WO2021106098A1 - 接合基板の製造方法 - Google Patents

接合基板の製造方法 Download PDF

Info

Publication number
WO2021106098A1
WO2021106098A1 PCT/JP2019/046302 JP2019046302W WO2021106098A1 WO 2021106098 A1 WO2021106098 A1 WO 2021106098A1 JP 2019046302 W JP2019046302 W JP 2019046302W WO 2021106098 A1 WO2021106098 A1 WO 2021106098A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate product
silicon nitride
substrate
temperature
surface pressure
Prior art date
Application number
PCT/JP2019/046302
Other languages
English (en)
French (fr)
Inventor
隆 海老ヶ瀬
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2019/046302 priority Critical patent/WO2021106098A1/ja
Priority to JP2021560820A priority patent/JP7431857B2/ja
Publication of WO2021106098A1 publication Critical patent/WO2021106098A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern

Definitions

  • a brazing material is coated on one main surface of a silicon nitride substrate, a copper plate is superposed on the coated surface of the coated brazing material, and a bonded substrate is obtained by heat and pressure bonding.
  • the thickness of the two copper plates bonded to the two main surfaces of the silicon nitride ceramic substrate is different from each other.
  • the bonded substrate may be warped or cracked when the bonded substrate is manufactured. ..
  • the occurrence of warpage, cracks, etc. is due to the fact that the coefficient of thermal expansion of copper is significantly different from the coefficient of thermal expansion of silicon nitride ceramics. Cracks often occur on silicon nitride ceramic substrates and near the end faces of copper plates.
  • An object to be solved by the present invention is to suppress warpage, cracks, etc. generated in the bonded substrate when the bonded substrate in which the copper plate is bonded to the silicon nitride ceramic substrate via the bonding layer is manufactured.
  • a silicon nitride ceramic substrate is prepared.
  • a brazing filler metal layer is formed on the main surface of the silicon nitride ceramic substrate.
  • a copper plate is placed on the brazing filler metal layer.
  • Hot press is performed on the intermediate product.
  • a bonding layer for bonding the copper plate to the silicon nitride ceramic substrate is formed.
  • the copper plate of the intermediate product is plastically deformed by the surface pressure applied to the intermediate product while the temperature of the intermediate product is lowered. Therefore, it is possible to suppress the stress remaining on the bonded substrate due to the fact that the coefficient of thermal expansion of copper is significantly different from the coefficient of thermal expansion of silicon nitride ceramics. This makes it possible to suppress warpage, cracks, and the like that occur in the bonded substrate when the bonded substrate in which the copper plate is bonded to the silicon nitride ceramic substrate via the bonded layer is manufactured.
  • the bonding substrate 1 of the first embodiment shown in FIG. 1 includes a silicon nitride ceramic substrate 11, a copper plate 12, and a bonding layer 13.
  • the bonding substrate 1 may include elements other than these elements.
  • the copper plate 12 and the bonding layer 13 are arranged on the main surface 11s of the silicon nitride ceramic substrate 11.
  • the bonding layer 13 joins the copper plate 12 to the main surface 11s of the silicon nitride ceramic substrate 11.
  • step S101 the silicon nitride ceramic substrate 11 is prepared.
  • step S102 as shown in FIG. 3, the brazing filler metal layer 13i is formed on the main surface 11s of the silicon nitride ceramic substrate 11.
  • the active metal brazing material includes hydrogenated active metal powder and metal powder.
  • the hydrogenated active metal powder contains a hydride of at least one active metal selected from the group consisting of titanium and zirconium.
  • the metal powder contains silver.
  • the metal powder may contain a metal other than silver.
  • the metal other than silver is at least one metal selected from the group consisting of copper, indium and tin. When at least one metal selected from the group consisting of copper, indium and tin is contained in the active metal brazing material, the melting point of the active metal brazing material is lowered.
  • the intermediate product 1i When hot pressing is performed on the intermediate product 1i, preferably, the intermediate product 1i is heated in vacuum or in an inert gas according to a temperature profile having a maximum temperature TMAX of 800 ° C. or higher and 900 ° C. or lower. The pressure is applied in the thickness direction of the silicon nitride ceramic substrate 11 according to the surface pressure profile having the maximum surface pressure PMAX of 5 MPa or more and 30 MPa or less.
  • the brazing material layer 13i is thin, such as when the brazing material layer 13i has a thickness of 0.1 ⁇ m or more and 10 ⁇ m or less, the copper plate 12i is bonded to the silicon nitride ceramic substrate 11 without forming voids. be able to.
  • the temperature of the intermediate product 1i is raised from room temperature to the maximum temperature TMAX and maintained at the maximum temperature TMAX for a set time. Further, in the surface pressure profiles shown in FIGS. 6 and 7, the surface pressure applied to the intermediate product 1i is from the vicinity of the surface pressure 0 to the maximum surface while the temperature of the intermediate product 1i is raised from room temperature to the maximum temperature TMAX. The pressure can be raised to PMAX.
  • the temperature of the intermediate product 1i is raised from room temperature to the maximum temperature TMAX
