WO2021106303A1 - レーザレーダ - Google Patents

レーザレーダ Download PDF

Info

Publication number
WO2021106303A1
WO2021106303A1 PCT/JP2020/033688 JP2020033688W WO2021106303A1 WO 2021106303 A1 WO2021106303 A1 WO 2021106303A1 JP 2020033688 W JP2020033688 W JP 2020033688W WO 2021106303 A1 WO2021106303 A1 WO 2021106303A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser radar
light emission
data
controller
Prior art date
Application number
PCT/JP2020/033688
Other languages
English (en)
French (fr)
Inventor
森本 廉
啓右 小嶋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021106303A1 publication Critical patent/WO2021106303A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means

Definitions

  • the present invention relates to a laser radar that detects an object using a laser beam.
  • laser radars that detect objects using laser light have been developed in various fields. For example, in an in-vehicle laser radar, laser light is projected from the front of the vehicle, and it is determined whether or not an object such as a vehicle or a person exists in front of the vehicle based on the presence or absence of the reflected light. Further, the distance to the object is measured based on the projection timing of the laser beam and the reception timing of the reflected light.
  • Patent Documents 1 and 2 disclose a device that scans a line beam to detect an object in front of a vehicle.
  • the laser radar for example, when the laser radar is arranged on the oncoming vehicle, the laser light (interference light) emitted by the laser radar of the oncoming vehicle is received in addition to the reflected light from the object of the laser light emitted by the laser radar. Can happen. In this case, the accuracy of object detection is lowered due to the reception of the interference light.
  • the present invention provides a laser radar capable of acquiring high-precision measurement data in which the influence of interference light emitted by another laser radar is suppressed, thereby improving the accuracy of object detection.
  • the purpose is to do.
  • a main aspect of the present invention relates to a laser radar that detects an object by scanning a line beam.
  • the laser radar according to this aspect has a matrix of a light source that emits laser light used to generate the line beam, a mirror for reciprocating scanning the line beam in a target region, and light reflected from an object of the line beam.
  • a light receiving element that receives light from a plurality of pixels arranged in the above and a controller are provided.
  • the controller controls the light source so that the light emission cycles are different from each other in the outbound and inbound scanning of the line beam, and the first pixel data obtained from the light receiving element in the outbound scanning and the inbound path. It is determined whether or not to select the first pixel data or the second pixel data as measurement data based on the difference from the second pixel data obtained from the light receiving element in scanning.
  • the laser radar since the light emission cycle of the light source in the outward path and the return path is different, even if the light emission cycle of either the outward path or the return path matches the light emission cycle of the interference light from the other laser radar.
  • the other emission cycle is likely to be different from the emission cycle of the interference light. Therefore, when the interference light is incident on the light receiving element, the ratio of the data based on the reception of the interference light to the pixel data acquired in the outbound and return scanning is different from each other, and the first pixel data and the first pixel data are different. A difference occurs between the two pixel data. Therefore, by referring to this difference, it is possible to determine whether or not the first pixel data and the second pixel data are affected by the interference light.
  • the laser radar it is determined whether or not to select the first pixel data or the second pixel data as the measurement data based on the difference between the first pixel data and the second pixel data. Therefore, high-precision measurement data can be acquired, and as a result, the accuracy of object detection can be improved.
  • a laser radar capable of acquiring high-precision measurement data in which the influence of interference light emitted by another laser radar is suppressed, thereby improving the accuracy of object detection can be obtained. Can be provided.
  • FIG. 1A is a diagram showing a configuration of an optical system and a circuit unit of a laser radar according to an embodiment.
  • FIG. 1B is a perspective view showing the configuration of the line beam scanning optical system according to the embodiment.
  • FIG. 2 is a diagram schematically showing a projection state of a laser beam of a laser radar and a state of a line beam in a target region according to an embodiment.
  • FIG. 3A is a diagram schematically showing the configuration of the light receiving element according to the embodiment.
  • FIG. 3B is a diagram showing a change in the rotation angle of the mirror during the measurement operation according to the embodiment.
  • FIG. 3C is a diagram showing the movement of the reflected light on the light receiving surface in the outward path and the return path according to the embodiment.
  • FIG. 4 (a) to 4 (c) are diagrams showing measurement operations during the outbound measurement period according to the embodiment, respectively.
  • FIG. 5A is a diagram showing a state in which reflected light is incident on the pixels in the second row and the fifth column during the eighth scanning period of the outward path according to the embodiment.
  • FIG. 5B is a diagram schematically showing pixel data of one frame of the outward path according to the embodiment.
  • FIG. 6A shows that in the second measurement period of the outward path according to the embodiment, interference light was incident on the pixel groups of the first and second rows during the light receiving period of the first and second rows. It is a figure which shows the state.
  • FIG. 5A is a diagram showing a state in which reflected light is incident on the pixels in the second row and the fifth column during the eighth scanning period of the outward path according to the embodiment.
  • FIG. 5B is a diagram schematically showing pixel data of one frame of the outward path according to the embodiment.
  • FIG. 6A shows that in the second measurement
  • FIG. 6B is a diagram schematically showing pixel data of one frame of the outward path when interference light is incident on the light receiving element according to the embodiment.
  • FIG. 7A is a diagram showing a light emission cycle of the return path according to the embodiment.
  • FIG. 7B is a diagram schematically showing pixel data of one frame of the return path according to the embodiment.
  • FIG. 8 is a flowchart showing a measurement data acquisition process according to the embodiment.
  • FIG. 9A is a flowchart showing the measurement data acquisition process according to the first modification.
  • FIG. 9B is a flowchart showing the measurement data acquisition process according to the second modification.
  • FIG. 10 is a flowchart showing a measurement data acquisition process according to the third modification.
  • FIG. 9A is a flowchart showing the measurement data acquisition process according to the first modification.
  • FIG. 9B is a flowchart showing the measurement data acquisition process according to the second modification.
  • FIG. 10 is a flowchart showing a measurement data acquisition process according to the
  • 11A is a diagram showing a configuration example of selection candidates for the outward path and the complex light emission cycle held by the controller according to the embodiment.
  • 11 (b) and 11 (c) are timing charts showing an example of the state of the emission cycle of the outward path and the incident timing of the interference light according to the modified example 4.
  • the X, Y, and Z axes that are orthogonal to each other are added to each figure.
  • the X-axis direction and the Y-axis direction are the long side direction and the short side direction of the line beam, respectively, and the Z-axis positive direction is the projection direction of the line beam.
  • FIG. 1A is a diagram showing a configuration of an optical system and a circuit unit of the laser radar 1.
  • FIG. 1B is a perspective view showing the configuration of the projection optical system 10.
  • the laser radar 1 includes a projection optical system 10 and a light receiving optical system 20 as an optical system configuration.
  • the projection optical system 10 generates a long line beam B10 in one direction (X-axis direction). Further, the projection optical system 10 scans the generated line beam B10 in the short side direction (Y-axis direction) thereof.
  • the light receiving optical system 20 receives the reflected light from the object of the laser light projected from the projection optical system 10.
  • the projection optical system 10 includes a light emitting unit 11, a fast-axis cylindrical lens 12, a slow-axis cylindrical lens 13, and an optical deflector 14. Further, the light receiving optical system 20 includes a light receiving lens 21 and a light receiving element 22.
  • the light emitting unit 11 is configured by integrating a plurality of laser light sources 11a.
  • the laser light source 11a emits a laser beam having a predetermined wavelength.
  • the laser light source 11a is an end face emitting type laser diode.
  • the laser light source 11a may be a surface emitting type laser light source.
  • the emission wavelength of each laser light source 11a is set in the infrared wavelength band (for example, 905 nm).
  • the emission wavelength of the laser light source 11a can be appropriately changed depending on the usage mode of the laser radar 1.
  • the laser light source 11a has a structure in which the active layer is sandwiched between an N-type clad layer and a P-type clad layer.
  • a voltage is applied to the N-type clad layer and the P-type clad layer, laser light is emitted from the light emitting region of the active layer.
  • the width of the light emitting region in the direction parallel to the active layer is wider than the width in the direction perpendicular to the active layer.
  • the axis perpendicular to the active layer is called the fast axis
  • the axis parallel to the active layer is called the slow axis.
  • the laser beam emitted from the light emitting region has a larger spread angle in the fast axis direction than in the slow axis direction. Therefore, the shape of the beam emitted from the light emitting region becomes an elliptical shape long in the fast axis direction.
  • the plurality of laser light sources 11a are arranged so that their slow axes are parallel to the X-axis direction. Further, the plurality of laser light sources 11a are arranged so as to be arranged in a direction parallel to the slow axis (X-axis direction).
  • the light emitting unit 11 has a structure in which one semiconductor light emitting element formed so that a plurality of light emitting regions are arranged in the slow axis direction is installed on the base 11b.
  • the structural portion that emits the laser light from each light emitting region corresponds to the laser light source 11a, respectively.
  • the light emitting unit 11 may be configured by installing a plurality of individually formed laser light sources 11a on the base 11b adjacent to each other.
  • the fast-axis cylindrical lens 12 converges the laser light emitted from each laser light source 11a of the light emitting unit 11 in the fast-axis direction, and adjusts the spread of the laser light in the fast-axis direction to a substantially parallel state. That is, the fast-axis cylindrical lens 12 has an action of parallelizing the laser light emitted from each laser light source 11a of the light emitting unit 11 only in the fast-axis direction.
  • the fast-axis cylindrical lens 12 has a lens surface 12a that is curved only in a direction parallel to the YY plane.
  • the generatrix of the lens surface 12a is parallel to the X axis.
  • Fast Axis The fast axis of each laser beam incident on the cylindrical lens 12 is perpendicular to the generatrix of the lens surface 12a.
  • the laser beams are aligned in the X-axis direction and incident on the fast-axis cylindrical lens 12.
  • Each laser beam receives a convergence action in the fast axis direction (Z axis direction) on the lens surface 12a and becomes parallel light in the fast axis direction.
  • the slow axis cylindrical lens 13 collects the laser light emitted from each laser light source 11a of the light emitting unit 11 in the slow axis direction.
  • the slow axis cylindrical lens 13 has a lens surface 13a that curves only in a direction parallel to the XY plane.
  • the generatrix of the lens surface 13a is parallel to the Z axis.
  • the generatrix of the lens surface 12a of the fast-axis cylindrical lens 12 and the generatrix of the lens surface 13a of the slow-axis cylindrical lens 13 are perpendicular to each other.
  • the laser light emitted from each laser light source 11a is collected in the slow axis direction by the slow axis cylindrical lens 13 and incident on the mirror 14a of the light deflector 14.
  • the optical deflector 14 is, for example, a MEMS (Micro Electro Mechanical Systems) mirror using a piezoelectric actuator, an electrostatic actuator, or the like.
  • the reflectance of the mirror 14a is increased by a dielectric multilayer film, a metal film, or the like.
  • the mirror 14a is arranged at a position near the focal length on the positive side of the Y-axis of the slow-axis cylindrical lens 13.
  • the mirror 14a is driven so as to rotate about a rotation axis R1 parallel to the X axis.
  • the mirror 14a has, for example, a circular shape having a diameter of about 3 mm.
  • a beam is composed of a collection of laser beams from each laser light source 11a. Since the beam is focused only in the X-axis direction by the slow-axis cylindrical lens 13, the beam after being reflected by the mirror 14a spreads only in the X-axis direction. In this way, the line beam B10 extending in the X-axis direction is generated.
  • the line beam B10 has, for example, a divergence angle in the long side direction of 10 ° or more in the long side direction and a divergence angle in the short side direction of 1 ° or less.
  • the spread angle of the line beam B10 in the long side direction is set to a full angle of 60 ° or more.
  • the optical deflector 14 drives the mirror 14a by a drive signal from the mirror drive circuit 33, and scans the beam reflected from the mirror 14a in the Y-axis direction. As a result, the line beam B10 is scanned in the lateral direction (Y-axis direction).
  • the mirror 14a when the mirror 14a is in the neutral position, the mirror 14a is tilted by 45 ° with respect to the emission light axis of the laser light source 11a, but the emission light of the laser light source 11a.
  • the tilt angle of the mirror 14a with respect to the axis is not limited to this.
  • the tilt angle of the mirror 14a can be appropriately changed according to the layout of the projection optical system 10.
  • FIG. 2 is a diagram schematically showing the projection state of the laser beam of the laser radar 1 and the state of the line beam B10 in the target region.
  • the upper part of FIG. 2 schematically shows the cross-sectional shape of the line beam B10 when viewed in the projection direction (Z-axis positive direction).
  • the laser radar 1 is mounted on the front side of the vehicle 200, and the line beam B10 is projected in front of the vehicle 200.
  • the spread angle ⁇ 11 in the long side direction of the line beam B10 is, for example, 90 °.
  • the upper limit of the distance D11 capable of detecting an object is, for example, about 250 m. In FIG. 2, for convenience, the spread angle ⁇ 11 is expressed smaller than it actually is.
  • the line beam B10 is configured by synthesizing the laser light emitted from each laser light source 11a.
  • the reflected light R10 of the line beam B10 reflected from the target region is focused on the light receiving surface of the light receiving element 22 by the light receiving lens 21.
  • the light receiving element 22 is, for example, an image sensor in which pixels are arranged in a matrix in the vertical and horizontal directions.
  • an avalanche photodiode is placed at the position of each pixel.
  • the avalanche photodiode is used, for example, in Geiger mode (Geiger multiplication mode).
  • the avalanche multiplier causes the charge collected on the cathode of the avalanche photodiode to be multiplied to the saturated charge amount. Therefore, the presence or absence of light incident on the pixel can be detected with high sensitivity.
  • FIG. 3A is a diagram schematically showing the configuration of the light receiving element 22.
  • the light receiving element 22 has, for example, a rectangular light receiving surface 22a, and a plurality of pixels 22b are arranged in a matrix on the light receiving surface 22a.
  • 80 pixels 22b are arranged in 8 rows and 10 columns.
  • the number of pixels 22b and the number of rows and columns arranged on the light receiving element 22 are not limited to this. In reality, the number of pixels 22b, which is several steps higher than 80, is arranged in high definition.
  • the light receiving element 22 is arranged so that the long side of the light receiving surface 22a is parallel to the X axis.
  • the long side direction of the light receiving surface 22a of the light receiving element 22 corresponds to the long side direction of the line beam B10 in the target region.
  • the reflected light R10 of the line beam B10 is imaged on the light receiving surface of the light receiving element 22 by the light receiving lens 21 so as to extend along the long side direction of the light receiving surface 22a.
  • FIG. 3A shows the state of the reflected light R10 when all of the line beam B10 is reflected.
  • the pixel position of the light receiving surface 22a in the X-axis direction corresponds to the position in the X-axis direction in the target region.
  • the pixel position of the light receiving surface 22a in the Y-axis direction corresponds to the position in the Y-axis direction in the target region. Therefore, it is possible to detect at which position in the X-axis direction and the Y-axis direction of the target region the object exists by the position of the pixel 22b where the received light signal is generated.
