WO2021104766A1 - Installation de production de ciment comprenant un dispositif de carbonisation à basse température pour des combustibles secondaires et pour la réduction d'oxydes d'azote - Google Patents

Installation de production de ciment comprenant un dispositif de carbonisation à basse température pour des combustibles secondaires et pour la réduction d'oxydes d'azote Download PDF

Info

Publication number
WO2021104766A1
WO2021104766A1 PCT/EP2020/079805 EP2020079805W WO2021104766A1 WO 2021104766 A1 WO2021104766 A1 WO 2021104766A1 EP 2020079805 W EP2020079805 W EP 2020079805W WO 2021104766 A1 WO2021104766 A1 WO 2021104766A1
Authority
WO
WIPO (PCT)
Prior art keywords
calciner
rotary drum
drum reactor
rotary
reactor
Prior art date
Application number
PCT/EP2020/079805
Other languages
German (de)
English (en)
Inventor
Frank Elschner
Original Assignee
Khd Humboldt Wedag Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Khd Humboldt Wedag Gmbh filed Critical Khd Humboldt Wedag Gmbh
Publication of WO2021104766A1 publication Critical patent/WO2021104766A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/2016Arrangements of preheating devices for the charge
    • F27B7/2025Arrangements of preheating devices for the charge consisting of a single string of cyclones
    • F27B7/2033Arrangements of preheating devices for the charge consisting of a single string of cyclones with means for precalcining the raw material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/434Preheating with addition of fuel, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/4407Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes
    • C04B7/4446Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes the fuel being treated in a separate gasifying or decomposing chamber, e.g. a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B1/00Combustion apparatus using only lump fuel
    • F23B1/30Combustion apparatus using only lump fuel characterised by the form of combustion chamber
    • F23B1/32Combustion apparatus using only lump fuel characterised by the form of combustion chamber rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B7/00Combustion techniques; Other solid-fuel combustion apparatus
    • F23B7/002Combustion techniques; Other solid-fuel combustion apparatus characterised by gas flow arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/36Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/15041Preheating combustion air by recuperating heat from ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/18Carbon capture and storage [CCS]

