension member disposed on the lower flange must be raised considerably. Therefore, the thickness of the lower flange has to be enlarged at a considerably long end section, and the width of the lower flange is large, thereby increasing the weight of the girder.
  • the strand assembly is expensive because it is difficult to manufacture, and it controls the phase stress at the end of the girder and does not contribute to the introduction of prestress in the lower part of the girder which determines the structural efficiency of the PSC. . Therefore, this method is suitable for PSC type I girders of the pretension type as shown in Fig. 5 (b).
  • a portion of the strands arranged in the lower flange at the girder can be debonded to reduce the effective instructor, so that the center of the tension member can be considerably raised at the ends even with a small number of strand assembly placed at the top. Because it can.
  • this method is based on the pretension method with debonding.
  • the pretension method was originally developed based on factory manufacturing. Due to the strict restrictions on road vehicles in Korea (total weight less than 40 tons), it is not possible to manufacture PSC type I girders (typically 50 to 150 tons) that weigh more than 40 tons of girders themselves.
  • the pretensioning method should be able to supply high-strength crude steel concrete, require a huge reaction table, and have a crane to be stationed during the manufacturing process.In spite of many advantages, it is rarely used in the manufacture of PSC type I girder for bridges in Korea. That's the way it is.
  • the present invention has been made to solve the above-mentioned problems of the background art, and the present invention, despite the reinforced concrete coating regulations of the revised road bridge design standard (2015), utilizes the latest advanced material technology to post-tension (post- By minimizing the abdominal thickness of the tension type PSC type I girder, it reduces the weight of the girder and reduces the number of sheaths. To provide prestressed concrete girders.
  • a central section having an I-shaped cross section including an upper flange, an abdomen, and a lower flange and being long in one direction;
  • a pair of edge face portions having an I-shaped cross section including an upper flange, an abdomen, and a lower flange, each extending from both ends of the central portion and increasing in thickness and extending in the extending direction of the lower flange;
  • a body made of reinforced concrete material comprising a pair of end blocks extending from each of the pair of edge faces;
  • the second tension material is forged to increase and the height from the highest point to the center of the center portion is arranged to decrease the forging, both ends are fixed to the upper portion of the pair of end blocks, respectively, in the tension force is applied;
  • a first sheath pipe for accommodating the first tension material
  • a prestressed concrete girder comprising a; a first fixing tool for fixing the first tension material and a second fixing tool for fixing the second tension material.
  • the present invention is in its second form
  • a central section having a box-shaped cross section including an upper flange, a pair of abdomen and a lower flange, and being long in one direction;
  • a pair of edge portions having a box-shaped cross section including an upper flange, a pair of abdomen and a lower flange, each extending from both ends of the central portion and increasing in thickness in the direction of extension of the lower flange;
  • a body made of reinforced concrete material comprising a pair of end blocks extending from each of the pair of edge faces;
  • the second tension material is forged to increase and the height from the highest point to the center of the center portion is arranged to decrease the forging, both ends are fixed to the upper portion of the pair of end blocks, respectively, in the tension force is applied;
  • a first sheath pipe for accommodating the first tension material
  • a prestressed concrete girder comprising a; a first fixing tool for fixing the first tension material and a second fixing tool for fixing the second tension material.
  • the third aspect of the present invention is that
  • a central portion having a U-shaped cross section including a pair of upper flanges and an abdomen, and a lower flange connecting the pair of abdomens to each other;
  • It has a U-shaped cross section including a pair of upper flanges and the abdomen, and a lower flange connecting the pair of abdomen with each other extending from both ends of the central portion and the thickness of the lower flange and the thickness of the abdomen increases as the direction extends. And a pair of side faces
  • a body made of reinforced concrete material comprising a pair of end blocks extending from each of the pair of edge faces;
  • the second tension material is forged to increase and the height from the highest point to the center of the center portion is arranged to decrease the forging, both ends are fixed to the upper portion of the pair of end blocks, respectively, in the tension force is applied;
  • a first sheath pipe for accommodating the first tension material
  • a prestressed concrete girder comprising a; a first fixing tool for fixing the first tension material and a second fixing tool for fixing the second tension material.
  • the height change of the upper portion of the lower flange of the side of the cross section is convex downward.
  • the downwardly convex curve has an arc shape with a constant radius of curvature.
  • the height change of the upper side of the lower flange of the edge portion may be configured in a straight shape.
  • Part of the second tension member is a coated stranded wire, and more preferably further includes a second sheath tube for accommodating the stranded stranded wire.
  • the shape of prestressed concrete girder and the arrangement and fixing method of tension members are improved, and the post-tension ( By minimizing the abdominal thickness of post-tension type PSC girders, it is possible to provide a PSC girder that maximizes structural efficiency and cost efficiency while reducing the weight of the girders and reducing the number of sheaths.
  • FIGS. 1A and 1B are respectively a perspective view and a cross-sectional view of a typical PSC type I girder of the prior art
  • Figure 2 is a cross-sectional view and a back view of a typical PSC type I girder.
  • FIG. 3 is a perspective view of a PSC type I girder for reducing abdominal thickness in a conventional multi-step manner.
  • Figure 4 (a) is a view for explaining the limitation range of the tension material downtown of the PSC girder having a simple beam structure (front view).
  • Figure 4 (b) is a view for explaining the arrangement method of the typical tension member in the post-tension method (front view).
  • Figure 5 (a) is a view of a conventional post-tension PSC type I girder to reduce the abdominal thickness.
  • Figure 5 (b) is a view of a conventional PSC type I girder reducing the abdominal thickness.
  • (B), (c), (d) is a front view, a plan view, and a sectional view for explaining the tension member arrangement of the prestressed concrete girder shown in FIG. 6 (a), respectively.
  • Figure 7 (a) and (b) is a view for explaining the spirit and principle of the tension member arrangement method of the present invention.
  • FIG. 8 is a view for explaining a process of calculating the lower limit of the city limits of the tension material of the present invention.
  • FIG. 9 is a view for explaining the stress distribution type of the lower edge of the PSC type I girder of the present invention.
  • (B), (c), (d) is a front view, a top view, and sectional drawing for demonstrating the tension material arrangement
  • (B), (c), (d) is a front view, a top view, and sectional drawing for demonstrating the tension material arrangement
  • FIG. 13A is a diagram for explaining the structure of a coated stranded wire
  • Figure 13 (b) is a view for explaining a method of using a coated strand as a second tension member of the PSC type I girder of the first aspect of the present invention.
  • Figure 15 is a perspective view for explaining an example of the various forms of the PSC type I girder end block and the anchorage installation method of the first aspect of the present invention.
  • Figure 16 is a perspective view for explaining the end-cutting form of the PSC type I girder and the anchorage installation method of the first form of the present invention.
  • Figure 17 (a) is a view for explaining a method for converting the cross section of the hollow box cross-section to the I-shaped cross-section of the same cross-sectional characteristics in the equations to define the limit of the center of the tension material through cutting and recombination.
  • Fig. 17 (b) is a view for explaining a method for converting a cross-sectional characteristic value into an I-shaped cross section in equations defining a restriction range of the tension center through cutting and recombination of the U-shaped cross section.
  • Figure 18 (a) is a perspective view of a prestressed concrete box girder according to one embodiment of the second aspect of the present invention.
  • (B), (c), (d) is a front view, a top view, and sectional drawing for demonstrating the tension material arrangement
  • Figure 19 (a) is a perspective view of a prestressed concrete U-shaped girder according to one embodiment of the third aspect of the present invention.
  • (B), (c), (d) is a front view, a top view, and sectional drawing for demonstrating the tension material arrangement
  • Figure 6 (b), (c), (d) is A front view, a plan view, a cross-sectional view
  • FIGS. 7A and 7B illustrate the tension member arrangement of the prestressed concrete girder shown in FIG. 6A, respectively.
  • FIG. 8 is a view for explaining a lower limit calculation process of the tension material downtown limit range of the present invention
  • Figure 9 is a view for explaining the stress distribution type of the lower edge of the PSC type I girder of the present invention
  • FIG. 12A is a front view, a plan view, a sectional view for explaining the tension member arrangement of the strut concrete girder
  • FIG. , (c) is a front view, a plan view, a cross-sectional view for explaining the tension member arrangement of the prestressed concrete girder shown in Fig. 12 (a), respectively
  • Fig. 13 (a) describes the structure of the coated steel wire 13
  • (b) is a view for explaining a method of using a coated strand as a second tension member of a PSC type I girder, which is the first form of the present invention
  • FIG 14 is an L as the first form of the present invention.
  • Figure 15 is the first type of PSC type girder end block of the present invention To explain an example of the various forms and installation of the anchorage Try.
  • Figure 16 is a perspective view for explaining the end-cutting form of the PSC type I girder and the fixing fixture installation method of the first embodiment of the present invention.
  • Prestressed concrete girder is a type I girder body 1, the first tensioning material 100, the second tensioning material 200, the first sheath pipe 150, the second sheath
  • the pipe 250 is configured to include a first fixing unit 310 and a second fixing unit 320.
  • the main body 1 is made of a reinforced concrete material and comprises a central portion 10, a pair of end face portions 20, a pair of end blocks 30, shown in Figure 6 (a) As described above, the end block 30, the end face portion 20, the center portion 10, the end face portion 20, and the end block 30 are disposed in this order.
  • the central portion 10 has an I-type cross section including an upper flange 11, an abdomen 12, and a lower flange 13 as in the DD cross section shown in FIG. 6D and is formed to be long in one direction. It is arranged at the center side of the main body 1 as an example.
  • the edge end portion 20 extends from both ends of the central portion 10, and the upper flange 21, the abdomen 22, the lower flange 23, as shown in the cross-sectional view BB shown in Figure 6 (d). It has a form including a and the thickness of the abdomen 22 and the lower flange 23 increases in the direction extending from the center portion, that is to say toward the end of the body (1).
  • the thickness of the lower flange 23 may be formed in various ways.
  • the lower flange 23 may be formed in a straight line, such as the lower flange 23a on the left end of FIG. 14. It may be configured in a curved shape like the lower lower flange (23b) (23a, 23b is a division for convenience of description), in this embodiment as shown in Figure 6 to the curved shape of the arc shape constant curvature radius To configure.
  • the first tension member 100 is disposed in the shape of a curve (parabola) at the edge end portion 20. (Typically, the tension member is disposed in the form of a parabola.) Since the first tension member 100 is disposed in the form of a curve, the first tension member 100 may be changed even when the thickness of the lower flange 23 of the edge portion 20 changes in a curved shape. Since it is possible to secure the concrete coating thickness of), it can be manufactured in a curved form.
  • the formwork of the girder is made of steel sheet, but in order to produce the lower flange 23 of the edge section 20 using a steel sheet pre-processed with a roller, the same curvature radius is produced when the arc shape is constant.
  • the upper flange of the lower flange 23 of the edge portion 20 may have an arc shape with a constant radius of curvature so that the manufacturing may be easily performed.
  • the end block 30 extends from the pair of end face portions 20 and is configured to have a pair, and may have various types of cross-sections.
  • the end face portion as shown in FIG. It is a shape in which the same cross section as the form of the end side of the main body 1 of the main body 20 is maintained.
  • the first tension member 100 is generally used as a configuration disposed in the lower portion of the end block 30, the end face portion 20 and the lower flanges 13 and 23 of the central portion 10 of the body (1).
  • Strands can be used.
  • SWPC7D ⁇ 15.2mm tensile strength of 2400MPa
  • SWPC7D ⁇ 15.2mm tensile strength of 2400MPa
  • the vertical arrangement of the first tension member 100 is the highest at both ends of the main body 1 and the lowest in the center, as shown in FIGS. 6B and 6D, whichever of the main body 1 is disposed
  • the altitude is gradually decreased in the end block and the end face section of the end portion of the end portion of the central portion 10, the altitude does not change, and is substantially symmetrically arranged with respect to the center of the body 1, and the tensile force is Both ends are fixed to the main body 1 by the first fixing holes 310 in the applied state. Since the first fixture 310 is generally used for prestressed concrete girder, further description thereof will be omitted.
  • the left and right direction arrangement of the first tension member 100 is spread from side to side in the end block 30 and the end surface portion 20 section as shown in (c) and (d) of FIG.
  • In the form of maintaining a constant interval in the girder width direction is arranged substantially symmetrical with respect to the center of the main body (1).
  • the arrangement of the first tensioning material 100 is illustrated by a blue line in FIG. 6 (b), and the arrangement of the first tension material 100 can also be confirmed in the cross-sectional view of FIG. 6 (d).
  • the first tension member 100 is installed in a state accommodated in the first sheath tube 150, and in the drawing, the first tension member 100 accommodated in the first sheath tube 150 and the first sheath tube 150. Is shown by one line, and is indicated by reference numeral 100 (150).
  • the second tension member 200 is the upper portion of the end block 30, the upper flange 21 or the abdomen 22 of the cross-sectional surface portion 20, the upper flange 11 of the central portion 10, the abdomen 12 or It is disposed over the lower flange 13 and is shown in red in the drawing for clear separation from the first tension member 100.
  • the second tension member 200 is a structure in which both ends are fixed to the main body 1 by the second fixing holes 320 in a state where a tensile force is applied, and is accommodated in the second sheath tube 250.
  • the second tension member 200 uses a stranded wire having a tensile strength of 2400 MPa class (SWPC7D ⁇ 15.2 mm), similar to the first tension member 100, and in some cases, an unattached strand may be used, which will be described later. do.
  • the arrangement of the second tension member 200 in the vertical direction is monotonically increased from the end of the main body 1 to the highest point P, which is one point near the boundary between the end face 20 and the center 10, and then the main body (from the highest point).
  • the forging is reduced to the center of 1), and in the present embodiment, the height is reached from the middle of the cross section 20 to the highest point P near the boundary between the cross section 20 and the center 10. While maintaining the height is configured to continue to go down the highest point (P) to the central portion of the main body (1).
  • FIG. 7 (a) and 7 (b) are views for explaining a method of arranging the first and second tension members 100 and 200, the shape of the main body 1 and the first tension member 100 and the second tension member. Since the arrangement form of 200 is symmetrical in the longitudinal direction with respect to the center of the main body 1, only half of the girder length is illustrated, and arbitrary ratios are used in the height and the longitudinal direction according to the position for convenience of illustration. The dotted lines in the figure indicate the upper ends of the lower flanges 13 and 23.
  • the first tension member 100 is arranged in a curved shape in which the altitude gradually decreases toward the center from the end of the girder in the section of the end block 30 and the edge section 20, and the lower flange 13 in the section of the central section 10. Are arranged in a straight line at a constant altitude.
  • a vertical line indicated by A in FIG. 7 (a) is a spaced altitude difference, which is the maximum value near the boundary between the edge end portion 20 and the center portion 10, and toward the end or the center of the main body 1 toward the center thereof. Its size gradually decreases.
  • the city center of the entire tension material rises up from the city center 101 of the first tension material, and the edge section 20 Since the separation altitude difference is the largest in the vicinity of the boundary of the central portion 10, the inner city 201 of the second tension member needs to be disposed highest in the vicinity of the boundary between the edge end portion 20 and the central portion 10.
  • a predetermined fixing area must be secured to the end surface of the main body 1, so that the fixing position of the second tension member 200 should be spaced apart from the upper end of the main body 1 by a predetermined distance. The requirements must also be met.
  • the second tension member 200 increases forging up to the highest point P, which is a point near the boundary between the edge end portion 20 and the central portion 10, and forgings from the highest point P to the center of the main body 1. It is arranged to reduce the most ideal arrangement is the highest point (P) near the boundary between the edge section 20 and the center portion 10 after reaching the maximum height within the edge section as shown in Fig. 7 (a) While maintaining the same height up to), to the center of the body (1) continues to be arranged so that the altitude decreases.
  • the center of the first tension member 101 at the end and the center of the main body 1 is not lower than the lower limit (LL). Since it is disposed above or very close to the end of the main body 1, even if the altitude of the second tension member 200 is lowered, the entire tension center is not lower than the lower limit LL of the tension center.
  • the second tension member 200 passes through the boundary between the edge end portion 20 and the center portion 10 so that the altitude decreases gradually to reach the lowest point from the center of the girder, thereby releasing the center. It is configured to have a parabolic shape that can contribute as much as possible to the introduction of compression prestress of lower smoke.
  • the arrangement method of the second tension member 200 is significantly different from that of the conventional tension member arrangement method having a simple parabolic form in which the altitude decreases gradually from the end to the center as shown in (b) of FIG. 4.
  • all the tension members start at the end of the girder and the elevation change to the center of the girder is monotone decreasing, whereas the elevation change of the second tension member 200 of the present invention is the main body.
  • (1) Begin at the end and monotonically increase to the boundary between the edge section 20 and the central section 10 and monotonically from the boundary between the edge section 20 and the center section 10 to the center of the body 1.
  • As a decreasing form it is a new idea that has not been found in the case of conventional PSC type I girder.
  • the lower limit of the tension limit downtown range is a case where a constant cross-sectional shape is maintained over the entire length of the girder.
  • the main body 1 of the present invention includes a cross-sectional surface portion 20 and the end block 30, so the cross-sectional shape is not constant, so it is necessary to examine this.
  • Equation a to d are equations defining the limits of tension centers.
  • Equations a and b determine the lower limit of the tension eccentric distance using equations obtained from the allowable stress conditions immediately after the introduction of prestress. The limit of the eccentric distance of the tension member is determined by equations b and d.
  • Figure 4 (a) is a representation of the form of the typical tension range limits defined by equations (b) and (d) when the cross-sectional shape is constant over the entire length of the girder, the lower limit (LL) shown in (a) of FIG. Also shown based on this.
  • the equations a and b that determine the lower limit are important, and the lower limit of the tension center is relatively higher among the curves obtained by equations a and b. Is located on the curve.
  • the present invention is an invention for maximizing the structural efficiency of the girder by minimizing the abdominal thickness of the girder (in this embodiment, the thickness of the abdomen 12 of the central portion 10) within the range that satisfies the road bridge design criteria. Reducing the thickness of the abdomen requires minimizing the number of tensions placed on the abdomen.
  • the tension member is disposed separately from the first tension member 100 and the second tension member 200.
  • the first tensioning member 100 is disposed in the lower portion of the end block 30, the end surface portion 20 and the lower flanges 13 and 23 of the central portion 10, it is not disposed in the abdomen.
  • the center of the first tension member 100 may be disposed below the lower limit of the center of the tension member. (Refer to (a) or (b) of FIG. 7)
  • the entire tension material is increased by increasing the city center 201 of the second tension material as much as possible.
  • the center of gravity is to be placed above the lower limit of the tension center.
  • the second tension member 200 is inevitably disposed in the abdomen 12 of the central portion 10 in some sections, the number of the strands used as the second tension member 200 is very important variable. Since the thickness of the abdomen 12 of the center portion 10 can be reduced only by the diameter of the second sheath tube 250, the number of the strands used as the second tension member 200 is better. In order to arrange a large number of strands while using the second sheath pipe 250 having a small diameter, the number of second sheath pipes 250 may be increased, but this may lead to an increase in the related construction cost. Ideally, only one) is used. Reducing the number of strands used as the second tension member 200 inevitably reduces the tension applied to the main body 1.
  • the first tension member 100 is disposed only on the lower flanges 13 and 23 having a thickness greater than that of the abdomen, and the meaning that the first tension member 100 is disposed on a relatively thick member is advantageous to secure a concrete coating thickness, so that the second sheath pipe 250 Compared to), a sheath having a large diameter may be used as the first sheath tube 150.
  • the diameter of the sheath tube increases, the number of lecturers that can be accommodated increases in proportion to the square of the diameter, so that the first sheath tube 150 increases the number of strands that can be accommodated by using a product having the maximum diameter within the allowable range. desirable.
  • Table 1 summarizes the design results of the design example according to the present invention and the control design example according to the existing method in a table for easy comparison.
  • Design example according to the present invention Contrast design example (existing modified PSC type I girder) Mold height [mm] Abdominal thickness [mm] Sheath number Weight [ton] Mold height [mm] Abdominal thickness [mm] Sheath number Weight [ton] 25 1,000 180 3 35 1,100 240 5 46 30 1,200 180 3 46 1,200 240 5 57 35 1,500 180 3 62 1,500 240 5 73 40 1,800 180 3 78 1,800 240 5 92 45 2,200 180 3 98 2,200 240 5 116 50 2,500 180 3 121 2,500 240 5 136 55 2,700 180 4 138 2,700 240 6 156
  • the design standard bridge summarized in the table is a four-week simple bridge with a width of 10.9m, the national standard bridge, and the design standard of 1st bridge was applied.
  • a 60 mm sheath (based on the inner diameter) was used as the second sheath tube 250.
  • the abdominal thickness of at least 240 mm is required for 80 mm sheaths that are commonly used in PSC type I girders due to the thickness of the coating covering more than the duct diameter (sheath pipe inner diameter) required by the Road Design Standard (2015). It is possible to design the abdominal thickness to 180mm.
  • the concrete cover thickness of reinforcing steel 40mm (environmental condition ED1, compressive strength 45MPa concrete), the sum of the diameter of 13mm of shear reinforcement steel (D13) and sheath thickness 2mm is 55mm, so even if 60mm sheath is used, Dominates the abdominal thickness.)
  • the second tension member 200 In order to maximize the role of the second tension member 200, it is necessary to reduce the total number of strands using high-strength strands, if possible, and designed using a strand of tensile strength of 2400 MPa (SWPC7D ⁇ 15.2 mm). ) As a sheath tube 150, a sheath tube of up to 100 mm diameter was used.
  • the girder concrete uses 45MPa of compressive strength to increase the girder performance. The higher the compressive strength of the concrete used, the higher the structural efficiency of the girder. The reason for limiting the compressive strength to 45MPa is that 45MPa concrete is the largest concrete compressive strength that can be supplied anywhere in the country.
  • the PSC type I girder of the present invention was able to accommodate both the first tension member 100 using only two sheaths, but there was a reason to reduce the total lecturer by using a high-strength strand, but the first tension member 100 had a lower flange ( This is because it can be designed using a sheath having a large diameter because only 13, 23) passes.
  • the curve labeled Type 1 is a flexural stress distribution when the ratio of the second tension member 200 to the total tension member is relatively large.
  • the compressive stress at the center of the girder dominates the stress design, and the curve labeled Type 2 is relative to Type 1
  • the compressive stress in the center portion 10 is substantially constant, and in this case, the stress at the center of the girder dominates the design.
  • the curve shown as type 3 is a bending stress distribution diagram when the ratio of the second tension member 200 is smaller than that of type 2, and the compressive stress at the edge section point (the boundary between the edge section section and the center section) is the largest and the stress here is stressed. Dominate the design.
  • Type 3 It is structurally efficient when designed as Type 1 and Type 2, but in Type 3, it can be said that it does not utilize the maximum performance of concrete because the compressive stress at the center is smaller than the allowable stress, and the structural efficiency is not good.
  • the efficiency of the PSC type I girder depends on the size of the compression prestress that is introduced at the lower edge of the girder at tension.
  • the amount of load that can be supported by the PSC girders because the tensile stress of parabolic shape (curve indicated by the dotted line in Fig.
  • the performance of the PSC girder is not fully utilized because it can only support the flexural tensile stress such as the curve indicated by the "small parabola" as the median. Therefore, the ratio of the second tension member 200 among the total tension members should be maintained at least to the extent shown in Type 2, and thus the number of the strands used as the second tension members should also increase as the total number of the strands arranged.
  • the control design example is a new type PSC type I girder bridge construction method which is known to have the largest number of bridge applications in Korea.
  • the comparative method uses a sheath of 80 mm, so the abdominal thickness is 240 mm.
  • the 80mm sheath tube is used in the abdomen because most of the sheath passes through the abdomen. When the 60mm sheath tube is placed to reduce the thickness of the abdomen, the number of sheaths increases exponentially and the sheath increases.
  • the girder designed according to the present invention is significantly reduced in weight (11% to 24%) compared to the girder designed according to the control design, it can be seen that the number of sheath pipes used is also reduced.
  • the reduction in the number of sheaths has the effect of reducing the cost due to the reduction of tension work as well as reducing the loss of tension due to elastic shortening during tension.
  • the total number of strands used is not directly comparable due to different tensile strength grades of strands used, they are not shown in Table 1, but are estimated to decrease by the weight reduction of the girder at full load.
  • FIG. 6 is a diagram illustrating a method of disposing a main body 1, a first tension member 100, and a second tension member 200 when the principal is designed to have 35, 40, 45, and 50 m. Figure is shown.
  • Figures 10a and 10b shows the stress distribution of the lower edge of the girder immediately after the tension when the principal is 35m and 50m, respectively.
  • the type 1 shown in FIG. 9 is close to the type 1 shown in FIG. 9, and the 50m shown in FIG. 10B shows a stress distribution similar to the boundary between the type 2 and the type 3 shown in FIG. This is because the number of strands used as the second tension member 200 is less than 50m as compared to the overall lecturer. (The difference between the stress at the edge of the cross section and the center and the stress magnitude at the center of the girder is important.
  • the distribution can be adjusted by changing the placement profile of the second tension member between the two points if necessary.)