  • the laser radar 1 includes a controller 31, a laser drive circuit 32, a mirror drive circuit 33, and a signal processing circuit 34 as a circuit unit configuration.
  • the controller 31 includes an arithmetic processing circuit such as a CPU (CentralProcessingUnit) and a storage medium such as a ROM (ReadOnlyMemory) and a RAM (RandomAccessMemory), and controls each part according to a preset program.
  • the laser drive circuit 32 causes each laser light source 11a of the light emitting unit 11 to emit light in pulses according to the control from the controller 31.
  • the mirror drive circuit 33 drives the optical deflector 14 according to the control from the controller 31.
  • the optical deflector 14 rotates the mirror 14a with respect to the rotation axis R1 to scan the line beam B10 in the short side direction of the line beam B10.
  • the signal processing circuit 34 outputs the light receiving signal of each pixel of the light receiving element 22 to the controller 31.
  • the controller 31 can detect the position of the object in the X-axis direction of the target region based on the position of the pixel in which the received light signal is generated. Further, the controller 31 is based on the time difference between the timing when the light emitting unit 11 is made to emit light in a pulse and the timing when the light receiving element 22 receives the reflected light from the target region, that is, the timing when the light receiving signal is received from the light receiving element 22. , Get the distance to the object existing in the target area.
  • the controller 31 detects the presence or absence of an object in the target region by scanning the line beam B10 with the light deflector 14 while causing the light emitting unit 11 to emit light in a pulsed manner, and further determines the position of the object and the distance to the object. measure. These measurement results are transmitted to the control unit on the vehicle side at any time.
  • FIG. 3B is a diagram showing a change in the rotation angle of the mirror 14a during the measurement operation.
  • the controller 31 reciprocates the mirror 14a at regular intervals so that the period of the outward trip is longer than the period of the return trip.
  • rotation angle 0 °.
  • the line beam B10 is scanned in another direction in the short side direction (X-axis direction), and accordingly, the reflected light R10 is in the short-side direction (X-axis direction). ) Move in the other direction.
  • the period from time t1 to t2 is the measurement period T1 on the outward route
  • the period from time t3 to t4 is the measurement period T3 on the return route.
  • the controller 31 processes the signal generated by the light receiving element 22 on the outward path in the processing period T2. As a result, the pixel data of the outward route can be obtained. Further, the controller 31 processes the signal generated by the light receiving element 22 on the return path in the processing period T4. As a result, the pixel data of the return route can be obtained.
  • the measurement period T1 is, for example, 24 msec, and the measurement period T3 is, for example, 8 msec.
  • the processing periods T2 and T4 are, for example, 3 msec.
  • FIG. 3C is a diagram showing the movement of the reflected light R10 on the light receiving surface 22a on the outward path and the return path.
  • the movement of the reflected light R10 when the line beam B10 continuously emits light during the measurement periods T1 and T3 is shown.
  • the range of the line numbers of FIG. 3 (a) is represented by the line numbers.
  • the reflected light R10 moves from the position of the pixel 22b group in the first row to the position of the pixel 22b group in the eighth row during the measurement period T1 of the outward path, and measures the return path.
  • the movement is made from the position of the pixel 22b group in the eighth row toward the position of the pixel 22b group in the first row. Therefore, pixel data can be acquired in both the outward measurement period T1 and the return measurement period T3.
  • 4 (a) to 4 (c) are diagrams showing the measurement operation during the measurement period T1 of the outward route.
  • FIGS. 4A to 4C show measurement operations during the first to third measurement periods T1. Further, although the measurement operation for the pixel groups of the first row and the second row in each measurement period T1 is shown, the same measurement operation is repeated for the pixel groups of the fourth row to the eighth row.
  • the controller 31 makes the laser beam pulse light from the light emitting unit 11 in the light emitting cycle T10 corresponding to the line spacing of the pixels 22b in one measurement period T1.
  • the light emission cycle T10 is, for example, 3 msec, and the period of pulse light emission is, for example, 1 to 50 nsec.
  • the line beam B10 is intermittently projected toward the target region in the light emission period T10 corresponding to the line spacing.
  • the controller 31 causes the pixel group of each row to receive light for a predetermined time at the timing when the time ⁇ T1 corresponding to the target distance elapses from each pulse emission.
  • the time ⁇ T1 is set to the time required for the light to travel a distance twice the target distance plus the time lag from when the controller 31 controls the light emission to the light emitting unit 11 until the light is actually emitted.
  • the light receiving in the pixel group is performed by applying a predetermined reverse voltage to the avalanche photodiode to set the light receiving state.
  • the row is concerned.
  • the reflected light R10 from the object is incident on the pixel 22b at the pixel position.
  • the controller 31 acquires pixel data indicating whether or not an object exists at the target distance defined by the time ⁇ T1 for each pixel 22b in one measurement period T1.
  • the controller 31 changes the target distance to the distance specified by the time ⁇ T2 in the second measurement period T1 in the same manner. Is processed. As a result, the controller 31 acquires pixel data indicating whether or not the object exists at the target distance defined by the time ⁇ T2 for each pixel 22b in the two measurement periods T1.
  • the controller 31 sequentially changes the target distance to the distance specified by the time ⁇ T3, ... Even after the third measurement period T1, and performs the same process.
  • the controller 31 acquires pixel data indicating whether or not the object exists at the target distance defined by the time ⁇ T3, ... For each pixel 22b in the measurement period T1 after the third measurement.
  • the controller 31 repeats the same process until it reaches the longest predetermined target distance.
  • the controller 31 executes the same processing for the next frame. In this way, the controller 31 continues to acquire pixel data for one frame on the outward path until the measurement operation is completed.
  • FIG. 5A is a diagram showing a state in which the reflected light R10 is incident on the pixels 22b in the second row and the fifth column during the eighth measurement period T1 on the outward route.
  • a timing chart for the pixel group in the fifth column is shown.
  • an object exists at a position on the target region corresponding to the pixel position of the pixel 22b in the second row and the fifth column, and the distance to the object is defined by the time ⁇ T8.
  • the target distance is reached, the reflected light R10 from the object is incident on the pixels 22b in the second row and the fifth column at the timing when the time ⁇ T8 has elapsed from the pulse emission for the second row.
  • the light receiving period of the pixels 22b in the second row and the fifth column coincides with the incident timing of the reflected light R10, and the detection signal is output from the pixels 22b in the second row and the fifth column.
  • the target distance corresponding to the time ⁇ T8 is assigned as pixel data to the positions of the pixels 22b in the second row and the fifth column.
  • FIG. 5B is a diagram schematically showing the pixel data 100 of the outward path for one frame.
  • each square 101 shows the position of the pixel 22b. Further, the square 101 with hatching indicates that the distance has been acquired at the pixel position, and the square 101 without hatching indicates that the distance has not been acquired at the pixel position. There is. As described above, the distance between the pixel positions of the hatched squares 101 is acquired as the target region defined by the time ⁇ Tn.
  • the same processing as the above-mentioned processing for the outward measurement period T1 is performed, and image data for one frame is sequentially acquired.
  • the period of pulse emission to the light emitting unit 11 is set shorter than that on the outward route.
  • the light emission cycle in the return measurement period T3 is set so that the ratio of the light emission cycle of the return route to the light emission cycle of the outward route is the ratio of the reciprocal of the measurement period T1 of the outward route and the reciprocal of the measurement period of the return route. ..
  • the light emission cycle on the return trip is set to, for example, 1 msec.
  • the laser radar of the oncoming vehicle is emitted in addition to the reflected light R10 from the object of the line beam B10 emitted by the laser radar 1. It is possible to receive laser light (interference light).
  • interference light For example, as shown in FIG. 6A, in the second measurement period T1 of the outward route, interference light is incident on the pixel groups of the first and second rows during the light receiving period of the first and second rows. Then, the distance defined by the time ⁇ T2 is acquired for these pixel groups. Therefore, as shown in FIG. 6B, the distances defined by the time ⁇ T2 are erroneously assigned to the pixel positions of the first and second rows in the pixel data for one frame. As a result, the accuracy of object detection and distance measurement is reduced.
  • a configuration is provided for acquiring highly accurate measurement data by suppressing the influence of the interference light emitted by another laser radar.
  • the controller 31 has one frame of pixel data obtained from the light receiving element 22 in the outward scanning (hereinafter referred to as “outward data”) and one frame obtained from the light receiving element 22 in the returning scanning. It is determined whether or not to select the outbound data or the inbound data as the measurement data based on the difference from the pixel data (hereinafter referred to as "return data"). Then, when a difference occurs between the outbound data and the inbound data, either the outbound emission cycle T10 or the inbound emission cycle T30 is changed without selecting the outbound data or the inbound data as measurement data. Then, the process of acquiring the outbound route data and the inbound route data is performed again.
  • the difference between the outward route data and the return route data it is possible to determine whether or not any of the outward route data and the return route data includes a distance based on the interference light. Therefore, in the present embodiment, when the difference between the outbound data and the inbound data is large, it is assumed that either the outbound data or the inbound data is affected by the interference light, and both the outbound data and the inbound data are adopted as measurement data. No processing is performed.
  • FIG. 8 is a flowchart showing the acquisition process of measurement data.
  • the controller 31 drives the mirror 14a as shown in FIG. 3 (b) (S102), and sets the light emission cycles T10 and T30 of the outward and return paths to the initial values (S101: YES). S103). Then, the controller 31 makes the light emitting unit 11 pulse light in the set light emission cycles T10 and T30, and acquires the outward path data and the return path data (S104). Further, the controller 31 obtains the difference between the acquired outbound data and the inbound data, and determines whether or not the obtained difference is within the threshold value (S105).
  • the difference is acquired as, for example, the number of pixels in which the distance is assigned in one of the outbound data and the inbound data and the distance is not assigned in the other.
  • it may be acquired as the number of pixels having different distance values (including pixels in which a distance is assigned to one and no distance is not assigned to the other) between the outbound data and the inbound data.
  • the difference may be acquired as another parameter value that can identify that the influence of the interference light on the outward route data and the return route data is different.
  • the threshold value in step S105 is set to a value that defines that the interference light has affected the outward route data and the return route data. That is, the threshold value is set to be larger than the difference caused by noise or accidental malfunction of the light receiving element 22, and smaller than the difference assumed to be caused by the influence of the interference light on the outward path data and the return path data. Will be done.
  • the controller 31 selects the outbound data from the outbound data and the inbound data as the measurement data of the frame (S106).
  • the controller 31 may select the return route data from the outward route data and the return route data as the measurement data of the frame.
  • it is preferable that higher quality outbound data is selected as the measurement data of the frame from the outbound data and the inbound data.
  • the controller 31 applies all combinations of the light emission cycles previously held as the light emission cycles T10 and T30 of the outward path and the return path to obtain the outward path data and the return path data. It is determined whether or not the data has been acquired (S107).
  • the controller 31 holds, in advance, a plurality of selection candidates for the outward and return light emission cycles T10 and T30, respectively.
  • selection candidates set as default values are set. For example, the controller 31 holds two selection candidates for the outward and return light emission cycles T10 and T30. However, the number of selection candidates is not limited to this.
  • step S107 the controller 31 sets the outbound and inbound emission cycles T10 and T30 to other combinations of selection candidates (S108), and returns the process to step S104.
  • the outbound data and the inbound data are acquired in a state where at least one of the emission cycles T10 and T30 is changed to the emission cycle different from that at the time of the measurement for one frame before.
  • the light receiving period of the pixel 22b is matched with the incident timing of the interference light, and the light receiving period of the pixel 22b is deviated from the incident timing of the interference light. It becomes easy to transition. Therefore, there is a high possibility that both the outbound data and the inbound data will not be affected by the interference light, and as a result, the possibility that the determination in step S105 will be YES will increase.
  • the controller 31 selects the outbound data as measurement data (S106).
  • the controller 31 selects the emission cycles T10 and T30 until all the combinations of selection candidates are applied to the emission cycles T10 and T30 (S107: NO). The processing of steps S105 and S106 is repeated while changing the range of the candidates (S108).
  • step S109 the controller 31 repeats the same process until the measurement operation is completed (S109: NO), and acquires the measurement data. After that, when the measurement operation is completed (S109: YES), the controller 31 stops the mirror 14a (S110) and ends the process.
  • the light emission cycles T10 and T30 of the light emitting unit 11 (light source) in the outward path and the return path are different, even if the light emission cycle of either the outward path or the return path matches the light emission cycle of the interference light from the other laser radar, the other The light emission cycle of is likely to be different from the light emission cycle of the interference light. Therefore, when the interference light is incident on the light receiving element 22, the ratio of the data based on the reception of the interference light to the outbound data and the inbound data acquired in the outbound and inbound scanning is different from each other, and the outbound data. A large difference occurs between (first pixel data) and return path data (second pixel data).
  • the outbound data (first pixel data) and the inbound data (second pixel data) are based on the difference between the outbound data (first pixel data) and the inbound data (second pixel data). Since it is determined whether or not to select (1 pixel data) as the measurement data, highly accurate measurement data can be acquired, and as a result, the accuracy of object detection and distance measurement can be improved.
  • the controller 31 drives the mirror 14a so that the scanning period of the return route is shorter than the scanning period of the outward route, and FIGS. 4 (a) to 4 (c) and 7 (a). ),
  • the light emission cycle T30 on the return route is set shorter than the light emission cycle T10 on the outward route.
  • the light emitting cycle T30 on the return route and the light emission cycle T10 on the outward route can be smoothly different from each other while keeping the period during which the mirror 14a reciprocates short.
  • the controller 31 makes the ratio of the light emission cycle T30 on the return route and the light emission cycle T10 on the outward route the reciprocal of the measurement period T1 on the outward route and the reciprocal of the measurement period T3 on the return route.
  • the same number of light emission pulses can be output from each other during the outbound and inbound measurement periods T1 and T3, and the calculation accuracy of the difference between the outbound data and the inbound data can be improved. Therefore, it is possible to more effectively suppress the selection of the outbound data affected by the interference light as the measurement data, and as a result, the accuracy of the object detection and the distance measurement can be improved.