  • the temperature of the intermediate product 1i is first raised from room temperature to the binder temperature TB. Further, the temperature of the intermediate product 1i is maintained at the binder removal temperature TB for a set time. As a result, the binder contained in the brazing material layer 13i is removed from the binder. Subsequently, the temperature of the intermediate product 1i is raised from the binder removal temperature TB to the maximum temperature TMAX. Further, the temperature of the intermediate product 1i is maintained at the maximum temperature TMAX for a set time.
  • the intermediate product 1i is not pressurized while the binder is removed. Therefore, it is possible to suppress the inhibition of the binder removal by the pressurization of the intermediate product 1i, and it is possible to suppress the residual coal in the bonding layer 13 provided in the manufactured bonding substrate 1. Further, before the temperature of the copper plate 12i rises and the copper plate 12i is easily plastically deformed, the copper plate 12i is pressed against the silicon nitride ceramic substrate 11 by a relatively weak first surface pressure P1. Therefore, it is possible to prevent the silicon nitride ceramic substrate 11 from cracking. Further, the pressure on the copper plate 12i is started after the temperature of the copper plate 12i rises and the copper plate 12i is easily plastically deformed.
  • the surface pressure profile may be changed while the surface pressure applied to the intermediate product 1i is increased to the maximum surface pressure PMAX. For example, it may be omitted to maintain the surface pressure applied to the intermediate product 1i at the first surface pressure P1 for a set time.
  • the temperature of the intermediate product 1i is lowered from the maximum temperature TMAX to room temperature. Further, in the surface pressure profile shown in FIGS. 6 and 7, the surface pressure applied to the intermediate product 1i is reduced from the maximum surface pressure PMAX to the vicinity of the surface pressure 0.
  • the bonding substrate 1 due to the fact that the coefficient of thermal expansion of copper is significantly different from the coefficient of thermal expansion of silicon nitride ceramics. As a result, warpage, cracks, and the like generated in the bonding substrate 1 can be suppressed.
  • the above-mentioned temperature of 70 ° C. is the lowest temperature at which the strain inside the copper plate 12 can be removed within a few hours.
  • the surface pressure applied to the intermediate product 1i at 30 MPa or less, it is possible to prevent the intermediate product 1i from being damaged by the surface pressure applied to the intermediate product 1i. For example, it is possible to prevent the silicon nitride ceramic substrate 11 provided in the intermediate product 1i from cracking.
  • the temperature of the intermediate product 1i is lowered from the maximum temperature to 70 ° C. or lower while the surface pressure applied to the intermediate product 1i is maintained at 10 MPa or more.
  • the amount of warpage of the prototype was calculated from the shape profile of the other main surface 11sb of the silicon nitride ceramic substrate 11 shown in the graph of FIG. 11 measured by a laser displacement meter. At that time, if the other main surface 11sb of the silicon nitride ceramic substrate 11 is a convex surface, a negative value is given to the amount of warpage, and the other main surface 11sb of the silicon nitride ceramic substrate 11 is concave. In the case of the surface of, a positive value was given to the amount of warpage. When the amount of warpage has a negative value, it means that tensile stress remains on the silicon nitride ceramic substrate 11. When the amount of warpage has a positive value, it means that the compressive stress remains on the silicon nitride ceramic substrate 11.
  • the amount of warpage is negative near room temperature. It can be understood that the tensile stress remains on the silicon nitride ceramic substrate 11 having the value of. Further, it can be understood that the amount of warpage is expected to be 0 at about 300 ° C. by extrapolating the temperature change of the amount of warpage in the vicinity of room temperature.
  • the amount of warpage has a value near 0, and only a small amount of tensile stress and compressive stress remains on the silicon nitride ceramic substrate 11. Further, it can be understood that the amount of warpage becomes 0 at about 70 ° C.
  • the temperature change of the amount of warpage when the surface pressure applied to the intermediate product 1i when the intermediate product 1i is prototyped is 6.3 MPa, and the surface pressure applied to the intermediate product 1i when the intermediate product 1i is prototyped.
  • the stress remaining on the silicon nitride ceramic substrate 11 can be reduced by increasing the surface pressure applied to the intermediate product 1i. I can understand what I can do.
  • the manufacturing method of the bonding substrate 1 described above except that the pressurization of the intermediate product 1i was completed immediately after starting to lower the temperature of the intermediate product 1i when the intermediate product 1i was prototyped.
  • a prototype of the bonding substrate 1 shown in FIG. 1 was prototyped, and a cross section of the prototype bonding substrate 1 was observed. The result is shown in FIG. From FIG. 12, it can be understood that the silicon nitride ceramic substrate 11 prepared for the prototype of the bonded substrate 1 has cracks starting from the vicinity of the end face of the copper plate 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