Definitions

  • the invention relates to a plant for the production of cement clinker from cement raw meal, having a heat exchanger component, consisting of Zyk ionebenleyern as a preheater for the cement raw meal, a ver provided with fuel and tertiary air from a cement clinker cooler in the plant in the form of a calciner, a sintering stage in Design of a rotary kiln, a cement clinker cooler connected downstream on the material flow side, and a rotary drum reactor for carbonization and / or combustion of secondary fuels, with a gas outlet end of the rotary drum reactor being connected to the calciner via a line for introducing the gases from the carbonization and / or combustion of the secondary fuels into the calciner, and wherein a material discharge end of the rotary drum reactor is connected to a rotary kiln inlet chamber.
  • Secondary fuels are, in particular, waste materials that have to be disposed of. Waste is abundant and incineration of waste as a disposal operation is very welcome in most urban or rural communities.
  • the use of secondary fuels i.e. waste materials from domestic waste or from industrial waste, such as shredded car tires, shredded animal carcasses, shredded and predried biomass in the form of straw, compost, shredded household waste, shredded industrial waste, such as cellulose waste or petroleum coke, or have shredded unpredictable burning behavior.
  • the batches of waste processed as fuel vary depending on its composition and humidity.
  • fossil fuels such as oil or gas, which maintain a reliably igniting primary flame, which in turn promotes the combustion of secondary fuels.
  • European patent EP 1 334954 B1 proposes parallel to a rotary kiln present in the plant for the production of cement clinker, which is used for sintering the calcium silicate phases serves to provide a second rotary kiln in which the secondary fuels are to be carbonized.
  • the secondary fuel which is uneven in its ignition and combustion behavior, is continuously rearranged during the carbonization, so that the carbonization takes place without unburned residues.
  • the carbonization gas which is still very rich in carbon monoxide, is fed into the calciner of the plant for the production of cement clinker, as is slag and non-combustible residues from the secondary fuel.
  • the carbonization gases from the rotary kiln for the secondary fuels follow Calciner
  • the gas flow, the slag and the non-combustible residues fall in the calciner into a rotary kiln inlet chamber and follow the material flow there.
  • the second rotary kiln described in the aforementioned European patent which can in particular be lumpy secondary fuels such as coarse wood waste, domestic bulky waste, old wooden pallets, railway sleepers, car tires and similar lumpy waste, burns the secondary fuel in cocurrent with tertiary air.
  • Secondary fuel which comes as recuperation air from a cement clinker cooler available in a generic system for the manufacture of cement clinker, and a pilot flame occur at the same point in the rotary kiln for secondary fuel.
  • the ignitable part of the fuel in the secondary fuel ignites and only at the end of the rotary kiln does the less ignitable part of the secondary fuel ignite.
  • the secondary fuel ignited once at the beginning of the rotary kiln maintains the further combustion of the secondary fuel in the course of the rotary kiln. This technology has proven to be stable in use.
  • the second rotary kiln requires a pilot burner for the secondary fuels, which is operated with fossil primary fuel in order to ignite the secondary fuels, which react very unevenly in terms of ignition behavior. If this rotary kiln is operated with unsorted secondary fuel, i.e. with a lower quality secondary fuel, the easily combustible and light secondary fuel components are driven out of the rotary kiln with the gas stream and the coarse and less ignitable fuel components remain in the rotary tube. If unsorted secondary fuel is used, it is more difficult to control the rotary kiln with regard to the amount of heat it emits.
  • the object of the invention is therefore to provide a plant for the production of Zementklin ker in which unsorted secondary fuel can also be used.
  • the object of the invention is achieved by a system with the features of claim 1.
  • the hot gas inflow from the rotary kiln and the material flow in the form of the low-value secondary fuels with varying ignition behavior run in countercurrent to one another in the rotary drum reactor.
  • the countercurrent makes the actual ignition behavior more even, in that the less ignitable components are subjected to stronger ignition than the less ignitable components.
  • the countercurrent makes it possible to use unsorted secondary fuel.
  • the light fuel components which are volatile in the gas flow and which generally ignite easily, are immediately expelled from the rotary drum reactor and can burn off in suspension in the gas flow. In the Drehtrommelreak tor, however, the less ignitable portion of the fuel is spoiled. If the easily igniting part of the fuel were ignited in the rotary drum reactor, then in the case of reductive combustion with the formation of carbon monoxide (CO) the less ignitable part would be subject to the reaction behavior of the more easily ignitable part. The more easily igniting part would be thermal energy absorb to the formation of carbon monoxide and the less ignitable part would ignite even worse.
  • CO carbon monoxide
  • the counterflow separates the components of the unsorted secondary fuel, whereby the actual ignition behavior is evened out, the less ignitable fuel part can ignite better and it is also possible, depending on the average ignition tendency of the secondary fuel, that the pilot burner can be dispensed with.
  • Furnace exhaust gas low in oxygen, high in nitrogen oxide
  • drum reactor addition of coarsely prepared fuel
  • CO production exhaust gas drum reactor: low in oxygen, high in nitrogen oxide, high in carbon monoxide
  • reduction train low in oxygen, low in nitrogen oxide, low in carbon monoxide
  • calciner Addition of tertiary air and conversion of CO.
  • the line for connecting the gas outlet end of the rotary drum reactor is designed as a gooseneck reactor.
  • the gooseneck reactor enables the more easily igniting fuel component of the secondary fuel to be burned out.
  • the carbonization gas / combustion gas formed in the rotating drum reactor can react to form CO, so that more carbon monoxide is available in the calciner, which on the one hand reduces the emission of nitrous gases (NOx) through chemical reduction, but also, depending on after combustion, supports the generation of heat in the calciner, which releases heat from carbon monoxide during oxidative combustion.
  • NOx nitrous gases
  • the flow through the line is naturally subject to a flow resistance, which leads to a pressure drop.
  • the pressure drop should be kept as low as possible.
  • the system according to the invention for producing Cement clinker is arranged at a height below the height of a turning point of the calciner.
  • the foot of the calciner is advantageously not directly connected to the rotary kiln inlet chamber of the rotary kiln for better control of the pressure and flow conditions.
  • This has the advantage that all of the hot exhaust gas from the rotary kiln flows into the rotary drum reactor.
  • the foot of the calciner is connected to the rotary kiln inlet chamber via a line.