  • the controller 31 sets a threshold value that defines that the difference between the outward path data (first pixel data) and the return path data (second pixel data) affects the interference light on these pixel data. On condition that it exceeds (S105), at least one of the light emission timing of the outward route and the light emission timing of the return route is changed (S108).
  • the controller 31 changes the light emission timing by changing the light emission cycles T10 and T30.
  • the light emission cycle of the light emission cycles T10 and T30 that is synchronized with the light emission cycle of the interference light can be changed to a state that is not synchronized with the interference light. Therefore, neither the outbound data (first pixel data) nor the inbound data (second pixel data) can be set to be unaffected by the interference light, and one of these pixel data (outbound data in the present embodiment) can be set.
  • the measurement data it is possible to acquire the measurement data that is not affected by the interference light.
  • the controller 31 holds a plurality of outbound light emission timing setting patterns (light emission cycle patterns) and return light emission timing setting patterns (light emission cycle patterns), respectively.
  • the light emission cycles T10 and T30 of the outward path and the return path can be easily and smoothly changed, and the measurement data acquisition process can be performed quickly.
  • the controller 31 makes the light emission timing on the outward route in the measurement period T3 on the return route not match any of the light emission timings on the measurement period T1 on the return route. It is preferable to set the light emission timing (light emission cycle T10) and the light emission timing of the return path (light emission cycle T30). As a result, when the light emission timing of either the outward path or the return path is synchronized with the light emission timing of the interference light, it is possible to prevent the other light emission timing from being synchronized with the light emission timing of the interference light. Therefore, in the process of FIG. 8, it is possible to appropriately determine whether or not the interference light is affecting the pixel data (S105), and it is possible to acquire higher quality measurement data.
  • the controller 31 performs a light receiving operation on the light receiving element 22 for receiving the reflected light R10 at the timing when the time ⁇ Tn corresponding to the target distance elapses from the light emitting timing.
  • a distance image in which the distance is mapped to each pixel position can be acquired by assigning a target distance according to the time ⁇ Tn to the pixel position.
  • high-quality measurement data can be acquired, so that a high-precision distance image can be generated.
  • the method of combining the light emission cycles in step S108 of FIG. 8 is not particularly mentioned, but in step S108, the light emission cycle T10 is more likely to eliminate the influence of the interference light.
  • T30 is preferably reset.
  • steps S107 and S108 in FIG. 8 are changed from this point of view.
  • FIG. 9A is a flowchart showing the measurement data acquisition process according to the change example 1.
  • steps S107 and S108 in FIG. 8 are replaced with steps S111 to S115. Since the other steps are the same as the corresponding steps in FIG. 8, the description thereof will be omitted.
  • the controller 31 determines the number N1 of pixels to which the distance is assigned in the outbound data and the inbound data. Compare with the number N2 of pixels to which the distance is assigned (S111). Then, when the number of pixels N1 is larger than the number of pixels N2 (S111: YES), the controller 31 proceeds to step S112 on the assumption that the outbound data is affected by the interference light, and the number of pixels N2 is the number of pixels N1. If it is larger than (S111: NO), it is assumed that the return path data is affected by the interference light, and the process proceeds to step S114.
  • step S112 the controller 31 determines whether or not all the selection candidates of the outbound light emission cycle T10 held in advance have been applied in the process (S112). Then, when all the selection candidates of the light emission cycle T10 of the outward route are applied (S112: YES), the controller 31 proceeds to the process in step S109 (see FIG. 8) and gives up the acquisition of the measurement data for the frame. On the other hand, when not all the selection candidates of the outbound light emission cycle T10 are applied (S112: NO), the controller 31 changes the outbound light emission cycle T10 to any of the remaining outbound selection candidates (S113). The process proceeds to step S104 (see FIG. 8), and the outward route data and the return route data are acquired again.
  • step S114 the controller 31 determines whether or not all the selection candidates of the return light emission cycle T30 held in advance have been applied in the process (S114). Then, when all the selection candidates of the return light emission cycle T30 are applied (S114: YES), the controller 31 proceeds to step S109 (see FIG. 8) and gives up the acquisition of the measurement data for the frame. On the other hand, when all the selection candidates of the return light emission cycle T30 are not applied (S114: NO), the controller 31 changes the return light emission cycle T30 to any of the remaining return path selection candidates (S115). The process proceeds to step S104 (see FIG. 8), and the outward route data and the return route data are acquired again.
  • the distance is assigned to the pixel position by the interference light together with the reflected light R10. Therefore, the number of pixels to which the distance is assigned is not affected by the interference light. It will be more than. Therefore, by comparing the number of pixels N1 and N2, it is possible to determine whether the outbound data or the inbound data is affected by the interference light.
  • the change example 1 since the light emission timing (light emission cycle) corresponding to the measurement period of the measurement periods T1 and T3 of the outward path and the return path, whichever has the larger number of pixels N1 and N2 that received light, is changed, the light emission timing (light emission cycle) is changed thereafter.
  • the measurement operation performed it is possible to reduce the possibility that the reception of the interference light is synchronized with the light reception period again during the measurement of the outward path or the return path. Therefore, the outward route data and the return route data in a state where there is no influence of the interference light can be acquired more quickly, and the measurement data can be acquired quickly.
  • FIG. 9B is a flowchart showing the measurement data acquisition process according to the second modification.
  • steps S114 and S115 in FIG. 9A are replaced with steps S116 and S117.
  • step S111 the controller 31 applies all the combinations of the selection candidates of the light emission cycles T10 and T30 of the outward route and the return route to determine whether or not the outward route data and the return route data have been acquired (S116). ). If the determination in step S116 is NO, the controller 31 sets the outbound and inbound emission cycles T10 and T30 to other combinations of selection candidates (S117), and returns the process to step S104 (see FIG. 8). As a result, the outbound data and the inbound data are acquired in a state where at least one of the emission cycles T10 and T30 is changed to the emission cycle different from that at the time of the measurement for one frame before. On the other hand, when another combination of selection candidates is applied (S116: NO), the controller 31 proceeds to step S109 (see FIG. 8) and abandons the acquisition of measurement data for the frame.
  • the light emission timing (light emission cycle) in the measurement period T1 of the outward path is changed. Can reduce the possibility of being affected by interference light. Therefore, the outbound data in a state where there is no influence of the interference light can be quickly acquired, and the measurement data can be quickly acquired.
  • the linear mode when a photon is incident on the avalanche photodiode, an electric charge substantially proportional to the number of incident photons is collected on the cathode of the avalanche photodiode. Therefore, in the linear mode, the amount of incident light (light receiving intensity) can be detected as well as the presence or absence of light incident on the pixel. By adjusting the reverse voltage applied to the avalanche photodiode, the avalanche photodiode can be used in linear mode.
  • the controller 31 further, in the process of FIG. 8, further, based on the light receiving intensity, the outward path data and the return path data are affected by the interference light. It may be determined whether or not it is. That is, in the determination in step S105 of FIG. 8, even if the difference exceeds the threshold value, if the light receiving intensity of the pixel position that caused the difference is small, the distance assigned to this pixel position is the interference light. It can be assumed that it is not based on other factors such as malfunction and electrical noise. Therefore, in such a case, the outbound data may be used as the measurement data, whichever of the inbound data has a smaller number of pixels to which the distance is assigned.
  • FIG. 10 is a flowchart showing a measurement data acquisition process according to the third modification.
  • step S106 in FIG. 8 is replaced with steps S122 and S123, and step S121 is added. Since the other steps are the same as the corresponding steps in FIG. 8, the description thereof will be omitted.
  • the controller 31 determines whether or not the light receiving intensity (pixel output signal) at the pixel position that caused this difference exceeds a predetermined threshold value. (S121).
  • this threshold value is set to a level slightly higher than the signal level assumed to be caused by factors other than the incident of the interfering light such as malfunction and electrical noise, and smaller than the signal level caused by the incident of the interfering light.
  • the light receiving intensity to be compared with the threshold value may be a representative value of the output signal for the pixel causing the difference, such as the average value and the maximum value of the output signal for the pixel causing the difference, and the mode of the frequency distribution.
  • step S121 determines whether outbound data or inbound data as measurement data. If the determination in step S121 is YES, the controller 31 advances the process to step S107 and performs the same process as in FIG. On the other hand, if the determination in step S121 is NO, the controller 31 advances the process to step S122 and performs a process of selecting either outbound data or inbound data as measurement data.
  • step S122 the controller 31 selects the pixel data having the smaller number of pixels to which the distance is assigned from the outbound data and the inbound data, and adopts the selected data as measurement data (S123).
  • step S121 when the determination in step S121 is NO, it is presumed that the distance assigned to the pixel position that caused the difference is caused by a malfunction of the light receiving element 22, electrical noise, or the like. Therefore, of the outbound data and the inbound data, the pixel data that does not include such pixels, that is, the pixel data that has a smaller number of pixels to which the distance is assigned, is affected by the interference light, malfunctions of the light receiving element 22, and the like. It can be assumed that the pixel data is genuine pixel data that is not affected by electrical noise or the like. Therefore, in step S122, when the pixel data having the smaller number of pixels to which the distance is assigned is selected, the selected pixel data is affected by interference light, malfunction of the light receiving element 22, electrical noise, and the like. It is genuine pixel data that has not been received.
  • the third modification it is for determining whether or not the intensity of the received signal of the pixel that caused the difference exceeds a predetermined threshold value (S121), and further, whether or not there is an influence of the interference light.
  • a predetermined threshold value S121
  • a process may be performed in which the pixel data in which the distance based on the pixel that caused the difference is deleted (replaced with Null) is used as the measurement data from the outbound data. Even by this processing, genuine pixel data that is not affected by the interference light, the malfunction of the light receiving element 22, electrical noise, or the like can be adopted as the measurement data.
  • each avalanche photodiode may be used in Geiger mode. Further, a photodiode that outputs an electric signal according to the amount of received light may be arranged in each pixel.
  • the configuration of the modified example 3 may be used for the configurations of the modified examples 1 and 2.
  • the light emission timings of the outward path and the return path are changed by changing the light emission cycles T10 and T30 of the outward path and the return path. That is, for example, as shown in FIG. 11A, the controller 31 holds the selection candidates of the light emission cycles T10 and T30 of the outward route and the return route in advance, and when the difference between the outward route data and the return route data exceeds the threshold value, By changing the combination of these selection candidates, the light emission timings of the outward route and the return route were changed.
  • 11 (b) and 11 (c) are timing charts showing the light emission timing adjustment operation according to the change example 4.
  • FIG. 11B shows a state in which the light receiving period of the outward path and the light receiving timing of the interference light are synchronized.
  • the determination in step S105 in FIG. 8 is YES.
  • the controller 31 specifies the pixel data of the outbound route data and the inbound route data, whichever has the larger number of pixels to which the distance is assigned, and specifies the outbound route measurement period T1 and the inbound route measurement period T3.
  • the phase of the light emission cycle of the measurement period corresponding to the pixel data is shifted by a predetermined amount. For example, when the light receiving period of the outward path and the light receiving timing of the interference light are synchronized as shown in FIG.
  • the controller 31 sets the light emitting cycle of the outward path by a predetermined amount ⁇ P as shown in FIG. 11 (c). Just shift. As a result, the light receiving period is also shifted by a predetermined amount ⁇ P, and the light receiving period on the outward path and the light receiving timing of the interference light are not synchronized.
  • the change example 4 when the difference between the outward path data and the return path data exceeds the threshold value, the phase of the light emission cycle is changed so that the light reception period of the outward path or the return path and the reception timing of the interference light are synchronized. Can be eliminated. Therefore, even with the configuration of the modified example 4, it is possible to acquire high-quality measurement data in which the influence of the interference light is suppressed, as in the above embodiment.
  • the controller 31 may perform a process of changing the light emission cycle in the measurement period with the larger number of pixels to which the distance is assigned by a predetermined amount. Good. Further, the configuration of the modified example 4 may be applied to the modified examples 1 to 3.
  • the periods of the outward trip and the return trip are different from each other, but the periods of the outward trip and the return trip may be the same. Also in this case, the light emission cycle T10 in the measurement period on the outward route and the light emission cycle T30 in the measurement period on the return route are set to be different from each other.
  • the line beam B10 long in the horizontal direction is scanned in the vertical direction, but the line beam long in the vertical direction may be scanned in the horizontal direction.
  • the MEMS mirror is used as the optical deflector 14, but another optical deflector of the reciprocating drive type such as a magnetic movable mirror may be used as the optical deflector 14.
  • the projection optical system 10 is configured such that the light emitting unit 11, the fast axis cylindrical lens 12, the slow axis cylindrical lens 13 and the light deflector 14 are arranged in one direction, but the layout of the projection optical system 10 Is not limited to this.
  • the projection optical system 10 may be configured so as to arrange a mirror in the middle of the optical path and bend the optical path.
  • the fast axis cylindrical lens 12 may be arranged on the rear side of the slow axis cylindrical lens 13.
  • the number of laser light sources 11a arranged in the light emitting unit 11 is not limited to the number illustrated in the above embodiment.
  • fast-axis cylindrical lens 12 and the slow-axis cylindrical lens 13 may be integrated.
  • toroidal lenses having different aspherical surfaces in the slow axis direction and the fast axis direction may be used.
  • the laser radar 1 is mounted on the vehicle 200, but the laser radar 1 may be mounted on another moving body. Further, the laser radar 1 may be mounted on a device or equipment other than the mobile body. Further, the laser radar 1 may have only an object detection function.
  • a plurality of laser light sources 11a are arranged side by side in a row, but the method of arranging the plurality of laser light sources 11a is not limited to this.
  • a plurality of rows of laser light sources 11a may be arranged, or a plurality of laser light sources 11a may be arranged in a matrix.
  • Laser radar 11 Light emitting unit (light source) 14a ... Mirror 22 ... Light receiving element 22b ... Pixel 31 ... Controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