銅板が接合層を介して窒化ケイ素セラミックス基板に接合された接合基板を製造する際に接合基板に発生する反り、クラック等を抑制する。窒化ケイ素セラミックス基板が準備される。ろう材層が窒化ケイ素セラミックス基板の主面上に形成される。ろう材層上に銅板が配置される。これにより、窒化ケイ素セラミックス基板、ろう材層及び銅板を含む中間品が得られる。中間品に対してホットプレスが行われる。これより、銅板を窒化ケイ素セラミックス基板に接合する接合層が生成する。中間品に対してホットプレスが行われる際には、中間品に加える面圧が最高圧力まで上げられ、中間品の温度が最高温度まで上げられた後に、中間品に加える面圧が0.1MPa以上30MPa以下に維持されたまま、中間品の温度が最高温度から70℃以下まで下げられる。

Description

接合基板の製造方法
 本発明は、接合基板の製造方法に関する。
 窒化ケイ素セラミックスは、高い熱伝導性及び高い絶縁性を有する。このため、銅板が接合層を介して窒化ケイ素セラミックス基板に接合された接合基板は、パワー半導体素子が実装される絶縁放熱基板として好適に用いられる。
 当該接合基板は、多くの場合は、ろう材層を銅板と窒化ケイ素セラミックス基板との間に有する中間品を作製し、作製した中間品に対して熱処理を行って銅板と窒化ケイ素セラミックス板との間に接合層を生成させることにより製造される。
 また、中間品に対して熱処理を行う際に、中間品に対してホットプレスを行うことも提案されている。
 例えば、特許文献1に記載された技術においては、窒化珪素基板の一方主面上にろう材が塗布され、塗布されたろう材の塗布面に銅板が重ね合わされ、加熱加圧接合によって接合基板が得られる(段落0024及び0025)。
特許第6482144号公報
 しかし、窒化ケイ素セラミックス基板のふたつの主面の一方の主面上のみに銅板が接合される場合、窒化ケイ素セラミックス基板のふたつの主面にそれぞれ接合されるふたつの銅板の厚さが互いに異なる場合、窒化ケイ素セラミックス基板のふたつの主面にそれぞれ接合されるふたつの銅板が占める面積が互いに異なる場合等には、接合基板を製造する際に、接合基板に反り、クラック等が発生する場合がある。この反り、クラック等の発生は、銅の熱膨張率が窒化ケイ素セラミックスの熱膨張率と大きく異なることに起因する。クラックは、多くの場合は、窒化ケイ素セラミックス基板に発生し、銅板の端面の付近に発生する。
 本発明は、この問題に鑑みてなされた。本発明が解決しようとする課題は、銅板が接合層を介して窒化ケイ素セラミックス基板に接合された接合基板を製造する際に接合基板に発生する反り、クラック等を抑制することである。
 窒化ケイ素セラミックス基板が準備される。ろう材層が窒化ケイ素セラミックス基板の主面上に形成される。ろう材層上に銅板が配置される。これにより、窒化ケイ素セラミックス基板、ろう材層及び銅板を含む中間品が得られる。中間品に対してホットプレスが行われる。これより、銅板を窒化ケイ素セラミックス基板に接合する接合層が生成する。中間品に対してホットプレスが行われる際には、中間品に加えられる面圧が最高圧力まで上げられ、中間品の温度が最高温度まで上げられた後に、中間品に加えられる面圧が0.1MPa以上30MPa以下に維持されたまま、中間品の温度が最高温度から70℃以下まで下げられる。
 本発明によれば、中間品の温度が下げられている間に中間品に加えられる面圧により中間品が有する銅板が塑性変形する。このため、銅の熱膨張率が窒化ケイ素セラミックスの熱膨張率と大きく異なることに起因する応力が接合基板に残留することを抑制することができる。これにより、銅板が接合層を介して窒化ケイ素セラミックス基板に接合された接合基板を製造する際に接合基板に発生する反り、クラック等を抑制することができる。
 この発明の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1実施形態の接合基板の例を模式的に図示する断面図である。 第1実施形態の接合基板の製造の流れを図示するフローチャートである。 第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。 第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。 第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。 参考例の温度プロファイル及び面圧プロファイルを示す図である。 第1実施形態の接合基板の製造の途上でホットプレスが行われる際の温度プロファイル及び面圧プロファイルの例を示す図である。 第1実施形態の接合基板の試作品を模式的に図示する断面図である。 第1実施形態の接合基板の試作品に温度変化が与えられた際の反り量の温度変化を示すグラフである。 第1実施形態の接合基板の試作品の破損例を図示する図である。 第1実施形態の接合基板の試作品に備えられる窒化ケイ素セラミックス基板の他方の主面の形状プロファイルを示すグラフである。 比較例の接合基板の断面を示す画像である。