  • This line should have a diameter that safely guides the precipitating raw meal into the rotary kiln inlet chamber, but offers too much flow resistance to the exhaust gas of the rotary kiln due to its diameter, so that the exhaust gas from the rotary kiln preferably flows into the rotary drum reactor.
  • the material discharge end of the rotary drum reactor is designed as a rotary drum reactor outlet chamber, and the rotary drum outlet chamber is connected to the rotary kiln inlet chamber of the rotary kiln, the connection between the rotary drum reactor outlet chamber and the rotary kiln inlet chamber being tapered.
  • This taper is used to control the flow of all gas streams that meet at this point and to extend the residence time of the less combustible fuel components of the secondary fuels in the drum reactor.
  • the taper also leads to a short-term increase in the flow rate and a reduction in Bernoullian pressure. This makes it possible to introduce tertiary air into the rotary kiln inlet bracket, which takes the further way through the rotary drum reactor and does not build up any counter pressure to the rotary kiln, so that the exhaust gas in the rotary kiln is jammed what could lead to exhaust gas from the rotary kiln pushing back into the cement clinker cooler downstream of the rotary kiln.
  • tertiary air flows in from a clinker cooler which is present in the plant via a tertiary air line from the clinker cooler to the material discharge end of the rotary drum reactor.
  • This hot heat recuperation air ignites the secondary fuel and, depending on the proportion of this oxygen-rich recuperation air, the redox potential of the atmosphere in the rotating drum reactor can be controlled during the carbonization / combustion in the rotating drum reactor.
  • the gas outlet end of the rotary drum reactor is designed as a rotary drum reactor inlet chamber, and the rotary drum reactor inlet chamber is connected to the calciner via the line. Due to the design as a rotary drum reactor inlet chamber, secondary fuel can be funneled into the rotary drum reactor inlet chamber through a feed device for secondary fuel, which then falls into the rotary drum reactor and is carbonized / burned there under constant circulation or Umla supply.
  • tertiary air from a clinker cooler in the plant to flow into the calciner via a tertiary air line from the clinker cooler to the calciner, with a first opening of the tertiary air line in the calciner below a second opening of the Line for connecting the gas outlet end of the Drehtrom melreaktors is arranged with the calciner.
  • the tertiary air richer in oxygen can mix with the air richer in carbon monoxide and so form strands of gas in the calciner, at whose mutual interfaces the reduction of nitrous gases takes place.
  • Additional primary fuel can flow into these rising strands of gas, which on the one hand serves as a pilot flame, but also supports the generation of heat in the calciner, the heat being necessary to deacidify the raw meal suspended in the gas flow there. It has proven to be a favorable location for heat generation with simultaneously lower nitrogen oxide (NOx) emissions if it is provided that a fuel feed for fuel for the calciner at a level above the second mouth of the line to connect the gas outlet end of the rotary drum reactor with the Calcinator (130) is arranged.
  • NOx nitrogen oxide
  • Fig. 1 shows a first embodiment of the system according to the invention for the produc- tion of cement clinker
  • Fig. 2 shows a second embodiment of the system according to the invention for the produc- tion of cement clinker.
  • FIG. 1 a first embodiment of the system 100 according to the invention for the production of cement clinker is shown.
  • the system 100 has the following system components: In the material flow direction at the beginning there is a heat exchanger component 110. This consists of several cyclone heat exchangers 111, 112, 113, 114 connected in series for preheating the cement raw meal R. The penultimate cyclone heat exchanger 113 is followed in the material flow direction by a calciner 130 , in which the preheated cement raw meal R from the heat exchanger component 110 flows.
  • the raw cement meal R is suspended in the exhaust air of a subsequent rotary kiln 140, the output 131 of the calciner 130 being connected to an input 114 ′ of the last cyclone heat exchanger 114.
  • the last cyclone heat exchanger 114 is followed by a connecting line 114 ′′ which leads to a rotary kiln inlet chamber 120 and feeds the preheated raw meal R, which has been deacidified in the calciner 130, to the rotary kiln 140.
  • the preheated and deacidified raw cement meal R rolls through the rotary kiln 140 and sinters to form cement clinker Z.
  • the Rotary kiln 140 is followed in the material flow direction by a cement clinker cooler 150, where a tertiary air line 160 leads from the cooler head housing 151, which is directly connected to the rotary kiln 140, to the calciner 130 in order to maintain combustion of fuel in an oxidative environment.
  • the cooled cement clinker Z leaves the cement clinker cooler 150.
  • Atmospheric spherical air L runs in the system 100 against the material flow of the raw cement meal R for the most part.
  • the air L flows into the cement clinker cooler 150 and is divided there into various fractions. A first part of the air L flows as so-called primary air into a burner drawn in dashed lines.
  • a second fraction flows as secondary air into the rotary kiln 140 and a third fraction of the air heated in the cement clinker cooler 150 flows as tertiary air through the tertiary air line 160.
  • the essential idea of the invention here is that the exhaust air from the rotary kiln 140 is fed into a rotary drum reactor 170, where the exhaust air of the rotary kiln 140 meets the secondary fuel SB in countercurrent. The exhaust air from the rotary kiln ignites the secondary fuel and enriches itself with carbon monoxide.
  • the carbon monoxide-rich gas then flows via a line from the material inlet end 170 'through a line 180 to the calciner 130, where it takes part in the reaction in the calciner 130 above the outlet for tertiary air TL2.
  • the redox potential and the temperature during the smoldering / burning in the rotary drum reactor 170 can be controlled via a pure tertiary air line that leads the tertiary air TL1 into the material discharge end.
  • FIG 2 a further embodiment of the system 100 according to the invention for the production of cement clinker is shown.
  • the line 180 from the gas outlet end 170 'of the rotating drum reactor 170 is designed as a gooseneck reactor.
  • the carbonization / combustion gases can react to form carbon monoxide.
  • suspendable portions of the secondary fuel can also react completely in the Schwa nenhalsreaktor and have time to go through a pyrolysis before they get into the calcina tor.
  • the combination of the rotary drum reactor 170 and the line 180 designed as a gooseneck reactor 180 combine the advantages of carbonization / combustion of secondary fuel SB in a rotary drum reactor and the longer residence time of the fuel constituents that are easily suspendable in the gas stream.
  • the known flow direction of gas and secondary fuel has been reversed compared to the known arrangement of a rotary drum reactor in an indictment for the production of Ze ment clinker, whereby the aforementioned advantages only arise.
  • Plant 170 Good discharge heat exchanger component 180 line / swan neck reactor cyclone heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

L'invention concerne une installation (100, 200) pour la production de scorie de ciment (Z) à partir de farine brute de ciment (R), comprenant un composant échangeur de chaleur (110), constitué d'échangeurs de chaleur à cyclone (111, 112, 113, 114) en tant que pré-chauffeurs pour la farine brute de ciment (R), comprenant un étage de pré-calcination sous la forme d'un four de calcination (130), qui est alimenté en combustible (B) et en air tertiaire (TL2) par un refroidisseur de scorie de ciment (150) présent dans l'installation (100, 200), comprenant un étage de frittage sous la forme d'un four rotatif (140), comprenant un refroidisseur de scorie de ciment (150) monté en aval en termes de flux de matériaux, et comprenant un réacteur à tambour rotatif (170) pour la carbonisation et/ou la combustion à basse température de combustibles secondaires (SB). Une extrémité de sortie de gaz (170') du réacteur à tambour rotatif (170) est reliée au four de calcination (130) par le biais d'une conduite (180) servant à introduire les gaz provenant de la carbonisation et/ou de la combustion à basse température des combustibles secondaires (SB) dans le four de calcination (130), et une extrémité d'évacuation de produit (170'') du réacteur à tambour rotatif (170) est reliée à une chambre d'entrée de four rotatif (120). Selon l'invention, l'extrémité de sortie de gaz (170') et l'extrémité d'évacuation de produit (170'') sont disposées sur des côtés opposés du réacteur à tambour rotatif (170). Le contre-courant de matériau et de gaz permet également d'utiliser un combustible secondaire non trié et même de s'affranchir d'un brûleur pilote pour maintenir la carbonisation à basse température.
PCT/EP2020/079805 2019-11-26 2020-10-22 Installation de production de ciment comprenant un dispositif de carbonisation à basse température pour des combustibles secondaires et pour la réduction d'oxydes d'azote WO2021104766A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019130143.2A DE102019130143B3 (de) 2019-11-26 2019-11-26 Anlage zur Herstellung von Zement mit Verschwelungseinrichtung für Sekundärbrennstoffe und zur Minderung von Stickoxiden
DE102019130143.2 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021104766A1 true WO2021104766A1 (fr) 2021-06-03

Family

ID=73013447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/079805 WO2021104766A1 (fr) 2019-11-26 2020-10-22 Installation de production de ciment comprenant un dispositif de carbonisation à basse température pour des combustibles secondaires et pour la réduction d'oxydes d'azote

Country Status (2)

Country Link
DE (1) DE102019130143B3 (fr)
WO (1) WO2021104766A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024099973A1 (fr) * 2022-11-07 2024-05-16 Khd Humboldt Wedag Gmbh Procédé de fonctionnement d'un four de carbonisation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021002782B4 (de) 2021-05-31 2023-04-13 Khd Humboldt Wedag Gmbh Verfahren zur Herstellung von Zementklinker unter Beimengung von Blaukalk

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320670A1 (de) * 1983-06-08 1984-12-13 Wolfram G. Dr.-Ing. 8183 Rottach-Egern Quittkat Verfahren und vorrichtung zur herstellung von bindemitteln unter verwendung heizwerthaltiger ausgangsstoffe
DE3330667A1 (de) * 1983-08-25 1985-03-14 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren und einrichtung zur entsorgung von schad- und abfallstoffen, insbesondere mit geringem heizwert, durch verbrennung
EP0162215A1 (fr) * 1984-03-27 1985-11-27 Alexander Grisar Procédé pour la mise au rebut de déchets combustibles
EP1334954B1 (fr) 2002-01-25 2007-10-03 KHD Humboldt Wedag GmbH Installation de préparation de clinker de ciment
WO2019115967A1 (fr) * 2017-12-15 2019-06-20 Fives Fcb Installation de production de clinker et procédé de production de clinker dans une telle installation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3237343A1 (de) * 1982-10-08 1984-04-12 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren und anlage zur waermebehandlung eines vorerhitzten, weitgehend kalzinierten feinkoernigen gutes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320670A1 (de) * 1983-06-08 1984-12-13 Wolfram G. Dr.-Ing. 8183 Rottach-Egern Quittkat Verfahren und vorrichtung zur herstellung von bindemitteln unter verwendung heizwerthaltiger ausgangsstoffe
DE3330667A1 (de) * 1983-08-25 1985-03-14 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren und einrichtung zur entsorgung von schad- und abfallstoffen, insbesondere mit geringem heizwert, durch verbrennung
EP0162215A1 (fr) * 1984-03-27 1985-11-27 Alexander Grisar Procédé pour la mise au rebut de déchets combustibles
EP1334954B1 (fr) 2002-01-25 2007-10-03 KHD Humboldt Wedag GmbH Installation de préparation de clinker de ciment
WO2019115967A1 (fr) * 2017-12-15 2019-06-20 Fives Fcb Installation de production de clinker et procédé de production de clinker dans une telle installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024099973A1 (fr) * 2022-11-07 2024-05-16 Khd Humboldt Wedag Gmbh Procédé de fonctionnement d'un four de carbonisation

Also Published As

Publication number Publication date
DE102019130143B3 (de) 2021-03-25

Similar Documents

Publication Publication Date Title
EP3752780B1 (fr) Fabrication de clinker avec procédé oxy-fuel sans recirculation des gaz de préchauffeur
EP2984053B1 (fr) Installation servant à fabriquer du clinker avec un réacteur de gazéification pour combustibles difficiles
DE2512045C2 (de) Verfahren und Vorrichtung zur Kalzinierung pulverförmigen Rohmaterials
EP0162215B1 (fr) Procédé pour la mise au rebut de déchets combustibles
DE10202776A1 (de) Anlage zur Herstellung von Zementklinker
EP1912914A2 (fr) Procede et dispositif de recyclage de combustibles alternatifs lors de la production de clinker ou de ciment
WO2021104766A1 (fr) Installation de production de ciment comprenant un dispositif de carbonisation à basse température pour des combustibles secondaires et pour la réduction d'oxydes d'azote
EP0846917A2 (fr) Procédé et appareil pour la production de gaz utilisable à partir de déchets
EP2984054A1 (fr) Procédé pour faire fonctionner une installation servant à fabriquer du ciment
DE102015004577B3 (de) Anlage zur Herstellung von Zement mit vermindertem Ausstoß von Schadgasen und Verfahren zum Betrieb einer solchen Anlage
CN201297860Y (zh) 一种电石渣全部替代石灰石煅烧水泥的装置
DE19722070C5 (de) Verfahren zur NOx-armen Verbrennung von Steinkohle bei trockenentaschten Dampferzeugern
DE2611213A1 (de) Verfahren und anlage zur herstellung von ziegeln, insbesondere von klinkern aus einer mischung, in die ein aus insbesondere steinkohlenkraftwerken stammender flugstaub eingesetzt wird
DE4230311C1 (de) Verfahren und Verbrennungsofen zum Verbrennen von Abfällen
DE3411144A1 (de) Verfahren zur entsorgung von brennbaren abfaellen
DE102012016361B4 (de) Anlage zur Herstellung von Zementklinker mit einer Brennvorrichtung für schwierige Brennstoffe
DE102012002527A1 (de) Herstellung von Zementklinker unter Verwendung eines Sekundärbrennstoffstroms
DE69811834T2 (de) Geregeltes Verfahren zur thermischen Oxidation von organischen Abfallstoffen
DE102009018691A1 (de) Brennstoffmischung, Verfahren und Brennofen zur Herstellung von baukeramischen Erzeugnissen
CN113864769A (zh) 一种利用燃煤锅炉掺烧危废的节能型系统及方法
DE19850376C2 (de) Vorrichtung zum Verbrennen von Bio- und Feststoffmassen mit primärer Schadstoffminderung - CO, NOx und Staub
WO2015140350A1 (fr) Dispositif et procédé pour faire fonctionner une turbine à gaz avec alimentation directe de cette turbine à gaz
DE19925011C2 (de) Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen aus sortiertem Müll und/oder Reststoffen in fossil gefeuerten Kraftwerksanlagen
DE2517552A1 (de) Verfahren zur thermischen behandlung von feinkoernigem gut, insbesondere zum brennen von zement
DE3904286A1 (de) Verfahren und vorrichtung zur verbrennung von abfallstoffen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796797

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20796797

Country of ref document: EP

Kind code of ref document: A1