レーザレーダ(1)は、発光ユニット(11)(光源)と、ラインビーム(B10)を目標領域において往復走査させるためのミラー(14a)と、ラインビーム(B10)の物体からの反射光を受光する受光素子(22)と、コントローラ(31)とを備える。コントローラ(31)は、ラインビーム(B10)の往路および復路の走査において発光周期が互いに相違するように発光ユニット(11)を制御し、往路の走査において受光素子(22)から得られる画素データと復路の走査において受光素子(22)から得られる画素データとの差分に基づいて、これら画素データの何れかを測定データとして選択するか否かを決定する。

Description

レーザレーダ
 本発明は、レーザ光を用いて物体を検出するレーザレーダに関する。
 従来、レーザ光を用いて物体を検出するレーザレーダが種々の分野で開発されている。たとえば、車載用のレーザレーダでは、車両前方からレーザ光が投射され、その反射光の有無に基づいて、車両前方に車両や人等の物体が存在するか否かが判別される。また、レーザ光の投射タイミングと反射光の受光タイミングとに基づいて、物体までの距離が計測される。
 以下の特許文献1、2には、ラインビームをスキャンさせて車両前方の物体を検出する装置が開示されている。
特開平5-205199号公報 特開2017-150990号公報
 レーザレーダでは、たとえば、対向車にレーザレーダが配置されている場合に、自身が出射したレーザ光の物体からの反射光の他、対向車のレーザレーダが出射したレーザ光(干渉光)を受光することが起こり得る。この場合、干渉光の受光により、物体検出の精度が低下してしまう。
 かかる課題に鑑み、本発明は、他のレーザレーダが出射した干渉光の影響が抑制された高精度の測定データを取得でき、これにより、物体検出の精度を高めることが可能なレーザレーダを提供することを目的とする。
 本発明の主たる態様は、ラインビームを走査させることにより物体を検出するレーザレーダに関する。この態様に係るレーザレーダは、前記ラインビームの生成に用いるレーザ光を出射する光源と、前記ラインビームを目標領域において往復走査させるためのミラーと、前記ラインビームの物体からの反射光をマトリクス状に配置された複数の画素により受光する受光素子と、コントローラとを備える。ここで、前記コントローラは、前記ラインビームの往路および復路の走査において発光周期が互いに相違するように前記光源を制御し、前記往路の走査において前記受光素子から得られる第1画素データと前記復路の走査において前記受光素子から得られる第2画素データとの差分に基づいて、前記第1画素データまたは前記第2画素データを測定データとして選択するか否かを決定する。
 本態様に係るレーザレーダによれば、往路と復路における光源の発光周期が相違するため、往路と復路の何れか一方の発光周期が他のレーザレーダからの干渉光の発光周期に一致したとしても、他方の発光周期は、干渉光の発光周期と相違しやすくなる。このため、受光素子に干渉光が入射する場合、往路と復路の走査においてそれぞれ取得された画素データに対して干渉光の受光に基づくデータが混在する割合が互いに相違し、第1画素データと第2画素データとの間に差分が生じる。よって、この差分を参照することにより、第1画素データおよび第2画素データが干渉光の影響を受けているか否かを判定できる。したがって、本態様に係るレーザレーダによれば、第1画素データと第2画素データとの差分に基づいて、第1画素データまたは第2画素データを測定データとして選択するか否かが決定されるため、高精度の測定データを取得でき、結果、物体検出の精度を高めることができる。
 以上のとおり、本発明によれば、他のレーザレーダが出射した干渉光の影響が抑制された高精度の測定データを取得でき、これにより、物体検出の精度を高めることが可能なレーザレーダを提供することができる。
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。
図1(a)は、実施形態に係るレーザレーダの光学系および回路部の構成を示す図である。図1(b)は、実施形態に係るラインビーム走査光学系の構成を示す斜視図である。 図2は、実施形態に係る、レーザレーダのレーザ光の投射状態と、目標領域におけるラインビームの状態とを模式的に示す図である。 図3(a)は、実施形態に係る、受光素子の構成を模式的に示す図である。図3(b)は、実施形態に係る、測定動作時におけるミラーの回転角の変化を示す図である。図3(c)は、実施形態に係る、往路と復路における反射光の受光面上での移動を示す図である。 図4(a)~(c)は、それぞれ、実施形態に係る、往路の測定期間における測定動作を示す図である。 図5(a)は、実施形態に係る、往路の8回目の走査期間において、2行、5列目の画素に反射光が入射した状態を示す図である。図5(b)は、実施形態に係る、1フレーム分の往路の画素データを模式的に示す図である。 図6(a)は、実施形態に係る、往路の2回目の測定期間において、1行目と2行目の受光期間に、これら1行目と2行目の画素群に干渉光が入射した状態を示す図である。図6(b)は、実施形態に係る、受光素子に干渉光が入射した場合の1フレーム分の往路の画素データを模式的に示す図である。 図7(a)は、実施形態に係る、復路の発光周期を示す図である。図7(b)は、実施形態に係る、1フレーム分の復路の画素データを模式的に示す図である。 図8は、実施形態に係る、測定データの取得処理を示すフローチャートである。 図9(a)は、変更例1に係る、測定データの取得処理を示すフローチャートである。図9(b)は、変更例2に係る、測定データの取得処理を示すフローチャートである。 図10は、変更例3に係る、測定データの取得処理を示すフローチャートである。 図11(a)は、実施形態に係る、コントローラに保持される往路と複素の発光周期の選択候補の構成例を示す図である。図11(b)、(c)は、変更例4に係る、往路の発光周期と干渉光の入射タイミングとの状態の一例を示すタイミングチャートである。
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。
 以下、本発明の実施形態について図を参照して説明する。便宜上、各図には、互いに直交するX、Y、Z軸が付記されている。X軸方向およびY軸方向は、それぞれ、ラインビームの長辺方向および短辺方向であり、Z軸正方向は、ラインビームの投射方向である。
 図1(a)は、レーザレーダ1の光学系および回路部の構成を示す図である。図1(b)は、投射光学系10の構成を示す斜視図である。
 レーザレーダ1は、光学系の構成として、投射光学系10と、受光光学系20とを備える。投射光学系10は、一方向(X軸方向)に長いラインビームB10を生成する。また、投射光学系10は、生成したラインビームB10をその短辺方向(Y軸方向)に走査させる。受光光学系20は、投射光学系10から投射されたレーザ光の物体からの反射光を受光する。
 投射光学系10は、発光ユニット11と、ファスト軸シリンドリカルレンズ12と、スロー軸シリンドリカルレンズ13と、光偏向器14と、を備える。また、受光光学系20は、受光レンズ21と、受光素子22と、を備える。
 発光ユニット11は、複数のレーザ光源11aが集積されて構成される。レーザ光源11aは、所定波長のレーザ光を出射する。レーザ光源11aは、端面発光型のレーザダイオードである。レーザ光源11aが、面発光型のレーザ光源であってもよい。本実施形態では、レーザレーダ1が車両に搭載されることが想定されている。このため、各レーザ光源11aの出射波長は、赤外の波長帯域(たとえば905nm)に設定される。レーザレーダ1の使用態様に応じて、レーザ光源11aの出射波長は、適宜変更され得る。
 レーザ光源11aは、活性層がN型クラッド層とP型クラッド層に挟まれた構造となっている。N型クラッド層とP型クラッド層に電圧が印加されることにより、活性層の発光領域からレーザ光が出射される。発光領域は、活性層に平行な方向の幅が、活性層に垂直な方向の幅よりも広くなっている。活性層に垂直な方向の軸はファスト軸と称され、活性層に平行な方向の軸はスロー軸と称される。発光領域から出射されたレーザ光は、スロー軸方向よりもファスト軸方向の広がり角が大きい。このため、発光領域から出射されたビームの形状は、ファスト軸方向に長い楕円形状となる。
 複数のレーザ光源11aは、それぞれ、スロー軸がX軸方向に平行となるように配置されている。また、複数のレーザ光源11aは、スロー軸に平行な方向(X軸方向)に並ぶように配置されている。発光ユニット11は、複数の発光領域がスロー軸方向に並ぶように形成された1つの半導体発光素子がベース11bに設置された構造となっている。ここで、当該半導体発光素子のうち、各発光領域からレーザ光を出射させる構造部分が、それぞれ、レーザ光源11aに対応する。これに限らず、それぞれ個別に形成された複数のレーザ光源11aが互いに隣接してベース11bに設置されることにより発光ユニット11が構成されてもよい。
 ファスト軸シリンドリカルレンズ12は、発光ユニット11の各レーザ光源11aから出射されたレーザ光をファスト軸方向に収束させて、ファスト軸方向のレーザ光の広がりを略平行な状態に調整する。すなわち、ファスト軸シリンドリカルレンズ12は、発光ユニット11の各レーザ光源11aから出射されたレーザ光を、ファスト軸方向のみに平行光化する作用を有する。
 ファスト軸シリンドリカルレンズ12は、Y-Z平面に平行な方向のみに湾曲するレンズ面12aを有する。レンズ面12aの母線は、X軸に平行である。ファスト軸シリンドリカルレンズ12に入射する各レーザ光のファスト軸は、レンズ面12aの母線に垂直である。各レーザ光は、X軸方向に並んでファスト軸シリンドリカルレンズ12に入射する。各レーザ光は、レンズ面12aでファスト軸方向(Z軸方向)に収束作用を受けて、ファスト軸方向に平行光化される。
 スロー軸シリンドリカルレンズ13は、発光ユニット11の各レーザ光源11aから出射されたレーザ光をスロー軸方向に集光させる。スロー軸シリンドリカルレンズ13は、X-Y平面に平行な方向のみに湾曲するレンズ面13aを有する。レンズ面13aの母線は、Z軸に平行である。ファスト軸シリンドリカルレンズ12のレンズ面12aの母線と、スロー軸シリンドリカルレンズ13のレンズ面13aの母線は、互いに垂直である。
 各レーザ光源11aから出射されたレーザ光は、スロー軸シリンドリカルレンズ13によってスロー軸方向に集光されて、光偏向器14のミラー14aに入射する。光偏向器14は、たとえば、圧電アクチュエータや静電アクチュエータ等を用いたMEMS(Micro Electro Mechanical Systems)ミラーである。ミラー14aは、誘電体多層膜や金属膜等によって反射率が高められている。ミラー14aは、スロー軸シリンドリカルレンズ13のY軸正側の焦点距離付近の位置に配置されている。ミラー14aは、X軸に平行な回転軸R1について回動するように駆動される。ミラー14aは、たとえば、直径3mm程度の円形の形状を有する。
 各レーザ光源11aからのレーザ光の集まりによってビームが構成される。ビームは、スロー軸シリンドリカルレンズ13によってX軸方向のみに集光されるため、ミラー14aで反射された後のビームは、X軸方向のみに広がる。こうして、X軸方向に広がるラインビームB10が生成される。
 ラインビームB10は、たとえば、長辺方向の広がり角が全角10°以上であり、短辺方向の広がり角が全角1°以下である。レーザレーダ1が車載用である場合、ラインビームB10は、長辺方向の広がり角は、全角60°以上に設定されることが好ましい。
 光偏向器14は、ミラー駆動回路33からの駆動信号によりミラー14aを駆動して、ミラー14aから反射したビームをY軸方向に走査させる。これにより、ラインビームB10が短手方向(Y軸方向)に走査される。図1(a)、(b)の構成では、ミラー14aが中立位置にある状態において、ミラー14aが、レーザ光源11aの出射光軸に対して45°傾いているが、レーザ光源11aの出射光軸に対するミラー14aの傾き角は、これに限られるものではない。ミラー14aの傾き角は、投射光学系10のレイアウトに応じて適宜変更され得る。
 図2は、レーザレーダ1のレーザ光の投射状態と、目標領域におけるラインビームB10の状態とを模式的に示す図である。図2の上段には、投射方向(Z軸正方向)に見たときのラインビームB10の断面形状が模式的に示されている。
 図2に示すように、本実施形態では、レーザレーダ1が車両200の前側に搭載され、車両200の前方にラインビームB10が投射される。ラインビームB10の長辺方向の広がり角θ11は、たとえば90°である。また、物体検出が可能な距離D11の上限は、たとえば、250m程度である。図2では、便宜上、広がり角θ11が実際よりも小さく表現されている。