 1 接合基板
 図1は、第1実施形態の接合基板の例を模式的に図示する断面図である。
 図1に図示される第1実施形態の接合基板1は、窒化ケイ素セラミックス基板11、銅板12及び接合層13を備える。接合基板1がこれらの要素以外の要素を備えてもよい。
 銅板12及び接合層13は、窒化ケイ素セラミックス基板11の主面11s上に配置される。接合層13は、銅板12を窒化ケイ素セラミックス基板11の主面11sに接合する。
 銅板12は、活性金属を含む接合層13を介して窒化ケイ素セラミックス基板11に接合される。接合層13に含まれる活性金属は、チタン及びジルコニウムからなる群より選択される少なくとも1種の活性金属である。接合層13が活性金属以外の金属を含んでもよい。接合層13に含まれる活性金属以外の金属は、銀、銅、インジウム及びスズからなる群より選択される少なくとも1種の金属である。接合層13が、窒化ケイ素セラミックス基板11から供給された窒素及び/又はケイ素を含んでもよい。供給された窒素及び/又はケイ素が活性金属と化合物を形成していてもよい。接合層13が、銅板12から供給された銅を含んでもよい。
 接合基板1は、どのように用いられてもよいが、例えばパワー半導体素子が実装される絶縁放熱基板として用いられる。
 2 接合基板の製造方法
 図2は、第1実施形態の接合基板の製造の流れを図示するフローチャートである。図3、図4及び図5は、第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。
 第1実施形態の接合基板1の製造においては、図2に示される工程S101からS105までが順次に実行される。
 工程S101においては、窒化ケイ素セラミックス基板11が準備される。
 工程S102においては、図3に図示されるように、窒化ケイ素セラミックス基板11の主面11s上に、ろう材層13iが形成される。
 ろう材層13iが形成される際には、活性金属ろう材、バインダ及び溶剤を含むペーストが調製される。ペーストが分散剤、消泡剤等をさらに含んでもよい。続いて、調製されたペーストが窒化ケイ素セラミックス基板11の主面11s上にスクリーン印刷され、窒化ケイ素セラミックス基板11の主面11s上にスクリーン印刷膜が形成される。続いて、形成されたスクリーン印刷膜に含まれる溶剤が揮発させられる。これにより、スクリーン印刷膜が、ろう材層13iに変化する。ろう材層13iは、活性金属ろう材及びバインダを含む。ろう材層13iがこの方法とは異なる方法により形成されてもよい。
 活性金属ろう材は、水素化活性金属粉末及び金属粉末を含む。水素化活性金属粉末は、チタン及びジルコニウムからなる群より選択される少なくとも1種の活性金属の水素化物を含む。金属粉末は、銀を含む。金属粉末が、銀以外の金属を含んでもよい。銀以外の金属は、銅、インジウム及びスズからなる群より選択される少なくとも1種の金属である。銅、インジウム及びスズからなる群より選択される少なくとも1種の金属が活性金属ろう材に含まれる場合は、活性金属ろう材の融点が低下する。
 活性金属ろう材は、望ましくは0.1μm以上10μm以下の平均粒子径を有する粉末からなる。平均粒子径は、市販のレーザー回折式の粒度分布測定装置により粒度分布を測定し、測定した粒度分布からD50(メジアン径)を算出することにより得ることができる。活性金属ろう材がこのように小さい平均粒子径を有する粉末からなることにより、ろう材層13iを薄くすることができる。
 ろう材層13iは、望ましくは0.1μm以上10μm以下の厚さを有し、さらに望ましくは0.1μm以上5μm以下の厚さを有する。
 工程S103においては、図4に図示されるように、形成されたろう材層13i上に銅板12iが配置される。これにより、窒化ケイ素セラミックス基板11、銅板12i及びろう材層13iを備える中間品1iが得られる。
 工程S104においては、得られた中間品1iに対してホットプレスが行われる。これにより、図5に図示されるように、接合層13jが生成する。これらにより、図5に図示される、窒化ケイ素セラミックス基板11、銅板12j及び接合層13jを備える中間品1jが得られる。接合層13jは、銅板12jを窒化ケイ素セラミックス基板11に接合している。
 中間品1iに対してホットプレスが行われる場合は、望ましくは、中間品1iが、真空中又は不活性ガス中で、800℃以上900℃以下の最高温度TMAXを有する温度プロファイルにしたがって加熱されながら、5MPa以上30MPa以下の最高面圧PMAXを有する面圧プロファイルにしたがって窒化ケイ素セラミックス基板11の厚さ方向に加圧される。これにより、ろう材層13iが0.1μm以上10μm以下の厚さを有する場合のようなろう材層13iが薄い場合においても、ボイドを形成することなく銅板12iを窒化ケイ素セラミックス基板11に接合することができる。