  • the compressive stress at the center of the body 1 dominates the stress design from a practical point of view.
  • the compressive strength of the concrete used in the design example according to the present invention is 45MPa and the allowable stress is 27MPa.
  • FIG. 11 is a view showing the shape of the main body 1 designed by the principal of 55 m and the arrangement of the first tension member 100 and the second tension member 200.
  • L 55m
  • the number of second tension members 100 must be increased together to avoid the type 3 of FIG. 9.
  • the diameter of the sheath tube should be increased or the number of sheath tubes arranged should be increased.
  • the thickness of the abdomen 12 is not increased in order to increase the thickness of the abdomen 12. It was designed to accommodate a total of 16 strands as the second tension member 200, 8 per sheath, using two tubes.
  • the PSC girder of the present invention can still be said to have excellent economic efficiency.
  • the principle of placement is the same as using one sheath from the side of the city of the second tension member. The only difference is that the minimum spacing between sheaths and the minimum spacing between the sheaths should be taken into account in addition to the concrete covering conditions of the sheaths in consideration of the topmost or bottommost possible placement conditions.
  • FIG. 10C illustrates the stress distribution at the lower edge of the girder immediately after the tension when the principal illustrated in FIG. 11 is 55 m. It can be seen that a similar stress distribution is shown in Type 1 shown in FIG. 9, which shows that the compressive stress dominates the stress design at the center of the body 1.
  • the allowable stress of the concrete used in the design example according to the present invention is 27MPa as described above, there is room for stress as can be seen in the figure.
  • FIG. 12 is a view showing the shape of the main body 1 in which the principal is designed to be 25 m or 30 m and the arrangement of the first tension material 100 and the second tension material 200.
  • the mold height is low, it is difficult to arrange two first fixing holes 310 in one vertical column.
  • the first anchoring holes 310 are disposed from side to side, the number of strands that can be fixed in one anchorage is reduced because the anchoring area per anchorage is reduced.
  • the span length is shortened, the number of lecturers decreases, so the first tension member 100 is used.
  • the anchorage may be designed to be horizontally arranged horizontally as shown in section AA of FIG. 12 (d).
  • first fixing holes 310 are arranged horizontally, two first sheath pipes 150 can be arranged at regular intervals in the width direction as shown in FIG. 12C.
  • Figure 10d shows the stress distribution of the lower girder immediately after the tension when the principal is 25m. It can be seen that a similar stress distribution is shown in Type 1 shown in FIG. 9, which shows that the compressive stress dominates the stress design at the center of the body 1.
  • the allowable stress of the concrete used in the design example according to the present invention is 27MPa as described above, there is room for stress as can be seen in the figure.
  • the abdominal thickness of the PSC type I girder can be considerably reduced by arranging a small size sheath tube on the abdomen as described while comparing the design example according to the present invention with the control design example according to one of the conventional design methods. You can see that there are advantages.
  • the abdominal minimum thickness of the post-tension PSC girder specified in the Road Bridge Design Standard (2015) is 165 mm.
  • the total concrete cover thickness of rebar is 40mm (environmental condition ED1, compressive strength 45MPa concrete)
  • the diameter of shear reinforcing bar (D13) is 13mm in diameter
  • 2mm sheath thickness is 55mm.
  • ⁇ 165 mm 55 mm + 55 mm + 55 mm.
  • a method of minimizing the abdominal thickness of the PSC type I girder is to use an unattached coated strand shown in FIG. 13A as the second tensioning material.
  • the unattached strand shown in (a) of FIG. 13 is a nominal 15.2 mm strand and has a diameter of 18.2 mm including the covering.
  • the upper portion of the lower flange of the cross section was curved. Since the first tension member 100 is arranged in a convex parabola shape downward in the edge section, there is no problem in arranging the first tension member 100 even when manufactured in a curved form, and when the curved form is manufactured, the weight of the main body is reduced. This is because it is helpful and aesthetically superior.
  • FIG. 14 when the main body is relatively short and can be designed with a low mold height, even when the upper portion of the lower flange of the cross section 20 is formed in a curved shape, the weight reduction effect of the main body is not large, but is manufactured in a curved shape. The aesthetic effect of doing so cannot be expected very much.
  • the upper portion of the lower flange 23a shown on the left side of FIG. 14 is straight, and the upper portion of the lower flange 23b shown on the right is curved, but it can be seen that the difference is not so large for the naked eye.
  • the upper portion of the lower flange 23 of the edge section 20 may be manufactured in a straight line in order to facilitate the formwork.
  • the end block 30 cross-sectional shape was the same as the end cross-sectional shape of the edge section .
  • the end block may be manufactured in various forms as long as there is no problem in the flow of the cross-sectional force transmitted through the end face portion 20 in structural dynamics as a form suitable for installing the anchorage.
  • 15 is a form in which a part of the upper portion of the end block 30 is removed to favor the end crossbeam construction. The end robo is joined to the hatched portion on the drawing.
  • the end block illustrated in FIG. 15 uses four first sheath tubes (not shown in FIG. 15), and thus four first fixing holes 310 are installed. Since the use of four small anchorages requires a smaller fixing area than using two large anchorages, it may be designed to use four first anchorages 310 depending on the situation.
  • Figure 16 is a form that is sometimes required in connection with the coping of the pier or securing the flow area, in this case the lower part of the end block 30 is removed so that the end block has a rectangular cross-section in order to ensure the maximum cross-sectional area for cutting It is also designed to be somewhat longer. When the end is cut off, the end of the end becomes smaller, so that a part or all of the first fixing member must be installed on the vertical surface of the cutout, but it is not easy to secure the fixing area. It is designed to use 310. In FIG. 16, it is designed that two second fixing holes 320 are used, which is to illustrate various installation methods of the fixing device.
  • the present invention is an invention characterized by the arrangement and profile of the first tension member 100 and the second tension member 200, so that the entire tension center is on the lower limit of the tension center, and the stress distribution of the lower edge of the girder after tension is also illustrated.
  • the thickness of the abdomen 12 of the central portion 10 of the main body 1 while appropriately adjusting the number of each of the first tension member 100 and the second tension member 200 to correspond to the type 1 or type 2 of the main body ( It can be described as an invention capable of structurally efficient design by reducing the weight of 1).
  • FIG. 17 (a) is a view for explaining a method of converting a cross-sectional characteristic value into an I-shaped section having the same cross-sectional characteristic values through equations for defining the limitation range of the tension material center through cutting and recombination of the hollow box section
  • FIG. 17 (b) Is a diagram for explaining a method of converting a U-shaped cross section into an I-shaped cross section with the same cross-sectional characteristic values in equations that define the limited range of tension centers through cutting and recombination.
  • FIG. 17 (b) Is a diagram for explaining a method of converting a U-shaped cross section into an I-shaped cross section with the same cross-sectional characteristic values in equations that define the limited range of tension centers through cutting and recombination.
  • FIG. 17A shows a box-shaped beam cross section consisting of an upper flange 11 ', a pair of abdomen 12', and a lower flange 13 '.
  • the left and right cross-sections shown in FIGS. 17A and 17B have the same cross-sectional area and cross-sectional secondary moments (or cross-sectional coefficients) in the vertical direction, respectively, so that they are sag or introduced due to tension or load to be introduced at design time.
  • the cross-sectional characteristics for determining the rise due to the tension force and the like are the same.
  • the abdominal thickness of the box-beam or U-shaped girder can be reduced to reduce the weight of the body and the number of sheath tubes used.
  • the box-beam or U-girder has two abdomen, so the weight reduction effect by reducing the thickness of the abdomen may be larger than the I-girder.
  • the PSC girder includes a main body 1 ', a first tension member 100', a second tension member 200 ', a first sheath tube 150', a second sheath tube 250 ', and a first one. It comprises a fixing unit 310 ′, the second fixing unit 320 ′.
  • FIG. 18A is a perspective view of a prestressed concrete box girder according to one embodiment of the second aspect of the present invention
  • FIGS. 18B, 18C and 18D are respectively FIGS. 18A
  • the main body 1 ' is made of a reinforced concrete material and comprises a central portion 10', a pair of end face portions 20 ', and a pair of end blocks 30', which is shown in FIG. As shown in FIG. 6, the end block 30 ′, the end surface portion 20 ′, the center portion 10 ′, the end surface portion 20 ′, and the end block 30 ′ are disposed in this order.
  • the central portion 10 ' has a box-shaped cross section including an upper flange 11', a pair of abdomen 12 ', and a lower flange 13' as in the DD cross section shown in FIG. 18 (d). As a structure formed long in one direction, it is arrange
  • the edge end portion 20 ′ extends from both ends of the central portion 10 ′ and has an upper flange 21 ′ and a pair of abdomen 22 as in the cross-sectional view taken along line BB of FIG. 18 (d).
  • the end block 30 ' is a configuration in which a pair is provided and extends from each of the pair of end surface portions 20' and may be configured in various shapes of cross-sections, and the shape of the cross-section is continuously changed.
  • the same cross-section as that of the end portion of the main body 1 ′ of the edge section 20 ′ is maintained.
  • the first tension member 100 ′ is disposed at the lower portion of the end block 30 ′, the end surface portion 20 ′, and the lower flanges 13 ′, 23 ′ of the central portion 10 ′ of the main body 1 ′.
  • the arrangement in the vertical direction is the highest at both ends of the main body 1 'and the lowest in the middle, as shown in FIGS. 18 (b) and (d), wherein any one of the main bodies 1' is disposed.
  • the altitude is gradually lowered in the end block and the end face section of the end side, and from one point of the center portion 10 ', there is no change in altitude, and is disposed substantially symmetrically with respect to the center of the main body 1'. In this applied state, both ends are fixed to the main body 1 'by the first fixing holes 310'.
  • the left and right arrangement of the first tension member 100 is symmetrically with respect to the center of the main body 1 ′ as shown in FIGS. 18C and 18D to maintain a predetermined distance in the girder width direction. Is placed.
  • This arrangement of the first tensioning material 100 ′ is shown by blue lines in FIG. 18.
  • the first tension member 100 ′ is installed in a state of being accommodated in the first sheath tube 150 ′, and the first sheath member 100 ′ is accommodated in the first sheath tube 150 ′ and the first sheath tube 150 ′.
  • Tension material 100 is shown as a single line, also indicated by reference numeral 100 '(150').
  • the second tension member 200 ′ is an upper portion of the end block 30 ′, an upper flange 21 ′ or an abdomen 22 ′ of the edge end portion 20 ′, and an upper flange 11 ′ of the central portion 10 ′. ), The abdomen 12 ′ or the lower flange 13 ′, and are shown in red to clearly distinguish the first tension material 100 ′ from the drawing.
  • the second tension member 200 ′ is a structure in which both ends thereof are fixed to the main body 1 ′ by the second fixing holes 320 ′ in a state where a tensile force is applied, and is accommodated in the second sheath tube 250 ′.
  • the vertical arrangement and related technical ideas of the second tension member 200 ′ are the same as the vertical alignment and related technical ideas of the second tension material 200 in the above-described I-type girder, and thus description thereof is omitted.
  • the box girders In relation to the horizontal arrangement of the second tension member 200 ', the box girders have two abdomens 12' and 22 ', so that the second sheath tube 250' accommodating the second tension member 200 'is also a drainage of 2 Place it to be symmetrical.
  • the PSC girder includes a main body 1 ", a first tension member 100", a second tension member 200 ", a first sheath pipe 150", a second sheath pipe 250 “and a first And a fixing unit 310 " and a second fixing unit 320 ".
  • FIGS. 19A is a perspective view of a prestressed concrete U-shaped girder according to an embodiment of the third aspect of the present invention
  • FIGS. 19B, 19C, 19D are 19A, respectively.
  • the main body 1 is made of a reinforced concrete material and includes a central portion 10", a pair of end face portions 20 ", and a pair of end blocks 30", and FIG. As shown in FIG. 6, the end block 30 ′′, the end face portion 20 ′′, the center portion 10 ′′, the end face portion 20 ′′, and the end block 30 ′′ are disposed in this order.
  • the center portion 10 has a pair of upper flanges 11", an abdomen 12 ", and a lower portion engaging the pair of abdomen 12" as in the DD section shown in FIG. 19 (d). It has a U-shaped cross section including a flange 13 "and is formed long in one direction, and is arrange
  • the edge end portion 20 “extends at both ends of the center portion 10" and has a pair of upper flanges 21 “and an abdomen 22" as in the BB section shown in Fig. 19D. ), Having a U-shaped cross-sectional shape including a lower flange 23 "that engages the pair of abdomen 22", and the thickness of the abdomen 22 "and the lower flange 23" extends from the center portion again. That is, it increases toward the end of the body 1 ".
  • the end block 30 ′′ extends from the pair of end face portions 20 ′′ and is provided with a pair, and may be configured in various shapes of cross sections, and may be configured in various shapes in which the cross sectional shape is continuously changed. In this embodiment, as shown in FIG. 19, the same cross-section as that of the end portion of the main body 1 ′′ of the edge section 20 ′′ is maintained.
  • the first tension member 100 is disposed at the lower portion of the end block 30", the end face portion 20 “and the lower flanges 13" and 23 “of the central portion 10" of the main body 1 ".
  • the arrangement in the vertical direction is the highest at both ends of the main body 1 "and the lowest in the middle, as shown in FIGS. 19B and 19D, whichever is one of the main bodies 1".
  • the altitude is gradually decreased in the end block and the end face section of the end side, and is substantially symmetrical with respect to the center of the main body 1 "without any change in altitude from any point of the center portion 10". In this applied state, both ends are fixed to the main body 1 "by the first fixing holes 310".
  • the arrangement of the first tension member 100 " is shown by a blue line in Fig. 19.
  • the first tension member 100" is installed in a state of being accommodated in the first sheath tube 150 ", and the first sheath is shown in the figure.
  • the first tension member 100 "accommodated inside the tube 150" and the first sheath tube 150 " is shown by one line, and is indicated by reference numeral 100" (150 ").
  • the second tension member 200 " is the upper portion of the end block 30 ", the upper flange 21 “ or the abdomen 22 “ of the edge end portion 20 “, and the upper flange 11 “ of the central portion 10 “. ), Abdomen 12 ′′ or lower flange 13 ′′, and are shown in red in the drawing for clear separation from the first tension member 100 ′′.
  • the second tension member 200 " is a structure in which both ends thereof are fixed to the main body 1" by the second fixing hole 320 "in a state where a tensile force is applied, and is accommodated in the second sheath tube 250".
  • the vertical arrangement and related technical ideas of the second tension material 200 ′′ are the same as the vertical alignment and related technical ideas of the second tension material 200 in the above-described I-type girder, and thus description thereof is omitted.
  • the U-girder In relation to the horizontal arrangement of the second tension member 200 ", the U-girder has two abdomens 12" and 22 ", so that the second sheath tube 250" receiving the second tension member 200 "is shown in FIG. Arrange in a multiple way to be symmetrical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

The present invention relates to a prestressed concrete girder widely used in a composite girder bridge method, and more specifically, to a prestressed concrete girder in which a girder shape and tendon arrangement and mounting method are optimized so as to minimize the weight of the girder by reducing the thickness of a girder web.

Description

프리스트레스트 콘크리트 거더Prestressed concrete girder
본 발명은 합성거더교 공법에 널리 사용되고 있는 프리스트레스트 콘크리트(Prestressed Concrete; 줄여서 "PSC"라고도 함) 거더에 관한 것으로서, 더욱 상세하게는 거더의 복부 두께를 줄여 거더의 중량을 최소화할 수 있도록 거더의 형상과 긴장재의 배치 및 정착 방법이 최적화된 프리스트레스트 콘크리트 거더에 관한 것이다.The present invention relates to prestressed concrete girders that are widely used in the composite girder bridge method (referred to as "PSC") girders, more specifically, the shape of the girders to minimize the weight of the girders by reducing the thickness of the girder The present invention relates to prestressed concrete girders, which have been optimized for the arrangement and settlement of tension members.
지상에서 프리캐스트 프리스트레스트 콘크리트 거더들을 제작하고 이를 교각, 교대 등의 하부구조 위에 가설하고 그 위에 바닥판 슬래브를 시공하는 합성거더교 공법은 전 세계적으로 가장 널리 사용되는 교량시공방법이다. 이러한 합성거더교용 거더들 중에서 상부플랜지, 하부플랜지 및 복부로 구성되는 PSC I형 거더(빔)은 가장 많이 사용되는 형식으로 프리스트레스 도입방법에는 프리텐션 방식과 포스트텐션 방식이 있는데, 국내에서는 PSC 거더를 현장에서 제작하기 때문에 거의 대부분 포스트텐션 방식을 사용하고 있다. 프리텐션 방식에서는 I형 거더의 복부에 강연선이 낱개로 배치되지만, 포스트텐션 방식에서는 강연선 다발이 설치되는 덕트를 형성하기 위해 쉬스(sheath)를 복부에 배치하기 때문에 복부의 두께가 프리텐션 방식에 비하여 두꺼워 진다. I형 거더의 복부는 거더에 작용하는 전단력의 대부분을 분담하기 때문에 긴장재 배치에 대한 고려와 함께 전단력 저항능력도 고려하여 두께를 결정해야 한다.Precast prestressed concrete girders are constructed on the ground, and they are constructed on the substructures such as bridges and shifts, and the deck slabs are constructed on them. Among these composite girder bridge girders, the PSC type I girder (beam) composed of the upper flange, the lower flange and the abdomen is the most commonly used type, and there are pretension and posttension methods in the prestress introduction method. Since they are manufactured in the field, most of them use post-tension method. In the pre-tension method, the strands are individually arranged on the abdomen of the I-girder, but in the post-tension method, the thickness of the abdomen is greater than that of the pretension method because the sheath is arranged in the abdomen to form a duct in which the strand bundle is installed. Thickening Since the abdomen of Type I girders shares most of the shear force on the girders, the thickness should be determined by considering the shear force resistance as well as the placement of tension members.
도 1의 (a)와 (b)는 전형적인 포스트텐션 PSC I형 거더의 형상으로 도 1(a)는 사시도이고 도 1(b)는 단면도이다. PSC I형 거더는 거더의 양단부를 제외한 구간은 상부플랜지와 하부플랜지, 그리고 이 둘 사이를 연결하는 얇은 복부로 이루어지는 I형상의 단면으로 구성되는데(도 1(b)의 단면 B-B 참고), 통상 PSC I형 거더의 단면이란 이 단면을 지칭한다. 그런데 포스트텐션 PSC 거더의 경우에는 거더의 단부에 정착구를 설치해야 하기 때문에 거더 단부에서 단면이 확대되어야 한다. 도 1의 PSC I형 거더의 양단부는 서로 다른 모양을 가지고 있는데 우측 단부(단면 C-C)는 복부의 두께를 키워서 거의 직사각형에 가까운 모양으로 만든 형상으로서 가장 많이 사용되는 형태이다. 이러한 단면 형상이 지속되는 구간을 통상 단부블록이라 칭한다. 변단면부는 단부블록에서 거더 중앙 쪽으로 가면서 점차 I형 단면형상으로 변화하는 구간이다. 단부블록 및 변단면부 구간은 긴장재 정착에 따른 응력집중 현상을 완화시키고 거더 단부로 갈수록 커지는 작용 전단력에 효과적으로 저항할 수 있도록 두 구간의 합이 소정의 길이를 갖도록 하는 것이 일반적이지만 전체 거더에서 차지하는 길이의 비율은 작다. 과거에는 단부블록 구간이 길고 변단면부 구간은 짧은 형태가 많이 사용되었지만 최근에는 도 1(a)의 우측과 같이 단부블록 구간을 짧게 하고 변단면부 구간을 길게 하는 형태가 많이 사용되고 있다. 이러한 형태 변화는 거더의 중량을 다소나마 감소시키기 위해서이다. 도 1(a)의 좌측 단부(단면 A-A 참고)는 사용하는 쉬스의 개수가 늘어나 단부면에 정착구를 많이 배치해야 하는 경우에 종종 사용하는 형태로 아래쪽에는 2열로 위쪽에는 1열로 정착구를 배치하는 경우로서 변단면부 구간에서 복부의 두께도 점점 증가하지만 하부플랜지의 두께도 점점 두꺼워지는 형태이다. 도 2는 PSC I형 거더 단면으로 최근에 많이 사용되고 있는 최적화된 단면형태의 하나로 과거보다 플랜지의 폭은 커지고 두께는 얇아진 형태이다. 도 2에는 참고로 전단보강철근(stirrup)과 함께 단면에 배치되는 주요 철근들을 도시하였으며 쉬스가 배치되는 방법도 함께 도시하였다.1A and 1B are typical post-tension PSC type I girder shapes. FIG. 1A is a perspective view and FIG. 1B is a sectional view. PSC Type I girders consist of an I-shaped section consisting of an upper flange and a lower flange, and a thin abdomen connecting the two, except for both ends of the girder (see cross-section BB in FIG. 1 (b)). The cross section of an I-girder refers to this cross section. However, in the case of post-tensioned PSC girders, the cross section must be enlarged at the end of the girder because the anchorage must be installed at the end of the girder. Both ends of the PSC type I girder of FIG. 1 have different shapes, and the right end (section C-C) is a shape that is made of a nearly rectangular shape by increasing the thickness of the abdomen and is most commonly used. The section in which this cross-sectional shape persists is usually called an end block. The edge section is a section that gradually changes to an I-shaped cross section from the end block toward the center of the girder. The end block and edge section sections are generally designed so that the sum of the two sections has a predetermined length so as to alleviate the stress concentration caused by the settlement of tension members and to effectively resist the increasing shear force toward the end of the girder, but the length occupies the entire girder The ratio of is small. In the past, the end block section was long and the short edge section was used in many forms, but recently, the shape of shortening the end block section and lengthening the cross section is longer, as shown in the right side of FIG. This form change is intended to reduce the weight of the girders somewhat. The left end of FIG. 1 (a) (see section AA) is often used when the number of sheaths is increased, so that a large number of anchorages should be placed on the end surface. As the thickness of the abdomen increases gradually in the cross-sectional area, the thickness of the lower flange also becomes thicker. Figure 2 is a PSC type I girder cross section is one of the optimized cross-sectional shape has been used recently, the width of the flange is larger than the past and the thickness is thinner form. 2 shows the main reinforcing bars arranged in the cross-section together with the shear reinforcing bars (stirrup) and also shows how the sheath is arranged.
세계적으로 볼 때 PSC I형 거더의 복부두께는 프리텐션 방식에서는 180mm, 포스트텐션 방식에서는 200mm가 주로 사용되어왔으며, 국내에서는 프리스트레싱 방식에 관계없이 주로 200mm의 복부두께를 사용해왔다. PSC I형 거더는 복부 두께가 얇아질수록 구조적 효율성이 좋아지기 때문에 외국의 사례에서는 프리텐션 방식에서 복부두께를 150mm까지 줄인 경우도 있었으며, 포스트텐션 방식에서는 복부두께를 180mm까지 줄인 경우도 있었다. 포스트텐션 방식에서 복부 두께를 최소화하기 위해서는 복부를 통과하는 쉬스의 크기(직경)를 줄여야 하는데, 쉬스의 크기를 줄이면 수용할 수 있는 강연선의 수가 적어지기 때문에 쉬스의 개수가 늘어난다. 쉬스의 개수가 늘어나면 사용 쉬스의 재료량도 증가하지만 이와 함께 정착구 개수도 늘어나고 긴장작업도 번거로워져 거더 제작비용이 증가하므로 효과적이지 않다. 이러한 이유로 외국의 사례를 보면 I형 거더의 복부 두께를 줄이는 방법은 프리스트레스 도입 방식에 관계없이 복부에 배치되는 전단보강철근(stirrup)과 긴장재(쉬스)의 콘크리트 피복 규정을 완화하여 복부의 두께를 줄이는 방법이 주로 사용되어 왔다.In the world, the abdominal thickness of PSC type I girder has been mainly used for pretensioning 180mm and 200mm for posttensioning. In Korea, the abdominal thickness of 200mm is used regardless of prestressing. In the case of PSC type I girder, the thinner the abdominal thickness, the better the structural efficiency. In foreign cases, the abdominal thickness was reduced to 150 mm in the pretension method, and the abdominal thickness was reduced to 180 mm in the post tension method. In post-tensioning, the size of the sheath through the abdomen must be reduced to minimize the thickness of the abdomen. As the size of the sheath decreases, the number of sheaths that can be accommodated increases, thereby increasing the number of sheaths. Increasing the number of sheaths increases the amount of material used, but at the same time increases the number of anchorages and tensions, which increases the manufacturing cost of the girder. For this reason, in the case of foreign countries, the method of reducing the abdominal thickness of type I girder is to reduce the thickness of the abdomen by easing the concrete covering regulations of the stirrups and tension materials (sheath) placed on the abdomen regardless of the prestressing method. The method has been mainly used.
국내의 교량 설계를 규정하는 도로교설계기준의 콘크리트교 설계기준은 원래 미국의 설계기준인 AASHTO에 기반을 두고 있었는데, 최근의 도로교설계기준(2015년)은 콘크리트교 설계기준의 기반을 유럽의 Eurocode 2로 변경하면서 콘크리트 피복규정을 대폭 강화하였다. 특히 교량의 내구연한 규정을 100년으로 늘리면서 철근과 프리스트레싱 긴장재의 콘크리트 피복규정을 대폭 강화하기도 하였지만, 기존에 없었던 포스트텐션 덕트의 부착 규정을 새로이 추가하였다. 이로 인하여 I형 거더의 복부 두께가 증가되어, 기존에 주로 200mm이었던 PSC I형 거더의 복부 두께가 240mm로 증가되면서 PSC I형 거더의 구조적 효율성이 심각하게 위협받게 되었다. 이러한 이유로 PSC I형 거더의 복부 두께를 최소화하려는 방안들이 최근에 다시 주목을 받게 되었다.The concrete bridge design standard of the road bridge design standard, which defines the domestic bridge design, was originally based on the American design standard, AASHTO. The recent road bridge design standard (2015) is based on the concrete bridge design standard in Europe. The concrete cladding regulations have been strengthened significantly by changing to. In particular, as the bridge's durable regulations increased to 100 years, the concrete cladding regulations for reinforcing bars and prestressing tension members were strengthened, but new post-tension duct attachment rules were added. As a result, the abdominal thickness of the type I girder was increased, and the abdominal thickness of the PSC type I girder, which was mainly 200 mm, was increased to 240 mm, seriously threatening the structural efficiency of the PSC type I girder. For this reason, measures to minimize the thickness of the abdomen of PSC type I girders have recently come to the fore.
국내에서도 복부두께를 줄여 PSC I형 거더의 중량을 줄이기 위한 시도들이 있었다. 도 3에 도시된 등록특허 10-1337330(복부 단면을 최적화시킨 PSC 빔, 그 제작방법 및 이를 이용한 교량시공방법)은 거더 길이 방향으로 긴장재(쉬스)가 복부에 배치되는 구간(L1, L2)과 모든 긴장재가 하부플랜지에만 배치되는 구간(L3)으로 나누고, 복부의 두께를 단부에서 중앙부로 갈수록 점차 줄이면서 하부플랜지에만 긴장재가 배치되는 구간(L3)의 복부 두께를 최소화함으로써 거더 중량을 줄일 수 있는 방법을 제시하였다. 즉 도 1의 I형 단면부 구간에서 모든 긴장재가 하부플랜지에 배치되는 구간을 따로 분리하여 이구간의 I형 단면의 복부두께를 줄이는 방법이다. 도 4(a)는 PSC 거더의 긴장재 도심의 제한범위를 설명하는 개념도로 단순보 구조에서 긴장력 도입과 사용 시에 거더 상하연의 콘크리트 응력이 허용응력을 초과하지 않는 긴장재 도심(긴장력의 중심)의 제한범위를 보여주고 있는데 상한선과 하한선 모두 아래로 볼록한 포물선 형태임을 알 수 있다. 도 4(b)는 긴장재 도심이 긴장재 도심의 제한범위 내에 위치하도록 긴장재를 포물선 형태로 배치하는 포스트텐션 방식의 전형적인 긴장재(쉬스) 배치방법인데, 모든 긴장재가 긴장재 도심의 제한범위의 형태와 유사하게 단부에서 고도가 최대이고 중앙에서 고도가 최소인 단순 포물선 형태를 갖는다. 도 3의 발명과 같은 방법으로 거더의 중량을 효과적으로 줄이기 위해서는 긴장재의 도심을 최대한 제한범위의 하한선에 가깝게 배치하여 쉬스가 하부플랜지만을 통과하는 구간의 길이를 늘려야 한다. 그런데 문제는 긴장재 도심 제한범위의 하한선이 하부플랜지 높이 이하로 내려가는 구간의 길이가 그리 길지 않으며, 거더의 길이가 긴 경우에는 쉬스의 개수가 많아지는데(보통 5~6개), 이러한 경우에는 모든 쉬스를 하부플랜지에 배치하는 것이 사실상 거의 불가능하다. 또한 도 3의 발명에서는 도로교설계기준의 복부의 최소두께(165mm) 및 최소보강철근량에 대한 고려도 없었는데, 이러한 점들을 고려하면 중량 저감 효과는 매우 제한적이다.Attempts have been made in Korea to reduce the weight of PSC type I girders by reducing abdominal thickness. Patent registration 10-1337330 shown in Figure 3 (PSC beam with optimized abdominal cross section, a method of manufacturing the same and the bridge construction method using the same) and the section (L1, L2) and the tension member (sheath) is arranged in the abdomen in the longitudinal direction of the girder and By dividing all the tension material into the section (L3) that is disposed only in the lower flange, and gradually reducing the thickness of the abdomen from the end to the center portion, while reducing the thickness of the girder by minimizing the thickness of the abdomen of the section (L3) where the tension material is disposed only in the lower flange The method is presented. That is, in the section I section of FIG. 1, a section in which all the tension members are disposed in the lower flange is separated, thereby reducing the abdominal thickness of the section I section. Figure 4 (a) is a conceptual diagram illustrating the limited range of the tension material downtown of the PSC girder limiting the tension material downtown (center of tension) where the concrete stress of the upper and lower girder does not exceed the allowable stress when the tension force is introduced and used in the simple beam structure The range is shown, and both upper and lower limits are parabolic convex down. Figure 4 (b) is a post tension tension tension (sheath) method of placing the tension material in a parabolic form so that the center of the tension material is located within the limits of the center of the tension material, all the tension material is similar to the form of the limited range of the tension material downtown It has a simple parabolic shape with a maximum altitude at the end and a minimum altitude at the center. In order to effectively reduce the weight of the girder in the same manner as in the invention of FIG. 3, the center of the tension member should be placed as close to the lower limit of the limit as possible to increase the length of the section through which the sheath passes only through the lower flange. However, the problem is that the length of the lower limit of the tension limit downtown is less than the lower flange height, the length of the section is not very long, and if the girder is long, the number of sheaths increases (usually 5-6), in which case all sheaths Is virtually impossible to place on the lower flange. In addition, in the invention of FIG. 3, there was no consideration of the minimum thickness (165mm) and the minimum reinforcement of the abdomen of the road bridge design criteria. Considering these points, the weight reduction effect is very limited.
도 5(a)에 도시된 등록특허 10-1576501(PSC 빔의 시공방법)은 거더 단부측에서 두께를 증가시킨 하부플랜지에만 긴장재 쉬스를 배치하고 상부플랜지의 단부쪽 구간에는 비부착 피복강연선을 이용한 강연선 조립체를 배치하여 복부에는 긴장재가 통과되지 않도록 구성하여 복부 두께를 최소화할 수 있도록 함으로써 거더 중량을 줄일 수 있는 방법을 제시하였다. 그런데 최근의 최적화된 PSC I형 거더의 단면은 도 2와 같이 과거의 I형 단면에 비해 상·하부플랜지의 좌우 폭은 훨씬 넓어지고 상하 두께는 작아졌다. 특히 상부플랜지의 두께는 매우 얇아져 콘크리트 피복 두께 규정 때문에 강연선 조립체를 설치하기 어렵기 때문에 도 5(a)의 발명과 같은 방법은 최근의 최적화된 I형 단면 형태를 이용할 수 없다. 또한, 강연선 조립체는 긴장단 뿐만 아니라 고정단 정착에도 어느 정도의 공간이 필요하기 때문에 상부플랜지에 설치할 수 있는 강연선 조립체의 수는 적을 수밖에 없는데, 상부플랜지에 배치되는 강연선수가 하부플랜지에 배치되는 강연선수에 비하여 매우 적기 때문에 상부플랜지에 배치되는 강연선을 이용하여 전체 긴장재의 도심을 끌어올릴 수 있는 높이는 매우 제한적이어서 긴장재 도심의 제한범위를 만족시키기 위해서는 하부플랜지에 배치되는 긴장재의 도심을 상당히 높여야 한다. 따라서 상당히 긴 단부구간에서 하부플랜지의 두께가 확대되어야 하는데 하부플랜지의 폭이 커서 이로 인한 거더의 중량 증가는 상당해진다. 또한 강연선 조립체는 제작이 까다로워 비용이 비싸며, 거더 단부측의 상연응력을 제어할 뿐 PSC의 구조적 효율성을 좌우하는 거더 중앙부 하연의 프리스트레스 도입에는 전혀 기여하지 못하기 때문에 그 사용량이 많아질수록 효율성이 떨어진다. 따라서 이 방법은 도 5(b)와 같은 프리텐션 방식의 PSC I형 거더에 적합하다. 프리텐션 방식에서는 거더 단부에서 하부플랜지에 배치된 강연선의 일부를 디본딩(debonding)하여 유효한 강연선수를 줄일 수 있어서 상부에 배치되는 소수의 강연선 조립체를 이용하여도 단부에서 긴장재의 도심을 상당히 끌어 올릴 수 있기 때문이다. 그런데 이러한 방법은 디본딩이 적용된 프리텐션 방식에 기초한 것이다. 프리텐션 방식은 원래 공장제작을 전제로 개발된 공법이다. 국내의 엄격한 도로 차량의 중량제한규정(총중량 40ton 이하) 때문에 거더 자체 중량만 40ton 이상인 PSC I형 거더(보통 50ton~150ton)를 공장에서 제작하여 현장으로 운반하는 것은 불가하므로 국내에서는 프리텐션 방식을 현장에서 구현해야 한다. 프리텐션 방식은 고강도의 조강 콘크리트의 수급이 가능해야 하며 거대한 반력대도 필요하고 제작기간 동안 크레인이 상주해야 하는 등의 문제가 있어서 많은 장점에도 불구하고 국내에서는 교량용 PSC I형 거더 제작에는 거의 사용되지 않는 방식이다.In Patent Application Publication No. 10-1576501 shown in FIG. 5 (a), a tensioning sheath is placed only on the lower flange of which thickness is increased at the end of the girder, and an uncoated coated strand is used at the end of the upper flange. By arranging the strand assembly, it is possible to minimize the thickness of the abdomen by configuring the abdominal material not to pass through the abdomen, thereby reducing the girder weight. However, the cross section of the recently optimized PSC type I girder is much wider and the upper and lower widths of the upper and lower flanges are smaller than the cross section of the I type in the past as shown in FIG. In particular, because the thickness of the upper flange is very thin and difficult to install the strand assembly due to the concrete coating thickness specification, the method such as the invention of FIG. 5 (a) cannot use the latest optimized type I cross-sectional shape. In addition, since the strand assembly requires a certain amount of space not only for the tension end but also for fixing the fixed end, the number of the strand assembly can be installed in the upper flange, but the number of the strands arranged in the upper flange is arranged in the lower flange. Since the height is very small compared to the athletes, the height to raise the center of the entire tension member by using the strand placed on the upper flange is very limited. To satisfy the limit of the tension center, the center of the tension member disposed on the lower flange must be raised considerably. Therefore, the thickness of the lower flange has to be enlarged at a considerably long end section, and the width of the lower flange is large, thereby increasing the weight of the girder. In addition, the strand assembly is expensive because it is difficult to manufacture, and it controls the phase stress at the end of the girder and does not contribute to the introduction of prestress in the lower part of the girder which determines the structural efficiency of the PSC. . Therefore, this method is suitable for PSC type I girders of the pretension type as shown in Fig. 5 (b). In the pretensioning method, a portion of the strands arranged in the lower flange at the girder can be debonded to reduce the effective instructor, so that the center of the tension member can be considerably raised at the ends even with a small number of strand assembly placed at the top. Because it can. However, this method is based on the pretension method with debonding. The pretension method was originally developed based on factory manufacturing. Due to the strict restrictions on road vehicles in Korea (total weight less than 40 tons), it is not possible to manufacture PSC type I girders (typically 50 to 150 tons) that weigh more than 40 tons of girders themselves. Should be implemented in The pretensioning method should be able to supply high-strength crude steel concrete, require a huge reaction table, and have a crane to be stationed during the manufacturing process.In spite of many advantages, it is rarely used in the manufacture of PSC type I girder for bridges in Korea. That's the way it is.
이밖에 국내에서도 PSC I형 거더와 관련된 재료의 기술이 점차 발전해왔다. 콘크리트의 경우 PSC 거더의 도입 초기에는 압축강도 35MPa의 콘크리트가 사용되었다가 근자에는 40MPa의 콘크리트가 주로 사용되고 있지만, 최근에는 45MPa의 콘크리트를 전국 어디에서나 공급받을 수 있게 되었다. 또한 포스트텐션 PSC I형 거더의 긴장재로 사용되는 7연선의 인장강도도 1,500MPa급(SWPC7A)에서 시작하여 1860MPa급(SWPC7B), 2160MPa급(SWPC7C)을 거쳐 최근에는 2,400MPa급(SWPC7D) 강연선이 공급되고 있다. 따라서 이러한 재료 기술의 발전을 적극 활용하여 도로교설계기준의 강화된 피복규정에도 불구하고 효율적인 PSC I형 거더의 개발이 요구된다.In addition, the technology of materials related to PSC type I girder has been gradually developed in Korea. In the case of concrete, concrete with a compressive strength of 35MPa was used in the early stages of the introduction of PSC girders, but 40MPa was mainly used in recent years, but recently, 45MPa concrete can be supplied anywhere in the country. In addition, the tensile strength of 7 strands used as post tension PSC type I girder tension strength starts from 1,500 MPa class (SWPC7A), 1860 MPa class (SWPC7B), 2160 MPa class (SWPC7C), and recently 2,400 MPa class (SWPC7D) stranded wire. It is supplied. Therefore, the development of efficient PSC type I girder is required in spite of the strengthening regulations of road bridge design standards by taking full advantage of the development of this material technology.
본 발명은 전술한 배경기술의 문제점을 해결하기 위하여 안출된 것으로서 본 발명은 개정된 도로교설계기준(2015)의 강화된 콘크리트 피복규정에도 불구하고 최근의 발전된 재료기술을 적극 활용하여 포스트텐션(post-tension) 방식의 PSC I형 거더의 복부두께를 최소화함으로써 거더의 중량을 줄이면서도 사용 쉬스의 개수도 줄여 구조적 효율성과 비용 효율성을 극대화 할 수 있도록 구조가 개선된 형상과 긴장재의 배치 및 정착 방법을 가지는 프리스트레스트 콘크리트 거더를 제공하는 것이다.The present invention has been made to solve the above-mentioned problems of the background art, and the present invention, despite the reinforced concrete coating regulations of the revised road bridge design standard (2015), utilizes the latest advanced material technology to post-tension (post- By minimizing the abdominal thickness of the tension type PSC type I girder, it reduces the weight of the girder and reduces the number of sheaths. To provide prestressed concrete girders.
전술한 과제의 해결수단으로서 본 발명은 그 첫 번째 형태로서,As a first means of solving the above problems,
프리스트레스트 콘크리트 거더에 있어서,In prestressed concrete girder,
상부플랜지, 복부, 하부플랜지를 포함하는 I형 단면을 가지며 일방향으로 긴 중앙부와,A central section having an I-shaped cross section including an upper flange, an abdomen, and a lower flange and being long in one direction;
상부플랜지, 복부, 하부플랜지를 포함하는 I형 단면을 가지고 상기 중앙부의 양단부에서 각각 연장되며 연장되는 방향으로 갈수록 하부플랜지의 두께와 복부의 두께가 증가하는 한 쌍의 변단면부와,A pair of edge face portions having an I-shaped cross section including an upper flange, an abdomen, and a lower flange, each extending from both ends of the central portion and increasing in thickness and extending in the extending direction of the lower flange;
상기 한 쌍의 변단면부 각각에서 연장되는 한 쌍의 단부블록을 포함하여 구성되는 철근콘크리트 재질의 본체;A body made of reinforced concrete material comprising a pair of end blocks extending from each of the pair of edge faces;
상기 본체의 단부블록의 아랫부분과 변단면부 및 중앙부의 하부플랜지에 배치되되 본체의 양단부에서 가장 높고 가운데에서 가장 낮게 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 하부에 각각 정착되는 제1긴장재;It is disposed on the lower flange of the end block of the main body and the lower end portion and the central portion of the lower portion of the main body is disposed at the highest and the lowest in the middle, both ends of the lower end of the pair of end blocks, respectively, in the tension applied A first tension material to be fixed;
상기 본체의 단부블록의 윗부분과 변단면부의 상부플랜지 또는 복부와 중앙부의 상부플랜지, 복부 또는 하부플랜지에 배치되되 상기 본체의 단부로부터 변단면부와 중앙부의 경계 부근의 어느 한 지점인 최고점까지는 그 높이가 단조증가하다가 상기 최고점부터 중앙부의 가운데까지는 그 높이가 단조감소 하도록 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 상부에 각각 정착되는 제2긴장재;It is disposed on the upper flange of the end block of the main body and the upper end portion or the upper flange, the abdomen or the lower flange of the abdomen and the center portion, the height from the end of the main body to any point near the boundary between the edge and the central portion The second tension material is forged to increase and the height from the highest point to the center of the center portion is arranged to decrease the forging, both ends are fixed to the upper portion of the pair of end blocks, respectively, in the tension force is applied;
상기 제1긴장재를 수용하기 위한 제1쉬스관; 및A first sheath pipe for accommodating the first tension material; And
상기 제1긴장재를 정착하기 위한 제1정착구와 상기 제2긴장재를 정착하기 위한 제2정착구;를 포함하는 것을 특징으로 하는 프리스트레스트 콘크리트 거더를 제공한다.It provides a prestressed concrete girder comprising a; a first fixing tool for fixing the first tension material and a second fixing tool for fixing the second tension material.
본 발명은 그 두 번째 형태로서,The present invention is in its second form,
프리스트레스트 콘크리트 거더에 있어서,In prestressed concrete girder,
상부플랜지, 한 쌍의 복부, 하부플랜지를 포함하는 박스형 단면을 가지며 일방향으로 긴 중앙부와,A central section having a box-shaped cross section including an upper flange, a pair of abdomen and a lower flange, and being long in one direction;
상부플랜지, 한 쌍의 복부, 하부플랜지를 포함하는 박스형 단면을 가지고 상기 중앙부의 양단부에서 각각 연장되며 연장되는 방향으로 갈수록 하부플랜지의 두께와 복부의 두께가 증가하는 한 쌍의 변단면부와,A pair of edge portions having a box-shaped cross section including an upper flange, a pair of abdomen and a lower flange, each extending from both ends of the central portion and increasing in thickness in the direction of extension of the lower flange;
상기 한 쌍의 변단면부 각각에서 연장되는 한 쌍의 단부블록을 포함하여 구성되는 철근콘크리트 재질의 본체;A body made of reinforced concrete material comprising a pair of end blocks extending from each of the pair of edge faces;
상기 본체의 단부블록의 아랫부분과 변단면부 및 중앙부의 하부플랜지에 배치되되 본체의 양단부에서 가장 높고 가운데에서 가장 낮게 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 하부에 각각 정착되는 제1긴장재;It is disposed on the lower flange of the end block of the main body and the lower end portion and the central portion of the lower portion of the main body is disposed at the highest and the lowest in the middle, both ends of the lower end of the pair of end blocks, respectively, in the tension applied A first tension material to be fixed;
상기 본체의 단부블록의 윗부분과 변단면부의 상부플랜지 또는 복부와 중앙부의 상부플랜지, 복부 또는 하부플랜지에 배치되되 상기 본체의 단부로부터 변단면부와 중앙부의 경계 부근의 어느 한 지점인 최고점까지는 그 높이가 단조증가하다가 상기 최고점부터 중앙부의 가운데까지는 그 높이가 단조감소 하도록 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 상부에 각각 정착되는 제2긴장재;It is disposed on the upper flange of the end block of the main body and the upper end portion or the upper flange, the abdomen or the lower flange of the abdomen and the center portion, the height from the end of the main body to any point near the boundary between the edge and the central portion The second tension material is forged to increase and the height from the highest point to the center of the center portion is arranged to decrease the forging, both ends are fixed to the upper portion of the pair of end blocks, respectively, in the tension force is applied;
상기 제1긴장재를 수용하기 위한 제1쉬스관; 및A first sheath pipe for accommodating the first tension material; And
상기 제1긴장재를 정착하기 위한 제1정착구와 상기 제2긴장재를 정착하기 위한 제2정착구;를 포함하는 것을 특징으로 하는 프리스트레스트 콘크리트 거더를 제공한다.It provides a prestressed concrete girder comprising a; a first fixing tool for fixing the first tension material and a second fixing tool for fixing the second tension material.
본 발명은 그 세 번째 형태로서,The third aspect of the present invention is that
프리스트레스트 콘크리트 거더에 있어서,In prestressed concrete girder,
한 쌍의 상부플랜지와 복부, 상기 한 쌍의 복부를 서로 연결하는 하부플랜지를 포함하는 U형 단면을 가지며 일방향으로 긴 중앙부와,A central portion having a U-shaped cross section including a pair of upper flanges and an abdomen, and a lower flange connecting the pair of abdomens to each other;
한 쌍의 상부플랜지와 복부, 상기 한 쌍의 복부를 서로 연결하는 하부플랜지를 포함하는 U형 단면을 가지고 상기 중앙부의 양단부에서 각각 연장되며 연장되는 방향으로 갈수록 하부플랜지의 두께와 복부의 두께가 증가하는 한 쌍의 변단면부와,It has a U-shaped cross section including a pair of upper flanges and the abdomen, and a lower flange connecting the pair of abdomen with each other extending from both ends of the central portion and the thickness of the lower flange and the thickness of the abdomen increases as the direction extends. And a pair of side faces
상기 한 쌍의 변단면부 각각에서 연장되는 한 쌍의 단부블록을 포함하여 구성되는 철근콘크리트 재질의 본체;A body made of reinforced concrete material comprising a pair of end blocks extending from each of the pair of edge faces;
상기 본체의 단부블록의 아랫부분과 변단면부 및 중앙부의 하부플랜지에 배치되되 본체의 양단부에서 가장 높고 가운데에서 가장 낮게 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 하부에 각각 정착되는 제1긴장재;It is disposed on the lower flange of the end block of the main body and the lower end portion and the central portion of the lower portion of the main body is disposed at the highest and the lowest in the middle, both ends of the lower end of the pair of end blocks, respectively, in the tension applied A first tension material to be fixed;
상기 본체의 단부블록의 윗부분과 변단면부의 상부플랜지 또는 복부와 중앙부의 상부플랜지, 복부 또는 하부플랜지에 배치되되 상기 본체의 단부로부터 변단면부와 중앙부의 경계 부근의 어느 한 지점인 최고점까지는 그 높이가 단조증가하다가 상기 최고점부터 중앙부의 가운데까지는 그 높이가 단조감소 하도록 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 상부에 각각 정착되는 제2긴장재;It is disposed on the upper flange of the end block of the main body and the upper end portion or the upper flange, the abdomen or the lower flange of the abdomen and the center portion, the height from the end of the main body to any point near the boundary between the edge and the central portion The second tension material is forged to increase and the height from the highest point to the center of the center portion is arranged to decrease the forging, both ends are fixed to the upper portion of the pair of end blocks, respectively, in the tension force is applied;
상기 제1긴장재를 수용하기 위한 제1쉬스관; 및A first sheath pipe for accommodating the first tension material; And
상기 제1긴장재를 정착하기 위한 제1정착구와 상기 제2긴장재를 정착하기 위한 제2정착구;를 포함하는 것을 특징으로 하는 프리스트레스트 콘크리트 거더를 제공한다.It provides a prestressed concrete girder comprising a; a first fixing tool for fixing the first tension material and a second fixing tool for fixing the second tension material.
상기 세 가지 형태의 발명에 있어서,In the three forms of invention,
상기 변단면부의 하부플랜지 상부의 높이변화는 아래로 볼록한 곡선형상인 것이 바람직하며,It is preferable that the height change of the upper portion of the lower flange of the side of the cross section is convex downward.
상기 아래로 볼록한 곡선은 곡률반경이 일정한 호 형상인 것이 더욱 바람직하다.More preferably, the downwardly convex curve has an arc shape with a constant radius of curvature.
상기 변단면부의 하부플랜지 상부의 높이변화는 직선 형상으로 구성될 수도 있다.The height change of the upper side of the lower flange of the edge portion may be configured in a straight shape.
상기 제2긴장재를 수용하기 위한 제2쉬스관을 더 포함하는 것이 바람직하다.It is preferable to further include a second sheath tube for accommodating the second tension material.
상기 제2긴장재의 일부는 피복강연선이며, 피복이 안 된 강연선을 수용하는 제2쉬스관을 더 포함하는 것이 더욱 바람직하다.Part of the second tension member is a coated stranded wire, and more preferably further includes a second sheath tube for accommodating the stranded stranded wire.
본 발명에 의하면 최근 개정된 도로교설계기준(2015)의 강화된 콘크리트 피복규정에도 불구하고 프리스트레스트 콘크리트 거더의 형상과 긴장재의 배치 및 정착 방법을 개선하고 최근의 발전된 재료기술을 적극 활용하여 포스트텐션(post-tension) 방식의 PSC 거더의 복부두께를 최소화함으로써 거더의 중량을 줄이면서도 사용 쉬스의 개수도 줄여 구조적 효율성과 비용 효율성을 극대화 한 PSC거더를 제공할 수 있다.According to the present invention, despite the strengthened concrete covering regulations of the recently revised Road Bridge Design Standard (2015), the shape of prestressed concrete girder and the arrangement and fixing method of tension members are improved, and the post-tension ( By minimizing the abdominal thickness of post-tension type PSC girders, it is possible to provide a PSC girder that maximizes structural efficiency and cost efficiency while reducing the weight of the girders and reducing the number of sheaths.
도 1의 (a)와(b)는 각각 종래의 전형적인 PSC I형 거더의 사시도와 단면도.1A and 1B are respectively a perspective view and a cross-sectional view of a typical PSC type I girder of the prior art;
도 2는 전형적인 PSC I형 거더의 단면형상 및 배근도.Figure 2 is a cross-sectional view and a back view of a typical PSC type I girder.
도 3은 종래의 다단계 방식으로 복부두께를 줄이는 PSC I형 거더의 사시도.3 is a perspective view of a PSC type I girder for reducing abdominal thickness in a conventional multi-step manner.
도 4의 (a)는 단순보 구조를 가지는 PSC 거더의 긴장재 도심의 제한범위를 설명하기 위한 도면(정면도).Figure 4 (a) is a view for explaining the limitation range of the tension material downtown of the PSC girder having a simple beam structure (front view).
도 4의 (b)는 포스트텐션 방식에서 전형적인 긴장재의 배치방법을 설명하기 위한 도면(정면도).Figure 4 (b) is a view for explaining the arrangement method of the typical tension member in the post-tension method (front view).
도 5의 (a)는 종래의 복부두께를 줄이는 포스트텐션 방식의 PSC I형 거더의 도면.Figure 5 (a) is a view of a conventional post-tension PSC type I girder to reduce the abdominal thickness.
도 5의 (b)는 종래의 복부두께를 줄이는 프리텐션방식의 PSC I형 거더의 도면.Figure 5 (b) is a view of a conventional PSC type I girder reducing the abdominal thickness.
도 6의 (a)는 본 발명의 첫 번째 형태의 하나의 실시예에 따른 프리스트레스트 콘크리트 거더(L=40m, I형)의 사시도.Figure 6 (a) is a perspective view of a prestressed concrete girder (L = 40m, type I) according to one embodiment of the first form of the present invention.
도 6의 (b), (c), (d)는 각각 도 6의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도.(B), (c), (d) is a front view, a plan view, and a sectional view for explaining the tension member arrangement of the prestressed concrete girder shown in FIG. 6 (a), respectively.
도 7의 (a)와 (b)는 본 발명의 긴장재 배치 방법의 사상과 원리를 설명하기 위한 도면. Figure 7 (a) and (b) is a view for explaining the spirit and principle of the tension member arrangement method of the present invention.
도 8은 본 발명의 긴장재 도심 제한범위의 하한선 계산 과정을 설명하기 위한 도면. 8 is a view for explaining a process of calculating the lower limit of the city limits of the tension material of the present invention.
도 9는 본 발명의 PSC I형 거더 하연의 응력분포 유형을 설명하기 위한 도면. 9 is a view for explaining the stress distribution type of the lower edge of the PSC type I girder of the present invention.
도 10a 내지 도 10d는 각각 본 발명에 따라 L=35m, 50m, 55m, 25m로 설계된 PSC I형 거더의 긴장력 도입 직후의 거더 하연의 응력분포도. 10a to 10d are stress distribution diagrams of the lower edge of the girder immediately after the introduction of the tension force of the PSC type I girder, respectively designed L = 35m, 50m, 55m, 25m in accordance with the present invention.
도 11의 (a)는 본 발명의 첫 번째 형태에 따라 L=55m로 설계된 PSC I형 거더의 사시도.Figure 11 (a) is a perspective view of a PSC type I girder designed L = 55m in accordance with the first aspect of the present invention.
도 11의 (b), (c), (d)는 각각 도 11의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도.(B), (c), (d) is a front view, a top view, and sectional drawing for demonstrating the tension material arrangement | positioning of the prestressed concrete girder shown in FIG. 11 (a), respectively.
도 12의 (a)는 본 발명의 첫 번째 형태에 따라 L=30m로 설계된 PSC I형 거더의 사시도.Figure 12 (a) is a perspective view of a PSC type I girder designed L = 30m in accordance with the first aspect of the present invention.
도 12의 (b), (c), (d)는 각각 도 12의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도.(B), (c), (d) is a front view, a top view, and sectional drawing for demonstrating the tension material arrangement | positioning of the prestressed concrete girder shown in FIG. 12 (a), respectively.
도 13의 (a)는 피복강연선의 구조를 설명하기 위한 도면. FIG. 13A is a diagram for explaining the structure of a coated stranded wire; FIG.
도 13의 (b)는 본 발명의 첫 번째 형태인 PSC I형 거더의 제2긴장재로 피복강연선을 사용하는 방법을 설명하기 위한 도면.Figure 13 (b) is a view for explaining a method of using a coated strand as a second tension member of the PSC type I girder of the first aspect of the present invention.
도 14는 본 발명의 첫 번째 형태로 L=25m로 설계된 PSC I형 거더의 변단면부 구간에서 하부플랜지의 두께변화가 선형인 경우와 곡선형인 경우를 비교하기 위한 정면도.FIG. 14 is a front view for comparing a case where the thickness change of the lower flange is linear and a case where the thickness of the lower flange is in the cross-sectional area of the PSC type girder designed as L = 25m in the first form of the present invention.
도 15는 본 발명의 첫 번째 형태인 PSC I형 거더 단부블록의 다양한 형태와 정착구 설치방법 중의 일례를 설명하기 위한 사시도. Figure 15 is a perspective view for explaining an example of the various forms of the PSC type I girder end block and the anchorage installation method of the first aspect of the present invention.
도 16은 본 발명의 첫 번째 형태인 PSC I형 거더의 단부절취형 형태와 정착구 설치 방법을 설명하기 위한 사시도.Figure 16 is a perspective view for explaining the end-cutting form of the PSC type I girder and the anchorage installation method of the first form of the present invention.
도 17의 (a)는 중공 박스 단면의 절단과 재결합을 통해 긴장재 도심의 제한범위를 정의하는 식들에서 단면특성치가 같은 I형 단면으로 변환하는 방법을 설명하기 위한 도면. Figure 17 (a) is a view for explaining a method for converting the cross section of the hollow box cross-section to the I-shaped cross-section of the same cross-sectional characteristics in the equations to define the limit of the center of the tension material through cutting and recombination.
도 17(b)의 는 U형 단면의 절단과 재결합을 통해 긴장재 도심의 제한범위를 정의하는 식들에서 단면특성치가 같은 I형 단면으로 변환하는 방법을 설명하기 위한 도면.Fig. 17 (b) is a view for explaining a method for converting a cross-sectional characteristic value into an I-shaped cross section in equations defining a restriction range of the tension center through cutting and recombination of the U-shaped cross section.
도 18의 (a)는 본 발명의 두 번째 형태의 하나의 실시예에 따른 프리스트레스트 콘크리트 박스 거더의 사시도.Figure 18 (a) is a perspective view of a prestressed concrete box girder according to one embodiment of the second aspect of the present invention.
도 18의 (b), (c), (d)는 각각 도 18의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도.(B), (c), (d) is a front view, a top view, and sectional drawing for demonstrating the tension material arrangement | positioning of the prestressed concrete girder shown in FIG. 18 (a), respectively.
도 19의 (a)는 본 발명의 세 번째 형태의 하나의 실시예에 따른 프리스트레스트 콘크리트 U형 거더의 사시도.Figure 19 (a) is a perspective view of a prestressed concrete U-shaped girder according to one embodiment of the third aspect of the present invention.
도 19의 (b), (c), (d)는 각각 도 19의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도.(B), (c), (d) is a front view, a top view, and sectional drawing for demonstrating the tension material arrangement | positioning of the prestressed concrete girder shown in FIG. 19 (a), respectively.
도 6의 (a)는 본 발명의 첫 번째 형태의 하나의 실시예에 따른 프리스트레스트 콘크리트 거더(L=40m, I형)의 사시도, 도 6의 (b), (c), (d)는 각각 도 6의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도, 도 7의 (a)와 (b)는 본 발명의 긴장재 배치 방법의 사상과 원리를 설명하기 위한 도면, 도 8은 본 발명의 긴장재 도심 제한범위의 하한선 계산 과정을 설명하기 위한 도면, 도 9는 본 발명의 PSC I형 거더 하연의 응력분포 유형을 설명하기 위한 도면, 도 10a 내지 도 10d는 각각 본 발명에 따라 L=35m, 50m, 55m, 25m로 설계된 PSC I형 거더의 긴장력 도입 직후의 거더 하연의 응력분포도, 도 11의 (a)는 본 발명의 첫 번째 형태에 따라 L=55m로 설계된 PSC I형 거더의 사시도, 도 11의 (b), (c), (d)는 각각 도 11의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도, 도 12의 (a)는 본 발명의 첫 번째 형태에 따라 L=30m로 설계된 PSC I형 거더의 사시도, 도 12의 (b), (c), (d)는 각각 도 12의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도, 도 13의 (a)는 피복강연선의 구조를 설명하기 위한 도면, 도 13의 (b)는 본 발명의 첫 번째 형태인 PSC I형 거더의 제2긴장재로 피복강연선을 사용하는 방법을 설명하기 위한 도면, 도 14는 본 발명의 첫 번째 형태로 L=25m로 설계된 PSC I형 거더의 변단면부 구간에서 하부플랜지의 두께변화가 선형인 경우와 곡선형인 경우를 비교하기 위한 정면도, 도 15는 본 발명의 첫 번째 형태인 PSC I형 거더 단부블록의 다양한 형태와 정착구 설치방법 중의 일례를 설명하기 위한 사시도. 도 16은 본 발명의 첫 번째 형태인 PSC I형 거더의 단부절취형 형태와 정착구 설치 방법을 설명하기 위한 사시도이다.Figure 6 (a) is a perspective view of a prestressed concrete girder (L = 40m, type I) according to one embodiment of the first aspect of the present invention, Figure 6 (b), (c), (d) is A front view, a plan view, a cross-sectional view, and FIGS. 7A and 7B illustrate the tension member arrangement of the prestressed concrete girder shown in FIG. 6A, respectively. 8 is a view for explaining a lower limit calculation process of the tension material downtown limit range of the present invention, Figure 9 is a view for explaining the stress distribution type of the lower edge of the PSC type I girder of the present invention, Figure 10a to Figure 10d is a stress distribution diagram of the lower edge of the girder immediately after introduction of the tension force of the PSC type I girder designed as L = 35m, 50m, 55m, and 25m, respectively, according to the present invention, and FIG. 11 (a) shows L = according to the first aspect of the present invention. A perspective view of a PSC type I girder designed at 55 m, FIGS. 11B, 11C, and 11D, respectively, illustrate the frist shown in FIG. 12A is a front view, a plan view, a sectional view for explaining the tension member arrangement of the strut concrete girder, and FIG. 12A is a perspective view of a PSC type girder designed as L = 30m according to the first aspect of the present invention, and FIG. , (c), (d) is a front view, a plan view, a cross-sectional view for explaining the tension member arrangement of the prestressed concrete girder shown in Fig. 12 (a), respectively, and Fig. 13 (a) describes the structure of the coated steel wire 13 (b) is a view for explaining a method of using a coated strand as a second tension member of a PSC type I girder, which is the first form of the present invention, and FIG. 14 is an L as the first form of the present invention. Front view for comparing the case where the thickness of the lower flange is linear and curved in the cross-sectional area of the PSC type I girder designed to = 25m, Figure 15 is the first type of PSC type girder end block of the present invention To explain an example of the various forms and installation of the anchorage Try. Figure 16 is a perspective view for explaining the end-cutting form of the PSC type I girder and the fixing fixture installation method of the first embodiment of the present invention.
본 발명의 첫 번째 형태의 실시예에 따른 프리스트레스트 콘크리트 거더는 I형 거더로서 본체(1), 제1긴장재(100), 제2긴장재(200), 제1쉬스관(150), 제2쉬스관(250), 제1정착구(310) 및 제2정착구(320)를 포함하여 구성된다.Prestressed concrete girder according to an embodiment of the first aspect of the present invention is a type I girder body 1, the first tensioning material 100, the second tensioning material 200, the first sheath pipe 150, the second sheath The pipe 250 is configured to include a first fixing unit 310 and a second fixing unit 320.
상기 본체(1)는 철근콘크리트 재질로 구성되며 중앙부(10), 한 쌍의 변단면부(20), 한 쌍의 단부블록(30)을 포함하여 구성되는데, 도 6의 (a)에 도시된 바와 같이 단부블록(30), 변단면부(20), 중앙부(10), 변단면부(20), 단부블록(30)의 순으로 배치된다.The main body 1 is made of a reinforced concrete material and comprises a central portion 10, a pair of end face portions 20, a pair of end blocks 30, shown in Figure 6 (a) As described above, the end block 30, the end face portion 20, the center portion 10, the end face portion 20, and the end block 30 are disposed in this order.
상기 중앙부(10)는 도 6의 (d)에 도시된 D-D 단면에서와 같이 상부플랜지(11), 복부(12), 하부플랜지(13)를 포함하는 I형 단면을 가지며 일방향으로 길게 형성되는 구성으로서, 본체(1)의 중앙 쪽에 배치된다.The central portion 10 has an I-type cross section including an upper flange 11, an abdomen 12, and a lower flange 13 as in the DD cross section shown in FIG. 6D and is formed to be long in one direction. It is arranged at the center side of the main body 1 as an example.
상기 변단면부(20)는 상기 중앙부(10)의 양단부에서 연장되는 구성으로서 도 6의 (d)에 도시된 B-B 단면에서와 같이 상부플랜지(21), 복부(22), 하부플랜지(23)를 포함하는 형태를 가지며 복부(22)와 하부플랜지(23)의 두께는 중앙부에서 연장되는 방향 다시 말해 본체(1)의 단부쪽으로 갈수록 증가한다. The edge end portion 20 extends from both ends of the central portion 10, and the upper flange 21, the abdomen 22, the lower flange 23, as shown in the cross-sectional view BB shown in Figure 6 (d). It has a form including a and the thickness of the abdomen 22 and the lower flange 23 increases in the direction extending from the center portion, that is to say toward the end of the body (1).
상기 하부플랜지(23)의 두께가 두꺼워지는 형태는 다양하게 구성될 수 있는데 도 14의 좌측에 위치한 변단면부의 하부플랜지(23a)와 같이 직선형으로 구성될 수도 있고, 도 14의 우측에 위치한 변단면부의 하부플랜지(23b)와 같이 곡선형으로 구성될 수도 있는데(23a, 23b는 설명의 편의를 위한 구분이다), 본 실시예에서는 도 6에 도시된 바와 같이 곡률반경이 일정한 호형상의 곡선형으로 구성하도록 한다.The thickness of the lower flange 23 may be formed in various ways. The lower flange 23 may be formed in a straight line, such as the lower flange 23a on the left end of FIG. 14. It may be configured in a curved shape like the lower lower flange (23b) (23a, 23b is a division for convenience of description), in this embodiment as shown in Figure 6 to the curved shape of the arc shape constant curvature radius To configure.
변단면부의 하부플랜지(23)의 두께가 곡선형으로 변화하는 경우 거더의 중량을 줄이는데 용이하고 미관도 수려해지는 장점이 있다. 그런데 이는 제1긴장재(100)가 변단면부(20)에서 곡선(포물선)의 형태로 배치되기 때문에 가능하다. (통상적으로 긴장재는 포물선의 형태로 배치된다) 제1긴장재(100)가 곡선의 형태로 배치되기 때문에 변단면부(20)의 하부플랜지(23) 두께가 곡선형으로 변화해도 제1긴장재(100)의 콘크리트 피복두께의 확보가 가능하기 때문에 곡선형태로 제작할 수 있는 것이다. When the thickness of the lower flange 23 of the cross section changes in a curved shape, there is an advantage that it is easy to reduce the weight of the girder and the aesthetics are also beautiful. However, this is possible because the first tension member 100 is disposed in the shape of a curve (parabola) at the edge end portion 20. (Typically, the tension member is disposed in the form of a parabola.) Since the first tension member 100 is disposed in the form of a curve, the first tension member 100 may be changed even when the thickness of the lower flange 23 of the edge portion 20 changes in a curved shape. Since it is possible to secure the concrete coating thickness of), it can be manufactured in a curved form.
한편, 변단면부의 하부플랜지(23)를 곡선형상으로 제작하기 위해서는 거푸집 제작에 약간의 어려움이 동반될 수 있다. 통상적으로 거더의 거푸집은 강판으로 제작하는데, 변단면부(20)의 하부플랜지(23)를 곡선형상으로 제작하기 위해서는 롤러로 사전 가공된 강판을 이용하는데 곡률반경이 일정한 호 형상으로 제작하는 경우 동일한 롤러 셋팅으로 가공할 수 있어서 제작이 용이해지는 장점이 있으므로 본 실시예에서는 변단면부(20)의 하부플랜지(23)의 상부가 곡률반경이 일정한 호 형상을 취하여 제작이 쉽게 이루어질 수 있도록 한다.On the other hand, in order to manufacture the lower flange 23 of the cross-sectional surface portion may be accompanied by some difficulties in manufacturing the formwork. In general, the formwork of the girder is made of steel sheet, but in order to produce the lower flange 23 of the edge section 20 using a steel sheet pre-processed with a roller, the same curvature radius is produced when the arc shape is constant. In this embodiment, the upper flange of the lower flange 23 of the edge portion 20 may have an arc shape with a constant radius of curvature so that the manufacturing may be easily performed.
상기 단부블록(30)은 상기 한 쌍의 변단면부(20)로부터 각각 연장되며 한 쌍이 마련되는 구성으로서 여러가지 형태의 단면으로 구성될 수 있는데 본 실시예에서는 도 6에 도시된 바와 같이 변단면부(20)의 본체(1) 단부쪽 형태와 동일한 단면이 유지되는 형상이다.The end block 30 extends from the pair of end face portions 20 and is configured to have a pair, and may have various types of cross-sections. In this embodiment, the end face portion as shown in FIG. It is a shape in which the same cross section as the form of the end side of the main body 1 of the main body 20 is maintained.
상기 제1긴장재(100)는 본체(1) 중 단부블록(30)의 아랫부분, 변단면부(20) 및 중앙부(10)의 하부플랜지(13, 23)에 배치되는 구성으로서 일반적으로 사용되는 강연선을 사용할 수 있다. 이때 배치되는 강연선의 수를 줄여 본체(1)를 효율적으로 설계하기 위해서는 인장강도 2400MPa급(SWPC7D Φ15.2mm)의 강연선을 사용하는 것이 바람직한데 인장강도 2400MPa급(SWPC7D Φ15.2mm)의 강연선을 사용한 설계방법에 대해서는 후술하는 설계예에서 설명하기로 한다.The first tension member 100 is generally used as a configuration disposed in the lower portion of the end block 30, the end face portion 20 and the lower flanges 13 and 23 of the central portion 10 of the body (1). Strands can be used. At this time, in order to design the main body 1 efficiently by reducing the number of stranded wires, it is preferable to use a stranded wire with a tensile strength of 2400MPa (SWPC7D Φ15.2mm), and use a stranded wire with a tensile strength of 2400MPa (SWPC7D Φ15.2mm). The design method will be described later in the design example.
상기 제1긴장재(100)의 상하방향 배치는 도 6의 (b)와 (d)에 도시된 바와 같이 본체(1)의 양단부에서 가장 높고 가운데에서 가장 낮게 배치되는데, 본체(1) 중 어느 하나의 단부쪽의 단부블록과 변단면부 구간에서 고도를 점점 낮추다가 중앙부(10)의 어느 한 점부터는 고도 변화가 없는 형태로서 본체(1)의 중앙을 기준으로 실질적으로 대칭으로 배치되며, 인장력이 가해진 상태로 양단부가 제1정착구(310)에 의해 본체(1)에 정착된다. 상기 제1정착구(310)는 일반적으로 프리스트레스트 콘크리트 거더에 사용되는 구성이므로 더 이상의 설명은 생략한다.The vertical arrangement of the first tension member 100 is the highest at both ends of the main body 1 and the lowest in the center, as shown in FIGS. 6B and 6D, whichever of the main body 1 is disposed The altitude is gradually decreased in the end block and the end face section of the end portion of the end portion of the central portion 10, the altitude does not change, and is substantially symmetrically arranged with respect to the center of the body 1, and the tensile force is Both ends are fixed to the main body 1 by the first fixing holes 310 in the applied state. Since the first fixture 310 is generally used for prestressed concrete girder, further description thereof will be omitted.
상기 제1긴장재(100)의 좌우방향 배치는 도 6의 (c)와 (d)에 도시된 바와 같이 단부블록(30)과 변단면부(20) 구간에서 좌우로 벌어지다가 중앙부(10) 구간에서는 거더 폭 방향으로 일정 간격을 유지하는 형태로서 본체(1)의 중앙을 기준으로 실질적으로 대칭으로 배치된다.The left and right direction arrangement of the first tension member 100 is spread from side to side in the end block 30 and the end surface portion 20 section as shown in (c) and (d) of FIG. In the form of maintaining a constant interval in the girder width direction is arranged substantially symmetrical with respect to the center of the main body (1).
이러한 제1긴장재(100)의 배치는 도 6의 (b)에 파란선으로 도시되어 있으며, 도 6 (d)의 단면도에서도 그 배치를 확인할 수 있다. 상기 제1긴장재(100)는 제1쉬스관(150)에 수용된 상태로 설치되며, 도면에는 제1쉬스관(150)과 제1쉬스관(150)의 내부에 수용되는 제1긴장재(100)가 하나의 선으로 도시되어 있고, 도면부호도 100(150)으로 표시하였다.The arrangement of the first tensioning material 100 is illustrated by a blue line in FIG. 6 (b), and the arrangement of the first tension material 100 can also be confirmed in the cross-sectional view of FIG. 6 (d). The first tension member 100 is installed in a state accommodated in the first sheath tube 150, and in the drawing, the first tension member 100 accommodated in the first sheath tube 150 and the first sheath tube 150. Is shown by one line, and is indicated by reference numeral 100 (150).
상기 제2긴장재(200)는 단부블록(30)의 윗부분, 변단면부(20)의 상부플랜지(21) 또는 복부(22), 중앙부(10)의 상부플랜지(11), 복부(12) 또는 하부플랜지(13)에 걸쳐 배치되며, 도면에는 제1긴장재(100)와의 선명한 구분을 위하여 빨간색으로 표시되어 있다. 제2긴장재(200)는 인장력이 가해진 상태로 양단부가 제2정착구(320)에 의해 본체(1)에 정착되는 구성으로서, 제2쉬스관(250)에 수용된다.The second tension member 200 is the upper portion of the end block 30, the upper flange 21 or the abdomen 22 of the cross-sectional surface portion 20, the upper flange 11 of the central portion 10, the abdomen 12 or It is disposed over the lower flange 13 and is shown in red in the drawing for clear separation from the first tension member 100. The second tension member 200 is a structure in which both ends are fixed to the main body 1 by the second fixing holes 320 in a state where a tensile force is applied, and is accommodated in the second sheath tube 250.
본 실시예에서 상기 제2긴장재(200)는 제1긴장재(100)와 마찬가지로 인장강도 2400MPa급(SWPC7D Φ15.2mm)의 강연선을 사용하는데 경우에 따라서 비부착 강연선이 사용될 수도 있으며 이에 대해서는 후술하기로 한다.In the present embodiment, the second tension member 200 uses a stranded wire having a tensile strength of 2400 MPa class (SWPC7D Φ15.2 mm), similar to the first tension member 100, and in some cases, an unattached strand may be used, which will be described later. do.
상기 제2긴장재(200)의 상하방향의 배치는 본체(1)의 단부로부터 변단면부(20)와 중앙부(10) 경계 부근의 어느 한 지점인 최고점(P)까지는 단조증가하다가 최고점으로부터 본체(1)의 중앙까지는 단조감소하는 형태로서 본 실시예에서는 변단면부(20)의 중간쯤에서 최고 높이에 이른 뒤에 변단면부(20)와 중앙부(10)의 경계 근처의 최고점(P)까지는 같은 높이를 유지하다가 최고점(P)를 지나서 본체(1)의 중앙부까지 계속해서 높이가 낮아지도록 구성된다. 수학적으로 어떤 값이 정의된 구간에서 감소하지 않으면 단조증가(monotone increasing), 증가하지 않으면 단조감소(monotone decreasing)라고 한다.The arrangement of the second tension member 200 in the vertical direction is monotonically increased from the end of the main body 1 to the highest point P, which is one point near the boundary between the end face 20 and the center 10, and then the main body (from the highest point). In the present embodiment, the forging is reduced to the center of 1), and in the present embodiment, the height is reached from the middle of the cross section 20 to the highest point P near the boundary between the cross section 20 and the center 10. While maintaining the height is configured to continue to go down the highest point (P) to the central portion of the main body (1). Mathematically, if a value does not decrease in the defined interval, it is called monotone increasing, and if it does not increase, it is called monotone decreasing.
상기 제1긴장재(100)와 제2긴장재(200)의 상하방향 배치에 의해 중앙부(10)의 복부(12)의 두께를 줄일 수 있으므로 이하에서는 전술한 배치의 기술적인 사상과 이로 인한 효과에 대해서 상세히 설명하기로 한다.Since the thickness of the abdomen 12 of the central portion 10 may be reduced by vertically arranging the first tension member 100 and the second tension member 200, the technical spirit of the above-described arrangement and the effects thereof will be described below. It will be described in detail.
도 7의 (a)와 (b)는 제1긴장재(100)와 제2긴장재(200)의 배치방법을 설명을 위한 도면으로 본체(1)의 형상과 제1긴장재(100) 및 제2긴장재(200)의 배치 형태는 본체(1)의 중앙을 기준으로 길이 방향으로 대칭이므로 거더 길이의 반만을 도시하였으며, 도시의 편의상 위치에 따라 높이와 길이 방향으로 임의의 비율을 사용하였다. 도면에 점선으로 표시된 것은 하부플랜지(13, 23)의 상단부를 표시한 것이다. 7 (a) and 7 (b) are views for explaining a method of arranging the first and second tension members 100 and 200, the shape of the main body 1 and the first tension member 100 and the second tension member. Since the arrangement form of 200 is symmetrical in the longitudinal direction with respect to the center of the main body 1, only half of the girder length is illustrated, and arbitrary ratios are used in the height and the longitudinal direction according to the position for convenience of illustration. The dotted lines in the figure indicate the upper ends of the lower flanges 13 and 23.
앞서 설명한 바와 같이 제1긴장재(100)는 단부블록(30)과 변단면부(20) 구간에서는 거더 단부에서 중앙 쪽으로 갈수록 고도가 점점 내려가는 곡선 형태로 배치되다가 중앙부(10) 구간에서는 하부플랜지(13)에 일정한 고도로 직선에 가까운 형태로 배치된다. As described above, the first tension member 100 is arranged in a curved shape in which the altitude gradually decreases toward the center from the end of the girder in the section of the end block 30 and the edge section 20, and the lower flange 13 in the section of the central section 10. Are arranged in a straight line at a constant altitude.
이러한 형태로 제1긴장재(100)가 배치되었을 때 도 4(a)와 같은 긴장재 도심 제한범위의 하한선을 함께 도시하면 제1긴장재의 도심(도면에 101로 표시된 선)과 긴장재 도심 제한 범위의 하한(도면에 LL(Lower Limit)로 표시된 선)까지의 거리, 다시 말해 전체 긴장재의 도심(제1긴장재와 제2긴장재 전체의 도심)을 끌어올려야 하는 높이(이격 고도차)를 알 수 있다. 도 7(a)에서 A로 표시한 수직방향의 선이 이격 고도차로서, 변단면부(20)와 중앙부(10)의 경계 부근에서 최대치가 되며 이를 중심으로 본체(1)의 단부나 중앙 쪽으로 갈수록 그 크기가 점차 감소한다. When the first tension member 100 is disposed in this form, when the lower limit line of the tension member city center limit range as shown in FIG. 4 (a) is shown together, the lower limit of the tension center city limit line and the tension center city limit line of the first tension member The distance to the LL (lower limit line in the drawing), that is, the height (distance elevation difference) at which the center of the entire tension material (the center of the first tension material and the second tension material as a whole) should be lifted, can be known. A vertical line indicated by A in FIG. 7 (a) is a spaced altitude difference, which is the maximum value near the boundary between the edge end portion 20 and the center portion 10, and toward the end or the center of the main body 1 toward the center thereof. Its size gradually decreases.
제1긴장재의 도심(101)에서 제2긴장재의 도심(201)까지의 수직거리에 비례하여 전체 긴장재의 도심이 제1긴장재의 도심(101)으로부터 위로 올라가게 되는데, 변단면부(20)와 중앙부(10)의 경계 부근에서 이격고도차가 가장 크므로, 변단면부(20)와 중앙부(10)의 경계 부근에서 제2긴장재의 도심(201)이 가장 높게 배치될 필요가 있다. 한편, 제2긴장재(200)의 정착을 위해서는 본체(1)의 단부면에 소정의 정착면적을 확보해야 하므로 제2긴장재(200)의 정착위치는 본체(1)의 상단부로부터 일정한 거리만큼 이격되어야 하는 요건도 만족해야 한다.In proportion to the vertical distance from the city center 101 of the first tension material to the city center 201 of the second tension material, the city center of the entire tension material rises up from the city center 101 of the first tension material, and the edge section 20 Since the separation altitude difference is the largest in the vicinity of the boundary of the central portion 10, the inner city 201 of the second tension member needs to be disposed highest in the vicinity of the boundary between the edge end portion 20 and the central portion 10. On the other hand, in order to fix the second tension member 200, a predetermined fixing area must be secured to the end surface of the main body 1, so that the fixing position of the second tension member 200 should be spaced apart from the upper end of the main body 1 by a predetermined distance. The requirements must also be met.
이러한 이유로 인하여 제2긴장재(200)는 변단면부(20)와 중앙부(10)의 경계 부근의 어느 한 지점인 최고점(P)까지는 단조증가하고 최고점(P)으로부터 본체(1)의 중앙까지는 단조감소하도록 배치되는 것인데 가장 이상적인 배치는 도 7의 (a)에 도시된 바와 같이 변단면부 구간 내에서 최고 높이에 도달한 뒤에 변단면부(20)와 중앙부(10)의 경계부근의 최고점(P)까지는 같은 높이를 유지하다가 본체(1)의 중앙까지는 계속해서 고도가 내려가도록 배치하는 것이다.For this reason, the second tension member 200 increases forging up to the highest point P, which is a point near the boundary between the edge end portion 20 and the central portion 10, and forgings from the highest point P to the center of the main body 1. It is arranged to reduce the most ideal arrangement is the highest point (P) near the boundary between the edge section 20 and the center portion 10 after reaching the maximum height within the edge section as shown in Fig. 7 (a) While maintaining the same height up to), to the center of the body (1) continues to be arranged so that the altitude decreases.
통상적인 설계 방법에 의해 최적 설계된 PSC I형 단면에 최적 설계된 적절한 크기의 긴장력이 가해지는 경우에는 특별히 의도하지 않아도 본체(1)의 단부와 중앙에서는 제1긴장재의 도심(101)이 하한선(LL) 위에 있거나 매우 근접하도록 배치되게 되므로 본체(1)의 단부에서는 제2긴장재(200)의 고도를 낮추어도 전체 긴장재 도심은 긴장재 도심의 하한선(LL) 아래로 내려가지는 않는다.In the case where the tension of the appropriate size optimally designed is applied to the PSC I-shaped section that is optimally designed by the conventional design method, the center of the first tension member 101 at the end and the center of the main body 1 is not lower than the lower limit (LL). Since it is disposed above or very close to the end of the main body 1, even if the altitude of the second tension member 200 is lowered, the entire tension center is not lower than the lower limit LL of the tension center.
또한, 본체(1) 중앙 쪽으로 갈수록 이격 고도차가 감소하므로 제2긴장재(200)는 변단면부(20)와 중앙부(10)의 경계를 지나면 고도가 점점 내려가 거더 중앙에서 최저점에 이르도록 하여 거더 중앙부 하연의 압축 프리스트레스 도입에 최대한 기여할 수 있는 포물선 형태를 갖도록 구성한다. In addition, since the separation altitude difference decreases toward the center of the main body 1, the second tension member 200 passes through the boundary between the edge end portion 20 and the center portion 10 so that the altitude decreases gradually to reach the lowest point from the center of the girder, thereby releasing the center. It is configured to have a parabolic shape that can contribute as much as possible to the introduction of compression prestress of lower smoke.
이러한 제2긴장재(200)의 배치방법은 도 4의 (b)에 도시된 바와 같이 단부에서 중앙으로 갈수록 고도가 점점 내려가는 단순 포물선 형태를 갖는 종래의 긴장재 배치방법과는 확연히 다르다. 종래의 단순보 구조의 PSC I형 거더의 경우에는 모든 긴장재가 거더 단부에서 시작하여 거더 중앙까지의 고도변화가 단조감소(monotone decreasing)하는데 반하여 본 발명의 제2긴장재(200)의 고도변화는 본체(1) 단부에서 시작하여 변단면부(20)와 중앙부(10)의 경계까지는 단조증가(monotone increasing)하고 변단면부(20)와 중앙부(10)의 경계에서 본체(1)의 가운데까지는 단조감소하는 형태로서, 종래의 PSC I형 거더의 경우에는 일찍이 없었던 새로운 발상이다. The arrangement method of the second tension member 200 is significantly different from that of the conventional tension member arrangement method having a simple parabolic form in which the altitude decreases gradually from the end to the center as shown in (b) of FIG. 4. In the case of the conventional simple beam structure PSC type I girder, all the tension members start at the end of the girder and the elevation change to the center of the girder is monotone decreasing, whereas the elevation change of the second tension member 200 of the present invention is the main body. (1) Begin at the end and monotonically increase to the boundary between the edge section 20 and the central section 10 and monotonically from the boundary between the edge section 20 and the center section 10 to the center of the body 1. As a decreasing form, it is a new idea that has not been found in the case of conventional PSC type I girder.
도 7(a)에서 긴장재 도심 제한범위의 하한선은 거더 전 길이에 걸쳐 일정한 단면형상이 유지되는 경우이다. 그런데 본 발명의 본체(1)는 변단면부(20)와 단부블록(30)을 포함하고 있어서 단면의 형상이 일정하지는 않으므로 이에 대한 검토가 필요하므로 이에 대하여 검토해보기로 한다.In FIG. 7 (a), the lower limit of the tension limit downtown range is a case where a constant cross-sectional shape is maintained over the entire length of the girder. By the way, the main body 1 of the present invention includes a cross-sectional surface portion 20 and the end block 30, so the cross-sectional shape is not constant, so it is necessary to examine this.
다음의 식 ⓐ 내지 식 ⓓ는 긴장재 도심의 제한범위를 정의하는 식들이다.The following equations ⓐ to ⓓ are equations defining the limits of tension centers.
Figure PCTKR2018004413-appb-img-000001
..........................ⓐ
Figure PCTKR2018004413-appb-img-000001
..................... ⓐ
Figure PCTKR2018004413-appb-img-000002
......................ⓑ
Figure PCTKR2018004413-appb-img-000002
...................... ⓑ
Figure PCTKR2018004413-appb-img-000003
.........................ⓒ
Figure PCTKR2018004413-appb-img-000003
......................... ⓒ
Figure PCTKR2018004413-appb-img-000004
.......................ⓓ
Figure PCTKR2018004413-appb-img-000004
....................... ⓓ
여기서 M t는 사용 중 작용 휨모멘트이고 M d1은 거더 자중에 의한 휨모멘트이며, Z t와 Z b는 각각 거더 상연과 하연에 대한 단면계수, A c는 거더의 단면적, σ ti와 σ ci는 각각 긴장시 콘크리트의 허용인장응력과 허용압축응력, σ ts와 σ cs는 각각 사용중 콘크리트의 허용인장응력과 허용압축응력이며, P i는 도입 긴장력이고 R은 긴장력의 유효율이다. 식 ⓐ와 ⓑ는 프리스트레스의 도입 직후의 허용응력 조건으로부터 얻은 식으로 긴장재 편심거리의 하한선을 결정하고, 식 ⓒ와 ⓓ는 사용중의 허용응력 조건으로부터 얻은 식으로 긴장재 편심거리의 상한선을 결정하는데, 일반적으로 식 ⓑ와 식 ⓓ에 의해서 긴장재 편심거리의 제한이 결정된다. Where M t is the acting bending moment during use, M d1 is the bending moment due to the girder weight, Z t and Z b are the cross-sectional coefficients for the upper and lower girders, A c is the cross-sectional area of the girder, and σ ti and σ ci are The allowable tensile stress and allowable compressive stress of concrete under stress, σ ts and σ cs , respectively, are the allowable tensile stress and allowable compressive stress of concrete during use, P i is the introduction tension and R is the effective rate of tension. Equations ⓐ and ⓑ determine the lower limit of the tension eccentric distance using equations obtained from the allowable stress conditions immediately after the introduction of prestress. The limit of the eccentric distance of the tension member is determined by equations ⓑ and ⓓ.
도 4의 (a)는 거더의 전 길이에 걸쳐 단면형상이 일정한 경우에 식 ⓑ와 식 ⓓ에 의해 결정되는 전형적인 긴장재 도심 제한범위의 형태를 표현한 것으로서 도 7의 (a)에 표시된 하한(LL)도 이를 기초로 표시된 것이다. 본 발명의 경우에는 전체 긴장재의 도심이 긴장재 도심 제한범위의 하한선에 가깝게 배치되기 때문에 하한선을 결정하는 식 ⓐ와 식 ⓑ가 중요한데, 긴장재 도심의 하한은 식 ⓐ와 식 ⓑ로 구한 곡선 중 상대적으로 위쪽에 위치한 곡선이다. Figure 4 (a) is a representation of the form of the typical tension range limits defined by equations (ⓑ) and (ⓓ) when the cross-sectional shape is constant over the entire length of the girder, the lower limit (LL) shown in (a) of FIG. Also shown based on this. In the case of the present invention, since the center of the entire tension member is located close to the lower limit of the tension center, the equations ⓐ and ⓑ that determine the lower limit are important, and the lower limit of the tension center is relatively higher among the curves obtained by equations ⓐ and ⓑ. Is located on the curve.
도 6에 도시된 본 실시예의 본체(1) 형상에 긴장재 도심의 제한범위의 하한선을 계산하면 도 8에 도시된 도면과 같은데 도 8에서 굵은 실선은 단면변화를 고려한 그래프이며, 변단면부 구간에서 점선으로 표시된 그래프는 단면변화를 무시한 경우이다. 도 8에서 확인할 수 있는 바와 같이 중앙부(10) 구간에는 하한선이 기존과 같이 식 ⓑ에 의해 결정되지만 대부분의 변단면부(20) 구간과 단부블록(30)에서는 식 ⓐ에 의해 하한선이 결정된다. 이처럼 단면변화를 고려하여 긴장재 도심의 하한(LL)과 긴장재의 도심(101, 201)을 다시 그린 도면이 도 7의 (b)이다.When calculating the lower limit of the limiting range of the tension material downtown to the shape of the main body 1 of the present embodiment shown in Figure 6 is the same as shown in Figure 8 but the thick solid line in Figure 8 is a graph in consideration of the cross-sectional change, The graph indicated by the dotted line is when the cross-sectional change is ignored. As can be seen in FIG. 8, the lower limit is determined by Equation ⓑ in the center 10 section, but the lower limit is determined by Equation ⓐ in most of the section 20 and the end block 30. As shown in FIG. 7B, the lower limit LL of the tension member city center and the city centers 101 and 201 of the tension member are redrawn in consideration of the cross-sectional change.
단면의 변화를 고려하는 경우(도 7의 (b))는 단면의 변화를 고려하지 않은 경우(도 7의 (a))에 비하여 단부블록(30) 구간과 변단면부(20) 구간에서 이격 고도차가 작아지는 차이가 있을 뿐이므로 전술한 제1긴장재(100)와 제2긴장재(200)의 배치형태를 적용해도 전체 긴장재의 도심을 도심의 하한(LL) 위쪽에 배치할 수 있게 된다. Considering the change in the cross section (Fig. 7 (b)) is spaced apart from the end block 30 section and the edge section 20 section compared to the case of not considering the change in the cross section (Fig. 7 (a)) Since there is only a difference in the altitude difference is small, even if the arrangement of the first tensioning material 100 and the second tensioning material 200 described above can be disposed above the lower limit (LL) of the downtown of the entire tension material.
본 발명은 도로교설계기준을 만족시키는 범위 안에서 거더의 복부 두께(본 실시예에서는 중앙부(10)의 복부(12) 두께)를 최소화함으로써 거더의 구조적 효율성을 최대화하기 위한 발명이다. 복부의 두께를 줄이기 위해서는 복부에 배치되는 긴장재의 수를 최소화할 것이 요구된다. 이러한 요구에 따라 본 발명에서는 긴장재를 제1긴장재(100)와 제2긴장재(200)로 구분하여 배치한다. 제1긴장재(100)는 전체가 단부블록(30)의 하부, 변단면부(20)와 중앙부(10)의 하부플랜지(13,23)에 배치되며, 복부에는 배치되지 않는다. 그런데 이러한 배치를 할 경우 일부의 구간에서는 제1긴장재(100)의 도심이 긴장재 도심의 하한선 아래에 배치되는 문제가 생긴다. (도 7의 (a) 또는 (b) 참조) 이러한 문제를 해결하기 위하여 제1긴장재의 도심(101)이 긴장재 도심 하한 아래에 있는 구간에서는 제2긴장재의 도심(201)을 최대한 높임으로써 전체 긴장재의 도심이 긴장재 도심의 하한 위쪽에 배치되도록 하는 것이다.The present invention is an invention for maximizing the structural efficiency of the girder by minimizing the abdominal thickness of the girder (in this embodiment, the thickness of the abdomen 12 of the central portion 10) within the range that satisfies the road bridge design criteria. Reducing the thickness of the abdomen requires minimizing the number of tensions placed on the abdomen. According to this request, in the present invention, the tension member is disposed separately from the first tension member 100 and the second tension member 200. The first tensioning member 100 is disposed in the lower portion of the end block 30, the end surface portion 20 and the lower flanges 13 and 23 of the central portion 10, it is not disposed in the abdomen. However, in the case of such an arrangement, in some sections, the center of the first tension member 100 may be disposed below the lower limit of the center of the tension member. (Refer to (a) or (b) of FIG. 7) In order to solve this problem, in the section in which the downtown 101 of the first tension material is below the lower limit of the tension material, the entire tension material is increased by increasing the city center 201 of the second tension material as much as possible. The center of gravity is to be placed above the lower limit of the tension center.
한편, 제2긴장재(200)는 일부 구간에서 중앙부(10)의 복부(12)에 배치될 수밖에 없는데 배치되는 제2긴장재(200)로 사용되는 강연선의 수가 매우 중요한 변수가 된다. 제2쉬스관(250)의 직경이 작아야 중앙부(10)의 복부(12) 두께를 줄일 수 있으므로 제2긴장재(200)로 사용되는 강연선의 수가 적을수록 좋다. 작은 직경의 제2쉬스관(250)을 사용하면서도 강연선을 많이 배치하기 위해서는 제2쉬스관(250)의 수를 늘리면 되지만 그러면 관련 시공비용의 증가로 이어지므로 바람직하지 않고 따라서 제2쉬스관(250)은 하나만 사용되는 것이 가장 이상적이다. 제2긴장재(200)로 사용되는 강연선의 수를 줄이면 본체(1)에 가해지는 긴장력이 줄어들 수밖에 없는데 이러한 문제는 제1긴장재(100)의 수를 늘림으로써 해결한다. 본 발명에서 제1긴장재(100)는 복부보다 두께가 두꺼운 하부플랜지(13,23)에만 배치되는데 상대적으로 두꺼운 부재에 배치된다는 의미는 콘크리트 피복두께를 확보하는데 유리하다는 의미이므로 제2쉬스관(250)에 비하여 큰 직경의 쉬스를 제1쉬스관(150)으로 사용할 수 있다. 쉬스관의 직경이 커지면 직경의 제곱에 비례하여 수용할 수 있는 강연선수가 증가하므로 제1쉬스관(150)은 허용범위 내에서 최대직경의 제품을 사용함으로써 수용할 수 있는 강연선의 수를 늘리는 것이 바람직하다. 물론 이때 큰 직경의 제1쉬스관(150)을 사용함으로써 배치되는 제1쉬스관(150)의 수를 줄여 시공비용을 줄일 수 있는 효과도 기대할 수 있게 된다.On the other hand, the second tension member 200 is inevitably disposed in the abdomen 12 of the central portion 10 in some sections, the number of the strands used as the second tension member 200 is very important variable. Since the thickness of the abdomen 12 of the center portion 10 can be reduced only by the diameter of the second sheath tube 250, the number of the strands used as the second tension member 200 is better. In order to arrange a large number of strands while using the second sheath pipe 250 having a small diameter, the number of second sheath pipes 250 may be increased, but this may lead to an increase in the related construction cost. Ideally, only one) is used. Reducing the number of strands used as the second tension member 200 inevitably reduces the tension applied to the main body 1. This problem is solved by increasing the number of the first tension members 100. In the present invention, the first tension member 100 is disposed only on the lower flanges 13 and 23 having a thickness greater than that of the abdomen, and the meaning that the first tension member 100 is disposed on a relatively thick member is advantageous to secure a concrete coating thickness, so that the second sheath pipe 250 Compared to), a sheath having a large diameter may be used as the first sheath tube 150. As the diameter of the sheath tube increases, the number of lecturers that can be accommodated increases in proportion to the square of the diameter, so that the first sheath tube 150 increases the number of strands that can be accommodated by using a product having the maximum diameter within the allowable range. desirable. Of course, at this time, it is also possible to expect the effect of reducing the construction cost by reducing the number of the first sheath tube 150 arranged by using a large diameter of the first sheath tube 150.
이하에서는 본 발명에 따른 몇 가지 거더의 설계예와 현재 일반적으로 많이 사용되고 있는 대조설계예를 비교하면서 본 발명의 효과에 대해여 설명하기로 한다.Hereinafter, the effects of the present invention will be described while comparing some examples of design of the girder according to the present invention and a comparative design example which is generally used.
다음의 표 1은 본 발명에 따른 설계예와 기존의 방법에 따른 대조설계예의 설계결과를 비교하기 쉽게 표로 정리한 것이다.Table 1 below summarizes the design results of the design example according to the present invention and the control design example according to the existing method in a table for easy comparison.
교장(L)[m]Principal (L) [m] 본 발명에 따른 설계예Design example according to the present invention 대조설계예(기존의 개량형 PSC I형 거더)Contrast design example (existing modified PSC type I girder)
형고[mm]Mold height [mm] 복부두께[mm]Abdominal thickness [mm] 쉬스 개수Sheath number 중량[ton]Weight [ton] 형고[mm]Mold height [mm] 복부두께[mm]Abdominal thickness [mm] 쉬스 개수Sheath number 중량[ton]Weight [ton]
2525 1,0001,000 180180 33 3535 1,1001,100 240240 55 4646
3030 1,2001,200 180180 33 4646 1,2001,200 240240 55 5757
3535 1,5001,500 180180 33 6262 1,5001,500 240240 55 7373
4040 1,8001,800 180180 33 7878 1,8001,800 240240 55 9292
4545 2,2002,200 180180 33 9898 2,2002,200 240240 55 116116
5050 2,5002,500 180180 33 121121 2,5002,500 240240 55 136136
5555 2,7002,700 180180 44 138138 2,7002,700 240240 66 156156
[표] 본 발명에 따른 설계예와 기존 방법에 따른 대조설계예의 요약표[Table] Summary table of design examples according to the present invention and contrast design examples according to the existing method
우선 본 발명에 따른 설계와 기존 방법에 따른 설계의 재료 물성치나 쉬스관의 규격 등에 대하여 설명한 후 두 설계예를 비교함으로써 본원 발명의 장점에 대하여 설명한다. 표에 정리된 설계 기준 교량은 국도 표준교량인 폭원 10.9m의 4주형 단순교로서 1등교 설계기준을 적용하였다. First, the advantages of the present invention will be described by comparing two design examples after explaining the material properties of the design according to the present invention and the design of the existing method, the size of the sheath pipe, and the like. The design standard bridge summarized in the table is a four-week simple bridge with a width of 10.9m, the national standard bridge, and the design standard of 1st bridge was applied.
본 발명에 따른 설계예에는 제2쉬스관(250)으로 60mm 쉬스(내경 기준)을 사용하였다. 60mm 쉬스에는 15.2mm 7연선(SWPC7D Φ15.2mm)을 최대 10개까지 삽입할 수 있는데 작업의 용이성을 고려하여 9개의 강연선을 사용하는 것으로 설계되었다. 도로설계기준(2015)에서 요구하는 덕트 직경(쉬스관 내경) 이상의 부착 피복두께 조건 때문에 PSC I형 거더에 일반적으로 사용되는 80mm 쉬스의 경우에는 최소 240mm의 복부두께가 필요하지만, 60mm 쉬스의 경우에는 복부두께를 180mm로 설계하는 것이 가능하다. (철근의 콘크리트 피복두께 40mm(환경조건 ED1, 압축강도 45MPa 콘크리트), 전단보강철근(D13)의 직경 13mm, 쉬스 두께 2mm의 합이 55mm이므로 60mm 쉬스를 사용하는 경우에도 덕트의 부착 피복두께 조건이 복부 두께를 지배한다.)In the design example according to the present invention, a 60 mm sheath (based on the inner diameter) was used as the second sheath tube 250. Up to 10 15.2mm 7 stranded wires (SWPC7D Φ15.2mm) can be inserted into the 60mm sheath, and 9 stranded wires are designed for ease of operation. The abdominal thickness of at least 240 mm is required for 80 mm sheaths that are commonly used in PSC type I girders due to the thickness of the coating covering more than the duct diameter (sheath pipe inner diameter) required by the Road Design Standard (2015). It is possible to design the abdominal thickness to 180mm. (The concrete cover thickness of reinforcing steel 40mm (environmental condition ED1, compressive strength 45MPa concrete), the sum of the diameter of 13mm of shear reinforcement steel (D13) and sheath thickness 2mm is 55mm, so even if 60mm sheath is used, Dominates the abdominal thickness.)
제2긴장재(200)의 역할을 극대화하기 위해서는 가능하면 고강도의 강연선을 사용하여 강연선 총 사용개수를 줄여야 하므로 인장강도 2400MPa급(SWPC7D Φ15.2mm)의 강연선을 사용하여 설계하였으며, 제1긴장재(100)의 쉬스관(150)으로는 최대 100mm 직경의 쉬스관을 사용하였다. 거더 콘크리트는 거더 성능을 높이기 위해서 압축강도 45MPa의 콘크리트를 사용하였다. 사용 콘크리트의 압축강도가 높을수록 거더의 구조적 효율성은 높아지는데 압축강도를 45MPa로 제한한 이유는 현재로서는 45MPa의 콘크리트가 전국 어디에서나 공급 받을 수 있는 최대의 콘크리트 압축강도이기 때문이다. In order to maximize the role of the second tension member 200, it is necessary to reduce the total number of strands using high-strength strands, if possible, and designed using a strand of tensile strength of 2400 MPa (SWPC7D Φ15.2 mm). ) As a sheath tube 150, a sheath tube of up to 100 mm diameter was used. The girder concrete uses 45MPa of compressive strength to increase the girder performance. The higher the compressive strength of the concrete used, the higher the structural efficiency of the girder. The reason for limiting the compressive strength to 45MPa is that 45MPa concrete is the largest concrete compressive strength that can be supplied anywhere in the country.
제1쉬스관(150)과 제2쉬스관(250)의 배치 개수와 관련하여, L=25m부터 L=50m까지는 제1긴장재(100)를 수용하기 위하여 2개의 쉬스관을 사용하고 제2긴장재(200)를 수용하기 위하여 1개의 쉬스를 사용하는 것으로 설계하였다. 본 발명의 PSC I형 거더가 2개의 쉬스만을 사용하여 제1긴장재(100) 모두를 수용할 수 있었던 것은 고강도 강연선을 사용하여 총 강연선수를 줄인 이유도 있었지만 제1긴장재(100)가 하부플랜지(13,23)만을 통과하기 때문에 직경이 큰 쉬스를 사용하여 설계할 수 있기 때문이다.In relation to the number of arrangement of the first sheath pipe 150 and the second sheath pipe 250, from L = 25m to L = 50m, two sheath pipes are used to accommodate the first tension material 100 and the second tension material It is designed to use one sheath to accommodate (200). The PSC type I girder of the present invention was able to accommodate both the first tension member 100 using only two sheaths, but there was a reason to reduce the total lecturer by using a high-strength strand, but the first tension member 100 had a lower flange ( This is because it can be designed using a sheath having a large diameter because only 13, 23) passes.
한편, 복부에 배치되는 제2긴장재(200)가 적으면 적을수록 복부의 두께를 줄일 수 있지만 제2긴장재(200)가 일정 양 이하인 경우 문제가 생기는데 이에 대하여 설명하기로 한다. (이 문제는 앞서 설명한 전체 긴장재의 도심의 제한범위와는 다른 문제이다) 설계된 강연선의 총 개수와 관계없이 제2긴장재(200)로 사용되는 강연선수를 고정시켜 사용했을 때 나타나는 거더 하연의 압축 프리스트레스의 분포양상이 도 9이다. 도 9는 프리스트레스 도입 직후의 거더 하연의 응력도로 긴장력과 거더 자중에 의한 휨응력 분포인데, 3가지의 유형으로 나눌 수 있으며 전체 긴장재 중 제2긴장재(200)의 비율에 따른 분류이다. 유형 1로 표시된 곡선은 전체 긴장재에 대한 제2긴장재(200)의 비율이 비교적 큰 경우의 휨응력 분포도로서 거더 중앙에서의 압축응력이 응력설계를 지배하며, 유형 2로 표시된 곡선은 유형 1에 비하여 상대적으로 제2긴장재(200)의 비율이 줄어든 경우의 휨응력 분포로서 중앙부(10) 구간의 압축응력이 거의 일정하며, 이경우도 거더 중앙에서의 응력이 설계를 지배한다고 할 수 있다. 유형 3으로 표시된 곡선은 유형 2에 비하여 제2긴장재(200)의 비율이 작은 경우의 휨응력 분포도로서 변단면부 시점(변단면부와 중앙부의 경계)에서의 압축응력이 가장 커서 여기서의 응력이 응력설계를 지배한다. 유형 1과 유형 2로 설계된 경우 구조적으로 효율적이지만, 유형 3의 경우에는 중앙에서의 압축응력이 허용응력 보다 작기 때문에 콘크리트의 최대 성능을 활용하지 못한다고 할 수 있으며 구조적 효율성이 좋지 않다고 할 수 있다. 일반적으로 적절한 I형 단면 형태가 결정되고 거더 길이에 형고가 선택된다면 PSC I형 거더의 효율성은 긴장시에 거더 중앙의 하연에 도입되는 압축 프리스트레스의 크기에 좌우된다. 단순보 구조의 PSC 거더의 경우에 작용하중에 의해 거더 중앙에서 최대가 되는 포물선 형태(도 9의 점선으로 표시된 곡선)의 인장응력이 거더 하연에 작용하기 때문에 PSC 거더가 지지할 수 있는 하중의 크기는 거더 중앙 하연에 도입되는 압축 프리스트레스의 크기에 비례하므로 프리스트레스 도입 후에 거더 자중이 작용한 상태에서 압축 프리스트레스는 중앙 하연에서 가장 커야 하고 그 응력이 허용응력(fca)과 같을 때 PSC 거더가 지지할 수 있는 하중이 최대가 된다. 따라서 거더 중앙 하연의 압축응력이 응력설계를 지배하는 유형 1과 유형 2와 같이 설계된 경우 중앙값이 "큰 포물선"으로 표시된 곡선과 같은 휨인장응력을 지지할 수 있어서 PSC 거더의 성능이 충분히 활용된 경우이며, 유형 3과 같이 설계된 경우 중앙값이 "작은 포물선"으로 표시된 곡선과 같은 휨인장응력만을 지지할 수 있기 때문에 PSC 거더의 성능이 충분히 활용되지 못한 경우이다. 따라서 전체 긴장재 중 제2긴장재(200)의 비율은 적어도 유형 2에 도시된 정도는 유지되어야 하며 따라서 배치되는 전체 강연선의 수가 늘어나면 제2긴장재로 사용되는 강연선의 수도 함께 늘어야 한다.On the other hand, the less the second tension material 200 disposed in the abdomen, the less the thickness of the abdomen, but the problem occurs when the second tension material 200 is less than a certain amount will be described. (This problem is different from the limits of the center of the entire tension material described above.) The compression prestress of the lower girder that occurs when the lecturer used as the second tension member 200 is fixed regardless of the total number of designed strands. Figure 9 shows the distribution of. 9 is a stress distribution of the lower edge of the girder immediately after the introduction of the prestress, and the bending stress distribution due to the girder self-weight, which can be divided into three types and is classified according to the ratio of the second tension member 200 among the total tension members. The curve labeled Type 1 is a flexural stress distribution when the ratio of the second tension member 200 to the total tension member is relatively large. The compressive stress at the center of the girder dominates the stress design, and the curve labeled Type 2 is relative to Type 1 As a result of the bending stress distribution when the ratio of the second tension member 200 is reduced, the compressive stress in the center portion 10 is substantially constant, and in this case, the stress at the center of the girder dominates the design. The curve shown as type 3 is a bending stress distribution diagram when the ratio of the second tension member 200 is smaller than that of type 2, and the compressive stress at the edge section point (the boundary between the edge section section and the center section) is the largest and the stress here is stressed. Dominate the design. It is structurally efficient when designed as Type 1 and Type 2, but in Type 3, it can be said that it does not utilize the maximum performance of concrete because the compressive stress at the center is smaller than the allowable stress, and the structural efficiency is not good. In general, if an appropriate type I cross-section is determined and a type height is selected for the girder length, the efficiency of the PSC type I girder depends on the size of the compression prestress that is introduced at the lower edge of the girder at tension. In the case of simple beam structure PSC girders, the amount of load that can be supported by the PSC girders because the tensile stress of parabolic shape (curve indicated by the dotted line in Fig. 9), which is maximized at the center of the girders, acts on the lower edge of the girders. Is proportional to the size of the compression prestress introduced at the center of the girder, so that after the introduction of the prestress, the girder weight must be the largest at the center of the girder and the PSC girder can support it when the stress is equal to the permissible stress (fca). The load that is present becomes the maximum. Therefore, when the compressive stress at the lower edge of the girder is designed as Type 1 and Type 2, which dominates the stress design, the PSC girder's performance is fully utilized because it can support the flexural tensile stress such as the curve indicated by the "parabolic parabola" in the median. In the case of the design of type 3, the performance of the PSC girder is not fully utilized because it can only support the flexural tensile stress such as the curve indicated by the "small parabola" as the median. Therefore, the ratio of the second tension member 200 among the total tension members should be maintained at least to the extent shown in Type 2, and thus the number of the strands used as the second tension members should also increase as the total number of the strands arranged.
상기 대조설계예는 현재 국내에서 교량적용 실적이 가장 많은 것으로 알려진 신형식 PSC I형 거더교 형식의 공법으로, 통상적으로 설계하는 바와 같이 압축강도 40MPa 콘크리트, 80mm 쉬스관, 인장강도 2160MPa급(SWPC7C Φ15.2mm) 강연선을 사용하고 있으며 구조적 효율성을 높이기 위해 거더 거치 전후에 거쳐 2단계로 긴장하는 방법을 사용한다. 비교공법은 80mm의 쉬스를 사용하기 때문에 복부두께는 240mm이다. (대조설계예에서 복부에 80mm 쉬스관을 쓰는 이유는 대부분의 쉬스가 복부를 통과하기 때문이다. 복부의 두께를 줄이기 위해 60mm 쉬스관을 배치하는 경우 쉬스의 개수가 기하급수적으로 대폭 늘어나게 되고 늘어난 쉬스의 개수에 맞추어 정착장치 개수도 늘어나 물량의 증가와 함께 작업량도 증가할 뿐더러 늘어난 정착장치를 배치하는 것이 현실적으로 불가능해질 수도 있기 때문이다. 이에 비하여 본원발명의 경우 상대적으로 복부(12, 22)를 통과하는 제2강연선(200)의 수가 적으므로 60mm 쉬스관을 사용하는 설계가 가능하다.)The control design example is a new type PSC type I girder bridge construction method which is known to have the largest number of bridge applications in Korea. Compressive strength 40MPa concrete, 80mm sheath pipe, tensile strength 2160MPa class (SWPC7C Φ15.2mm) ) It is using stranded wire and uses two-stage tensioning method before and after girder mounting to increase structural efficiency. The comparative method uses a sheath of 80 mm, so the abdominal thickness is 240 mm. (In the control design example, the 80mm sheath tube is used in the abdomen because most of the sheath passes through the abdomen. When the 60mm sheath tube is placed to reduce the thickness of the abdomen, the number of sheaths increases exponentially and the sheath increases. This is because the number of fixing devices increases according to the number of pieces, and the amount of work increases with the increase in quantity, and it may become impossible to arrange the fixing devices in the present invention. Since the number of the second strands 200 is less, it is possible to design using a 60mm sheath pipe.)
표1에서 확인할 수 있는 바와 같이 본 발명에 따라 설계된 거더는 대조설계예에 따라 설계된 거더에 비하여 중량이 상당히(11%~24%) 줄어들었고, 사용 쉬스관의 개수도 감소되는 것을 알 수 있다. 쉬스 사용개수의 감소는 재료비용 외에 긴장작업의 감소에 따른 비용감소 효과는 물론 긴장시 탄성단축에 의한 긴장력 손실을 줄이는 효과도 있다. 사용 강연선의 총 개수는 사용되는 강연선의 인장강도 등급이 달라서 직접 비교가 어려우므로 표 1에는 표기하지 않았지만 대략 전체하중에서 거더의 중량 감소분 만큼 감소할 것으로 추정된다.As can be seen in Table 1, the girder designed according to the present invention is significantly reduced in weight (11% to 24%) compared to the girder designed according to the control design, it can be seen that the number of sheath pipes used is also reduced. In addition to the cost of materials, the reduction in the number of sheaths has the effect of reducing the cost due to the reduction of tension work as well as reducing the loss of tension due to elastic shortening during tension. Although the total number of strands used is not directly comparable due to different tensile strength grades of strands used, they are not shown in Table 1, but are estimated to decrease by the weight reduction of the girder at full load.
이하에서는 각 교장(거더의 길이)별 설계예의 설계방법과 결과에 대하여 간략히 설명하기로 한다. Hereinafter, the design method and results of the design example for each principal (girder length) will be briefly described.
우선 표 1에 정리된 본 발명의 설계예에서는 L=25m와 L=55m를 제외하고는 제2긴장재(200)의 강연선수를 9개로 고정하고 제1긴장재(100)의 강연선수만 변화시키는 설계방법을 사용하였다. 교량의 형고가 결정되면 도입되어야하는 긴장력이 결정되며 도입되는 긴장력에 맞게 사용되어야할 강연선의 개수도 결정되게 된다. 이처럼 교장과 형고에 맞게 강연선의 개수가 정해진 상태에서 제2긴장재(200)는 9개로 고정하고 제1긴장재(100)의 수를 조절하여 사용되어야 할 강연선의 개수를 맞추었다는 의미이며, L=25m의 경우 전체 강연선수가 상대적으로 적어 제2긴장재(200)의 수를 8개를 사용하는 것으로 설계되었고, L=55m의 경우 전체 강연선의 수가 많아서 제2긴장재(200)로 16개의 강연선을 사용하여 설계되었다. L=25m, L=55m를 제외한 설계예에서 제2긴장재(200)로 사용되는 강연선수를 9개로 고정해도 전술한 유형 1 또는 유형 2에 해당하는 설계가 되었는데 이에 대해서는 후술하기로 한다.First, in the design example of the present invention summarized in Table 1, except for L = 25m and L = 55m, the design of fixing the lecturer of the second tension member 200 to 9 and only changing the lecturer of the first tension member 100 Method was used. When the height of the bridge is determined, the tension to be introduced is determined and the number of strands to be used according to the tension is introduced. As described above, the number of strands is fixed to 9 and the number of strands to be used is adjusted by adjusting the number of strands 100 to be used according to the principal and sentence, L = 25m. In this case, the total number of lecturers is relatively small, and the number of second tension members 200 is designed to use eight. In the case of L = 55m, the number of total strands is large, so that the 16 second strands are used as the second tension members 200. Designed. In the design example except for L = 25m and L = 55m, even though the lecturer used as the second tension member 200 is fixed to nine, the design corresponds to the above-described type 1 or type 2, which will be described later.
도 6에 본 발명의 제1실시예를 도시한 도면은 교장이 35, 40, 45, 50m로 설계된 경우의 본체(1)와 제1긴장재(100), 제2긴장재(200)의 배치 방법을 도시한 도면이다.6 is a diagram illustrating a method of disposing a main body 1, a first tension member 100, and a second tension member 200 when the principal is designed to have 35, 40, 45, and 50 m. Figure is shown.
도 10a와 도 10b는 각각 교장이 35m와 50m인 경우 긴장 직후 거더 하연의 응력분포를 도시한 것이다. 도 10a에 도시된 교장이 35m인 경우 도 9에 도시된 유형 1에 가깝고, 도 10b에 도시된 50m인 경우 도 9에 도시된 유형 2와 유형 3의 경계와 유사한 응력분포를 보이고 있는데 35m에 비하여 50m가 전체 강연선수 대비 제2긴장재(200)로 사용되는 강연선의 수가 적기 때문이다.(변단면부와 중앙부의 경계에서의 응력과 거더 중앙에서의 응력 크기의 차이가 중요한다. 둘 사이의 응력분포는 필요하다면 두 지점사이에서 제2긴장재의 배치 프로파일을 변화시켜 조절할 수 있다.) 이 두 경우 모두 실용적 관점에서 보면 본체(1)의 중앙부에서 압축응력이 응력설계를 지배한다고 볼 수 있다. 본 발명에 따른 설계예에서 사용되는 콘크리트의 압축강도는 45MPa이고 허용응력은 27MPa인데 도면에서 확인할 수 있는 바와 같이 응력에 여유(10% 이상)가 있으며 이러한 여유는 거더의 운반이나 가설시의 조건변동, 콘크리트 양생 부족 등을 고려하면 반드시 필요하다고 할 수 있다.Figures 10a and 10b shows the stress distribution of the lower edge of the girder immediately after the tension when the principal is 35m and 50m, respectively. In the case where the principal shown in FIG. 10A is 35m, the type 1 shown in FIG. 9 is close to the type 1 shown in FIG. 9, and the 50m shown in FIG. 10B shows a stress distribution similar to the boundary between the type 2 and the type 3 shown in FIG. This is because the number of strands used as the second tension member 200 is less than 50m as compared to the overall lecturer. (The difference between the stress at the edge of the cross section and the center and the stress magnitude at the center of the girder is important. The distribution can be adjusted by changing the placement profile of the second tension member between the two points if necessary.) In both cases, the compressive stress at the center of the body 1 dominates the stress design from a practical point of view. The compressive strength of the concrete used in the design example according to the present invention is 45MPa and the allowable stress is 27MPa. As can be seen in the drawing, there is a margin of stress (more than 10%), and the margin is a condition change during transportation or construction of the girder. Considering the lack of concrete curing, it is necessary.
도 11은 교장이 55m로 설계된 본체(1)의 형상과 제1긴장재(100) 및 제2긴장재(200)의 배치를 도시한 도면이다. L=55m의 경우는 사용 긴장재의 수가 늘어나기 때문에 제2긴장재(100)의 수도 함께 늘려야 도 9의 유형 3과 같이 되는 것을 피할 수 있다. 제2긴장재(200)로 배치되는 강연선의 수를 늘이기 위해서는 쉬스관의 직경을 키우거나 배치되는 쉬스관의 수를 늘여야 하는데, L=55m의 경우에도 복부(12)의 두께를 키우지 않기 위해서 60mm 쉬스관 2개를 사용하여 쉬스관당 8개씩 총 16개의 강연선을 제2긴장재(200)로 수용하는 것으로 설계되었다. 두 개의 제1쉬스관(150)과 두 개의 제2쉬스관(250)이 사용되므로 총 4개의 쉬스를 사용하게 되는데 기존의 L=55m의 PSC I형 거더들이 최소 6개 정도의 쉬스를 사용한다는 점을 고려한다면 여전히 본 발명의 PSC 거더는 경제성이 뛰어나다고 할 수 있다. 제2긴장재(200)에 2개의 쉬스를 사용하는 경우에도 제2긴장재의 도심의 측면에서 보면 1개의 쉬스를 사용하는 것과 배치원리는 동일하다. 다만 가능한 최상단 또는 최하단의 배치조건을 고려할 때 쉬스의 콘크리트 피복조건 외에 쉬스간의 최소간격과 정착장치간의 최소간격을 추가로 고려해야하는 점에서만 차이가 있을 뿐이다.11 is a view showing the shape of the main body 1 designed by the principal of 55 m and the arrangement of the first tension member 100 and the second tension member 200. In the case of L = 55m, since the number of tension members used increases, the number of second tension members 100 must be increased together to avoid the type 3 of FIG. 9. In order to increase the number of strands arranged in the second tension member 200, the diameter of the sheath tube should be increased or the number of sheath tubes arranged should be increased. In the case of L = 55m, the thickness of the abdomen 12 is not increased in order to increase the thickness of the abdomen 12. It was designed to accommodate a total of 16 strands as the second tension member 200, 8 per sheath, using two tubes. Since two first sheath pipes 150 and two second sheath pipes 250 are used, a total of four sheaths are used. The conventional L = 55m PSC type girder uses at least six sheaths. In light of this, the PSC girder of the present invention can still be said to have excellent economic efficiency. Even in the case of using two sheaths for the second tension member 200, the principle of placement is the same as using one sheath from the side of the city of the second tension member. The only difference is that the minimum spacing between sheaths and the minimum spacing between the sheaths should be taken into account in addition to the concrete covering conditions of the sheaths in consideration of the topmost or bottommost possible placement conditions.
도 10c 는 도 11에 도시된 설계예인 교장이 55m 인 경우 긴장 직후 거더 하연의 응력분포를 도시한 것이다. 도 9에 도시된 유형 1에 유사한 응력분포를 보이는 것을 확인할 수 있으며 이는 본체(1)의 중앙부에서 압축응력이 응력설계를 지배하는 것을 보여주는 것이다. 본 발명에 따른 설계예에서 사용되는 콘크리트의 허용응력은 전술한 바와 같이 27MPa인데 도면에서 확인할 수 있는 바와 같이 응력에 여유가 있다.FIG. 10C illustrates the stress distribution at the lower edge of the girder immediately after the tension when the principal illustrated in FIG. 11 is 55 m. It can be seen that a similar stress distribution is shown in Type 1 shown in FIG. 9, which shows that the compressive stress dominates the stress design at the center of the body 1. The allowable stress of the concrete used in the design example according to the present invention is 27MPa as described above, there is room for stress as can be seen in the figure.
도 12는 교장이 25m 또는 30m로 설계된 본체(1)의 형상과 제1긴장재(100), 제2긴장재(200)의 배치를 도시한 도면이다. 도 12에 도시된 설계예의 경우 형고가 낮아서 제1정착구(310) 두 개를 수직 1열로 배치하는 것이 어려우므로 좌우 2열로 수평 배치하도록 설계되었다. 제1정착구(310)들을 좌우로 배치하면 정착구당 정착면적이 작아지기 때문에 하나의 정착구에 정착할 수 있는 강연선의 수가 줄어들게 되는데 경간장이 짧아지면 사용 강연선수가 적어지므로 제1긴장재(100)로 사용되는 강연선수도 적어져 각 정착구에 필요한 면적이 작아지기 때문에 정착구를 도 12(d)의 단면 A-A와 같이 좌우 수평으로 배치하도록 설계해도 무방하다. 제1정착구(310)를 수평으로 배치하는 경우에는 도 12(c)와 같이 제1쉬스관(150) 2개를 폭 방향으로 전구간에서 일정한 간격으로 배치하는 것이 가능해진다. FIG. 12 is a view showing the shape of the main body 1 in which the principal is designed to be 25 m or 30 m and the arrangement of the first tension material 100 and the second tension material 200. In the case of the design example shown in FIG. 12, since the mold height is low, it is difficult to arrange two first fixing holes 310 in one vertical column. When the first anchoring holes 310 are disposed from side to side, the number of strands that can be fixed in one anchorage is reduced because the anchoring area per anchorage is reduced. However, when the span length is shortened, the number of lecturers decreases, so the first tension member 100 is used. Since the number of lecturers to be used decreases and the area required for each anchorage becomes small, the anchorage may be designed to be horizontally arranged horizontally as shown in section AA of FIG. 12 (d). When the first fixing holes 310 are arranged horizontally, two first sheath pipes 150 can be arranged at regular intervals in the width direction as shown in FIG. 12C.
도 10d 는 교장이 25m 인 경우 긴장 직후 거더 하연의 응력분포를 도시한 것이다. 도 9에 도시된 유형 1에 유사한 응력분포를 보이는 것을 확인할 수 있으며 이는 본체(1)의 중앙부에서 압축응력이 응력설계를 지배하는 것을 보여주는 것이다. 본 발명에 따른 설계예에서 사용되는 콘크리트의 허용응력은 전술한 바와 같이 27MPa인데 도면에서 확인할 수 있는 바와 같이 응력에 여유가 있다.Figure 10d shows the stress distribution of the lower girder immediately after the tension when the principal is 25m. It can be seen that a similar stress distribution is shown in Type 1 shown in FIG. 9, which shows that the compressive stress dominates the stress design at the center of the body 1. The allowable stress of the concrete used in the design example according to the present invention is 27MPa as described above, there is room for stress as can be seen in the figure.
본 발명에 따른 설계예와 종래의 설계 방법 중 하나에 따른 대조설계예를 비교하면서 기술한 바와 같이 본 발명에 의하면 작은 크기의 쉬스관을 복부에 배치함으로써 PSC I형 거더의 복부 두께를 상당히 줄일 수 있는 장점이 있는 것을 확인할 수 있다.According to the present invention, the abdominal thickness of the PSC type I girder can be considerably reduced by arranging a small size sheath tube on the abdomen as described while comparing the design example according to the present invention with the control design example according to one of the conventional design methods. You can see that there are advantages.
도로교설계기준(2015년)에서 규정하는 포스트텐션 PSC 거더의 복부 최소두께는 165mm이다. 전술한 바와 같이 철근의 콘크리트 피복두께 40mm(환경조건 ED1, 압축강도 45MPa 콘크리트), 전단보강철근(D13)의 직경 13mm, 쉬스 두께 2mm의 합이 55mm이므로 55mm 쉬스를 사용하면 덕트의 부착 피복두께 조건과 같아진다. 이는 내경 55mm의 제2쉬스관을 사용하는 경우 PSC I형 복부의 두께를 도로설계기준에서 규정하는 최소두께인 165mm까지 줄일 수 있는 의미이다(∵165mm=55mm+55mm+55mm). The abdominal minimum thickness of the post-tension PSC girder specified in the Road Bridge Design Standard (2015) is 165 mm. As mentioned above, the total concrete cover thickness of rebar is 40mm (environmental condition ED1, compressive strength 45MPa concrete), the diameter of shear reinforcing bar (D13) is 13mm in diameter and 2mm sheath thickness is 55mm. Becomes the same as This means that when the second sheath pipe with an internal diameter of 55 mm is used, the thickness of the abdomen of the PSC type I abdomen can be reduced to 165 mm, which is the minimum thickness prescribed by the road design standard (∵165 mm = 55 mm + 55 mm + 55 mm).
그런데 환경조건이 변하면 요구하는 철근의 콘크리트 피복두께가 증가될 수 있다. 이러한 경우에 PSC I형 거더의 복부두께를 최소화할 수 있는 방법이 도 13의 (a)에 도시된 비부착 피복강연선을 제2긴장재로 사용하는 것이다. 도 13의 (a)에 도시된 비부착 강연선은 호칭 15.2mm 강연선으로 피복을 포함한 직경은 18.2mm이다. 도 13(b)에는 피복강연선이 I형 거더의 복부에 2열로 배치되는 방법들이 도시되어 있다. 이처럼 피복강연선을 2열 다발로 배치하면 필요한 복부의 최소 두께는 142.4mm(=2×40mm+2×13mm+2×18.2mm)이다. 시중에 공급되는 쉬스의 최소 내경이 45mm인데, 이 경우에 복부의 최소 두께는 155mm(=55mm+45mm+55mm)이다. 따라서 2열의 다발 피복강연선을 제2긴장재로 사용하면 환경조건이 변해 콘크리트 피복조건이 강화되는 경우에도 복부두께를 얇게 할 수 있는 유용한 방안이 될 수 있다. 이밖에 도시하지는 않았지만 피복강연선을 제2쉬스관(250)과 함께 사용하는 방법도 있다. 60mm 쉬스관 하나로 제2긴장재(200)를 모두 수용하기에 약간 모자라는 경우에 추가해야 할 강연선을 피복강연선으로 대치하면 쉬스관의 크기를 늘리거나 개수를 늘리지 않고도 제2긴장재(200)에 필요한 강연선 수량을 배치할 수 있다. 피복강연선의 배치 방법도 앞에서 언급했던 바와 같이 제2긴장재(200)의 도심을 고려하여 설계하면 된다.However, if the environmental conditions change, the required concrete cover thickness of the rebar can be increased. In this case, a method of minimizing the abdominal thickness of the PSC type I girder is to use an unattached coated strand shown in FIG. 13A as the second tensioning material. The unattached strand shown in (a) of FIG. 13 is a nominal 15.2 mm strand and has a diameter of 18.2 mm including the covering. 13 (b) shows how the coated strands are arranged in two rows on the abdomen of the I-girder. When the coated strands are arranged in two rows, the minimum thickness of the abdomen is 142.4 mm (= 2 × 40 mm + 2 × 13 mm + 2 × 18.2 mm). The minimum inner diameter of the sheath supplied on the market is 45 mm, in which case the minimum thickness of the abdomen is 155 mm (= 55 mm + 45 mm + 55 mm). Therefore, the use of two rows of stranded stranded steel as the second tension member may be a useful way to make the abdominal thickness thin even when the environmental conditions change and the concrete covering conditions are reinforced. In addition, although not shown, there is also a method of using the coated strand together with the second sheath pipe 250. If the stranded wire that needs to be added is slightly insufficient to accommodate all of the second tension member 200 in one 60 mm sheath tube with the coated strand, the strand strand required for the second tension member 200 without increasing the size or number of sheath tubes. Quantity can be placed. As mentioned above, the method of arranging the coated strand may be designed in consideration of the city center of the second tension member 200.
한편, 지금까지 설명한 설계예에서 변단면부의 하부플랜지 상부는 모두 곡선형태였다. 변단면부 구간에서 제1긴장재(100)는 아래로 볼록한 포물선 형태로 배치되기 때문에 곡선형태로 제작해도 제1긴장재(100)를 배치하는데 문제가 없고, 곡선형태로 제작하는 경우 본체의 중량을 줄이는데 도움이 되고 미관상으로도 우수하기 때문이다. 그런데 도 14에 도시된 바와 같이 본체가 상대적으로 짧아서 낮은 형고로 설계될 수 있는 경우에는 변단면부(20)의 하부플랜지 상부를 곡선형으로 제작해도 본체의 중량감소 효과도 크지 않고 곡선형으로 제작하는 미적효과도 그다지 기대할 수 없다. 도 14의 좌측에 도시된 하부플랜지(23a)의 상부는 직선형이고, 우측에 도시된 하부플랜지(23b)의 상부는 곡선형인데 육안으로 보기에 그 차이가 별로 크지 않음을 확인할 수 있다. 이런 경우에는 거푸집 제작을 용이하게 하기 위하여 변단면부(20)의 하부플랜지(23) 상부를 직선형으로 제작할 수도 있다.On the other hand, in the design example described so far, the upper portion of the lower flange of the cross section was curved. Since the first tension member 100 is arranged in a convex parabola shape downward in the edge section, there is no problem in arranging the first tension member 100 even when manufactured in a curved form, and when the curved form is manufactured, the weight of the main body is reduced. This is because it is helpful and aesthetically superior. However, as shown in FIG. 14, when the main body is relatively short and can be designed with a low mold height, even when the upper portion of the lower flange of the cross section 20 is formed in a curved shape, the weight reduction effect of the main body is not large, but is manufactured in a curved shape. The aesthetic effect of doing so cannot be expected very much. The upper portion of the lower flange 23a shown on the left side of FIG. 14 is straight, and the upper portion of the lower flange 23b shown on the right is curved, but it can be seen that the difference is not so large for the naked eye. In this case, the upper portion of the lower flange 23 of the edge section 20 may be manufactured in a straight line in order to facilitate the formwork.
다른 한편 앞서 설명된 설계에에서는 단부블록(30) 단면 형상이 변단면부의 단부쪽 단면 형상과 같았다 . 단부블록은 정착구를 설치하기에 적합한 형태로서 구조역학상 변단면부(20)를 통해 전달되는 단면력의 흐름에 문제가 없다면 다양한 형태로 제작될 수 있다. 도 15는 단부 가로보 시공에 유리하도록 단부블록(30)의 위쪽의 일부를 제거한 형태이다. 도면상에 해칭된 부분에 단부가로보가 접합시공된다. 도 15에 도시된 단부블록에는 앞서 설계예들과 달리 네 개의 제1쉬스관(도 15에는 미도시)을 사용하였으며 따라서 네 개의 제1정착구(310)가 설치되었다. 4개의 작은 정착구를 사용하면 2개의 큰 정착구를 사용하는 것보다 작은 높이의 정착면적이 필요하기 때문에 상황에 따라 4개의 제1정착구(310)를 사용하는 것으로 설계될 수도 있다.On the other hand, in the above-described design, the end block 30 cross-sectional shape was the same as the end cross-sectional shape of the edge section . The end block may be manufactured in various forms as long as there is no problem in the flow of the cross-sectional force transmitted through the end face portion 20 in structural dynamics as a form suitable for installing the anchorage. 15 is a form in which a part of the upper portion of the end block 30 is removed to favor the end crossbeam construction. The end robo is joined to the hatched portion on the drawing. Unlike the previous design examples, the end block illustrated in FIG. 15 uses four first sheath tubes (not shown in FIG. 15), and thus four first fixing holes 310 are installed. Since the use of four small anchorages requires a smaller fixing area than using two large anchorages, it may be designed to use four first anchorages 310 depending on the situation.
도 16은 교각의 코핑이나 유수면적 확보 등과 관련하여 가끔 요구되는 형태로 이러한 경우에는 단부블록(30)의 아래쪽 일부가 제거되므로 단면적을 최대한 확보하기 위해서 단부블록은 직사각형 형태의 단면을 가지며 절취를 위해 길이도 어느 정도 길어진 형태로 설계된다. 단부를 절취할 경우에 끝단의 단면이 작아지기 때문에 제1긴장재의 일부 또는 전체 정착구가 절취부의 수직면에 설치될 수밖에 없는데 정착면적 확보가 쉽지 않기 때문에 상황에 따라서는 도 16과 같이 4개의 제1정착구(310)를 사용하도록 설계된다. 도 16에서는 2개의 제2정착구(320)가 사용된 것으로 설계되었는데 이는 정착구의 다양한 설치방법을 보여주기 위한 것이다. Figure 16 is a form that is sometimes required in connection with the coping of the pier or securing the flow area, in this case the lower part of the end block 30 is removed so that the end block has a rectangular cross-section in order to ensure the maximum cross-sectional area for cutting It is also designed to be somewhat longer. When the end is cut off, the end of the end becomes smaller, so that a part or all of the first fixing member must be installed on the vertical surface of the cutout, but it is not easy to secure the fixing area. It is designed to use 310. In FIG. 16, it is designed that two second fixing holes 320 are used, which is to illustrate various installation methods of the fixing device.
이상에서 본 발명의 첫 번째 형태인 I형 거더에 대하여 설명하였다. 설명한 바와 같이 본 발명은 제1긴장재(100)와 제2긴장재(200)의 배치와 프로파일에 특징이 있는 발명으로서 전체 긴장재 도심이 긴장재 도심의 하한선 위에 있도록 하고, 긴장 후 거더 하연의 응력분포가 도 9의 유형 1 또는 유형 2에 해당하도록 제1긴장재(100)와 제2긴장재(200) 각각의 개수를 적절히 조절하면서 본체(1) 중앙부(10)의 복부(12)의 두께를 줄임으로써 본체(1)의 중량을 줄여 구조적으로 효율적인 설계가 가능한 발명으로 설명될 수 있다.The I-type girder which was the first aspect of the present invention has been described above. As described above, the present invention is an invention characterized by the arrangement and profile of the first tension member 100 and the second tension member 200, so that the entire tension center is on the lower limit of the tension center, and the stress distribution of the lower edge of the girder after tension is also illustrated. By reducing the thickness of the abdomen 12 of the central portion 10 of the main body 1 while appropriately adjusting the number of each of the first tension member 100 and the second tension member 200 to correspond to the type 1 or type 2 of the main body ( It can be described as an invention capable of structurally efficient design by reducing the weight of 1).
본 발명의 기술적 사상이 I형 단면에만 적용되는 것은 아니며, 도 17의 (a)에 도시된 박스형 빔이나, (b)에 도시된 U형 거더에도 그대로 적용될 수 있는데 이에 대해 설명하기로 한다. 도 17의 (a)는 중공 박스 단면의 절단과 재결합을 통해 긴장재 도심의 제한범위를 정의하는 식들에서 단면특성치가 같은 I형 단면으로 변환하는 방법을 설명하기 위한 도면이고, 도 17의 (b)의 는 U형 단면의 절단과 재결합을 통해 긴장재 도심의 제한범위를 정의하는 식들에서 단면특성치가 같은 I형 단면으로 변환하는 방법을 설명하기 위한 도면이다. 도 17의 (a)에는 상부플랜지(11'), 한 쌍의 복부(12'), 하부플랜지(13')로 구성된 박스형 빔 단면이 도시되어 있는데, 좌측에 도시된 박스형 빔 단면을 표시된 점선을 따라 분해하여 우측에 도시된 바와 같이 결합하면 I형 거더의 형상이 되는 것을 확인할 수 있다. 도 17의 (b)에 도시된 U형 거더의 단면도 유사한 방법으로 분해하여 재조립하면 I형 단면으로 만들 수 있다. 도 17의 (a)와 (b)에 도시된 좌측과 우측 단면은 각각 단면적과 연직 방향의 단면 2차모멘트(또는 단면계수)가 같아서 설계시에 도입되어야 하는 긴장력이나 하중에 의한 처짐이나 도입된 긴장력에 의한 솟음 등을 결정하는 단면특성은 동일하다. 즉, 앞서 설명한 식 ⓐ 내지 ⓓ를 적용할 때 동일한 단면으로 간주된다. 따라서 I 형 거더에 적용되는 기술적 사상을 적용하면 박스형 빔이나 U형 단면의 거더의 복부 두께를 줄여 본체의 중량을 줄이고 사용되는 쉬스관의 수도 줄일 수 있다. 박스형 빔이나 U형 거더는 복부가 2개라는 점에서 복부의 두께를 줄여서 얻는 중량감소 효과는 I형 거더에 비해서 더 클 수도 있다. The technical idea of the present invention is not only applied to the I-shaped cross section, but may be applied to the box beam shown in FIG. 17A or the U-girder shown in FIG. 17B, which will be described. FIG. 17 (a) is a view for explaining a method of converting a cross-sectional characteristic value into an I-shaped section having the same cross-sectional characteristic values through equations for defining the limitation range of the tension material center through cutting and recombination of the hollow box section, and FIG. 17 (b) Is a diagram for explaining a method of converting a U-shaped cross section into an I-shaped cross section with the same cross-sectional characteristic values in equations that define the limited range of tension centers through cutting and recombination. FIG. 17A shows a box-shaped beam cross section consisting of an upper flange 11 ', a pair of abdomen 12', and a lower flange 13 '. By disassembling according to the combination as shown on the right it can be seen that the shape of the I-girder. When disassembled and reassembled in a similar manner to the cross section of the U-girder shown in FIG. The left and right cross-sections shown in FIGS. 17A and 17B have the same cross-sectional area and cross-sectional secondary moments (or cross-sectional coefficients) in the vertical direction, respectively, so that they are sag or introduced due to tension or load to be introduced at design time. The cross-sectional characteristics for determining the rise due to the tension force and the like are the same. That is, the same cross-section is considered when applying the above equations ⓐ to ⓓ. Therefore, by applying the technical concept applied to the I-girder, the abdominal thickness of the box-beam or U-shaped girder can be reduced to reduce the weight of the body and the number of sheath tubes used. The box-beam or U-girder has two abdomen, so the weight reduction effect by reducing the thickness of the abdomen may be larger than the I-girder.
이하에서는 도면을 참조하면서 본 발명의 두 번째 형태인 박스 거더의 하나의 실시예에 대하여 설명하기로 한다. 본 실시예에 따른 PSC 거더는 본체(1'), 제1긴장재(100'), 제2긴장재(200'), 제1쉬스관(150'), 제2쉬스관(250') 및 제1정착구(310'), 제2정착구(320')를 포함하여 구성된다.Hereinafter, one embodiment of a box girder which is a second aspect of the present invention will be described with reference to the drawings. The PSC girder according to the present embodiment includes a main body 1 ', a first tension member 100', a second tension member 200 ', a first sheath tube 150', a second sheath tube 250 ', and a first one. It comprises a fixing unit 310 ′, the second fixing unit 320 ′.
도 18의 (a)는 본 발명의 두 번째 형태의 하나의 실시예에 따른 프리스트레스트 콘크리트 박스 거더의 사시도, 도 18의 (b), (c), (d)는 각각 도 18의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도이다.FIG. 18A is a perspective view of a prestressed concrete box girder according to one embodiment of the second aspect of the present invention, and FIGS. 18B, 18C and 18D are respectively FIGS. 18A The front view, top view, and sectional drawing for demonstrating the tension material arrangement of the prestressed concrete girder shown in FIG.
상기 본체(1')는 철근콘크리트 재질로 구성되며 중앙부(10'), 한 쌍의 변단면부(20') 및 한 쌍의 단부블록(30')을 포함하여 구성되는데, 도 18의 (a)에 도시된 바와 같이 단부블록(30'), 변단면부(20'), 중앙부(10'), 변단면부(20'), 단부블록(30')의 순으로 배치된다.The main body 1 'is made of a reinforced concrete material and comprises a central portion 10', a pair of end face portions 20 ', and a pair of end blocks 30', which is shown in FIG. As shown in FIG. 6, the end block 30 ′, the end surface portion 20 ′, the center portion 10 ′, the end surface portion 20 ′, and the end block 30 ′ are disposed in this order.
상기 중앙부(10')는 도 18의 (d)에 도시된 D-D 단면에서와 같이 상부플랜지(11'), 한 쌍의 복부(12'), 하부플랜지(13')를 포함하는 박스형 단면을 가지며 일방향으로 길게 형성되는 구성으로서, 본체(1')의 중앙 쪽에 배치된다.The central portion 10 'has a box-shaped cross section including an upper flange 11', a pair of abdomen 12 ', and a lower flange 13' as in the DD cross section shown in FIG. 18 (d). As a structure formed long in one direction, it is arrange | positioned at the center side of the main body 1 '.
상기 변단면부(20')는 상기 중앙부(10')의 양단부에서 연장되는 구성으로서 도 18의 (d)에 도시된 B-B 단면에서와 같이 상부플랜지(21'), 한 쌍의 복부(22), 하부플랜지(23')를 포함하는 형태를 가지며 복부(22')와 하부플랜지(23')의 두께는 중앙부에서 연장되는 방향 다시 말해 본체(1')의 단부쪽으로 갈수록 증가한다. The edge end portion 20 ′ extends from both ends of the central portion 10 ′ and has an upper flange 21 ′ and a pair of abdomen 22 as in the cross-sectional view taken along line BB of FIG. 18 (d). The lower flange 23 'includes a shape and the thickness of the abdomen 22' and the lower flange 23 'increases in the direction extending from the center portion, that is, toward the end of the main body 1'.
상기 하부플랜지(23')의 두께가 두꺼워지는 형태는 앞서 설명한 I형 거더의 대응되는 구성과 동일하므로 더 이상의 설명은 생략한다.Since the thickness of the lower flange 23 'becomes thicker than the corresponding configuration of the I-type girder described above, further description thereof will be omitted.
상기 단부블록(30')은 상기 한 쌍의 변단면부(20')로부터 각각 연장되며 한 쌍이 마련되는 구성으로서 여러가지 형태의 단면으로 구성될 수 있으며 계속해서 단면의 형태가 변화하는 다양한 모양으로 구성될 수도 있는데 본 실시예에서는 도 18에 도시된 바와 같이 변단면부(20')의 본체(1') 단부쪽 형태와 동일한 단면이 유지되는 형상이다.The end block 30 'is a configuration in which a pair is provided and extends from each of the pair of end surface portions 20' and may be configured in various shapes of cross-sections, and the shape of the cross-section is continuously changed. In this embodiment, as shown in FIG. 18, the same cross-section as that of the end portion of the main body 1 ′ of the edge section 20 ′ is maintained.
상기 제1긴장재(100')는 본체(1') 중 단부블록(30')의 아랫부분, 변단면부(20') 및 중앙부(10')의 하부플랜지(13', 23')에 배치되는 구성이며, 상하방향의 배치는 도 18의 (b)와 (d)에 도시된 바와 같이 본체(1')의 양단부에서 가장 높고 가운데에서 가장 낮게 배치되는데, 본체(1') 중 어느 하나의 단부쪽의 단부블록과 변단면부 구간에서 고도를 점점 낮추다가 중앙부(10')의 어느 한 점부터는 고도 변화가 없는 형태로서 본체(1')의 중앙을 기준으로 실질적으로 대칭으로 배치되며, 인장력이 가해진 상태로 양단부가 제1정착구(310')에 의해 본체(1')에 정착된다.The first tension member 100 ′ is disposed at the lower portion of the end block 30 ′, the end surface portion 20 ′, and the lower flanges 13 ′, 23 ′ of the central portion 10 ′ of the main body 1 ′. The arrangement in the vertical direction is the highest at both ends of the main body 1 'and the lowest in the middle, as shown in FIGS. 18 (b) and (d), wherein any one of the main bodies 1' is disposed. The altitude is gradually lowered in the end block and the end face section of the end side, and from one point of the center portion 10 ', there is no change in altitude, and is disposed substantially symmetrically with respect to the center of the main body 1'. In this applied state, both ends are fixed to the main body 1 'by the first fixing holes 310'.
상기 제1긴장재(100)의 좌우방향 배치는 도 18의 (c)와 (d)에 도시된 바와 같이 거더 폭 방향으로 일정 간격을 유지하는 형태로서 본체(1')의 중앙을 기준으로 대칭으로 배치된다.The left and right arrangement of the first tension member 100 is symmetrically with respect to the center of the main body 1 ′ as shown in FIGS. 18C and 18D to maintain a predetermined distance in the girder width direction. Is placed.
이러한 제1긴장재(100')의 배치는 도 18에 파란선으로 도시되어 있다. 상기 제1긴장재(100')는 제1쉬스관(150')에 수용된 상태로 설치되며, 도면에는 제1쉬스관(150')과 제1쉬스관(150')의 내부에 수용되는 제1긴장재(100)가 하나의 선으로 도시되어 있고, 도면부호도 100'(150')으로 표시하였다.This arrangement of the first tensioning material 100 ′ is shown by blue lines in FIG. 18. The first tension member 100 ′ is installed in a state of being accommodated in the first sheath tube 150 ′, and the first sheath member 100 ′ is accommodated in the first sheath tube 150 ′ and the first sheath tube 150 ′. Tension material 100 is shown as a single line, also indicated by reference numeral 100 '(150').
상기 제2긴장재(200')는 단부블록(30')의 윗부분, 변단면부(20')의 상부플랜지(21') 또는 복부(22'), 중앙부(10')의 상부플랜지(11'), 복부(12') 또는 하부플랜지(13')에 걸쳐 배치되며, 도면에는 제1긴장재(100')와의 선명한 구분을 위하여 빨간색으로 표시되어 있다. 제2긴장재(200')는 인장력이 가해진 상태로 양단부가 제2정착구(320')에 의해 본체(1')에 정착되는 구성으로서, 제2쉬스관(250')에 수용된다.The second tension member 200 ′ is an upper portion of the end block 30 ′, an upper flange 21 ′ or an abdomen 22 ′ of the edge end portion 20 ′, and an upper flange 11 ′ of the central portion 10 ′. ), The abdomen 12 ′ or the lower flange 13 ′, and are shown in red to clearly distinguish the first tension material 100 ′ from the drawing. The second tension member 200 ′ is a structure in which both ends thereof are fixed to the main body 1 ′ by the second fixing holes 320 ′ in a state where a tensile force is applied, and is accommodated in the second sheath tube 250 ′.
상기 제2긴장재(200')의 상하방향의 배치 및 관련된 기술적 사상은 앞서 설명한 I형 거더에 있어서 제2긴장재(200)의 상하방향 배치 및 관련 기술적 사상과 동일하므로 설명을 생략한다. The vertical arrangement and related technical ideas of the second tension member 200 ′ are the same as the vertical alignment and related technical ideas of the second tension material 200 in the above-described I-type girder, and thus description thereof is omitted.
제2긴장재(200')의 수평 배치와 관련하여 박스형 거더에는 복부(12',22')가 두 개이므로 제2긴장재(200')를 수용하는 제2쉬스관(250')도 2의 배수로 좌우 대칭이 되도록 배치한다.In relation to the horizontal arrangement of the second tension member 200 ', the box girders have two abdomens 12' and 22 ', so that the second sheath tube 250' accommodating the second tension member 200 'is also a drainage of 2 Place it to be symmetrical.
도 18에 도시된 박스형 거더의 경우에도 전술한 I형 거더와 같이 복부의 두께를 줄여 본체의 무게를 줄임으로써 구조적인 효율성을 얻을 수 있고 적은 수의 쉬스관을 배치함으로써 시공비용의 절감효과를 기대할 수 있다는 점은 동일하다.In the case of the box-type girders shown in FIG. 18, structural efficiency can be obtained by reducing the thickness of the body by reducing the thickness of the abdomen as in the type I girders described above, and by reducing the number of sheath pipes, it is expected to reduce the construction cost. The same is true.
이하에서는 도면을 참조하면서 본 발명의 세 번째 형태인 U형 거더의 하나의 실시예에 대하여 설명하기로 한다. 본 실시예에 따른 PSC 거더는 본체(1"), 제1긴장재(100"), 제2긴장재(200"), 제1쉬스관(150"), 제2쉬스관(250") 및 제1정착구(310"), 제2정착구(320")를 포함하여 구성된다.Hereinafter, with reference to the drawings will be described an embodiment of a third type of U-girder of the present invention. The PSC girder according to the present embodiment includes a main body 1 ", a first tension member 100", a second tension member 200 ", a first sheath pipe 150", a second sheath pipe 250 "and a first And a fixing unit 310 " and a second fixing unit 320 ".
도 19의 (a)는 본 발명의 세 번째 형태의 하나의 실시예에 따른 프리스트레스트 콘크리트 U형 거더의 사시도, 도 19의 (b), (c), (d)는 각각 도 19의 (a)에 도시된 프리스트레스트 콘크리트 거더의 긴장재 배치를 설명하기 위한 정면도, 평면도, 단면도이다.19A is a perspective view of a prestressed concrete U-shaped girder according to an embodiment of the third aspect of the present invention, and FIGS. 19B, 19C, 19D are 19A, respectively. The front view, top view, and sectional drawing for demonstrating the tension material arrangement of the prestressed concrete girder shown by).
상기 본체(1")는 철근콘크리트 재질로 구성되며 중앙부(10"), 한 쌍의 변단면부(20") 및 한 쌍의 단부블록(30")을 포함하여 구성되는데, 도 19의 (a)에 도시된 바와 같이 단부블록(30"), 변단면부(20"), 중앙부(10"), 변단면부(20"), 단부블록(30")의 순으로 배치된다.The main body 1 "is made of a reinforced concrete material and includes a central portion 10", a pair of end face portions 20 ", and a pair of end blocks 30", and FIG. As shown in FIG. 6, the end block 30 ″, the end face portion 20 ″, the center portion 10 ″, the end face portion 20 ″, and the end block 30 ″ are disposed in this order.
상기 중앙부(10")는 도 19의 (d)에 도시된 D-D 단면에서와 같이 한 쌍의 상부플랜지(11")와 복부(12"), 상기 한 쌍의 복부(12")와 결합하는 하부플랜지(13")를 포함하는 U형 단면을 가지며 일방향으로 길게 형성되는 구성으로서, 본체(1")의 중앙 쪽에 배치된다.The center portion 10 "has a pair of upper flanges 11", an abdomen 12 ", and a lower portion engaging the pair of abdomen 12" as in the DD section shown in FIG. 19 (d). It has a U-shaped cross section including a flange 13 "and is formed long in one direction, and is arrange | positioned at the center side of the main body 1".
상기 변단면부(20")는 상기 중앙부(10")의 양단부에서 연장되는 구성으로서 도 19의 (d)에 도시된 B-B 단면에서와 같이 한 쌍의 상부플랜지(21")와 복부(22"), 상기 한 쌍의 복부(22")와 결합하는 하부플랜지(23")를 포함하는 U형 단면 형태를 가지며 복부(22")와 하부플랜지(23")의 두께는 중앙부에서 연장되는 방향 다시 말해 본체(1")의 단부쪽으로 갈수록 증가한다. The edge end portion 20 "extends at both ends of the center portion 10" and has a pair of upper flanges 21 "and an abdomen 22" as in the BB section shown in Fig. 19D. ), Having a U-shaped cross-sectional shape including a lower flange 23 "that engages the pair of abdomen 22", and the thickness of the abdomen 22 "and the lower flange 23" extends from the center portion again. That is, it increases toward the end of the body 1 ".
상기 하부플랜지(23")의 두께가 두꺼워지는 형태는 앞서 설명한 I형 거더의 대응되는 구성과 동일하므로 더 이상의 설명은 생략한다.Since the thickness of the lower flange 23 ″ becomes thicker than the corresponding configuration of the I-type girder described above, further description thereof will be omitted.
상기 단부블록(30")은 상기 한 쌍의 변단면부(20")로부터 각각 연장되며 한 쌍이 마련되는 구성으로서 여러가지 형태의 단면으로 구성될 수 있으며 계속해서 단면의 형태가 변화하는 다양한 모양으로 구성될 수도 있는데 본 실시예에서는 도 19에 도시된 바와 같이 변단면부(20")의 본체(1") 단부쪽 형태와 동일한 단면이 유지되는 형상이다.The end block 30 ″ extends from the pair of end face portions 20 ″ and is provided with a pair, and may be configured in various shapes of cross sections, and may be configured in various shapes in which the cross sectional shape is continuously changed. In this embodiment, as shown in FIG. 19, the same cross-section as that of the end portion of the main body 1 ″ of the edge section 20 ″ is maintained.
상기 제1긴장재(100")는 본체(1") 중 단부블록(30")의 아랫부분, 변단면부(20") 및 중앙부(10")의 하부플랜지(13", 23")에 배치되는 구성이며, 상하방향의 배치는 도 19의 (b)와 (d)에 도시된 바와 같이 본체(1")의 양단부에서 가장 높고 가운데에서 가장 낮게 배치되는데, 본체(1") 중 어느 하나의 단부쪽의 단부블록과 변단면부 구간에서 고도를 점점 낮추다가 중앙부(10")의 어느 한 점부터는 고도 변화가 없는 형태로서 본체(1")의 중앙을 기준으로 실질적으로 대칭으로 배치되며, 인장력이 가해진 상태로 양단부가 제1정착구(310")에 의해 본체(1")에 정착된다.The first tension member 100 "is disposed at the lower portion of the end block 30", the end face portion 20 "and the lower flanges 13" and 23 "of the central portion 10" of the main body 1 ". The arrangement in the vertical direction is the highest at both ends of the main body 1 "and the lowest in the middle, as shown in FIGS. 19B and 19D, whichever is one of the main bodies 1". The altitude is gradually decreased in the end block and the end face section of the end side, and is substantially symmetrical with respect to the center of the main body 1 "without any change in altitude from any point of the center portion 10". In this applied state, both ends are fixed to the main body 1 "by the first fixing holes 310".
상기 제1긴장재(100")의 좌우방향 배치는 도 19의 (c)와 (d)에 도시된 바와 같이 거더 폭 방향으로 일정 간격을 유지하는 형태로서 본체(1")의 중앙을 기준으로 대칭으로 배치된다.The left-right arrangement of the first tension member 100 "is symmetrical with respect to the center of the main body 1" as shown in FIGS. Is placed.
이러한 제1긴장재(100")의 배치는 도 19에 파란선으로 도시되어 있다. 상기 제1긴장재(100")는 제1쉬스관(150")에 수용된 상태로 설치되며, 도면에는 제1쉬스관(150")과 제1쉬스관(150")의 내부에 수용되는 제1긴장재(100")가 하나의 선으로 도시되어 있고, 도면부호도 100"(150")으로 표시하였다.The arrangement of the first tension member 100 "is shown by a blue line in Fig. 19. The first tension member 100" is installed in a state of being accommodated in the first sheath tube 150 ", and the first sheath is shown in the figure. The first tension member 100 "accommodated inside the tube 150" and the first sheath tube 150 "is shown by one line, and is indicated by reference numeral 100" (150 ").
상기 제2긴장재(200")는 단부블록(30")의 윗부분, 변단면부(20")의 상부플랜지(21") 또는 복부(22"), 중앙부(10")의 상부플랜지(11"), 복부(12") 또는 하부플랜지(13")에 걸쳐 배치되며, 도면에는 제1긴장재(100")와의 선명한 구분을 위하여 빨간색으로 표시되어 있다. 제2긴장재(200")는 인장력이 가해진 상태로 양단부가 제2정착구(320")에 의해 본체(1")에 정착되는 구성으로서, 제2쉬스관(250")에 수용된다.The second tension member 200 " is the upper portion of the end block 30 ", the upper flange 21 " or the abdomen 22 " of the edge end portion 20 ", and the upper flange 11 " of the central portion 10 ". ), Abdomen 12 ″ or lower flange 13 ″, and are shown in red in the drawing for clear separation from the first tension member 100 ″. The second tension member 200 "is a structure in which both ends thereof are fixed to the main body 1" by the second fixing hole 320 "in a state where a tensile force is applied, and is accommodated in the second sheath tube 250".
상기 제2긴장재(200")의 상하방향의 배치 및 관련된 기술적 사상은 앞서 설명한 I 형 거더에 있어서 제2긴장재(200)의 상하방향 배치 및 관련 기술적 사상과 동일하므로 설명을 생략한다. The vertical arrangement and related technical ideas of the second tension material 200 ″ are the same as the vertical alignment and related technical ideas of the second tension material 200 in the above-described I-type girder, and thus description thereof is omitted.
제2긴장재(200")의 수평 배치와 관련하여 U형 거더에는 복부(12",22")가 두 개이므로 제2긴장재(200")를 수용하는 제2쉬스관(250")도 2의 배수로 좌우 대칭이 되도록 배치한다.In relation to the horizontal arrangement of the second tension member 200 ", the U-girder has two abdomens 12" and 22 ", so that the second sheath tube 250" receiving the second tension member 200 "is shown in FIG. Arrange in a multiple way to be symmetrical.
도 19에 도시된 U형 거더의 경우에도 전술한 I형 거더와 같이 복부의 두께를 줄여 본체의 무게를 줄임으로써 구조적인 효율성을 얻을 수 있고 적은 수의 쉬스관을 배치함으로써 시공비용의 절감효과를 기대할 수 있다는 점은 동일하다.In the case of the U-type girder shown in FIG. 19, structural efficiency can be obtained by reducing the thickness of the body by reducing the thickness of the abdomen as in the aforementioned I-type girder, and by reducing the number of sheath pipes, the construction cost can be reduced. The same can be expected.

Claims (8)

  1. 지상에서 프리캐스트 프리스트레스트 콘크리트 거더들을 제작하고 이를 교각, 교대 등의 하부구조 위에 가설하고 그 위에 바닥판 슬래브를 시공하는 합성거더교 공법에 사용되는 프리스트레스트 콘크리트 거더에 있어서,In the prestressed concrete girder used in the composite girder bridge construction method for making precast prestressed concrete girders on the ground, placing them on the substructures of bridges, shifts, etc., and constructing slab slabs thereon,
    상부플랜지, 복부, 하부플랜지를 포함하는 I형 단면을 가지며 일방향으로 긴 중앙부와,A central section having an I-shaped cross section including an upper flange, an abdomen, and a lower flange and being long in one direction;
    상부플랜지, 복부, 하부플랜지를 포함하는 I형 단면을 가지고 상기 중앙부의 양단부에서 각각 연장되며 연장되는 방향으로 갈수록 하부플랜지의 두께와 복부의 두께가 증가하는 한 쌍의 변단면부와,A pair of edge face portions having an I-shaped cross section including an upper flange, an abdomen, and a lower flange, each extending from both ends of the central portion and increasing in thickness and extending in the extending direction of the lower flange;
    상기 한 쌍의 변단면부 각각에서 연장되는 한 쌍의 단부블록을 포함하여 구성되는 철근콘크리트 재질의 본체;A body made of reinforced concrete material comprising a pair of end blocks extending from each of the pair of edge faces;
    상기 본체의 단부블록의 아랫부분과 변단면부 및 중앙부의 하부플랜지에 배치되되 본체의 양단부에서 가장 높고 가운데에서 가장 낮게 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 하부에 각각 정착되는 제1긴장재;It is disposed on the lower flange of the end block of the main body and the lower end portion and the central portion of the lower portion of the main body is disposed at the highest and the lowest in the middle, both ends of the lower end of the pair of end blocks, respectively, in the tension applied A first tension material to be fixed;
    상기 본체의 단부블록의 윗부분과 변단면부의 상부플랜지 또는 복부와 중앙부의 상부플랜지, 복부 또는 하부플랜지에 배치되되 상기 본체의 단부로부터 변단면부와 중앙부의 경계 부근의 어느 한 지점인 최고점까지는 그 높이가 단조증가하다가 상기 최고점부터 중앙부의 가운데까지는 그 높이가 단조감소 하도록 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 상부에 각각 정착되는 제2긴장재;It is disposed on the upper flange of the end block of the main body and the upper end portion or the upper flange, the abdomen or the lower flange of the abdomen and the center portion, the height from the end of the main body to any point near the boundary between the edge and the central portion The second tension material is forged to increase and the height from the highest point to the center of the center portion is arranged to decrease the forging, both ends are fixed to the upper portion of the pair of end blocks, respectively, in the tension force is applied;
    상기 제1긴장재를 수용하기 위한 제1쉬스관; 및A first sheath pipe for accommodating the first tension material; And
    상기 제1긴장재를 정착하기 위한 제1정착구와 상기 제2긴장재를 정착하기 위한 제2정착구;를 포함하는 것을 특징으로 하는 프리스트레스트 콘크리트 거더.Prestressed concrete girder comprising a; a first fixing tool for fixing the first tension material and a second fixing tool for fixing the second tension material.
  2. 지상에서 프리캐스트 프리스트레스트 콘크리트 거더들을 제작하고 이를 교각, 교대 등의 하부구조 위에 가설하고 그 위에 바닥판 슬래브를 시공하는 합성거더교 공법에 사용되는 프리스트레스트 콘크리트 거더에 있어서,In the prestressed concrete girder used in the composite girder bridge construction method for making precast prestressed concrete girders on the ground, placing them on the substructures of bridges, shifts, etc., and constructing slab slabs thereon,
    상부플랜지, 한 쌍의 복부, 하부플랜지를 포함하는 박스형 단면을 가지며 일방향으로 긴 중앙부와,A central section having a box-shaped cross section including an upper flange, a pair of abdomen and a lower flange, and being long in one direction;
    상부플랜지, 한 쌍의 복부, 하부플랜지를 포함하는 박스형 단면을 가지고 상기 중앙부의 양단부에서 각각 연장되며 연장되는 방향으로 갈수록 하부플랜지의 두께와 복부의 두께가 증가하는 한 쌍의 변단면부와,A pair of edge portions having a box-shaped cross section including an upper flange, a pair of abdomen and a lower flange, each extending from both ends of the central portion and increasing in thickness in the direction of extension of the lower flange;
    상기 한 쌍의 변단면부 각각에서 연장되는 한 쌍의 단부블록을 포함하여 구성되는 철근콘크리트 재질의 본체;A body made of reinforced concrete material comprising a pair of end blocks extending from each of the pair of edge faces;
    상기 본체의 단부블록의 아랫부분과 변단면부 및 중앙부의 하부플랜지에 배치되되 본체의 양단부에서 가장 높고 가운데에서 가장 낮게 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 하부에 각각 정착되는 제1긴장재;It is disposed on the lower flange of the end block of the main body and the lower end portion and the central portion of the lower portion of the main body is disposed at the highest and the lowest in the middle, both ends of the lower end of the pair of end blocks, respectively, in the tension applied A first tension material to be fixed;
    상기 본체의 단부블록의 윗부분과 변단면부의 상부플랜지 또는 복부와 중앙부의 상부플랜지, 복부 또는 하부플랜지에 배치되되 상기 본체의 단부로부터 변단면부와 중앙부의 경계 부근의 어느 한 지점인 최고점까지는 그 높이가 단조증가하다가 상기 최고점부터 중앙부의 가운데까지는 그 높이가 단조감소 하도록 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 상부에 각각 정착되는 제2긴장재;It is disposed on the upper flange of the end block of the main body and the upper end portion or the upper flange, the abdomen or the lower flange of the abdomen and the center portion, the height from the end of the main body to any point near the boundary between the edge and the central portion The second tension material is forged to increase and the height from the highest point to the center of the center portion is arranged to decrease the forging, both ends are fixed to the upper portion of the pair of end blocks, respectively, in the tension force is applied;
    상기 제1긴장재를 수용하기 위한 제1쉬스관; 및A first sheath pipe for accommodating the first tension material; And
    상기 제1긴장재를 정착하기 위한 제1정착구와 상기 제2긴장재를 정착하기 위한 제2정착구;를 포함하는 것을 특징으로 하는 프리스트레스트 콘크리트 거더.Prestressed concrete girder comprising a; a first fixing tool for fixing the first tension material and a second fixing tool for fixing the second tension material.
  3. 지상에서 프리캐스트 프리스트레스트 콘크리트 거더들을 제작하고 이를 교각, 교대 등의 하부구조 위에 가설하고 그 위에 바닥판 슬래브를 시공하는 합성거더교 공법에 사용되는 프리스트레스트 콘크리트 거더에 있어서,In the prestressed concrete girder used in the composite girder bridge construction method for making precast prestressed concrete girders on the ground, placing them on the substructures of bridges, shifts, etc., and constructing slab slabs thereon,
    한 쌍의 상부플랜지와 복부, 상기 한 쌍의 복부를 서로 연결하는 하부플랜지를 포함하는 U형 단면을 가지며 일방향으로 긴 중앙부와,A central portion having a U-shaped cross section including a pair of upper flanges and an abdomen, and a lower flange connecting the pair of abdomens to each other;
    한 쌍의 상부플랜지와 복부, 상기 한 쌍의 복부를 서로 연결하는 하부플랜지를 포함하는 U형 단면을 가지고 상기 중앙부의 양단부에서 각각 연장되며 연장되는 방향으로 갈수록 하부플랜지의 두께와 복부의 두께가 증가하는 한 쌍의 변단면부와,It has a U-shaped cross section including a pair of upper flanges and the abdomen, and a lower flange connecting the pair of abdomen with each other extending from both ends of the central portion and the thickness of the lower flange and the thickness of the abdomen increases as the direction extends. And a pair of side faces
    상기 한 쌍의 변단면부 각각에서 연장되는 한 쌍의 단부블록을 포함하여 구성되는 철근콘크리트 재질의 본체;A body made of reinforced concrete material comprising a pair of end blocks extending from each of the pair of edge faces;
    상기 본체의 단부블록의 아랫부분과 변단면부 및 중앙부의 하부플랜지에 배치되되 본체의 양단부에서 가장 높고 가운데에서 가장 낮게 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 하부에 각각 정착되는 제1긴장재;It is disposed on the lower flange of the end block of the main body and the lower end portion and the central portion of the lower portion of the main body is disposed at the highest and the lowest in the middle, both ends of the lower end of the pair of end blocks, respectively, in the tension applied A first tension material to be fixed;
    상기 본체의 단부블록의 윗부분과 변단면부의 상부플랜지 또는 복부와 중앙부의 상부플랜지, 복부 또는 하부플랜지에 배치되되 상기 본체의 단부로부터 변단면부와 중앙부의 경계 부근의 어느 한 지점인 최고점까지는 그 높이가 단조증가하다가 상기 최고점부터 중앙부의 가운데까지는 그 높이가 단조감소 하도록 배치되고, 양단부는 인장력이 가해진 상태로 상기 한 쌍의 단부블록의 상부에 각각 정착되는 제2긴장재;It is disposed on the upper flange of the end block of the main body and the upper end portion or the upper flange, the abdomen or the lower flange of the abdomen and the center portion, the height from the end of the main body to any point near the boundary between the edge and the central portion The second tension material is forged to increase and the height from the highest point to the center of the center portion is arranged to decrease the forging, both ends are fixed to the upper portion of the pair of end blocks, respectively, in the tension force is applied;
    상기 제1긴장재를 수용하기 위한 제1쉬스관; 및A first sheath pipe for accommodating the first tension material; And
    상기 제1긴장재를 정착하기 위한 제1정착구와 상기 제2긴장재를 정착하기 위한 제2정착구;를 포함하는 것을 특징으로 하는 프리스트레스트 콘크리트 거더.Prestressed concrete girder comprising a; a first fixing tool for fixing the first tension material and a second fixing tool for fixing the second tension material.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 변단면부의 하부플랜지 상부의 높이변화는 아래로 볼록한 곡선형상인 것을 특징으로 하는 프리스트레스트 콘크리트 거더.Prestressed concrete girder, characterized in that the change in the height of the upper side of the lower flange of the edge portion is curved convex down.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 아래로 볼록한 곡선은 곡률반경이 일정한 호 형상인 것을 특징으로 하는 프리스트레스트 콘크리트 거더.The convex downward curved prestressed concrete girder, characterized in that the arc radius of curvature is constant.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 변단면부의 하부플랜지 상부의 높이변화는 직선 형상인 것을 특징으로 하는 프리스트레스트 콘크리트 거더.Prestressed concrete girder, characterized in that the height change of the upper side of the lower flange of the edge portion.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제2긴장재를 수용하기 위한 제2쉬스관을 더 포함하는 것을 특징으로 하는 프리스트레스트 콘크리트 거더.Prestressed concrete girder further comprises a second sheath tube for accommodating the second tension material.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제2긴장재의 일부는 피복강연선이며, 피복이 안 된 강연선을 수용하는 제2쉬스관을 더 포함하는 것을 특징으로 하는 프리스트레스트 콘크리트 거더.A portion of the second tension material is a coated stranded wire, the prestressed concrete girder further comprises a second sheath tube for receiving the unstretched stranded wire.
PCT/KR2018/004413 2017-04-28 2018-04-17 Prestressed concrete girder WO2018199528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170054907A KR101812020B1 (en) 2017-04-28 2017-04-28 Prestressed Concrete Girder
KR10-2017-0054907 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199528A1 true WO2018199528A1 (en) 2018-11-01

Family

ID=61401146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004413 WO2018199528A1 (en) 2017-04-28 2018-04-17 Prestressed concrete girder

Country Status (2)

Country Link
KR (1) KR101812020B1 (en)
WO (1) WO2018199528A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195407U1 (en) * 2019-10-29 2020-01-27 Акционерное общество по производству мостовых железобетонных конструкций «Мостожелезобетонконструкция» Pre-stressed beam
RU222282U1 (en) * 2023-10-25 2023-12-18 Александр Анатольевич Кулешов CONSTRUCTION BEAM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113279516B (en) * 2021-06-16 2022-08-19 无锡市市政设施建设工程有限公司 Reinforced subway prestressed beam and manufacturing method thereof
CN114508040B (en) * 2022-03-22 2023-09-22 中交路桥建设有限公司 Large-span T-beam and vertical prestress arrangement method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754789B1 (en) * 2006-06-30 2007-09-03 박재만 Prestressed composition girder and method of constructing continuous girder used by the composition unit girder
KR101073390B1 (en) * 2010-11-02 2011-10-13 주식회사 인터컨스텍 Tendon placing method
KR20150037786A (en) * 2012-12-20 2015-04-08 우경기술주식회사 Rahmen Bridge PSC girder and construction method thereof
KR101636889B1 (en) * 2015-06-08 2016-07-06 토웅이앤씨(주) Prestressed Concrete Girder
KR20160127234A (en) * 2015-04-24 2016-11-03 한국철도기술연구원 U-type girder of lower route bridge for decreasing noise, and construction method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754789B1 (en) * 2006-06-30 2007-09-03 박재만 Prestressed composition girder and method of constructing continuous girder used by the composition unit girder
KR101073390B1 (en) * 2010-11-02 2011-10-13 주식회사 인터컨스텍 Tendon placing method
KR20150037786A (en) * 2012-12-20 2015-04-08 우경기술주식회사 Rahmen Bridge PSC girder and construction method thereof
KR20160127234A (en) * 2015-04-24 2016-11-03 한국철도기술연구원 U-type girder of lower route bridge for decreasing noise, and construction method for the same
KR101636889B1 (en) * 2015-06-08 2016-07-06 토웅이앤씨(주) Prestressed Concrete Girder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195407U1 (en) * 2019-10-29 2020-01-27 Акционерное общество по производству мостовых железобетонных конструкций «Мостожелезобетонконструкция» Pre-stressed beam
RU222282U1 (en) * 2023-10-25 2023-12-18 Александр Анатольевич Кулешов CONSTRUCTION BEAM

Also Published As

Publication number Publication date
KR101812020B1 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
WO2018199528A1 (en) Prestressed concrete girder
KR100555249B1 (en) Bridge constructing method using even-sectioned i-type rolled steel beam having increased section intensity and i-type rolled steel beam manufactured with uneven steel plate
WO2001027406A1 (en) Method for designing and fabricating multi-step tension prestressed girder
WO2013129745A1 (en) Tripartite hybrid beam and method for manufacturing same
ATE259020T1 (en) PRE-TENSIONED TIE WITH ADJUSTABLE PRE-TENSION
KR101152444B1 (en) The pre-stress concrete bim and that making method using a pre-tensioning construction
WO2021002529A1 (en) Construction method for introducing compressive stress corresponding to negative moment generated when integrating abutment or outer column and upper structure in rahmen structure
KR20100085509A (en) Bridge structure of continuous psc girder and method of construction the same
KR100529518B1 (en) The prestressed concrete beam middle point part continuous structure and the method of having used the sole plate
KR100811203B1 (en) Prestressed composite beam
KR20100025160A (en) Apparatus having a girder connection anchor plate and the continuous construction method for a psc girder bridge by using the same apparatus
KR100334237B1 (en) Continous composite steel girder bridges and construction method using themperature gradient
WO2021157944A1 (en) Steel composite psc girder including arched reinforcement member
KR20130120096A (en) Girder bridge for pre-tention
KR101578637B1 (en) Prestressed Concrete Girder for Continuous Composite Girder Bridge and Construction Method for Thereof
CN212404770U (en) Pedestrian overpass and frame pier
KR101341830B1 (en) Psc girder making method using upper and lower psc tendon with straight tendon setting structure
WO2011083908A2 (en) Steel box continuous bridge having an asymmetric span, and method for constructing same
KR101083600B1 (en) Psc girder making method with straight tendon setting structure
KR100500382B1 (en) Construction method and connection structure for construction continuous of precast girder
KR100580327B1 (en) PSC beam with tensioned lower flange and construction method
KR100569226B1 (en) Bottom plate reinforcement method of continuous bridge by inclined tension material
KR102057200B1 (en) Pre-tension psc girder manufacturing method and pre-tension psc girder manufacturing system
KR101585524B1 (en) Prestressed composite girder with second tendon in the lower casing concrete of preflex girder and method constructing the composite girder thereby
US3471881A (en) Method of constructing a reinforced suspension bridge by applying pre-stress

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18792328

Country of ref document: EP

Kind code of ref document: A1