 図1(a)、(b)に示したように、複数のレーザ光源11aが一方向に並んで配置されているため、各レーザ光源11aから出射されたレーザ光は、図2のラインL1に沿って並ぶように投射される。このように、各レーザ光源11aから出射されたレーザ光が合成されることにより、ラインビームB10が構成される。
 図1(a)に戻り、目標領域から反射したラインビームB10の反射光R10は、受光レンズ21によって、受光素子22の受光面に集光される。受光素子22は、たとえば、縦横に画素がマトリクス状に配置されたイメージセンサである。各画素の位置に、たとえば、アバランシェフォトダイオードが配置される。この場合、アバランシェフォトダイオードは、たとえば、ガイガーモード(ガイガー増倍モード)で使用される。ガイガーモードでは、アバランシェフォトダイオードに光子が入射すると、アバランシェ増倍により、アバランシェフォトダイオードのカソードに集電される電荷が飽和電荷量まで増倍される。したがって、画素に対する光の入射の有無が高感度で検出され得る。
 図3(a)は、受光素子22の構成を模式的に示す図である。
 受光素子22は、たとえば、長方形の受光面22aを有し、受光面22aに複数の画素22bがマトリクス状に配置される。ここでは、80個の画素22bが、8行、10列に配置されている。ただし、受光素子22に配置される画素22bの数および行、列の数は、これに限られるものではない。実際には、80個よりも数段多い数の画素22bが高精細に配置される。
 受光素子22は、受光面22aの長辺がX軸に平行となるように配置される。受光素子22の受光面22aの長辺方向は、目標領域におけるラインビームB10の長辺方向に対応する。ラインビームB10の反射光R10は、受光面22aの長辺方向に沿って延びるように、受光レンズ21によって、受光素子22の受光面に結像される。図3(a)では、ラインビームB10の全てが反射された場合の反射光R10の状態が示されている。
 ここで、受光面22aのX軸方向の画素位置は、目標領域におけるX軸方向の位置に対応する。また、受光面22aのY軸方向の画素位置は、目標領域におけるY軸方向の位置に対応する。したがって、受光信号が生じた画素22bの位置により、目標領域のX軸方向およびY軸方向のどの位置に物体が存在するかを検出できる。
 図1(a)に戻り、レーザレーダ1は、回路部の構成として、コントローラ31と、レーザ駆動回路32と、ミラー駆動回路33と、信号処理回路34と、を備える。
 コントローラ31は、CPU(CentralProcessing Unit)等の演算処理回路や、ROM(Read Only Memory)、RAM(Random Access Memory)等の記憶媒体を備え、予め設定されたプログラムに従って各部を制御する。レーザ駆動回路32は、コントローラ31からの制御に応じて発光ユニット11の各レーザ光源11aをパルス発光させる。
 ミラー駆動回路33は、コントローラ31からの制御に応じて光偏向器14を駆動する。光偏向器14は、ミラー14aを回転軸R1について回動させて、ラインビームB10の短辺方向にラインビームB10を走査させる。
 信号処理回路34は、受光素子22の各画素の受光信号をコントローラ31に出力する。上記のように、コントローラ31は、受光信号が生じた画素の位置により、目標領域のX軸方向のどの位置に物体が存在するかを検出できる。また、コントローラ31は、発光ユニット11をパルス発光させたタイミングと、受光素子22が目標領域からの反射光を受光したタイミング、すなわち、受光素子22から受光信号を受信したタイミングとの時間差に基づいて、目標領域に存在する物体までの距離を取得する。
 こうして、コントローラ31は、発光ユニット11をパルス発光させつつ、光偏向器14によりラインビームB10を走査させることにより、目標領域における物体の有無を検出し、さらに、物体の位置および物体までの距離を計測する。これらの測定結果は、随時、車両側の制御部に送信される。
 図3(b)は、測定動作時におけるミラー14aの回転角の変化を示す図である。
 図3(b)に示すように、コントローラ31は、往路の期間が復路の期間よりも長くなるように、一定周期でミラー14aを往復移動させる。ここでは、ミラー14aが、中立位置(回転角度=0°)に対して±15°の範囲で回転される。往路の期間にミラー14aが回転されることにより、ラインビームB10が短辺方向(X軸方向)の一方向に走査され、これに伴い、反射光R10が短辺方向(X軸方向)の一方向に移動する。また、復路の期間にミラー14aが回転されることにより、ラインビームB10が短辺方向(X軸方向)の他の方向に走査され、これに伴い、反射光R10が短辺方向(X軸方向)の他の方向に移動する。
 本実施形態では、往路の期間と復路の期間の両方において、測定が行われる。すなわち、往路および復路の期間において、中立位置(回転角度=0°)に対して±12°の範囲をミラー14aが回転する間に、測定が行われる。時刻t1~t2の期間が往路における測定期間T1であり、時刻t3~t4の期間が復路における測定期間T3である。コントローラ31は、往路において受光素子22で生じた信号を、処理期間T2で処理する。これにより、往路の画素データが得られる。また、コントローラ31は、復路において受光素子22で生じた信号を、処理期間T4で処理する。これにより、復路の画素データが得られる。
 測定期間T1は、たとえば、24msecであり、測定期間T3は、たとえば、8msecである。また、処理期間T2、T4は、たとえば、3msecである。
 図3(c)は、往路と復路における反射光R10の受光面22a上での移動を示す図である。ここでは、測定期間T1、T3においてラインビームB10が連続的に発光した場合の反射光R10の移動が示されている。図3(c)の縦軸には、図3(a)の行番号の範囲が行番号により表されている。
 図3(c)に示すように、反射光R10は、往路の測定期間T1において、1行目の画素22b群の位置から8行目の画素22b群の位置に向かって移動し、復路の測定期間T3において、8行目の画素22b群の位置から1行目の画素22b群の位置に向かって移動する。よって、往路の測定期間T1と復路の測定期間T3の両方において、画素データを取得することができる。
 図4(a)~(c)は、往路の測定期間T1における測定動作を示す図である。
 便宜上、図4(a)~(c)には、1回目~3回目の測定期間T1における測定動作が示されている。また、各測定期間T1における1行目および2行目の画素群に対する測定動作が示されているが、4行目~8行目の画素群についても同様の測定動作が繰り返される。
 図4(a)を参照して、コントローラ31は、1回の測定期間T1において、画素22bの行間に対応する発光周期T10で、発光ユニット11からレーザ光をパルス発光させる。発光周期T10は、たとえば、3msecであり、パルス発光の期間は、たとえば、1~50nsecである。これにより、目標領域に向かって、ラインビームB10が、行間に対応する発光周期T10で間欠的に投射される。
 そして、コントローラ31は、各パルス発光から目標距離に対応する時間ΔT1が経過したタイミングで、所定時間だけ、各行の画素群に光を受光させる。時間ΔT1は、目標距離の2倍の距離を光が進むのに要する時間に、コントローラ31が発光ユニット11に発光制御を行ってから実際に発光が行われるまでのタイムラグを加算した時間に設定される。また、画素群における受光は、アバランシェフォトダイオードに所定の逆電圧を印加して受光状態に設定することにより行われる。
 この測定動作により、何れかの行の所定の画素位置に対応する目標領域の位置に物体が存在し、且つ、当該物体までの距離が時間ΔT1で規定される目標距離である場合に、当該行に対応する受光期間において、当該画素位置の画素22bに、物体からの反射光R10が入射する。これにより、当該画素位置に対応する位置に物体が存在することが分かり、さらに、当該物体までの距離が時間ΔT1で規定される目標距離として取得される。こうして、コントローラ31は、1回の測定期間T1において、時間ΔT1で規定される目標距離に物体が存在するか否かを示す画素データを、画素22bごとに取得する。
 図4(b)を参照して、コントローラ31は、1回目の測定期間T1に対する処理が終了すると、2回目の測定期間T1において、目標距離を時間ΔT2で規定される距離に変更して、同様の処理を行う。これにより、コントローラ31は、2回の測定期間T1において、時間ΔT2で規定される目標距離に物体が存在するか否かを示す画素データを、画素22bごとに取得する。
 図4(c)を参照して、コントローラ31は、3回目の測定期間T1以降も、目標距離を時間ΔT3、…で規定される距離に順次変更して、同様の処理を行う。これにより、コントローラ31は、3回以降の測定期間T1において、時間ΔT3、…で規定される目標距離に物体が存在するか否かを示す画素データを、画素22bごとに取得する。コントローラ31は、予め規定された最長の目標距離に到達するまで、同様の処理を繰り返す。そして、最長の目標距離について画素データを取得すると、取得した全ての目標距離の画素データ群を往路の1フレーム分の画素データに設定し、1フレーム分の処理を終了する。その後、コントローラ31は、次のフレームについて同様の処理を実行する。こうして、コントローラ31は、測定動作が終了するまで、往路の1フレーム分の画素データの取得を継続する。
 図5(a)は、往路の8回目の測定期間T1において、2行、5列目の画素22bに反射光R10が入射した状態を示す図である。ここでは、5列目の画素群に対するタイミングチャートが示されている。
 図5(a)に示すように、2行、5列目の画素22bの画素位置に対応する目標領域上の位置に物体が存在し、且つ、当該物体までの距離が時間ΔT8で規定される目標距離である場合、当該物体からの反射光R10が、2行目に対するパルス発光から時間ΔT8が経過したタイミングで、2行目、5列目の画素22bに入射する。これにより、2行目、5列目の画素22bの受光期間と、反射光R10の入射タイミングとが一致し、2行目、5列目の画素22bから検出信号が出力される。これにより、2行目、5列目の画素22bの位置に、時間ΔT8に対応する目標距離が画素データとして割り当てられる。
 図5(b)は、1フレーム分の往路の画素データ100を模式的に示す図である。
 図5(b)において、各マス目101は画素22bの位置を示している。また、ハッチングが付されたマス目101は、当該画素位置において距離が取得されたことを示し、ハッチングが付されていないマス目101は、当該画素位置において距離が取得されていないことを示している。上記のように、ハッチンングが付されたマス目101の画素位置の距離は、時間ΔTnにより規定される目標領域として取得される。
 なお、復路の測定期間T3においても、上述の往路の測定期間T1に対する処理と同様の処理が行われ、1フレーム分の画像データが順次取得される。但し、図3(b)のように、復路の測定期間T3は往路の測定期間T1よりも短いため、発光ユニット11に対するパルス発光の周期が、往路よりも短く設定される。たとえば、復路の発光周期と往路の発光周期との比が、往路の測定期間T1の逆数と復路の測定期間の逆数との比となるように、復路の測定期間T3における発光周期が設定される。復路の発光周期は、たとえば、1msecに設定される。これにより、往路および復路の測定期間において、互いに同じ数の発光パルスを出力させることができる。
 ところで、上記構成のレーザレーダ1では、たとえば、対向車にレーザレーダが配置されている場合に、自身が出射したラインビームB10の物体からの反射光R10の他、対向車のレーザレーダが出射したレーザ光(干渉光)を受光することが起こり得る。たとえば、図6(a)に示すように、往路の2回目の測定期間T1において、1行目と2行目の受光期間に、これら1行目と2行目の画素群に干渉光が入射すると、これら画素群に対し、時間ΔT2によって規定される距離が取得されてしまう。このため、図6(b)に示すように、1フレーム分の画素データにおいて、1行目と2行目の画素位置に、時間ΔT2によって規定される距離が、誤って割り当てられてしまう。その結果、物体検出および距離測定の精度の低下を招いてしまう。
 そこで、本実施形態では、他のレーザレーダが出射した干渉光の影響が抑制して、高精度の測定データを取得するための構成が設けられている。
 具体的には、コントローラ31は、往路の走査において受光素子22から得られる1フレーム分の画素データ(以下、「往路データ」という)と、復路の走査において受光素子22から得られる1フレーム分の画素データ(以下、「復路データ」という)との差分に基づいて、往路データまたは復路データを測定データとして選択するか否かを決定する。そして、往路データと復路データとの間に差分が生じた場合は、往路データまたは復路データを測定データとして選択せずに、往路の発光周期T10と復路の発光周期T30の何れか一方を変化させて、再度、往路データおよび復路データを取得する処理を行う。