 中間品1iに対してホットプレスが行われる間に、ろう材層13iに含まれる銀等の金属成分の全部又は一部が窒化ケイ素セラミックス基板11及び/又は銅板12iに拡散させられてもよい。中間品1iに対してホットプレスが行われる間に、窒化ケイ素セラミックス基板11に含まれる窒素及び/又はケイ素がろう材層13iに拡散させられてもよい。銅板11iに含まれる銅がろう材層13iに拡散させられてもよい。
 工程S105においては、銅板12j及び接合層13jがエッチング法等によってパターニングされる。これにより、銅板12jが、図1に図示されるパターニングされた銅板12に変化する。また、接合層13jが、図1に図示されるパターニングされた接合層13に変化する。銅板12j及び接合層13jのパターニングが省略されてもよい。
 3 温度プロファイル及び面圧プロファイル
 図6は、参考例の温度プロファイル及び面圧プロファイルを示す図である。図7は、第1実施形態の接合基板の製造の途上でホットプレスが行われる際の温度プロファイル及び面圧プロファイルの例を示す図である。
 図6及び図7に図示される温度プロファイルにおいては、中間品1iの温度が、室温から最高温度TMAXまで上げられ、設定された時間に渡って最高温度TMAXで維持される。また、図6及び図7に図示される面圧プロファイルにおいては、中間品1iの温度が室温から最高温度TMAXまで上げられる間に、中間品1iに加える面圧が、面圧0付近から最高面圧PMAXまで上げられる。
 中間品1iの温度が室温から最高温度TMAXまで上げられる間においては、まず、中間品1iの温度が、室温から脱バインダ温度TBまで上げられる。また、中間品1iの温度が、設定された時間に渡って脱バインダ温度TBで維持される。これにより、ろう材層13iに含まれるバインダの脱バインダが行われる。続いて、中間品1iの温度が、脱バインダ温度TBから最高温度TMAXまで上げられる。また、中間品1iの温度が、設定された時間に渡って最高温度TMAXで維持される。
 この際、中間品1iに加える面圧が最高面圧PMAXまで上げられる間においては、中間品1iの温度が脱バインダ温度TBまで上げられた後に、中間品1iへの加圧が開始される。また、中間品1iへの加圧が開始された後に、まず、中間品1iに加えられる面圧が、第1の面圧P1まで上げられ、設定された時間に渡って第1の面圧P1で維持される。続いて、中間品1iに加えられる面圧が、第1の面圧P1から第2の面圧(最高面圧)PMAXまで上げられ、設定された時間に渡って第2の面圧PMAXで維持される。第2の面圧PMAXは、第1の面圧P1より高い。これにより、脱バインダが行われている間は、中間品1iへの加圧が行われない。このため、中間品1iへの加圧により脱バインダが阻害されることを抑制することができ、製造された接合基板1に備えられる接合層13への残炭を抑制することができる。また、銅板12iの温度が上がって銅板12iが塑性変形しやすくなる前は、比較的に弱い第1の面圧P1で銅板12iが窒化ケイ素セラミックス基板11に向かって押し付けられる。このため、窒化ケイ素セラミックス基板11が割れることを抑制することができる。また、銅板12iの温度が上がって銅板12iが塑性変形しやすくなった後に銅板12iへの加圧が開始される。このため、熱膨張しようとする銅板12iが拘束されることを抑制することができ、接合基板1が製造された後に銅板12の内部に応力が残留することを抑制することができる。これにより、銅板12の内部に残留する応力に起因する接合基板1の変形が生じることを抑制することができる。例えば、接合基板1のうねりが生じることを抑制することができる。ただし、中間品1iに加える面圧が最高面圧PMAXまで上げられる間の面圧プロファイルが変更されてもよい。例えば、中間品1iに加える面圧を設定された時間に渡って第1の面圧P1で維持することが省略されてもよい。
 続いて、図6及び図7に図示される温度プロファイルにおいては、中間品1iの温度が、最高温度TMAXから室温まで下げられる。また、図6及び図7に図示される面圧プロファイルにおいては、中間品1iに加える面圧が、最高面圧PMAXから面圧0付近まで下げられる。
 図6に図示される参考例の面圧プロファイルにおいては、中間品1iの温度を最高温度TMAXから下げることが開始された直後に、中間品1iへの加圧が終了させられる。これに対して、図7に図示される第1実施形態の面圧プロファイルにおいては、中間品1iに加える面圧が0.1MPa以上30MPa以下に維持されたまま、中間品1iの温度が最高温度から70℃以下まで下げられる。中間品1iに加える面圧が0.1MPa以上に維持されることにより、中間品1iの温度が下げられている間に中間品1iに加えられる面圧により銅板12iが塑性変形する。このため、銅の熱膨張率が窒化ケイ素セラミックスの熱膨張率と大きく異なることに起因する応力が接合基板1に残留することを抑制することができる。これにより、接合基板1に発生する反り、クラック等を抑制することができる。上述の70℃という温度は、数時間以内で銅板12の内部の歪を除去することができる最低の温度である。また、中間品1iに加える面圧が30MPa以下に維持されることにより、中間品1iに加えられる面圧により中間品1iが損傷することを抑制することができる。例えば、中間品1iに備えられる窒化ケイ素セラミックス基板11が割れることを抑制することができる。
 望ましくは、中間品1iに加える面圧が10MPa以上に維持されたまま、前記中間品1iの温度が前記最高温度から70℃以下まで下げられる。
 4 実験
 上述した接合基板1の製造方法にしたがって、図8に図示される接合基板1の試作品を試作した。図8に図示される接合基板1の試作品においては、窒化ケイ素セラミックス基板11の一方の主面11saのみに銅板12が接合されている。活性金属ろう材に含まれる活性金属としては、チタンを用いた。活性金属ろう材に含まれる活性金属以外の金属としては、銀を用いた。脱バインダ温度TBは、550℃とした。最高温度TMAXは、820℃とした。第1の面圧P1は、2.5MPaとした。第2の面圧(最高面圧)PMAXは、22MPaとした。中間品1iの温度を下げる間に中間品1iに加える面圧は、6.3MPa、12.5MPa、18.4MPa及び37.5MPaとした。
 中間品1iに加える面圧を6.3MPa、12.5MPa及び18.4MPaとして試作された接合基板1の試作品について、温度変化が与えられた際の反り量を測定した。その結果を図9のグラフに示す。中間品1iに加える面圧を37.5MPaとして試作された接合基板1の試作品の反り量が図9のグラフに示されていないのは、図10に図示されるように窒化ケイ素セラミックス基板11が破損したためである。
 試作品の反り量は、レーザー変位計により測定された、図11のグラフに示される窒化ケイ素セラミックス基板11の他方の主面11sbの形状プロファイルから算出された。その際には、窒化ケイ素セラミックス基板11の他方の主面11sbが凸状の面となっている場合は反り量に負の値を付与し、窒化ケイ素セラミックス基板11の他方の主面11sbが凹状の面となっている場合は反り量に正の値を付与した。反り量が負の値を有することは、窒化ケイ素セラミックス基板11に引張応力が残留していることを意味する。反り量が正の値を有することは、窒化ケイ素セラミックス基板11に圧縮応力が残留していることを意味する。
 図9のグラフに示される反り量の温度変化からは、中間品1iが試作される際に中間品1iに加えられる面圧が6.3MPaである場合は、室温の付近において、反り量が負の値を有し、窒化ケイ素セラミックス基板11に引張応力が残留していることを理解することができる。また、室温の付近における反り量の温度変化を外挿することにより、約300℃において反り量が0になると予想されることを理解することができる。
 また、図9のグラフに示される反り量の温度変化からは、中間品1iが試作される際に中間品1iに加えられる面圧が12.5MPa又は18.4MPaである場合は、室温の付近において、反り量が0の付近の値を有し、窒化ケイ素セラミックス基板11にわずかな引張応力及び圧縮応力しか残留していないことを理解することができる。また、約70℃において反り量が0になることを理解することができる。
 また、中間品1iが試作される際に中間品1iに加えられる面圧が6.3MPaである場合の反り量の温度変化と中間品1iが試作される際に中間品1iに加えられる面圧が12.5MPa又は18.4MPaである場合の反り量の温度変化とを比較することにより、中間品1iに加える面圧を上げることにより、窒化ケイ素セラミックス基板11に残留する応力を低下させることができることを理解することができる。
 また、中間品1iが試作される際に中間品1iの温度を下げることを開始した直後に中間品1iへの加圧を終了した点を除いて、上述した接合基板1の製造方法にしたがって、図1に図示される接合基板1の試作品を試作し、試作した接合基板1の試作品の断面を観察した。その結果を図12に図示する。図12からは、当該接合基板1の試作品に備えらえる窒化ケイ素セラミックス基板11に銅板12の端面の付近を起点とするクラックが発生していることを理解することができる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 接合基板
 11 窒化ケイ素セラミックス基板
 12,12i 銅板
 13 接合層
 13i ろう材層

Claims (2)

  1.  a) 主面を有する窒化ケイ素セラミックス基板を準備する工程と、
     b) 前記主面上にろう材層を形成する工程と、
     c) 前記ろう材層上に銅板を配置して前記窒化ケイ素セラミックス基板、前記ろう材層及び前記銅板を備える中間品を得る工程と、
     d) 前記中間品に対してホットプレスを行って、前記銅板を前記窒化ケイ素セラミックス基板に接合する接合層を生成させる工程と、
    を備え、
     前記工程d)は、
     d-1) 前記中間品に加える面圧を最高面圧まで上げ、前記中間品の温度を最高温度まで上げる工程と、
     d-2) 前記中間品に加える面圧を0.1MPa以上30MPa以下に維持したまま、前記中間品の温度を前記最高温度から70℃以下まで下げる工程と、
    を備える
    接合基板の製造方法。
  2.  前記工程d-2)は、前記中間品に加える面圧を10MPa以上に維持する
    請求項1の接合基板の製造方法。
PCT/JP2019/046302 2019-11-27 2019-11-27 接合基板の製造方法 WO2021106098A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/046302 WO2021106098A1 (ja) 2019-11-27 2019-11-27 接合基板の製造方法
JP2021560820A JP7431857B2 (ja) 2019-11-27 2019-11-27 接合基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046302 WO2021106098A1 (ja) 2019-11-27 2019-11-27 接合基板の製造方法

Publications (1)

Publication Number Publication Date
WO2021106098A1 true WO2021106098A1 (ja) 2021-06-03

Family

ID=76129382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046302 WO2021106098A1 (ja) 2019-11-27 2019-11-27 接合基板の製造方法

Country Status (2)

Country Link
JP (1) JP7431857B2 (ja)
WO (1) WO2021106098A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214566A (ja) * 2012-03-30 2013-10-17 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板の製造方法
WO2018155014A1 (ja) * 2017-02-23 2018-08-30 日本碍子株式会社 絶縁放熱基板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137688A (ja) * 1984-12-07 1986-06-25 Hitachi Zosen Corp 線膨張係数の異なる材質からなる複合部材の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214566A (ja) * 2012-03-30 2013-10-17 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板の製造方法
WO2018155014A1 (ja) * 2017-02-23 2018-08-30 日本碍子株式会社 絶縁放熱基板

Also Published As

Publication number Publication date
JPWO2021106098A1 (ja) 2021-06-03
JP7431857B2 (ja) 2024-02-15

Similar Documents

Publication Publication Date Title
KR100672802B1 (ko) 기판 가열 장치 및 그 제조 방법
CN109690760B (zh) 散热板及其制造方法
US10882130B2 (en) Ceramic-aluminum assembly with bonding trenches
JP2022166010A (ja) 接合基板の製造方法
JP4382154B2 (ja) ヒートスプレッダおよびその製造方法
WO2021106098A1 (ja) 接合基板の製造方法
WO2021106097A1 (ja) 接合基板の製造方法
US20220285238A1 (en) Bonded substrate and bonded substrate manufacturing method
JP2018135251A (ja) パワーモジュール用基板の製造方法
KR101070148B1 (ko) 다층 세라믹 기판의 소성용 세터 및 이를 이용한 다층 세라믹 기판의 제조방법
WO2020184510A1 (ja) 接合基板及び接合基板の製造方法
JP2024521248A (ja) 多層構造の製造方法
JP7216611B2 (ja) SiC焼結部材の製造方法
JP4551330B2 (ja) ホットプレスセラミックの歪み制御
JP2020040865A (ja) セラミックス部材の製造方法
JP2018041867A (ja) 放熱基板、及び放熱基板の製造方法
KR101953433B1 (ko) 세라믹 기판 휨 발생용 도구 세트 및 이를 이용한 세라믹 기판의 휨 발생 방법
WO2021112029A1 (ja) 接合基板及び接合基板の製造方法
JP2019029600A (ja) セラミックス部材の製造方法
KR102061270B1 (ko) 에어홀이 형성된 열간 가압 소결용 몰드 장치
JP4196094B2 (ja) セラミック基板の製造方法
JP5278099B2 (ja) ターゲットの製造方法
JP2016046355A (ja) 半導体装置の製造方法
JP2023169903A (ja) 蓄電装置の製造方法
JP2021150357A (ja) 接合体の製造方法及び絶縁回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560820

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954456

Country of ref document: EP

Kind code of ref document: A1