 図7(a)に示すように、復路の測定期間T3における発光周期T30は、往路の測定期間T1における発光周期T10よりも短いため、往路の測定期間T1において、受光期間と干渉光の受光タイミングとが整合した場合は、復路の測定期間T3において、受光期間と干渉光の受光タイミングとが整合しにくくなる。このため、図7(b)に示すように、復路データには、干渉光に基づく距離が割り当てられにくくなる。逆に、復路の測定期間T3において、受光期間と干渉光の受光タイミングとが整合した場合は、往路の測定期間T1において、受光期間と干渉光の受光タイミングとが整合しにくくなる。このため、この場合は、往路データには、干渉光に基づく距離が割り当てられにくくなる。
 したがって、往路データと復路データとの差分を監視することにより、往路データと復路データの何れかに干渉光に基づく距離が含まれているか否かを判定できる。そこで、本実施形態では、往路データと復路データとの差分が大きい場合に、往路データと復路データの何れかに干渉光の影響があるとして、往路データと復路データの何れも、測定データとして採用しない処理が行われる。
 以下、干渉光の影響が抑制された測定データを取得する処理について説明する。
 図8は、測定データの取得処理を示すフローチャートである。
 測定動作が開始すると(S101:YES)、コントローラ31は、図3(b)に示したようにミラー14aを駆動させ(S102)、往路および復路の発光周期T10、T30を初期値に設定する(S103)。そして、コントローラ31は、設定した発光周期T10、T30で発光ユニット11をパルス発光させ、往路データと復路データを取得する(S104)。さらに、コントローラ31は、取得した往路データと復路データの差分を求め、求めた差分が閾値以内であるか否かを判定する(S105)。
 ここで、差分は、たとえば、往路データおよび復路データの一方において距離が割り当てられ他方において距離が割り当てられていない画素の数として取得される。あるいは、往路データと復路データの間において、距離値が互いに異なる画素(一方に距離が割り当てられ他方に距離が割り当てられていない画素を含む)の数として取得されてもよい。この他、差分は、往路データおよび復路データに対する干渉光の影響が異なることを識別可能な他のパラメータ値として取得されてもよい。
 また、ステップS105の閾値は、干渉光が往路データおよび復路データに影響したことを規定する値に設定される。すなわち、閾値は、ノイズや、受光素子22に偶発的に生じる誤動作により生じる程度の差分より大きく、且つ、干渉光が往路データおよび復路データに影響したことより生じると想定される差分よりも小さく設定される。
 差分が閾値以内である場合(S105:YES)、コントローラ31は、往路データおよび復路データのうち、往路データを当該フレームの測定データとして選択する(S106)。なお、ステップS106において、コントローラ31は、往路データおよび復路データのうち、復路データを当該フレームの測定データとして選択してもよい。但し、往路データの方が、ミラー14aの角度変化が緩やかであるため、より高品質の画素データが取得される可能性が高い。よって、ステップS106においては、往路データおよび復路データのうち、より高品質の往路データが当該フレームの測定データとして選択されることが好ましい。
 他方、差分が閾値を超える場合(S105:NO)、コントローラ31は、往路および復路の発光周期T10、T30として予め保持している発光周期の全ての組み合わせを適用して、往路データおよび復路データを取得したか否かを判定する(S107)。コントローラ31は、予め、往路および復路の発光周期T10、T30の選択候補を、それぞれ、複数ずつ保持している。ステップS104では、これら選択候補のうち、デフォルト値として設定される選択候補が設定される。たとえば、コントローラ31は、往路および復路の発光周期T10、T30の選択候補を2つずつ保持している。ただし、選択候補の数はこれに限られるものではない。
 ステップS107の判定がNOの場合、コントローラ31は、往路および復路の発光周期T10、T30を、選択候補の他の組み合わせに設定し(S108)、処理をステップS104に戻す。これにより、以前の1フレーム分の測定時とは異なる発光周期に、発光周期T10、T30の少なくとも一方が変更された状態で、往路データおよび復路データが取得される。
 このように、発光周期T10、T30を変化させることにより、画素22bの受光期間が干渉光の入射タイミングに整合していた状態から、画素22bの受光期間が干渉光の入射タイミングから外れた状態へと遷移し易くなる。よって、往路データおよび復路データの両方が干渉光の影響を受けない状態となる可能性が高まり、結果、ステップS105の判定がYESとなる可能性が高まる。
 こうして、発光周期T10、T30を変更した後に取得した往路データと復路データとの差分が閾値以内になると(S105:YES)、コントローラ31は、往路データを測定データとして選択する(S106)。他方、再度、差分が閾値を超えた場合(S105:NO)、コントローラ31は、選択候補の全ての組み合わせを発光周期T10、T30に適用するまで(S107:NO)、発光周期T10、T30を選択候補の範囲で変化させながら(S108)、ステップS105、S106の処理を繰り返す。
 選択候補の全ての組み合わせを発光周期T10、T30に適用しても差分が閾値以内にならない場合(S105:NO、S107:YES)、コントローラ31は、当該フレームに対する測定データの取得を終了して、処理をステップS109に進める。こうして、コントローラ31は、測定動作が終了するまで(S109:NO)、同様の処理を繰り返し、測定データを取得する。その後、測定動作が終了すると(S109:YES)、コントローラ31は、ミラー14aを停止させて(S110)、処理を終了する。
 <実施形態の効果>
 本実施形態によれば、以下の効果が奏される。
 往路と復路における発光ユニット11(光源)の発光周期T10、T30が相違するため、往路と復路の何れか一方の発光周期が他のレーザレーダからの干渉光の発光周期に一致したとしても、他方の発光周期は、干渉光の発光周期と相違しやすくなる。このため、受光素子22に干渉光が入射する場合、往路と復路の走査においてそれぞれ取得された往路データおよび復路データに対して干渉光の受光に基づくデータが混在する割合が互いに相違し、往路データ(第1画素データ)と復路データ(第2画素データ)との間に大きな差分が生じる。よって、この差分を参照することにより、往路データ(第1画素データ)および復路データ(第2画素データ)が干渉光の影響を受けているか否かを判定できる。したがって、本実施形態に係るレーザレーダ1によれば、図8に示したように、往路データ(第1画素データ)と復路データ(第2画素データ)との差分に基づいて、往路データ(第1画素データ)を測定データとして選択するか否かが決定されるため、高精度の測定データを取得でき、結果、物体検出および距離測定の精度を高めることができる。
 図3(b)に示したように、コントローラ31は、復路の走査期間が往路の走査期間よりも短くなるようにミラー14aを駆動し、図4(a)~(c)および図7(a)に示したように、復路の発光周期T30を往路の発光周期T10よりも短く設定する。これにより、ミラー14aが往復する期間を短く抑えながら、復路の発光周期T30と往路の発光周期T10とを円滑に相違させることができる。
 この場合、上記のように、コントローラ31は、復路の発光周期T30と往路の発光周期T10との比が、往路の測定期間T1の逆数と復路の測定期間T3の逆数との比となるように、発光ユニット11(光源)を制御することが好ましい。これにより、往路および復路の測定期間T1、T3において、互いに同じ数の発光パルスを出力させることができ、往路データと復路データの差分の演算精度を高めることができる。よって、干渉光の影響を受けた往路データを測定データとして選択することをより効果的に抑制でき、結果、物体検出および距離測定の精度を高めることができる。
 図8に示したように、コントローラ31は、往路データ(第1画素データ)と復路データ(第2画素データ)との差分が、干渉光がこれらの画素データに影響したことを規定する閾値を超えることを条件に(S105)、往路の発光タイミングと復路の発光タイミングの少なくとも一方を変更する(S108)。
 ここで、コントローラ31は、発光周期T10、T30を変更することにより、発光タイミングの変更を行う。
 これにより、上記のように、発光周期T10、T30のうち干渉光の発光周期に同期する発光周期を、干渉光に同期しない状態に変更できる。よって、往路データ(第1画素データ)と復路データ(第2画素データ)の何れも干渉光の影響を受けない状態に設定でき、これら画素データの何れか一方(本実施形態では往路データ)を測定データの選択することで、干渉光の影響のない測定データを取得できる。
 また、コントローラ31は、往路の発光タイミングの設定パターン(発光周期のパターン)と復路の発光タイミングの設定パターン(発光周期のパターン)を、それぞれ、複数、保持している。これにより、コントローラ31において、往路および復路の発光周期T10、T30を簡易かつ円滑に変更でき、測定データの取得処理を迅速に行うことができる。
 コントローラ31は、往路における発光動作を復路の測定期間T3まで継続した場合に、復路の測定期間T3における往路の発光タイミングが復路の測定期間T1における何れの発光タイミングにも一致しないように、往路の発光タイミング(発光周期T10)と復路の発光タイミング(発光周期T30)を設定することが好ましい。これにより、往路と復路の何れか一方の発光タイミングが干渉光の発光タイミングに同期する場合に、他方の発光タイミングを干渉光の発光タイミングに同期させなくすることができる。よって、図8の処理において、画素データに干渉光が影響しているか否か(S105)を適正に判定でき、より高品質の測定データを取得することができる。
 図4(a)~(c)に示したように、コントローラ31は、発光タイミングから目標距離に応じた時間ΔTnが経過したタイミングで反射光R10を受光するための受光動作を受光素子22に行わせる。これにより、受光があった場合に、その画素位置に、時間ΔTnに応じた目標距離を割り当てることで、各画素位置に距離をマッピングした距離画像を取得できる。本実施形態では、上記のように、高品質の測定データを取得できるので、高精度の距離画像を生成できる。
 <変更例1>
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、他に種々の変更が可能である。
 たとえば、上記実施形態では、図8のステップS108における発光周期の組み合わせ方法について特に言及しなかったが、ステップS108では、より干渉光の影響が解消される可能性が高くなるように、発光周期T10、T30が再設定されることが好ましい。
 変更例1では、このような観点の下、図8のステップS107、S108が変更される。
 図9(a)は、変更例1に係る、測定データの取得処理を示すフローチャートである。
 変更例1では、図8のステップS107、S108が、ステップS111~S115に置き換えられている。その他のステップは、図8の対応するステップと同様であるため、説明を省略する。
 図9(a)を参照して、コントローラ31は、往路データと復路データの差分が閾値を超えると(S105:NO)、往路データにおいて距離が割り当てられている画素の数N1と、復路データにおいて距離が割り当てられている画素の数N2とを比較する(S111)。そして、コントローラ31は、画素数N1が画素数N2よりも大きい場合(S111:YES)、往路データに干渉光の影響が生じているとして、処理をステップS112に進め、画素数N2が画素数N1よりも大きい場合は(S111:NO)、復路データに干渉光の影響が生じているとして、処理をステップS114に進める。
 ステップS112において、コントローラ31は、予め保持している往路の発光周期T10の選択候補を、当該処理において全て適用したか否かを判定する(S112)。そして、コントローラ31は、往路の発光周期T10の選択候補を全て適用した場合は(S112:YES)、処理をステップS109(図8参照)に進めて、当該フレームに対する測定データの取得を断念する。他方、往路の発光周期T10の選択候補を全て適用していない場合(S112:NO)、コントローラ31は、残りの往路の選択候補の何れかに往路の発光周期T10を変更して(S113)、処理をステップS104(図8参照)に進め、再度、往路データと復路データを取得する。
 また、ステップS114において、コントローラ31は、予め保持している復路の発光周期T30の選択候補を、当該処理において全て適用したか否かを判定する(S114)。そして、コントローラ31は、復路の発光周期T30の選択候補を全て適用した場合は(S114:YES)、処理をステップS109(図8参照)に進めて、当該フレームに対する測定データの取得を断念する。他方、復路の発光周期T30の選択候補を全て適用していない場合(S114:NO)、コントローラ31は、残りの復路の選択候補の何れかに復路の発光周期T30を変更して(S115)、処理をステップS104(図8参照)に進め、再度、往路データと復路データを取得する。
 通常、往路データまたは復路データに干渉光の影響がある場合、反射光R10とともに干渉光によって、画素位置に距離が割り当てられるため、距離が割り当てられた画素の数は、干渉光の影響がない場合に比べて多くなる。したがって、画素数N1、N2を比較することにより、往路データと復路データの何れに干渉光の影響があるかを判別できる。
 変更例1によれば、往路および復路の測定期間T1、T3うち光を受光した画素の数N1、N2が多い方の測定期間に対応する発光タイミング(発光周期)が変更されるため、その後に行われる測定動作において、往路または復路の測定の際に、再度、干渉光の受光が受光期間に同期する可能性を低減できる。よって、より迅速に、干渉光の影響がない状態の往路データおよび復路データを取得でき、測定データを迅速に取得できる。
 <変更例2>
 上記変更例1では、ステップS111の判定がNOの場合に復路の発光周期T30を変更したが、ステップS111の判定がNOの場合に、往路と復路の発光周期T10、T30の組み合わせパターンを変更してもよい。
 図9(b)は、変更例2に係る、測定データの取得処理を示すフローチャートである。
 変更例2では、図9(a)のステップS114、S115が、ステップS116、S117に置き換えられている。
 ステップS111の判定がNOの場合、コントローラ31は、往路および復路の発光周期T10、T30の選択候補の全ての組み合わせを適用して、往路データおよび復路データを取得したか否かを判定する(S116)。ステップS116の判定がNOの場合、コントローラ31は、往路および復路の発光周期T10、T30を、選択候補の他の組み合わせに設定し(S117)、処理をステップS104(図8参照)に戻す。これにより、以前の1フレーム分の測定時とは異なる発光周期に、発光周期T10、T30の少なくとも一方が変更された状態で、往路データおよび復路データが取得される。他方、選択候補の他の組み合わせを適用した場合(S116:NO)、コントローラ31は、処理をステップS109(図8参照)に進めて、当該フレームに対する測定データの取得を断念する。
 本変更例によれば、画素数N1が画素数N2よりも多い場合に、往路の測定期間T1における発光タイミング(発光周期)が変更されるため、その後に行われる測定動作において、再度、往路データが干渉光の影響を受ける可能性を低減できる。よって、迅速に、干渉光の影響がない状態の往路データを取得でき、測定データを迅速に取得できる。
 <変更例3>
 上記実施形態では、画素22bに配置されたアバランシェフォトダイオードがガイガーモードで用いられることが前提とされたが、画素22bに配置されたアバランシェフォトダイオードがリニアモード(リニア増倍モード)で用いられてもよい。
 上記のように、ガイガーモードでは、アバランシェフォトダイオードに光子が入射すると、アバランシェ増倍により、アバランシェフォトダイオードのカソードに集電される電荷が飽和電荷量まで増倍される。したがって、画素に対する光の入射の有無が高感度で検出され得る。
 これに対し、リニアモードでは、アバランシェフォトダイオードに光子が入射すると、入射した光子の数に略比例する電荷が、アバランシェフォトダイオードのカソードに集電される。したがって、リニアモードでは、画素に対する光の入射の有無とともに、入射光量(受光強度)が検出され得る。アバランシェフォトダイオードに印加される逆電圧を調節することにより、アバランシェフォトダイオードがリニアモードで使用され得る。
 このように、各画素22bが、受光強度に応じた信号を出力する場合、コントローラ31は、図8の処理において、さらに、受光強度に基づいて、往路データを復路データが干渉光の影響を受けているか否かを判定してもよい。すなわち、図8のステップS105の判定において、差分が閾値を超える場合であっても、この差分を生じさせた画素位置の受光強度が小さい場合、この画素位置に割り当てられた距離は、干渉光に基づくものではなく、誤動作や電気的ノイズ等の他の要因によるものと想定され得る。よって、このような場合は、往路データを復路データのうち、距離が割り当てられた画素の数が少ない方のデータを測定データに用いてもよい。
 図10は、変更例3に係る、測定データの取得処理を示すフローチャートである。
 変更例3では、図8のステップS106が、ステップS122、S123に置き換えられ、ステップS121が追加されている。その他のステップは、図8の対応するステップと同様であるため、説明を省略する。
 コントローラ31は、往路データと復路データの差分が閾値を超える場合(S105:NO)、この差分を生じさせた画素位置の受光強度(画素の出力信号)が所定の閾値を超えるか否かを判定する(S121)。
 ここで、この閾値は、誤動作や電気的ノイズ等の干渉光の入射以外の要因によって生じると想定される信号レベルよりやや大きく、干渉光の入射によって生じる信号レベルよりも小さいレベルに設定される。また、閾値と比較される受光強度は、差分を生じさせた画素に出力信号の平均値や最大値、度数分布のモード等、差分を生じさせた画素に出力信号の代表値であればよい。
 ステップS121の判定がYESの場合、コントローラ31は、処理をステップS107に進めて、図8と同様の処理を行う。他方、ステップS121の判定がNOの場合、コントローラ31は、処理をステップS122に進めて、往路データと復路データの何れかを測定データとして選択する処理を行う。
 ステップS122において、コントローラ31は、往路データと復路データのうち、距離が割り当てられた画素の数が少ない方の画素データを選択し、選択したデータを測定データとして採用する(S123)。
 上記のように、ステップS121の判定がNOの場合、差分を生じさせた画素位置に割り当てられた距離は、受光素子22の誤動作や電気的ノイズ等によって生じたものと想定される。したがって、往路データと復路データのうち、このような画素を含まない画素データ、すなわち、距離が割り当てられた画素の数が少ない方の画素データは、干渉光による影響や、受光素子22の誤動作や電気的ノイズ等の影響を受けていない真正な画素データであると想定され得る。よって、ステップS122において、距離が割り当てられた画素の数が少ない方の画素データを選択すると、選択された画素データは、干渉光による影響や、受光素子22の誤動作や電気的ノイズ等の影響を受けていない真正な画素データである。
 このように、変更例3の構成によれば、差分を生じさせた前記画素の受光信号の強度が所定の閾値を超えること(S121)を、さらに、干渉光の影響の有無を判定するための条件に追加することにより、より円滑に、干渉光の影響のない測定データを取得できる。
 なお、ステップS122、S123に代えて、往路データから、差分を生じさせた画素に基づく距離を削除した(Nullに置き換えた)画素データを、測定データとして用いる処理が行われてもよい。この処理によっても、干渉光による影響や、受光素子22の誤動作や電気的ノイズ等の影響を受けていない真正な画素データを、測定データに採用することができる。
 また、1つの画素に複数のアバランシェフォトダイオードを配置することにより、受光光量に応じた信号を出力させる構成であってもよい。この場合、各アバランシェフォトダイオードは、ガイガーモードで使用されてもよい。また、各画素に、受光光量に応じた電気信号を出力するフォトダイオードが配置されてもよい。
 また、変更例1、2の構成に、変更例3の構成が用いられてもよい。
 <変更例4>
 上記実施形態では、往路と復路の発光周期T10、T30を変更することにより、往路と復路の発光タイミングが変更された。すなわち、コントローラ31は、たとえば、図11(a)に示すように、予め、往路と復路の発光周期T10、T30の選択候補を保持し、往路データと復路データの差分が閾値を超える場合に、これら選択候補の組み合わせを変更することによって、往路と復路の発光タイミングを変化させた。
 これに対し、変更例4では、往路データと復路データの差分が閾値を超える場合に、往路または復路の発光周期の位相を変化させる。
 図11(b)、(c)は、変更例4に係る、発光タイミングの調整動作を示すタイミングチャートである。
 図11(b)は、往路の受光期間と干渉光の受光タイミングとが同期している状態を示している。この場合、図8のステップS105の判定がYESとなる。これに応じて、コントローラ31は、往路データと復路データのうち、距離が割り当てられた画素の数が多い方の画素データを特定し、往路の測定期間T1と復路の測定期間T3うち、特定した画素データに対応する測定期間の発光周期の位相を所定量だけシフトさせる。たとえば、図11(b)のように、往路の受光期間と干渉光の受光タイミングとが同期している場合、コントローラ31は、図11(c)のように、往路の発光周期を所定量ΔPだけシフトさせる。これにより、受光期間も同様に所定量ΔPだけシフトされ、往路の受光期間と干渉光の受光タイミングとが同期しなくなる。
 このように、変更例4によれば、往路データと復路データの差分が閾値を超える場合に、発光周期の位相を変化させることにより、往路または復路の受光期間と干渉光の受光タイミングとが同期することを解消できる。よって、変更例4の構成によっても、上記実施形態と同様、干渉光の影響が抑制された高品質の測定データを取得することができる。
 なお、変更例4の構成において、コントローラ31は、図8のステップS107、S108に代えて、距離が割り当てられた画素数が多い方の測定期間における発光周期を所定量ずつ変化させる処理を行えばよい。また、変更例4の構成が、変更例1~3に適用されてもよい。
 <その他の変更例>
 上記実施形態では、図3(b)に示したように、往路と復路の期間が互いに相違したが、往路と復路の期間が同じであってもよい。この場合も、往路の測定期間の発光周期T10と復路の測定期間の発光周期T30は、互いに相違するように設定される。
 また、上記実施形態では、水平方向に長いラインビームB10が鉛直方向に走査されたが、鉛直方向に長いラインビームが水平方向に走査されてもよい。
 また、上記実施形態では、光偏向器14としてMEMSミラーを用いたが、光偏向器14として磁気可動ミラー等の往復駆動方式の他の光偏向器が用いられてもよい。
 また、上記実施形態では、発光ユニット11、ファスト軸シリンドリカルレンズ12、スロー軸シリンドリカルレンズ13および光偏向器14が一方向に並ぶように投射光学系10が構成されたが、投射光学系10のレイアウトはこれに限られるものではない。たとえば、光路の途中にミラーを配置して光路を折り曲げるように投射光学系10が構成されてもよい。また、ファスト軸シリンドリカルレンズ12が、スロー軸シリンドリカルレンズ13の後段側に配置されてもよい。
 また、発光ユニット11に配置されるレーザ光源11aの数は、上記実施形態に例示した数に限られるものではない。
 また、ファスト軸シリンドリカルレンズ12とスロー軸シリンドリカルレンズ13を一体化してもよい。たとえば、スロー軸方向とファスト軸方向にそれぞれ異なる非球面となるトロイダルレンズが用いられてもよい。
 また、上記実施形態では、レーザレーダ1が車両200に搭載されたが、他の移動体にレーザレーダ1が搭載されてもよい。また、レーザレーダ1が移動体以外の機器や設備に搭載されてもよい。また、レーザレーダ1が物体検出の機能のみを備えていてもよい。
 また、上記実施形態では、複数のレーザ光源11aが1列に並んで配置されたが、複数のレーザ光源11aの配置方法は、これに限られるものではない。たとえば、レーザ光源11aの列が複数段配置されてもよく、複数のレーザ光源11aがマトリクス状に配置されてもよい。
 この他、本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
  1 … レーザレーダ
  11 … 発光ユニット(光源)
  14a … ミラー
  22 … 受光素子
  22b … 画素
  31 … コントローラ

Claims (11)

  1.  ラインビームを走査させることにより物体を検出するレーザレーダにおいて、
     前記ラインビームの生成に用いるレーザ光を出射する光源と、
     前記ラインビームを目標領域において往復走査させるためのミラーと、
     前記ラインビームの物体からの反射光をマトリクス状に配置された複数の画素により受光する受光素子と、
     コントローラと、を備え、
     前記コントローラは、
      前記ラインビームの往路および復路の走査において発光周期が互いに相違するように前記光源を制御し、
      前記往路の走査において前記受光素子から得られる第1画素データと前記復路の走査において前記受光素子から得られる第2画素データとの差分に基づいて、前記第1画素データまたは前記第2画素データを測定データとして選択するか否かを決定する、
    ことを特徴とするレーザレーダ。
     
  2.  請求項1に記載のレーザレーダにおいて、
     前記コントローラは、復路の走査期間が往路の走査期間よりも短くなるように前記ミラーを駆動し、前記復路の発光周期を前記往路の発光周期よりも短く設定する、
    ことを特徴とするレーザレーダ。
     
  3.  請求項2に記載のレーザレーダにおいて、
     前記コントローラは、前記復路の発光周期と前記往路の発光周期との比が、往路の測定期間の逆数と復路の測定期間の逆数との比となるように、前記光源を制御する、
    ことを特徴とするレーザレーダ。
     
  4.  請求項1ないし3の何れか一項に記載のレーザレーダにおいて、
     前記コントローラは、前記差分が、前記反射光以外の干渉光が第1画素データおよび第2画素データに影響したことを規定する閾値を超えることを条件に、前記往路の発光タイミングと前記復路の発光タイミングの少なくとも一方を変更する、
    ことを特徴とするレーザレーダ。
     
  5.  請求項4に記載のレーザレーダにおいて、
     前記コントローラは、前記発光周期を変更することにより、前記発光タイミングの変更を行う、
    ことを特徴とするレーザレーダ。
     
  6.  請求項4に記載のレーザレーダにおいて、
     前記コントローラは、前記発光周期の位相を変更することにより、前記発光タイミングの変更を行う、
    ことを特徴とするレーザレーダ。
     
  7.  請求項4ないし6の何れか一項に記載のレーザレーダにおいて、
     前記コントローラは、前記発光タイミングの変更において、前記往路および前記復路の測定期間うち光を受光した画素の数が多い方の測定期間に対応する前記発光タイミングを変更する、
    ことを特徴とするレーザレーダ。
     
  8.  請求項4ないし7の何れか一項に記載のレーザレーダにおいて、
     前記受光素子は、前記各画素が受光光量に応じた強度の信号を出力可能に構成され、
     前記コントローラは、前記差分を生じさせた前記画素の受光信号の強度が所定の信号強度を超えることをさらなる条件として、前記往路の発光タイミングと前記復路の発光タイミングの少なくとも一方を変更する、
    ことを特徴とするレーザレーダ。
     
  9.  請求項4ないし8の何れか一項に記載のレーザレーダにおいて、
     前記コントローラは、前記往路の発光タイミングの設定パターンと前記復路の発光タイミングの設定パターンを、それぞれ、複数、保持している、
    ことを特徴とするレーザレーダ。
     
  10.  請求項1ないし9の何れか一項に記載のレーザレーダにおいて、
     前記コントローラは、前記往路における発光動作を前記復路の測定期間まで継続した場合に、前記復路の測定期間における前記往路の発光タイミングが前記復路の測定期間における何れの発光タイミングにも一致しないように、前記往路の発光タイミングと前記復路の発光タイミングを設定する、
    ことを特徴とするレーザレーダ。
     
  11.  請求項1ないし10の何れか一項に記載のレーザレーダにおいて、
     前記コントローラは、前記発光タイミングから目標距離に応じた時間が経過したタイミングで前記反射光を受光するための受光動作を前記受光素子に行わせる、
    ことを特徴とするレーザレーダ。
PCT/JP2020/033688 2019-11-28 2020-09-04 レーザレーダ WO2021106303A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019214950 2019-11-28
JP2019-214950 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021106303A1 true WO2021106303A1 (ja) 2021-06-03

Family

ID=76130449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033688 WO2021106303A1 (ja) 2019-11-28 2020-09-04 レーザレーダ

Country Status (1)

Country Link
WO (1) WO2021106303A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012338A (ja) * 2002-06-07 2004-01-15 Nissan Motor Co Ltd 物体検知装置及び方法
JP2007278940A (ja) * 2006-04-10 2007-10-25 Mitsubishi Electric Corp レーダ装置
JP2016053552A (ja) * 2014-09-04 2016-04-14 株式会社日本自動車部品総合研究所 車載装置、車載測距システム
JP2017125682A (ja) * 2016-01-11 2017-07-20 株式会社デンソー レーザレーダ装置、周辺監視システム
JP2018081029A (ja) * 2016-11-17 2018-05-24 富士通株式会社 画像情報出力装置、画像情報出力方法、プログラム
JP2018087703A (ja) * 2016-11-28 2018-06-07 パイオニア株式会社 制御装置、測定装置、およびコンピュータプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012338A (ja) * 2002-06-07 2004-01-15 Nissan Motor Co Ltd 物体検知装置及び方法
JP2007278940A (ja) * 2006-04-10 2007-10-25 Mitsubishi Electric Corp レーダ装置
JP2016053552A (ja) * 2014-09-04 2016-04-14 株式会社日本自動車部品総合研究所 車載装置、車載測距システム
JP2017125682A (ja) * 2016-01-11 2017-07-20 株式会社デンソー レーザレーダ装置、周辺監視システム
JP2018081029A (ja) * 2016-11-17 2018-05-24 富士通株式会社 画像情報出力装置、画像情報出力方法、プログラム
JP2018087703A (ja) * 2016-11-28 2018-06-07 パイオニア株式会社 制御装置、測定装置、およびコンピュータプログラム

Similar Documents

Publication Publication Date Title
KR102604902B1 (ko) 펄스형 빔들의 희소 어레이를 사용하는 깊이 감지
JP6899005B2 (ja) 光検出測距センサ
KR102451010B1 (ko) 물체까지의 거리를 결정하기 위한 시스템
CN110412600B (zh) 光雷达装置
JP2020510208A (ja) 眼安全性走査lidarシステム
US12061290B2 (en) Beam steering aware pixel clustering of segmented sensor area and implementing averaging algorithms for pixel processing
CN111751842A (zh) 用于光检测和测距(lidar)系统的过采样和发射器拍摄模式
CN110780312B (zh) 一种可调距离测量系统及方法
JP2017003785A (ja) 光走査装置、物体検出装置及びセンシング装置
JP7423485B2 (ja) 距離計測装置
JP7007637B2 (ja) レーザ測距装置、レーザ測距方法および位置調整プログラム
WO2020116078A1 (ja) レーザレーダ
WO2021106303A1 (ja) レーザレーダ
EP3226024B1 (en) Optical 3-dimensional sensing system and method of operation
JP7133523B2 (ja) 光検出装置及び電子装置
JP2000097629A (ja) 光式センサ
JP2021089248A (ja) レーザレーダ
JP2001280911A (ja) 測距センサ及びその調整方法
WO2023195911A1 (en) Calibration of depth map generating system
JP2021148734A (ja) レーザレーダ
JP2022054000A (ja) ビーム出射装置、レーザレーダおよび光出力調整方法
JP2023113251A (ja) 測定装置
JPH06229822A (ja) 光電スイッチ
JP2020016529A (ja) 物体検出装置および物体検出方法
JP2020134313A (ja) 光検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP