WO2021104187A1 - 电池模块、装置及失效电池单体的失效处理方法 - Google Patents

电池模块、装置及失效电池单体的失效处理方法 Download PDF

Info

Publication number
WO2021104187A1
WO2021104187A1 PCT/CN2020/130735 CN2020130735W WO2021104187A1 WO 2021104187 A1 WO2021104187 A1 WO 2021104187A1 CN 2020130735 W CN2020130735 W CN 2020130735W WO 2021104187 A1 WO2021104187 A1 WO 2021104187A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
negative
positive
conductive
opening
Prior art date
Application number
PCT/CN2020/130735
Other languages
English (en)
French (fr)
Inventor
周迪
徐冶
赵宾
陈荣才
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20892860.6A priority Critical patent/EP3930074B1/en
Priority to KR1020227020006A priority patent/KR102565543B1/ko
Publication of WO2021104187A1 publication Critical patent/WO2021104187A1/zh
Priority to US17/564,953 priority patent/US11799142B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of energy storage devices, in particular to a battery module, a device, and a failure processing method for a failed battery cell.
  • the battery module includes a plurality of battery cells stacked on each other, and the plurality of battery cells are electrically connected, so as to realize the output of electric energy of the battery module and supply power to the electric equipment.
  • the battery module During the charging and discharging process of the battery cell, there is a risk of failure, and when a certain battery cell fails, the entire circuit of the battery module will fail, and the battery module will not work normally.
  • a battery cell fails it is usually solved by replacing the entire battery module.
  • the other battery cells can still work normally, and the entire battery module is directly replaced. The waste of resources, and the time required for battery module disassembly and assembly is long, which reduces work efficiency.
  • the present application provides a battery module, a device, and a failure processing method for a failed battery cell, which can simplify the maintenance process of the battery module, reduce the maintenance cost, and improve the working efficiency of the battery module.
  • the first aspect of the embodiments of the present application provides a battery module, and the battery module includes:
  • the battery cell includes a shell, a top cover and an electrode assembly.
  • the shell is connected to the top cover.
  • the shell has a first accommodating cavity.
  • the electrode assembly is located in the first accommodating cavity.
  • the top cover is provided with a positive terminal and a negative terminal. , And the positive terminal and the negative terminal are arranged along the length direction of the battery module and face the width direction of the battery module, and the battery cell also includes a failed battery cell;
  • Conductive component which connects the positive terminal and negative terminal of the failed battery cell
  • the housing includes a first cover plate and a second cover plate that are arranged oppositely, the first cover plate and the second cover plate are both connected to the top cover, the first cover plate and/or the second cover plate
  • the board is provided with an opening, and the conductive component can extend into the first accommodating cavity through the opening and be located in the first accommodating cavity.
  • the electrode assembly includes a tab, the tab includes a positive tab and a negative tab, the battery cell includes an adapter tab, and the adapter includes a positive tab and a negative tab;
  • the positive adapter piece is connected to the positive pole tab and the positive terminal, and the negative pole adapter piece is connected to the negative pole tab and the negative terminal;
  • one end of the conductive component is connected to the positive electrode tab and/or the positive electrode adapter sheet, and the other end is connected to the negative electrode tab and/or negative electrode adapter sheet.
  • the connection between the conductive component and the tab and/or the transition piece is easier to achieve, and compared with the electrode terminal, the area of the tab and the transition piece is larger.
  • the two can be connected The connection area is larger, and the flow area between the two is increased.
  • the conductive component includes a first conductive portion and a second conductive portion, and the first conductive portion is connected to the second conductive portion;
  • the first conductive part is connected to the positive electrode tab, and the second conductive part is connected to the negative electrode tab;
  • the first conductive part and the positive electrode tab have the same material structure, and the second conductive part and the negative electrode tab have the same material structure.
  • the connection reliability of the welding position can be improved, and the welding operation can be facilitated.
  • the second cover plate is located below the first cover plate, and the opening is provided in the first cover plate;
  • the opening extends along the length direction, and along the height direction, at least a part of the tab and/or the transition piece is exposed through the opening, so that the conductive component can be connected with the tab and/or the transition piece.
  • the first accommodating cavity is filled with structural glue.
  • the structural glue can be used to improve the connection strength between the conductive component and the transition piece and/or the tab, and at the same time, prevent the pole piece that has been dried off from leaving the first accommodating cavity, thereby improving the safety of the battery module.
  • the electrode assembly of the failed battery cell can be taken out through the opening.
  • the failed battery cell cannot generate electric energy, thereby preventing the risk of explosion when the failed battery cell continues to generate electric energy, improving the safety of the battery module, and at the same time, reducing the weight of the battery module and increasing the energy density.
  • the failed battery cell further includes a positive transition piece and a negative transition piece
  • the positive transition piece is connected to the positive terminal, the negative transition piece is connected to the negative terminal, and the conductive component is connected to the positive transition piece and the negative transition piece in the failed battery cell;
  • the conductive component includes a first conductive portion and a second conductive portion, the first conductive portion is connected to the second conductive portion, the first conductive portion is connected to the positive electrode adapter piece, and the second conductive portion is connected to the negative electrode adapter piece;
  • the first conductive portion and the positive electrode adapter piece have the same material structure, and the second conductive portion and the negative electrode adapter piece have the same material structure.
  • the connection reliability of the welding position can be improved, and the welding operation is facilitated.
  • the failed battery cell further includes a supporting member, and the supporting member is located in the first accommodating cavity;
  • the support member abuts against the inner wall of the housing.
  • the structural strength of the failed battery cell along the length direction is improved, and the risk of deformation and damage of the failed battery cell is avoided.
  • a plurality of battery cells are arranged along the length direction to form a battery cell arrangement structure, and along the height direction, the battery module includes at least two layers of battery cell arrangement structures;
  • the battery cell located above the failed battery cell is the target battery cell, and the battery module includes one or more target battery cells;
  • the first cover plate and the second cover plate are both provided with openings, the electrode assembly of the target battery cell is taken out through the opening of the first cover plate, and the positive terminal and the negative terminal of the target battery cell are connected by a conductive member , Or, the positive and negative transition pieces of the target battery cell are connected by conductive components;
  • the second cover plate is located below the first cover plate, the first cover plate is provided with an opening, the electrode assembly of the failed battery cell is taken out through the opening, and the positive terminal and the negative terminal of the failed battery cell pass through the conductive parts Connect, or, the positive and negative transition pieces of the failed battery cell are connected by conductive components.
  • the failed battery cell can still be taken out of the motor assembly of the failed battery cell, and at the same time, each battery cell above the failed battery cell cannot generate electric energy, and the battery cell fails.
  • the battery cells below the battery cells can still generate electrical energy.
  • the second aspect of the embodiments of the present application provides a device that uses a battery cell as a power source, and the device includes:
  • the power source is used to provide driving force for the device.
  • the battery module as above configured to provide electrical energy to a power source.
  • the battery module when one or several battery cells fail during the working process of the battery module, there is no need to repair or replace the entire battery module, which improves the working efficiency of the battery module and simplifies the maintenance process and maintenance cost.
  • the third aspect of the embodiments of the present application provides a failure processing method for a failed battery cell.
  • the failed battery cell includes a shell, a positive terminal and a negative terminal.
  • the failed battery cell has a first accommodating cavity.
  • the shell includes A first cover plate and a second cover plate arranged oppositely;
  • Failure treatment methods include:
  • the conductive component is put into the first accommodating cavity through the opening, and the positive terminal and the negative terminal are connected through the conductive component.
  • the positive terminal and the negative terminal of the failed battery cell can be connected inside the casing, so that the conductive component and the electrode terminal do not occupy the space outside the failed battery cell, thereby avoiding the conductive component and the battery.
  • Other conductive parts of the module are turned on, which improves the safety and reliability of the battery module.
  • the failed battery cell includes a positive electrode adapter sheet, a negative electrode adapter sheet, and an electrode assembly.
  • the electrode assembly includes a positive electrode tab and a negative electrode tab.
  • the positive electrode adapter sheet is connected to the positive electrode tab and the positive terminal.
  • the piece is connected to the negative tab and the negative terminal;
  • the failure treatment methods include:
  • One end of the conductive component is connected to the positive pole tab and/or the positive electrode adapter piece, and the other end of the conductive component is connected to the negative pole tab and/or negative pole adapter piece.
  • the indirect connection between the conductive component and the tab and/or the transition piece is easier to implement.
  • the failure processing method further includes:
  • the structural glue is injected into the first accommodating cavity through the opening.
  • the connection position including direct connection and indirect connection
  • the structural glue can be strengthened, and on the other hand, it can be sealed by the structural glue.
  • the opening is blocked, so as to prevent the pole pieces that have been air-dried and fall off from leaving the first accommodating cavity from the opening, thereby improving the safety of the battery module.
  • the failure processing method before the conductive component is put into the first accommodating cavity through the opening, and the positive terminal and the negative terminal are connected through the conductive component, the failure processing method further includes:
  • the electrolyte in the first containing cavity is drawn out through the opening.
  • the failure processing method before the conductive component is put into the first accommodating cavity through the opening, and the positive terminal and the negative terminal are connected through the conductive component, the failure processing method further includes:
  • the electrolyte in the first accommodating cavity is drawn out through the opening, and the electrode assembly of the failed battery cell is taken out through the opening.
  • the space where the conductive components in the first accommodating cavity connect to the electrode terminals can be increased, but also the pole pieces of the electrode unit can be prevented from drying out due to the extraction of the electrolyte, thereby improving the safety of the battery module.
  • the failed battery cell includes a positive electrode adapter piece and a negative electrode adapter piece, the positive electrode adapter piece is connected to the positive terminal, and the negative electrode adapter piece is connected to the negative terminal;
  • the failure treatment methods include:
  • the conductive component with the positive transition piece Connects the conductive component with the negative transition piece.
  • the tab is taken out along with the electrode assembly. Therefore, when the conductive member is indirectly connected to the electrode terminal, it can be connected to the adapter sheet. At the same time, the connection area between the transition piece and the conductive component needs to meet the overcurrent requirement of the battery module.
  • the failure processing method further includes:
  • the supporting member is placed in the first accommodating cavity through the opening, so that the supporting member abuts against the inner wall of the housing along the length direction.
  • the strength and rigidity of the casing along the length direction can be improved, thereby reducing the risk of deformation and damage of the failed battery module.
  • the failed battery cell by connecting the positive terminal and the negative terminal of the failed battery cell, the failed battery cell is short-circuited, so that the failed battery cell no longer participates in the charging and discharging process of the battery module, that is, the failed battery cell
  • the body does not affect the circuit of the battery module. Therefore, when one or several battery cells fail during the operation of the battery module, there is no need to repair or replace the entire battery module.
  • the battery module When the battery module is applied to a vehicle, the vehicle can be directly repaired in a 4S shop without the need for repairs. The car is returned to the factory for disposal, or there is no need to replace a new battery module, thereby improving the working efficiency of the battery module and simplifying the maintenance process and maintenance cost.
  • the positive terminal and the negative terminal of the failed battery cell are connected inside the casing, so that the conductive component and the electrode terminal do not occupy the space outside the failed battery cell, and the conductive component is prevented from conducting the other conductive components of the battery module. To improve the safety and reliability of the battery module.
  • FIG. 1 is a schematic structural diagram of a device provided by this application in a specific embodiment
  • FIG 2 is an exploded view of the battery module in Figure 1 in a specific embodiment
  • Figure 3 is a front view of the battery cell arrangement structure in Figure 2;
  • Figure 4 is an exploded view of the battery cell in Figure 3;
  • Figure 5 is a cross-sectional view taken along the line A-A of Figure 4.
  • FIG. 6 is a schematic diagram of the structure of the failed battery cell provided by this application in the first specific embodiment when the opening is provided;
  • Figure 7 is a front view of Figure 6;
  • Fig. 8 is a schematic structural diagram of the failed battery cell in Fig. 6 when a conductive component is provided;
  • Figure 9 is a front view of Figure 8.
  • FIG. 10 is a schematic diagram of the structure of the failed battery cell provided in the application in the second specific embodiment when the opening is provided;
  • Figure 11 is a front view of Figure 10
  • FIG. 12 is a schematic diagram of the structure of the failed battery cell in FIG. 10 when a conductive member and a supporting member are provided.
  • the embodiment of the application provides a device D and a battery module M that use the battery cell 1 as a power source.
  • the device D that uses the battery cell 1 as a power source includes mobile equipment such as vehicles, ships, and small airplanes.
  • the device D includes power
  • the power source is used to provide driving force to the device D, and the power source may be configured as a battery module M that provides electrical energy to the device D.
  • the driving force of the device D may be all electric energy, and may also include electric energy and other energy sources (such as mechanical energy).
  • the power source may be a battery module M, and the power source may also be a battery module M and an engine. Therefore, any device D that can use the battery cell 1 as a power source is within the protection scope of the present application.
  • the device D in the embodiment of the present application may be a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or a range-extended vehicle.
  • the vehicle may include a battery module M and a vehicle body.
  • the battery module M is provided on the vehicle body.
  • the vehicle body is also provided with a drive motor, and the drive motor is electrically connected to the battery module M.
  • the battery module M provides electrical energy to drive the motor.
  • the transmission mechanism is connected with the wheels on the vehicle body to drive the vehicle to travel.
  • the battery module M may be horizontally arranged at the bottom of the vehicle body.
  • the battery module M includes a plurality of battery cells 1 and a box body 3 for fixing the battery cells 1, wherein the box body 3 may include an end plate 32, and the end plate 32 is located along the battery module M.
  • the two ends of the length direction X are used to restrict the movement of the battery cell 1 along the length direction X; in a specific embodiment, the box body 3 may further include side plates 33, which are located along the battery module M.
  • the two sides of the width direction Y are used to restrict the movement of the battery cell 1 in the width direction Y; the box body 3 may also include a box cover 31 located at the end of the battery module M in the height direction Z for The movement of the battery cell 1 in the height direction Z is restricted.
  • the side plate 33 and the end plate 32 are connected with the box cover 31 to form a box body 3 and enclose a second accommodating cavity 34 in which each battery cell 1 is located.
  • the battery cell 1 includes a top cover 11, an electrode assembly 12, and a casing 13, wherein the top cover 11 is connected to the casing 13 and encloses a first accommodating cavity 133.
  • the accommodating cavity 133 is used to accommodate the electrode assembly 12 and the electrolyte, and the first accommodating cavity 133 may be provided with a plurality of electrode assemblies 12, and the plurality of electrode assemblies 12 are stacked on each other.
  • the housing 13 contains two electrode assemblies 12.
  • the housing 13 may be hexahedral or other shapes.
  • the housing 13 may include a metal material, such as aluminum or aluminum alloy, or an insulating material, such as plastic.
  • the battery cell 1 further includes an electrode terminal 111, and the electrode terminal 111 includes a positive terminal 111 a and a negative terminal 111 b, both of which are disposed on the top cover 11.
  • the electrode assembly 12 includes an electrode unit 121 and a tab 122.
  • the electrode unit 121 includes a positive pole piece 121a, a negative pole piece 121b, and a separator 121c. The three are stacked on each other, and the separator 121c is located on the positive electrode. Between the pole piece 121a and the negative pole piece 121b, so as to separate the two pole pieces, and the three are stacked and wound into shape.
  • the electrode unit 121 has a gap after being formed, and the electrolyte can enter the electrode unit 121 through the gap and infiltrate The positive pole piece 121a and the negative pole piece 121b, thereby generating electric energy.
  • two tabs 122 extend from the top of the electrode unit 121, which are a positive tab 122a and a negative tab 122b, respectively. That is, the electrode assembly 12 shown in FIG. In an example, the electrode assembly 12 may also have a structure with tabs 122 on the side. At this time, two tabs 122 protrude from both sides of the electrode unit 121.
  • the battery cell 1 may further include an adapter sheet 14, specifically including a positive electrode adapter sheet 141 and a negative electrode adapter sheet 142.
  • the positive electrode adapter sheet 141 is used to connect the positive electrode terminal 111a and the positive electrode tab 122a.
  • the negative adapter piece 142 is used to connect the negative terminal 111b and the negative tab 122b, so that the electric energy generated by the electrode unit 121 can be transmitted to the electrode terminal 111 and output.
  • the electrode assembly 12 has a structure with a tab 122 on the side.
  • the adapter sheet 14 has a bent structure to connect the electrode terminal 111 at the top and the tab at the side. 122.
  • the electrode terminals 111 are arranged along the length direction X of the battery module M and face the width direction Y of the battery module M, that is, the electrode terminals 111 face the side plate 33.
  • the housing 13 in the battery cell 1, along the height direction Z, the housing 13 includes a first cover plate 131 and a second cover plate 132 disposed oppositely, and the first cover plate 131 and the second cover plate 132 are The surface with the largest area in the housing 13.
  • the housing 13 also includes a third cover plate 134 and a fourth cover plate 135 which are arranged oppositely, and the area of the third cover plate 134 and the fourth cover plate 135 It is smaller than the area of the first cover plate 131 and the second cover plate 132.
  • the above-mentioned first cover plate 131, second cover plate 132, third cover plate 134 and fourth cover plate 135 are all connected to the top cover 11.
  • a plurality of battery cells 1 are electrically connected to form a circuit of the battery module M.
  • the battery cells 1 can be connected in series and/or parallel, and the battery cells 1 They are connected through the connecting piece 2. For example, when the battery cells 1 are connected in series, the positive terminal 111 a of one battery cell 1 and the negative terminal 111 b of the other battery cell 1 are connected through the connecting piece 2.
  • each battery cell 1 is continuously charged and discharged, and during the charging and discharging process, the battery cell 1 is at risk of failure (such as thermal runaway), which causes the failed battery cell 15 to fail to work normally.
  • the circuit of the battery module M is faulty and cannot supply power normally.
  • the present application solves this technical problem by removing the failed battery cell 15 from the circuit and forming the circuit again.
  • the battery module M further includes a conductive member 16 that connects the positive terminal 111 a and the negative terminal 111 b of the failed battery cell 15, that is, short-circuits the failed battery cell 15.
  • the positive terminal 111a and the negative terminal 111b of the failed battery cell 15 can be directly connected through the conductive member 16, or the conductive member 16 can be electrically connected to other conductive structures (such as the tab 122 and/or the adapter plate 14). Connection, thereby indirectly realizing the electrical connection between the positive terminal 111a and the negative terminal 111b.
  • the battery cell 1 involved in the embodiment of the present application may be a soft pack battery, a square battery or a cylindrical battery, etc.
  • the electrode terminals of the battery cell 111 may be It is the electrode terminal of the soft pack battery, and can also be the electrode terminal of a square battery and a cylindrical battery.
  • the failed battery cell 15 does not affect the circuit of the battery module M. Therefore, when one or several battery cells 1 fail during the operation of the battery module M, it is only necessary to connect the positive and negative terminals of the failed battery cell 15 through the conductive member 16, without replacing the entire battery cell.
  • the battery module M when the battery module M is applied to a vehicle, enables the vehicle to be directly repaired in a 4S shop, without the need to return the vehicle to the factory for processing, or to replace a new battery module M, thereby improving the working efficiency of the battery module M, and Simplify the maintenance process and maintenance costs.
  • the processing method of connecting the positive and negative terminals of the failed battery cell 15 with the conductive member 16 has the advantages of convenient operation and high efficiency.
  • the first cover plate 131 and/or the second cover plate 132 of the housing 13 is provided with an opening 131a, that is, the height of the opening 131a facing the battery module M In the direction Z, the above-mentioned conductive member 16 can pass through the opening 131a and be located in the first accommodating cavity 133 to realize the connection between the positive and negative terminals of the failed battery cell 15.
  • the positive terminal 111a and the negative terminal 111b of the failed battery cell 15 are connected inside the housing 13, so that the conductive member 16 and the electrode terminal 111 do not occupy the space outside the failed battery cell 15, thereby The conduction between the conductive component 16 and other conductive components of the battery module M is avoided, and the safety and reliability of the battery module M are improved.
  • the weight of the battery module M can be reduced, thereby helping to increase the energy density of the battery module M.
  • the opening faces the width direction Y, and the casing 13 and the top cover 11 are sealed after being connected.
  • the opening is blocked, and the opening 131a described in the embodiment of the present application is provided on the first end surface 131 and/or the second end surface 132 of the housing 13, and faces the height direction Z. Therefore, it is similar to the top cover 11 shown in FIG.
  • the opening between the housing 13 is different.
  • the electrolyte in the first accommodating cavity 133 is drawn out, that is, the failed battery cell 15 does not include electrolyte, thereby preventing the electrolyte from leaking. Leakage affects the safety of the battery module M.
  • the positive electrode tab 121a and the negative electrode tab 121b in the electrode unit 121 of the failed battery cell 15 cannot be conducted through the electrolyte, and thus cannot generate electrical energy. Therefore, the risk of explosion when the failed battery cell 15 continues to work is reduced.
  • drawing out the electrolyte can also increase the energy density of the battery module M.
  • the electrode terminal 111 of the failed battery cell 15 is connected to the tab 122 through the adapter plate 14, when the failed battery cell is connected through the conductive member 16
  • the positive terminal 111a and the negative terminal 111b of 15 can be specifically realized by the following method: one end of the conductive member 16 is connected to the positive electrode tab 122a and/or the positive electrode adapter piece 141, and the other end is connected to the negative electrode tab 122b and/or the negative electrode switch.
  • the tab 142 indirectly connects the positive terminal 111 a and the negative terminal 111 b of the failed battery cell 15 through the conductive member 16.
  • the tab 122 and the adapter plate 14 are both located in the first accommodating cavity 133, when the conductive member 16 is located in the first accommodating cavity 133, The conductive member 16 is more easily connected to the tab 122 and/or the adapter plate 14 and compared with the electrode terminal 111, the area of the tab 122 and the adapter plate 14 is larger. When connected to the conductive member 16, it can be Make the connection area between the two larger and increase the flow area between the two.
  • the conductive member 16 may include a first conductive portion 161 and a second conductive portion 162.
  • the first conductive portion 161 is connected to the second conductive portion 162, and the first conductive portion 161 is connected to the positive electrode.
  • the tab 122a has the same material structure.
  • the second conductive part 162 and the negative tab 122b have the same material structure.
  • the first conductive part 161 is welded to the positive tab 122a, and the second conductive part 162 is welded to the negative tab 122b. .
  • the conductive component 16 is welded to the two tabs 122, and in order to improve the connection reliability of the welding position, the materials of the two parts to be welded are the same, so that the welding operation is facilitated, and at the same time, the welding reliability can be improved. Sex.
  • the first conductive portion 161 may also have the same structure as the positive electrode adapter sheet 141, and the second conductive portion 162 may have the same structure as the negative electrode adapter sheet 142, so that the first conductive portion 161 is welded and connected to the positive electrode adapter piece 141, and the second conductive portion 162 is welded and connected to the negative electrode adapter piece 142.
  • the first conductive portion 161 is connected to the positive electrode tab 122a.
  • the second conductive portion 162 is connected to the negative electrode transition piece 142.
  • they can be connected by welding.
  • first conductive portion 161 of the conductive component 16 and the positive electrode tab 122a and/or the positive electrode transition piece 141 can also be connected by conductive glue.
  • the second conductive portion 162 is connected to the negative electrode.
  • the lug 122b and/or the negative transition piece 142 can also be connected by conductive glue.
  • the connection between the components does not need to be welded, so there is no need to arrange the first conductive portion 161 and the second conductive portion 162 It is a structure with different materials, as long as the first conductive portion 161 and the second conductive portion 162 can conduct electricity, so that the structure of the conductive member 16 can be simplified and the cost can be reduced.
  • the second cover plate 132 is located below the first cover plate 131, the opening 131a may be provided in the first cover plate 131, and the opening 131a is close to the top cover 11.
  • the opening 131a is close to the top cover 11.
  • the opening 131a extends along the length direction X, and the size of the opening 131a needs to meet the following conditions: after the opening 131a is provided, the conductive component 16 can be put into the first accommodating cavity 133 through the opening 131a, and at the same time, Along the height direction Z, at least part of the tab 122 and/or the adapter plate 14 is exposed from the opening 131a (the tab 122 and/or the adapter plate 14 does not protrude from the opening 131a), so that the conductive member 16 can be connected to the opening 131a.
  • the tab 122 and/or the adapter sheet 14 are connected.
  • the positive electrode adapter piece 141 and the negative electrode adapter piece 142 are arranged along the length direction X. Therefore, the The length of the opening 131a needs to be able to expose at least part of the two transition pieces 14 (the transition piece 14 does not protrude from the opening 131a), and at the same time, it also satisfies that the conductive component 16 can pass through the opening 131a and enter the first accommodation. Cavity 133.
  • the size of the conductive member 16 changes with the size of the battery cell 1. Accordingly, the shape and size of the opening 131a also change with the size of the battery cell 1, as long as the above conditions can be met. In this application, the size and shape of the opening 131a are not limited.
  • the first accommodating cavity 133 is also filled with structural glue, and the structural glue is injected into the first accommodating cavity 133 through the opening 131a.
  • the structural glue can be used to improve the conductive component 16 and the adapter sheet 14 and/ Or the connection strength between the tabs 122.
  • the electrode unit 121 is not soaked in the electrolyte.
  • the positive pole piece 121a and the negative pole piece 121b of the electrode unit 121 are dried out and fall off from the opening 131a. There is a risk of leaving the first accommodating cavity 133 because the pole pieces are conductive.
  • connection between the battery cell 1 and the connecting piece 2 in the battery module M may be conductive through the pole pieces.
  • the structural glue is filled Afterwards, the opening 131a can be blocked by structural glue, so as to prevent the pole pieces that have been dried off from leaving the first accommodating cavity 133, and improve the safety of the battery module M.
  • the electrolyte in the first accommodating cavity 133 can be drawn out through the opening 131a, and at the same time The electrode assembly 12 in the first accommodating cavity 133 can be taken out through the opening 131a.
  • the failed battery cell 15 cannot generate electric energy due to the absence of electrolyte and the electrode assembly 12, thereby preventing the failed battery cell 15 from continuing to generate There is a risk of explosion when electric energy is used, and the safety of the battery module M is improved.
  • the weight of the battery module M can be reduced, and the energy density can be improved.
  • the shape and size of the opening 131a need to meet the following requirements: the electrode assembly 12 can be taken out from the first receiving cavity 133 through the opening 131a.
  • the opening 131a can be provided Its outer contour is larger than the maximum contour of the electrode assembly 12, so that the electrode assembly 12 can be easily taken out.
  • the electrode assembly 12 can also be tilted first and then taken out from the opening 131a. At this time, the opening 131a The size can be reduced.
  • the housing 13 of the failed battery cell 15 only includes the second cover plate 132, and does not include the first cover plate 131.
  • the opening 131a The area is equal to the area of the first cover plate 131, and the area of the electrode assembly 12 must be smaller than the area of the first cover plate 131. Therefore, it can be ensured that the electrode assembly 12 can be taken out through the opening 131a.
  • the conductive component 16 can also enter the first receiving cavity 133 through the opening 131a.
  • the connection between the tab 122 and the adapter sheet 14 needs to be disconnected.
  • the conductive member 16 may be connected to the adapter sheet 14 and/or the electrode terminal 111, or the connection between the adapter sheet 14 and the electrode terminal 111 may be disconnected. At this time, the conductive member 16 may be connected to the electrode terminal 111.
  • the conductive member 16 includes a first conductive portion 161 and a second conductive portion 162.
  • the first conductive portion 161 is connected to the second conductive portion 162, wherein the first conductive portion 161 is connected to the second conductive portion 162.
  • the positive electrode adapter piece 141 has the same material structure, so that the two can be connected by welding, and the second conductive portion 162 and the negative electrode adapter piece 142 have the same material structure, so that the two can be connected by welding.
  • both the first conductive portion 161 and the second conductive portion 162 can be made of metal, and the materials of the two can be different (the materials of the first transition piece 141 and the second transition piece 142 are different), or The same (the materials of the first adapter piece 141 and the second adapter piece 142 are the same).
  • first conductive portion 161 of the conductive component 16 and the positive transition piece 141 can also be connected by conductive glue.
  • the second conductive portion 162 and the negative transition piece 142 can also be connected. Connected by conductive glue. At this time, the connection between the components does not need to be welded. Therefore, there is no need to configure the first conductive portion 161 and the second conductive portion 162 to have different materials, as long as the first conductive portion 161 and It is only necessary that the second conductive portion 162 can conduct electricity, so that the structure of the conductive member 16 can be simplified and the cost can be reduced.
  • the failed battery cell 15 may further include a supporting member 41, which can pass through the opening 131a and is located in the first accommodating cavity 133, Along the longitudinal direction X, the support member 41 abuts against the inner wall of the housing 13 to provide support for the housing 13 in the longitudinal direction X.
  • the shell 13 of the failed battery cell 15 is provided with an opening 131a, and after the electrode assembly 12 is taken out through the opening 131a, the strength and rigidity of the shell 13 of the cavity structure are low, and due to the failed battery cell 15 It is stacked with the remaining battery cells 1 along the length direction X. Therefore, the failed battery cell 15 is at risk of deformation and damage.
  • a supporting member 41 is provided in the first accommodating cavity 133 of the housing 13 to increase the structural strength of the failed battery cell 15 along the length direction X.
  • the supporting member 4 may specifically include a first supporting portion 41, a second supporting portion 42, and a connecting portion 43, wherein the first supporting portion 41 and the second supporting portion 42 are along the length Arranged in direction X, and the two are connected by a connecting portion 43.
  • the first support portion 41 and the second support portion 42 may be support plates, and the first support portion 41 abuts against the third cover plate 134 of the housing 13
  • the second supporting portion 42 abuts against the fourth cover 135 of the housing 13, and the connecting portion 43 extends along the length direction X, so that the cross section of the supporting member 41 is an I-shape.
  • the support member 4 can also abut against the second cover plate 132, that is, the support member 4 It may also abut the inner wall of the housing 13 in the height direction Z.
  • the two can be connected by structural glue, specifically, the first support portion 41 and the third cover 134 can be connected by structural glue. , The second support portion 42 and the fourth cover 135 are connected by structural glue.
  • a plurality of battery cells 1 are arranged along the length direction X to form a battery cell arrangement structure A, and in the embodiment shown in FIG. In the height direction Z, the battery module M includes a layer of battery cell arrangement structure A. At this time, when any battery cell 1 of the battery module M fails, it can be handled by the structure described in any of the above embodiments.
  • the battery module M may include at least two layers of battery cell arrangement A.
  • the failed battery cell 15 is located in the uppermost battery cell arrangement A, the same can be used The structure described in any of the above embodiments is processed.
  • the battery module M includes one or more target battery cells.
  • the first cover plate 131 and the second cover plate 132 of the housing 13 are both provided with the above-mentioned opening 131a. Therefore, the electrolyte of the target battery cell and the electrode assembly 12 can be taken out through the opening 131a, so that The target battery cell cannot generate electric energy.
  • the positive terminal 111a and the negative terminal 111b of the target battery cell are connected by the conductive member 16, or the positive electrode adapter piece 141 and the negative electrode adapter piece 142 of the target battery cell pass through The conductive member 16 is connected so that the target battery cell can be used as a wire.
  • the electrolyte of all target battery cells and the electrode assembly 12 are taken out, so that the first cover plate 131 of the failed battery cell 15 can be exposed, so that the failed battery cell 15 can be operated.
  • the second cover plate 132 is located under the first cover plate 131, and the first cover plate 131 is provided with an opening 131a through which the electrolyte of the failed battery cell 15 is drawn out, and the electrode assembly 12 passes through the opening.
  • the 131 a is taken out, and the positive terminal 111 a and the negative terminal 111 b of the failed battery cell 15 are connected by the conductive member 16.
  • the conductive member 16 may be directly connected to the positive terminal 111a and the negative terminal 111b of the failed battery cell 15, or may be connected to the positive electrode adapter piece 141 and the negative electrode adapter piece 142 of the failed battery cell 15, thereby indirectly connecting the positive terminal 111a And the negative terminal 111b.
  • each battery cell 1 above the failed battery cell 15 cannot generate electric energy, that is, it cannot In normal operation, each battery cell 1 under the failed battery cell 15 can generate electric energy, that is, it can work normally.
  • the embodiment of the present application also provides a failure processing method of a failed battery cell 15, and the failure processing method specifically includes the following steps:
  • the housing 13 is provided with an opening 131a.
  • the housing 13 includes a first cover 131 and a second cover 132 along the height direction Z, and the opening 131a is provided on the first cover 131 and/or the second cover 132, that is, the The opening 131a is located on the surface with the largest area in the housing 13 and is not located between the housing 13 and the top cover 11.
  • the positive terminal 111a and the negative terminal 111b of the failed battery cell 15 can be connected inside the housing 13, so that the conductive member 16 and the electrode terminal 111 do not occupy the failed battery cell after being connected.
  • the space outside the body 15 avoids the conduction between the conductive component 16 and other conductive components of the battery module M, and improves the safety and reliability of the battery module M.
  • the above failure processing method further includes the following steps:
  • the electrolyte in the first accommodating cavity 133 is drawn out, that is, the failed battery cell 15 does not include electrolyte, thereby preventing electrolyte leakage from affecting the safety of the battery module M, and at the same time
  • the positive electrode tab 121a and the negative electrode tab 121b in the electrode unit 121 of the failed battery cell 15 cannot be conducted through the electrolyte, and no electrical energy can be generated, thereby reducing the failure of the failed battery cell 15 to continue. There is a risk of explosion during work, and the safety of the battery module M is improved.
  • step S3 may specifically be:
  • S31 Connect one end of the conductive component 16 to the positive electrode tab 122a and/or the positive electrode adapter piece 141, and connect the other end of the conductive component 16 to the negative electrode tab 122b and/or the negative electrode adapter piece 142.
  • the electrode terminal 111 and the tab 122 are connected by the adapter plate 14, and the tab 122 and the adapter plate 14 are both located in the first accommodating cavity 133. Therefore, when the conductive member 16 is in the first accommodating cavity 133 When the positive terminal 111a and the negative terminal 111b are connected in the cavity 133, the indirect connection between the conductive member 16 and the tab 122 and/or the adapter plate 14 is easier to implement.
  • the conductive component 16 and the tab 122 and/or the transition piece 14 may be connected by welding, or may be connected by conductive glue.
  • the invalidation processing method may further include the following steps:
  • step S2 when the electrolyte of the failed battery cell 15 is drawn out, its electrode unit 121 is no longer immersed in the electrolyte, the positive pole piece 121a and the negative pole piece 121b are easy to air dry and fall off, and the fallen pole piece comes from the opening 131a After leaving the first accommodating cavity 133, there is a risk of contact with the battery cell 1 and the connecting piece 2 of the battery module M, resulting in a short circuit. Therefore, after step S4, the structural glue can be injected into the first accommodating cavity 133.
  • connection position including direct connection and indirect connection
  • connection position including direct connection and indirect connection
  • the opening 131a is sealed by the structural glue, so as to prevent the pole pieces falling off in the air from leaving the first accommodating cavity through the opening 131a, thereby improving the safety of the battery module M.
  • the failure processing method may include:
  • the failed battery cell 15 cannot generate electric energy, that is, the electrode assembly 12 no longer works. Therefore, after the electrode assembly 12 is taken out, not only can the battery cell be increased
  • the space where the conductive member 16 is connected to the electrode terminal 111 in the accommodating cavity 133 can also prevent the pole pieces of the electrode unit 121 from drying out due to the extraction of the electrolyte, thereby improving the safety of the battery module M.
  • the shape and size of the opening 131a need to be able to take out the electrode assembly 12, that is, the opening 131a should not be too small.
  • the housing 13 includes a second cover 132, but does not include a first cover 131 (the first cover of the housing 13 The plate 131 is removed).
  • the size of the opening 131a is the same as the area of the first cover plate 131, and the electrode assembly 12 can be easily taken out.
  • the connection between the tab 122 and the adapter plate 14 should be disconnected before the electrode assembly 12 is taken out through the opening 131a, or, The connection between the adapter sheet 14 and the electrode terminal 111 can be disconnected. At this time, when the electrode assembly 12 is taken out, the adapter sheet 14 can be taken out.
  • step S3 specifically includes:
  • the tab 122 is taken out along with the electrode assembly 12. Therefore, when the conductive member 16 is indirectly connected to the electrode terminal 111, it can be connected to the adapter sheet 14. At the same time, the connection area between the transition piece 14 and the conductive component 16 needs to meet the overcurrent requirement of the battery module M.
  • the above-mentioned failure processing method may further include:
  • the housing 13 has low strength and rigidity along the length direction X.
  • the failed battery cell 15 may be deformed and damaged.
  • the strength and rigidity of the casing 13 along the length direction X can be improved, thereby reducing the risk of deformation and damage of the failed battery module M.
  • step S23 can be before S32, that is, after the electrode assembly 12 of the failed battery cell 15 is taken out, the supporting member 41 can be placed first.
  • the electrode terminal 111 (including direct connection and indirect connection) of the failed battery cell 15 is connected through the conductive member 16;
  • S23 can also be after S32, that is, take out the electrode assembly 12 of the failed battery cell 15
  • the electrode terminal 111 of the failed battery cell 15 can be connected through the missile component 16 (including direct connection and indirect connection), and then the supporting component 41 can be placed in the first accommodating cavity 133; or, S23 and S32 can also be performed at the same time .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)

Abstract

一种电池模块(M)、装置(D)及失效电池单体(15)的失效处理方法,电池模块(M)包括:电池单体(1),包括壳体(13)、顶盖(11)和电极组件(12),壳体(13)与顶盖(11)连接,电池单体(1)具有第一容纳腔(133),电极组件(12)位于第一容纳腔(133)内,顶盖(11)设置有正极端子(111a)和负极端子(111b),且正极端子(111a)和负极端子(111b)沿电池模块(M)的长度方向(X)布置,并朝向电池模块(M)的宽度方向(Y),电池单体(1)还包括失效电池单体(15);导电部件(16),连接失效电池单体(15)的正极端子(111a)和负极端子(111b);其中,沿电池模块(M)的高度方向(Z),壳体(13)包括相对设置的第一盖板(131)和第二盖板(132),第一盖板(131)与第二盖板(132)均与顶盖(11)连接,第一盖板(131)和/或第二盖板(132)设置有开口(131a),导电部件(16)能够穿过开口(131a),并位于第一容纳腔(133)内。导电部件(16)与电极端子(111a,111b)连接后不占据失效电池单体(15)外侧的空间,提高电池模块(M)的安全性。

Description

电池模块、装置及失效电池单体的失效处理方法
相关申请的交叉引用
本申请要求享有于2019年11月29日提交的名称为“电池模块、装置及失效电池单体的失效处理方法”的中国专利申请201911205556.3的优先权,该申请的全部内容通过引用并入本申请中。
技术领域
本申请涉及储能器件技术领域,尤其涉及一种电池模块、装置及失效电池单体的失效处理方法。
背景技术
电池模块包括多个相互堆叠的电池单体,且多个电池单体电连接,从而实现电池模块电能的输出,为用电设备供电。电池单体充放电过程中,存在故障的风险,且当某一电池单体发生故障时,导致电池模块的整个电路发生故障,从而导致电池模块无法正常工作。目前,电池单体发生故障时,通常采用更换整个电池模块的方式解决,但是,该电池模块的某一电池单体故障时,其他电池单体仍然能够正常工作,直接更换整个电池模块的方式造成资源的浪费,且电池模块拆装所需的时间较长,降低工作效率。
发明内容
本申请提供了一种电池模块、装置及失效电池单体的失效处理方法,能够简化电池模块的维护流程,降低维护成本,并提高电池模块的工作效率。
本申请实施例第一方面提供一种电池模块,电池模块包括:
电池单体,电池单体包括壳体、顶盖和电极组件,壳体与顶盖连接,壳体具有第一容纳腔,电极组件位于第一容纳腔内,顶盖设置有正极端子和负极端子,且正极端子和负极端子沿电池模块的长度方向布置,并朝向电池模块的宽度方向,电池单体还包括失效电池单体;
导电部件,导电部件连接失效电池单体的正极端子和负极端子;
其中,沿电池模块的高度方向,壳体包括相对设置的第一盖板和第二盖板,第一盖板与第二盖板均与顶盖连接,第一盖板和/或第二盖板设置有开口,导电部件能够 经开口伸入第一容纳腔,并位于第一容纳腔内。该实施例中,仅需通过导电部件将失效电池单体单体的正负极端子连接即可,无需更换整个电池模块,简化电池模块的维护流程,降低维护成本,并提高电池模块的工作效率。
在一些实施例中,电极组件包括极耳,极耳包括正极极耳和负极极耳,电池单体包括转接片,转接片包括正极转接片和负极转接片;
正极转接片连接正极极耳和正极端子,负极转接片连接负极极耳和负极端子;
失效电池单体中,导电部件的一端连接正极极耳和/或正极转接片,另一端连接负极极耳和/或负极转接片。该实施例中,导电部件与极耳和/或转接片连接更加容易实现,且与电极端子相比,极耳和转接片的面积较大,当与导电部件连接时,能够使得二者的连接面积较大,并提高二者之间的过流面积。
在一些实施例中,导电部件包括第一导电部和第二导电部,第一导电部与第二导电部连接;
第一导电部与正极极耳连接,第二导电部与负极极耳连接;
第一导电部与正极极耳为材料相同的结构,第二导电部与负极极耳为材料相同的结构。该实施例中,焊接第一导电部和正极极耳、第二导电部和负极极耳时,可提高焊接位置的连接可靠性,便于实现焊接操作。
在一些实施例中,沿高度方向,第二盖板位于第一盖板下方,开口设置于第一盖板;
开口沿长度方向延伸,沿高度方向,极耳和/或转接片的至少部分经开口裸露,从而能够实现将导电部件与极耳和/或转接片连接。
在一些实施例中,第一容纳腔填充有结构胶。该实施例中,结构胶可用于提高导电部件与转接片和/或极耳之间的连接强度,同时,防止风干脱落的极片离开第一容纳腔,提高电池模块的安全性。
在一些实施例中,失效电池单体的电极组件能够经开口取出。该实施例中,失效电池单体无法产生电能,从而防止失效电池单体继续产生电能时发生燃爆的风险,提高电池模块的安全性,同时,能够降低电池模块的重量,提高能量密度。
在一些实施例中,失效电池单体还包括正极转接片和负极转接片;
正极转接片与正极端子连接,负极转接片与负极端子连接,失效电池单体中,导电部件连接正极转接片和负极转接片;
导电部件包括第一导电部和第二导电部,第一导电部与第二导电部连接,第一导电部与正极转接片连接,第二导电部与负极转接片连接;
第一导电部与正极转接片为材料相同的结构,第二导电部与负极转接片为材料相同的结构。该实施例中,焊接第一导电部和正极转接片、第二导电部和负极转接片时,可提高焊接位置的连接可靠性,便于实现焊接操作。
在一些实施例中,失效电池单体还包括支撑部件,支撑部件位于第一容纳腔内;
沿长度方向,支撑部件与壳体的内壁抵接。该实施例中,提高了失效电池单体沿长度方向的结构强度,避免失效电池单体存在变形损坏的风险。
在一些实施例中,多个电池单体沿长度方向排列形成电池单体排列结构,且沿高度方向,电池模块包括至少两层电池单体排列结构;
沿高度方向,位于失效电池单体上方的电池单体为目标电池单体,且电池模块包括一个或多个目标电池单体;
目标电池单体中,第一盖板和第二盖板均设置有开口,目标电池单体的电极组件经第一盖板的开口取出,目标电池单体的正极端子和负极端子通过导电部件连接,或者,目标电池单体的正极转接片和负极转接片通过导电部件连接;
失效电池单体中,第二盖板位于第一盖板下方,第一盖板设置有开口,失效电池单体的电极组件经开口取出,且失效电池单体的正极端子和负极端子通过导电部件连接,或者,失效电池单体的正极转接片和负极转接片通过导电部件连接。该实施例中,即使当失效电池单体位于中间层时,失效电池单体仍可将失效电池单体的电机组件取出,同时,失效电池单体上方的各电池单体均不能产生电能,失效电池单体下方的各电池单体仍能够产生电能。
本申请实施例第二方面提供一种装置,使用电池单体作为电源,装置包括:
动力源,动力源用于为装置提供驱动力;和,
被配置为向动力源提供电能的如以上的电池模块。该实施例中,当电池模块工作过程中存在某一个或某几个电池单体失效时,无需维修或更换整个电池模块,提高了电池模块的工作效率,并简化维护流程和维护成本。
本申请实施例第三方面提供一种失效电池单体的失效处理方法,失效电池单体包括壳体、正极端子和负极端子,失效电池单体具有第一容纳腔,沿高度方向,壳体包括相对设置的第一盖板和第二盖板;
失效处理方法包括:
在第一盖板和/或第二盖板设置开口;
将导电部件经开口放入第一容纳腔内,并通过导电部件连接正极端子和负极端子。该实施例中,能够将失效电池单体的正极端子与负极端子在壳体的内部实现连接,从而使得导电部件与电极端子连接后不占据失效电池单体外侧的空间,从而避免导电部件与电池模块的其他导电部件导通,提高电池模块的安全性和可靠性。
在一些实施例中,失效电池单体包括正极转接片、负极转接片和电极组件,电极组件包括正极极耳和负极极耳,正极转接片连接正极极耳和正极端子,负极转接片连接负极极耳和负极端子;
通过导电部件连接正极端子和负极端子时,失效处理方法包括:
将导电部件的一端与正极极耳和/或正极转接片连接,并将导电部件的另一端与负极极耳和/或负极转接片连接。该实施例中,当导电部件在第一容纳腔内连接正极端子和负极端子时,导电部件与极耳和/或转接片间接连接的方式更加容易实现。
在一些实施例中,在通过导电部件连接正极端子和负极端子之后,失效处理方法还包括:
经开口将结构胶注入第一容纳腔。该实施例中,通过将结构胶注入第一容纳腔,一方面能够对导电部件与电极端子的连接位置(包括直接连接和间接连接)起到 加强的作用,另一方面还能够通过结构胶封堵开口,从而防止风干脱落的极片从开口离开第一容纳腔,提高电池模块的安全性。
在一些实施例中,将导电部件经开口放入第一容纳腔内,并通过导电部件连接正极端子和负极端子之前,失效处理方法还包括:
经开口将第一容纳腔内的电解液抽出。
在一些实施例中,将导电部件经开口放入第一容纳腔内,并通过导电部件连接正极端子和负极端子之前,失效处理方法还包括:
经开口将第一容纳腔内的电解液抽出,并经开口将失效电池单体的电极组件取出。该实施例中,不仅能够增大第一容纳腔内导电部件连接电极端子的空间,还能够防止因电解液抽出导致的电极单元的极片风干脱落,从而提高电池模块的安全性。
在一些实施例中,失效电池单体包括正极转接片和负极转接片,正极转接片连接正极端子,负极转接片连接负极端子;
通过导电部件连接正极端子和负极端子时,失效处理方法包括:
将导电部件与正极转接片连接,并将导电部件与负极转接片连接。该实施例中,将电极组件从第一容纳腔取出后,极耳随电极组件被取出,因此,导电部件间接连接电极端子时,能够与转接片连接。同时,转接片与导电部件的连接面积需满足电池模块的过流要求。
在一些实施例中,经开口将失效电池单体的电极组件取出之后,失效处理方法还包括:
将支撑部件经开口放置于第一容纳腔内,以使支撑部件与壳体的内壁沿长度方向抵接。该实施例中,通过将支撑部件放置于第一容纳腔,能够提高壳体沿长度方向的强度和刚度,从而降低失效电池模块变形损坏的风险。
本申请实施例中,通过将失效电池单体的正极端子和负极端子连接,从而将该失效电池单体短路,使得该失效电池单体不再参与电池模块的充放电过程,即该失效电池单体不影响该电池模块的电路。因此,当电池模块工作过程中存在某一个或某几个电池单体失效时,无需维修或更换整个电池模块,当该电池模块应用于车辆时,使得该车辆能够在4S店直接维修,无需整车返厂处理,或者无需更换新的电池模块,从而提高电池模块的工作效率,并简化维护流程和维护成本。同时,经过上述处理后,该电池模块中,仅存在少量的电池单体(失效电池单体)不参与电路的形成,从而不会影响该电池模块电池容量的大幅度降低,使得电池模块能够正常工作。
同时,失效电池单体的正极端子与负极端子在壳体的内部实现连接,从而使得导电部件与电极端子连接后不占据失效电池单体外侧的空间,避免导电部件与电池模块的其他导电部件导通,提高电池模块的安全性和可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请所提供装置在一种具体实施例中的结构示意图;
图2为图1中电池模块在一种具体实施例中的爆炸图;
图3为图2中电池单体排列结构的正视图;
图4为图3中电池单体的爆炸图;
图5为图4的A-A向剖视图;
图6为本申请所提供失效电池单体设置开口时在第一种具体实施例中的结构示意图;
图7为图6的正视图;
图8图6中的失效电池单体设置导电部件时的结构示意图;
图9为图8的正视图;
图10为本申请所提供失效电池单体设置开口时在第二种具体实施例中的结构示意图;
图11为图10的正视图;
图12为图10中的失效电池单体设置导电部件和支撑部件时的结构示意图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的, 而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
本申请实施例提供一种使用电池单体1作为电源的装置D和电池模块M,其中,使用电池单体1作为电源的装置D包括车辆、船舶、小型飞机等移动设备,该装置D包括动力源,该动力源用于为装置D提供驱动力,且该动力源可被配置为向装置D提供电能的电池模块M。其中,该装置D的驱动力可全部为电能,也可包括电能和其他能源(例如机械能),该动力源可为电池模块M,该动力源也可为电池模块M和发动机等。因此,只要能够使用电池单体1作为电源的装置D均在本申请的保护范围内。
如图1所示,以车辆为例,本申请实施例中的装置D可为新能源汽车,该新能源汽车可为纯电动汽车,也可为混合动力汽车或增程式汽车等。其中,该车辆可包括电池模块M和车辆主体,该电池模块M设置于车辆主体,该车辆主体还设置有驱动电机,且驱动电机与电池模块M电连接,由电池模块M提供电能,驱动电机通过传动机构与车辆主体上的车轮连接,从而驱动车辆行进。具体地,该电池模块M可水平设置车辆主体的底部。
更具体地,该电池模块M包括多个电池单体1和用于固定电池单体 1的箱体3,其中,该箱体3可以包括端板32,且端板32位于该电池模块M沿长度方向X的两端部,用于限制电池单体1沿长度方向X的运动;在一种具体实施例中,该箱体3还可包括侧板33,两侧板33位于电池模块M沿宽度方向Y的两侧,用于限制电池单体1沿宽度方向Y的运动;该箱体3还可以包括箱盖31,该箱盖31位于电池模块M沿高度方向Z的端部,用于限制电池单体1沿高度方向Z的运动。且该侧板33、端板32与箱盖31连接,从而形成箱体3,并围成第二容纳腔34,各电池单体1位于该第二容纳腔34内。
具体地,如图4所示,该电池单体1包括顶盖11、电极组件12和壳体13,其中,顶盖11与壳体13连接,并围成第一容纳腔133,该第一容纳腔133用于容纳电极组件12和电解液,且该第一容纳腔133内可设置有多个电极组件12,多个电极组件12相互堆叠,如图4所示的实施例中,壳体13内容纳有两个电极组件12。其中,壳体13可为六面体形,也可为其他形状,壳体13可包括金属材料,例如铝或铝合金等,也可包括绝缘材料,例如塑胶等。该电池单体1还包括电极端子111,该电极端子111包括正极端子111a和负极端子111b,二者设置于顶盖11。
电极组件12包括电极单元121和极耳122,其中,如图5所示,该电极单元121包括正极极片121a、负极极片121b和隔离膜121c,三者相互堆叠,且隔离膜121c位于正极极片121a和负极极片121b之间,以便隔开两个极片,且三者堆叠后卷绕成型,同时,电极单元121形成后具有缝隙,电解液能够通过缝隙进入电极单元121内,浸润正极极片121a和负极极片121b,从而产生电能。
同时,该电极单元121的顶部延伸出两极耳122,分别为正极极耳122a和负极极耳122b,即图4所示的电极组件12为顶部出极耳122的结构,在另一种具体实施例中,该电极组件12也可为侧部出极耳122的结构,此时,两个极耳122从电极单元121的两侧部伸出。
如图4所示,该电池单体1还可以包括转接片14,具体包括正极转接片141和负极转接片142,该正极转接片141用于连接正极端子111a与正极极耳122a,负极转接片142用于连接负极端子111b与负极极耳 122b,从而能够将电极单元121产生的电能传递至电极端子111,并输出。
在另一种具体实施例中,电极组件12为侧部出极耳122的结构,此时,该转接片14为弯折结构,以便连接位于顶部的电极端子111和位于侧部的极耳122。
如图2和图3所示的实施例,该电池单体1中,其电极端子111沿电池模块M的长度方向X布置,并朝向电池模块M的宽度方向Y,即电极端子111朝向侧板33。如图4所示,该电池单体1中,沿高度方向Z,壳体13包括相对设置的第一盖板131和第二盖板132,该第一盖板131与第二盖板132为壳体13中面积最大的面,同时,沿长度方向X,壳体13还包括相对设置的第三盖板134和第四盖板135,且第三盖板134和第四盖板135的面积小于第一盖板131和第二盖板132的面积。上述第一盖板131、第二盖板132、第三盖板134和第四盖板135均与顶盖11连接。
在该电池模块M中,多个电池单体1之间电连接,形成电池模块M的电路,各电池单体1之间具体可采用串联和/或并联等连接方式,且电池单体1之间通过连接片2连接,例如,当电池单体1串联时,一电池单体1的正极端子111a和另一电池单体1的负极端子111b通过连接片2连接。
该电池模块M工作过程中,各电池单体1不断充放电,且充放电过程中,电池单体1存在故障(例如热失控)的风险,导致该失效电池单体15无法正常工作,此时,该电池模块M的电路故障,无法正常供电。为了解决该技术问题,本申请通过将失效电池单体15从电路中去掉,并重新形成电路来解决该技术问题。
具体地,如图8所示,该电池模块M还包括导电部件16,该导电部件16连接失效电池单体15的正极端子111a和负极端子111b,即将该失效电池单体15短路。其中,该失效电池单体15的正极端子111a和负极端子111b之间可以通过导电部件16直接连接,也可以将导电部件16与其余导电结构(例如极耳122和/或转接片14)电连接,从而间接实现正极端子111a和负极端子111b之间的电连接。
另外,本申请实施例涉及的电池单体1可以为软包电池,也可以为方形电池或者圆柱电池等,相应地,该电池单体111的电极端子(包括正极端子111a和负极端子111b)可以为软包电池的电极端子,也可以为方形电池和圆柱电池的电极端子。
本实施例中,通过将失效电池单体15的正极端子111a和负极端子111b连接,从而将该失效电池单体15短路,使得该失效电池单体15不再参与电池模块M的充放电过程,即该失效电池单体15不影响该电池模块M的电路。因此,当电池模块M工作过程中存在某一个或某几个电池单体1失效时,仅需通过导电部件16将该失效电池单体单体15的正负极端子连接即可,无需更换整个电池模块M,当该电池模块M应用于车辆时,使得该车辆能够在4S店直接维修,无需整车返厂处理,或者无需更换新的电池模块M,从而提高电池模块M的工作效率,并简化维护流程和维护成本。同时,经过上述处理后,该电池模块M中,仅存在少量的电池单体(失效电池单体15)不参与电路的形成,从而不会造成电池模块M电池容量的大幅度降低,使得电池模块M能够正常工作。
另外,对于电池单体1通过结构胶粘贴于箱体3的第二容纳腔34的结构,当某一电池单体1失效时,将该失效电池单体15从第二容纳腔34内拆出的操作不易实现,因此,本实施例中,采用导电部件16将该失效电池单体15的正负极端子连接的处理方式具有操作方便和效率高的优点。
具体地,如图8所示,该失效电池单体15中,其壳体13的第一盖板131和/或第二盖板132设置有开口131a,即该开口131a朝向电池模块M的高度方向Z,上述导电部件16能够穿过该开口131a,并位于第一容纳腔133内,实现将该失效电池单体15的正负极端子连接。
本实施例中,失效电池单体15的正极端子111a与负极端子111b在壳体13的内部实现连接,从而使得导电部件16与电极端子111连接后不占据失效电池单体15外侧的空间,从而避免导电部件16与电池模块M的其他导电部件导通,提高电池模块M的安全性和可靠性。同时,该失效电池单体15的壳体13设置开口131a后,能够降低电池模块M的重量, 从而有助于提高电池模块M的能量密度。
需要说明的是,在如图4所示的电池单体1中,顶盖11与壳体13之间也具有开口,该开口朝向宽度方向Y,且壳体13与顶盖11连接后,封堵该开口,而本申请实施例中所述的开口131a设置于壳体13的第一端面131和/或第二端面132,且朝向高度方向Z,因此,与图4所示的顶盖11与壳体13之间的开口不同。
同时,为了防止第一容纳腔133内的电解液漏出,设置上述开口131a后,将该第一容纳腔133内的电解液抽出,即该失效电池单体15不包括电解液,从而防止电解液漏出影响电池模块M的安全性,同时,抽出电解液后,使得该失效电池单体15的电极单元121中的正极极片121a和负极极耳121b无法通过电解液导通,也就无法产生电能,从而降低该失效电池单体15继续工作时发生燃爆的风险。另外,抽出电解液还能够提高电池模块M的能量密度。
在一种可能的设计中,如图6~9所示,由于该失效电池单体15的电极端子111通过转接片14与极耳122连接,因此,当通过导电部件16连接失效电池单体15的正极端子111a和负极端子111b时,具体可以通过下述方法实现:导电部件16的一端连接正极极耳122a和/或正极转接片141,另一端连接负极极耳122b和/或负极转接片142,从而通过导电部件16间接连接失效电池单体15的正极端子111a与负极端子111b。
如图6和图7所示,该失效电池单体15中,由于极耳122与转接片14均位于第一容纳腔133内,因此,当导电部件16位于该第一容纳腔133时,该导电部件16与极耳122和/或转接片14连接更加容易实现,且与电极端子111相比,极耳122和转接片14的面积较大,当与导电部件16连接时,能够使得二者的连接面积较大,并提高二者之间的过流面积。
具体地,如图9所示,该导电部件16可以包括第一导电部161和第二导电部162,该第一导电部161与第二导电部162连接,且该第一导电部161与正极极耳122a为材料相同的结构,同时,第二导电部162与负极极耳122b为材料相同的结构,第一导电部161与正极极耳122a焊接,第二导电部162与负极极耳122b焊接。
本实施例中,导电部件16与两个极耳122焊接连接,且为了提高焊接位置的连接可靠性,进行焊接连接的两个部件材料相同,从而便于实现焊接操作,同时,还能够提高焊接可靠性。
当然,该实施例中,第一导电部161也可以为与正极转接片141材料相同的结构,第二导电部162可以为与负极转接片142材料相同的结构,从而使得第一导电部161与正极转接片141焊接连接,第二导电部162与负极转接片142焊接连接。
或者,还可为:第一导电部161与正极极耳122a连接,当二者为材料相同的结构时,可以采用焊接的方式连接,第二导电部162与负极转接片142连接,当二者为材料相同的结构时,可以采用焊接的方式连接。
在另一实施例中,该导电部件16的第一导电部161与正极极耳122a和/或正极转接片141之间还可以通过导电胶连接,相应地,第二导电部162与负极极耳122b和/或负极转接片142之间也可以通过导电胶连接,此时,各部件之间的连接无需采用焊接的方式,因此,无需将第一导电部161与第二导电部162设置为材料不同的结构,只要该第一导电部161与第二导电部162能够导电即可,从而能够简化导电部件16的结构,并降低成本。
具体地,如图8和图9所示,沿高度方向Z,第二盖板132位于第一盖板131下方,上述开口131a可以设置于第一盖板131,且该开口131a靠近顶盖11设置,并与极耳122和/或转接片14对应。其中,该开口131a沿长度方向X延伸,且该开口131a的大小需能够满足下述条件:设置该开口131a后,上述导电部件16能够经该开口131a放入第一容纳腔133内,同时,沿高度方向Z,极耳122和/或转接片14的至少部分从该开口131a裸露(极耳122和/或转接片14并非从开口131a伸出),从而能够实现将导电部件16与极耳122和/或转接片14连接。
在一种具体实施例中,当该导电部件16用于连接正极转接片141与负极转接片142时,该正极转接片141与负极转接片142沿长度方向X布置,因此,该开口131a的长度需满足能够将两个转接片14的至少部分裸露(转接片14并未从开口131a中伸出),同时,还满足导电部件16 能够穿过该开口131a进入第一容纳腔133内。
上述各实施例中,导电部件16的尺寸随电池单体1的大小而改变,相应地,开口131a的形状和尺寸也随电池单体1的大小而改变,只要能够满足上述条件即可,因此,本申请对开口131a的尺寸和形状不做限定。
在一种可能的设计中,第一容纳腔133还填充有结构胶,且结构胶通过上述开口131a注入第一容纳腔133内,该结构胶可用于提高导电部件16与转接片14和/或极耳122之间的连接强度。同时,由于该失效电池单体15的电解液经开口131a抽出,其电极单元121未浸润于电解液,此时,电极单元121的正极极片121a和负极极片121b存在风干脱落并从开口131a离开第一容纳腔133的风险,由于极片导电,因此,该电池模块M中的电池单体1与连接片2之间的连接存在通过极片导电的风险,本实施例中,填充结构胶后,可以通过结构胶将上述开口131a封堵,从而防止风干脱落的极片离开第一容纳腔133,提高电池模块M的安全性。
在另一种具体实施例中,如图10~13所示,该失效电池单体15的壳体13设置开口131a后,其第一容纳腔133内的电解液能够经该开口131a抽出,同时,第一容纳腔133内的电极组件12能够经该开口131a取出,此时,该失效电池单体15由于不存在电解液和电极组件12,无法产生电能,从而防止失效电池单体15继续产生电能时发生燃爆的风险,提高电池模块M的安全性。另外,当该失效电池单体15不包括电解液和电极组件12时,能够降低电池模块M的重量,提高能量密度。
需要说明的是,本实施例中,该开口131a的形状和尺寸需满足下述要求:能够将电极组件12经过该开口131a从第一容纳腔133内取出,为了实现该目的,开口131a可以设置为其外轮廓大于电极组件12的最大轮廓,从而能够方便地将电极组件12取出,当然,取出过程中,还可以首先将电极组件12倾斜,然后从开口131a中取出,此时,开口131a的尺寸可以减小。
在如图10~13所示的实施例中,沿高度方向Z,失效电池单体15 的壳体13仅包括第二盖板132,而不包括第一盖板131,此时,开口131a的面积与第一盖板131的面积相等,而电极组件12的面积必然小于第一盖板131的面积,因此,能够保证电极组件12能够经开口131a取出。同时,由于本实施例中的开口131a尺寸较大,大于导电部件16的尺寸,因此,只要电极组件12能够经开口131a取出,导电部件16也能够经该开口131a进入第一容纳腔133内。
另外,由于电极组件12的极耳122与电极端子111通过转接片14连接,因此,在取出电极组件12之前,首先需要断开极耳122与转接片14之间的连接,此时,导电部件16可以与转接片14和/或电极端子111连接,或者,断开转接片14与电极端子111之间的连接,此时,导电部件16可以与电极端子111连接。
具体地,如图11和图12所示,该导电部件16包括第一导电部161和第二导电部162,第一导电部161与第二导电部162连接,其中,第一导电部161与正极转接片141为材料相同的结构,从而使得二者可以采用焊接的方式连接,第二导电部162与负极转接片142为材料相同的结构,从而使得二者可以采用焊接的方式连接。
本实施例中,第一导电部161与第二导电部162均可以为金属材质,且二者的材料可以不同(第一转接片141与第二转接片142的材料不同),也可以相同(第一转接片141与第二转接片142的材料相同)。
在另一实施例中,该导电部件16的第一导电部161与正极转接片141之间还可以通过导电胶连接,相应地,第二导电部162与负极转接片142之间也可以通过导电胶连接,此时,各部件之间的连接无需采用焊接的方式,因此,无需将第一导电部161与第二导电部162设置为材料不同的结构,只要该第一导电部161与第二导电部162能够导电即可,从而能够简化导电部件16的结构,并降低成本。
在一种可能的设计中,如图11和图12所示,该失效电池单体15还可以包括支撑部件41,该支撑部件41能够穿过上述开口131a,并位于第一容纳腔133内,沿长度方向X,该支撑部件41与壳体13的内壁抵接,从而对壳体13提供沿长度方向X的支撑。
本实施例中,该失效电池单体15的壳体13设置开口131a,且电极组件12经开口131a取出后,空腔结构的壳体13强度和刚度较低,且由于该失效电池单体15与其余各电池单体1沿长度方向X堆叠,因此,该失效电池单体15存在变形损坏的风险。为了提高该失效电池单体15的结构强度,在壳体13的第一容纳腔133内设置支撑部件41,以便提高失效电池单体15沿长度方向X的结构强度。
具体地,如图11和图12所示,该支撑部件4具体可以包括第一支撑部41、第二支撑部42和连接部43,其中,第一支撑部41和第二支撑部42沿长度方向X布置,且二者之间通过连接部43连接,该第一支撑部41与第二支撑部42可以为支撑板,且第一支撑部41与壳体13的第三盖板134抵接,第二支撑部42与壳体13的第四盖板135抵接,该连接部43沿长度方向X延伸,从而使得该支撑部件41的截面为工字型。
同时,由于该壳体13的第二盖板132沿高度方向Z,当支撑部件4放置于壳体13内时,该支撑部件4还可以与第二盖板132抵接,即该支撑部件4还可以与壳体13的内壁沿高度方向Z抵接。
另外,为了进一步提高支撑部件4与壳体13的连接可靠性,二者之间可以通过结构胶粘连,具体地,可以在第一支撑部41与第三盖板134之间通过结构胶连接、第二支撑部42与第四盖板135之间通过结构胶连接。
在一种具体实施例中,该电池模块M中,如图3所示,多个电池单体1沿长度方向X排列形成电池单体排列结构A,且图3所示的实施例中,沿高度方向Z,该电池模块M包括一层电池单体排列结构A,此时,该电池模块M的任意电池单体1失效时,可以通过以上任一实施例中所述的结构进行处理。
在另一种具体实施例中,沿高度方向Z,该电池模块M可以包括至少两层电池单体排列结构A,当失效电池单体15位于最上层电池单体排列结构A时,同样可以采用以上任一实施例中所述的结构进行处理。
当失效电池单体15不位于最上层电池单体排列结构A时,该失效电池单体15的上方存在一个或多个电池单体1,定义位于失效电池单体 15上方的电池单体1为目标电池单体,因此,该电池模块M包括一个或多个目标电池单体。该目标电池单体中,壳体13的第一盖板131和第二盖板132均设置有上述开口131a,因此,该目标电池单体的电解液和电极组件12能够经开口131a取出,使得该目标电池单体不能产生电能,同时,该目标电池单体的正极端子111a和负极端子111b通过导电部件16连接,或者,该目标电池单体的正极转接片141和负极转接片142通过导电部件16连接,从而使得该目标电池单体能够作为导线使用。
所有目标电池单体的电解液和电极组件12均取出,从而能够将失效电池单体15的第一盖板131裸露,以便对失效电池单体15进行操作。该失效电池单体15中,第二盖板132位于第一盖板131下方,第一盖板131设置有开口131a,失效电池单体15的电解液经该开口131a抽出、电极组件12经开口该131a取出,且该失效电池单体15的正极端子111a和负极端子111b通过导电部件16连接。其中,该导电部件16可以直接连接失效电池单体15的正极端子111a和负极端子111b,也可以连接失效电池单体15的正极转接片141和负极转接片142,从而间接连接正极端子111a和负极端子111b。
因此,对于包括多层电池单体排列结构A的电池模块M来说,当失效电池单体15位于中间层时,该失效电池单体15上方的各电池单体1均不能产生电能,即不能正常工作,该失效电池单体15下方的各电池单体1能够产生电能,即能够正常工作。
另外,本申请实施例还提供一种失效电池单体15的失效处理方法,该失效处理方法具体包括下述步骤;
S1:在壳体13设置开口131a。
其中,本实施例中,壳体13沿高度方向Z包括第一盖板131和第二盖板132,且该开口131a设置于该第一盖板131和/或第二盖板132,即该开口131a位于壳体13中面积最大的表面,并非位于壳体13与顶盖11之间。
S3:将导电部件16经开口131a放入壳体13的第一容纳腔133内,并通过导电部件16连接正极端子111a和负极端子111b。其中,上述 开口131a的形状和尺寸需满足能够将导电部件16放入第一容纳腔133。
本实施例中,通过上述各步骤,能够将失效电池单体15的正极端子111a与负极端子111b在壳体13的内部实现连接,从而使得导电部件16与电极端子111连接后不占据失效电池单体15外侧的空间,从而避免导电部件16与电池模块M的其他导电部件导通,提高电池模块M的安全性和可靠性。
具体地,在步骤S3之前,上述失效处理方法还包括下述步骤:
S21:经开口131a将第一容纳腔133内的电解液抽出。
本实施例中,设置上述开口131a后,将该第一容纳腔133内的电解液抽出,即该失效电池单体15不包括电解液,从而防止电解液漏出影响电池模块M的安全性,同时,抽出电解液后,使得该失效电池单体15的电极单元121中的正极极片121a和负极极耳121b无法通过电解液导通,也就无法产生电能,从而降低该失效电池单体15继续工作时发生燃爆的风险,提高电池模块M的安全性。
具体地,上述步骤S3具体可以为:
S31:将导电部件16的一端与正极极耳122a和/或正极转接片141连接,并将导电部件16的另一端与负极极耳122b和/或负极转接片142连接。
该失效电池单体15中,电极端子111与极耳122通过转接片14连接,且极耳122与转接片14均位于第一容纳腔133内,因此,当导电部件16在第一容纳腔133内连接正极端子111a和负极端子111b时,该导电部件16与极耳122和/或转接片14间接连接的方式更加容易实现。
其中,导电部件16与极耳122和/或转接片14之间可以采用焊接的连接方式,也可以通过导电胶连接。
在一些实施例中,上述步骤S3之后,该失效处理方法还可以包括下述步骤:
S4:通过开口131a将结构胶注入第一容纳腔133内。
上述步骤S2之后,该失效电池单体15的电解液抽出时,其电极单元121不再浸润在电解液中,正极极片121a和负极极片121b容易风干 脱落,脱落后的极片从开口131a离开第一容纳腔133后,存在与电池模块M的电池单体1和连接片2接触导致短路的风险。因此,经过步骤S4,可以将结构胶注入第一容纳腔133,一方面能够对导电部件16与电极端子111的连接位置(包括直接连接和间接连接)起到加强的作用,另一方面还能够通过结构胶封堵开口131a,从而防止风干脱落的极片从开口131a离开第一容纳腔,提高电池模块M的安全性。
在另一种具体实施例中,上述步骤S3之前,该失效处理方法可以包括:
S22:经该开口131a将第一容纳腔133内的电解液抽出,并经开口131a将失效电池单体15的电极组件12取出。
本实施例中,将失效电池单体15的电解液抽出后,该失效电池单体15无法产生电能,即电极组件12不再工作,因此,将该电极组件12取出后,不仅能够增大第一容纳腔133内导电部件16连接电极端子111的空间,还能够防止因电解液抽出导致的电极单元121的极片风干脱落,从而提高电池模块M的安全性。
其中,开口131a的形状和尺寸需满足能够将电极组件12取出,即该开口131a不应太小。在一种具体实施例中,如图11和图12所示,沿高度方向Z,该壳体13包括第二盖板132,而不包括第一盖板131(将壳体13的第一盖板131拆除),此时,开口131a的大小与第一盖板131的面积相同,能够方便地将电极组件12取出。
另外,由于该电极组件12的极耳122与转接片14连接,因此,将电极组件12经开口131a取出之前,应首先断开极耳122与转接片14之间的连接,或者,也可以断开转接片14与电极端子111之间的连接,此时,取出电极组件12时,能够将转接片14取出。
具体地,本实施例中,上述步骤S3具体包括:
S32:将导电部件16与正极转接片141连接,并将导电部件16与负极转接片142连接。
本实施例中,将电极组件12从第一容纳腔133取出后,极耳122随电极组件12被取出,因此,导电部件16间接连接电极端子111时,能 够与转接片14连接。同时,转接片14与导电部件16的连接面积需满足电池模块M的过流要求。
在一些实施例中,本实施例中,步骤S22之后,上述失效处理方法还可以包括:
S23:将支撑部件41经开口131a放置于第一容纳腔133内,以使支撑部件41与所述壳体13的内壁沿长度方向X抵接。
本实施例中,将失效电池单体15的电极组件12取出后,壳体13沿长度方向X的强度和刚度较低,电池模块M发生振动时,该失效电池单体15存在变形损坏的风险,该步骤中,通过将支撑部件41放置于第一容纳腔133,能够提高壳体13沿长度方向X的强度和刚度,从而降低失效电池模块M变形损坏的风险。
需要说明的是,本实施例中,步骤S23与步骤S32之间不存在严格的先后顺序,S23可以在S32之前,即取出失效电池单体15的电极组件12后,可以先将支撑部件41放置于第一容纳腔133内,然后通过导电部件16连接失效电池单体15的电极端子111(包括直接连接和间接连接);S23也可以在S32之后,即取出失效电池单体15的电极组件12后,可以先通过导弹部件16连接失效电池单体15的电极端子111(包括直接连接和间接连接),然后将支撑部件41放置于第一容纳腔133内;或者,S23与S32也可以同时进行。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池模块(M),其中,所述电池模块(M)包括:
    电池单体(1),所述电池单体(1)包括壳体(13)、顶盖(11)和电极组件(12),所述壳体(13)与所述顶盖(11)连接,所述壳体(13)具有第一容纳腔(133),所述电极组件(12)位于所述第一容纳腔(133)内,所述顶盖(11)设置有正极端子(111a)和负极端子(111b),且所述正极端子(111a)和所述负极端子(111b)沿所述电池模块(M)的长度方向(X)布置,并朝向所述电池模块(M)的宽度方向(Y),所述电池单体(1)还包括失效电池单体(15);
    导电部件(16),所述导电部件(16)连接所述失效电池单体(15)的正极端子(111a)和负极端子(111b);
    其中,沿所述电池模块(M)的高度方向(Z),所述壳体(13)包括相对设置的第一盖板(131)和第二盖板(132),所述第一盖板(131)与所述第二盖板(132)均与所述顶盖(11)连接,所述第一盖板(131)和/或所述第二盖板(132)设置有开口(131a),所述导电部件(16)能够经所述开口(131a)伸入所述第一容纳腔(133),并位于所述第一容纳腔(133)内。
  2. 根据权利要求1所述的电池模块(M),其中,所述电极组件(12)包括极耳(122),所述极耳(122)包括正极极耳(122a)和负极极耳(122b),所述电池单体(1)包括转接片(14),所述转接片(14)包括正极转接片(141)和负极转接片(142);
    所述正极转接片(141)连接所述正极极耳(122a)和所述正极端子(111a),所述负极转接片(142)连接所述负极极耳(122b)和所述负极端子(111b);
    所述失效电池单体(15)中,所述导电部件(16)的一端连接所述正极极耳(122a)和/或所述正极转接片(141),另一端连接所述负极极耳(122b)和/或所述负极转接片(142)。
  3. 根据权利要求2所述的电池模块(M),其中,所述导电部件(16)包括第一导电部(161)和第二导电部(162),所述第一导电部(161)与所述第二导电部(162)连接;
    所述第一导电部(161)与所述正极极耳(122a)连接,所述第二导电部(162)与所述负极极耳(122b)连接;
    所述第一导电部(161)与所述正极极耳(122a)为材料相同的结构,所述第二导电部(162)与所述负极极耳(122b)为材料相同的结构。
  4. 根据权利要求2~3中任一项所述的电池模块(M),其中,沿高度方向(Z),所述第二盖板(132)位于所述第一盖板(131)下方,所述开口(131a)设置于所述第一盖板(131);
    所述开口(131a)沿所述长度方向(X)延伸,沿高度方向(Z),所述极耳(122)和/或所述转接片(14)的至少部分经所述开口(131a)裸露。
  5. 根据权利要求1~4中任一项所述的电池模块(M),其中,所述第一容纳腔(133)填充有结构胶。
  6. 根据权利要求1~5中任一项所述的电池模块(M),其中,所述失效电池单体(15)的所述电极组件(12)能够经所述开口(131a)取出。
  7. 根据权利要求1所述的电池模块(M),其中,所述失效电池单体(15)还包括正极转接片(141)和负极转接片(142);
    所述正极转接片(141)与所述正极端子(111a)连接,所述负极转接片(142)与所述负极端子(111b)连接,所述失效电池单体(15)中,所述导电部件(16)连接所述正极转接片(141)和所述负极转接片(142);
    所述导电部件(16)包括第一导电部(161)和第二导电部(162),所述第一导电部(161)与所述第二导电部(162)连接,所述第一导电部(161)与所述正极转接片(141)连接,所述第二导电部(162)与所述负极转接片(142)连接;
    所述第一导电部(161)与所述正极转接片(141)为材料相同的结构,所述第二导电部(162)与所述负极转接片(142)为材料相同的结构。
  8. 根据权利要求1~7中任一项所述的电池模块(M),其中,所述失效电池单体(15)还包括支撑部件(41),所述支撑部件(41)位于所述第一容纳腔(133)内;
    沿长度方向(X),所述支撑部件(41)与所述壳体(13)的内壁抵接。
  9. 根据权利要求1~8中任一项所述的电池模块(M),其中,多个所述电池单体(1)沿长度方向(X)排列形成电池单体排列结构(A),且沿高度方向(Z),所述电池模块(M)包括至少两层所述电池单体排列结构(A);
    沿高度方向(Z),位于所述失效电池单体(15)上方的电池单体(1)为目标电池单体,且所述电池模块(M)包括一个或多个所述目标电池单体;
    所述目标电池单体中,所述第一盖板(131)和所述第二盖板(132)均设置有所述开口(131a),所述目标电池单体的所述电极组件(12)经所述第一盖板(131)的所述开口(131a)取出,所述目标电池单体的正极端子(111a)和负极端子(111b)通过所述导电部件(16)连接,或者,所述目标电池单体的正极转接片(141)和负极转接片(142)通过所述导电部件(16)连接;
    所述失效电池单体(15)中,所述第二盖板(132)位于所述第一盖板(131)下方,所述第一盖板(131)设置有所述开口(131a),所述失效电池单体(15)的所述电极组件(12)经所述开口(131a)取出,且所述失效电池单体(15)的正极端子(111a)和负极端子(111b)通过所述导电部件(16)连接,或者,所述失效电池单体(15)的正极转接片(141)和负极转接片(142)通过所述导电部件(16)连接。
  10. 一种装置(D),使用电池单体(1)作为电源,其中,所述装置(D)包括:
    动力源,所述动力源用于为所述装置(D)提供驱动力;和,
    被配置为向所述动力源提供电能的如权利要求1~9中任一项所述的电池模块(M)。
  11. 一种失效电池单体(15)的失效处理方法,其中,失效电池单体(15)包括 壳体(13)、正极端子(111a)和负极端子(111b),所述失效电池单体(15)具有第一容纳腔(133),沿高度方向(Z),所述壳体(13)包括相对设置的第一盖板(131)和第二盖板(132);
    所述失效处理方法包括:
    在所述第一盖板(131)和/或所述第二盖板(132)设置开口(131a);
    将导电部件(16)经所述开口(131a)放入所述第一容纳腔(133)内,并通过所述导电部件(16)连接所述正极端子(111a)和所述负极端子(111b)。
  12. 根据权利要求11所述的失效处理方法,其中,所述失效电池单体(15)包括正极转接片(141)、负极转接片(142)和电极组件(12),所述电极组件(12)包括正极极耳(122a)和负极极耳(122b),所述正极转接片(141)连接所述正极极耳(122a)和所述正极端子(111a),所述负极转接片(142)连接所述负极极耳(122b)和所述负极端子(111b);
    通过所述导电部件(16)连接所述正极端子(111a)和所述负极端子(111b)时,所述失效处理方法包括:
    将所述导电部件(16)的一端与所述正极极耳(122a)和/或所述正极转接片(141)连接,并将所述导电部件(16)的另一端与所述负极极耳(122b)和/或所述负极转接片(142)连接。
  13. 根据权利要求11~12中任一项所述的失效处理方法,其中,在通过所述导电部件(16)连接所述正极端子(111a)和所述负极端子(111b)之后,所述失效处理方法还包括:
    经所述开口(131a)将结构胶注入所述第一容纳腔(133)。
  14. 根据权利要求11~13中任一项所述的失效处理方法,其中,将导电部件(16)经所述开口(131a)放入所述第一容纳腔(133)内,并通过所述导电部件(16)连接所述正极端子(111a)和负极端子(111b)之前,所述失效处理方法还包括:
    经所述开口(131a)将所述第一容纳腔(133)内的电解液抽出。
  15. 根据权利要求11和13中任一项所述的失效处理方法,其中,将导电部件(16)经所述开口(131a)放入所述第一容纳腔(133)内,并通过所述导电部件(16)连接所述正极端子(111a)和负极端子(111b)之前,所述失效处理方法还包括:
    经所述开口(131a)将所述第一容纳腔(133)内的电解液抽出,并经所述开口(131a)将所述失效电池单体(15)的电极组件(12)取出。
  16. 根据权利要求15所述的失效处理方法,其中,所述失效电池单体(15)包括正极转接片(141)和负极转接片(142),所述正极转接片(141)连接所述正极端子(111a),所述负极转接片(142)连接所述负极端子(111b);
    通过所述导电部件(16)连接所述正极端子(111a)和所述负极端子(111b)时,所述失效处理方法包括:
    将所述导电部件(16)与所述正极转接片(141)连接,并将所述导电部件(16) 与所述负极转接片(142)连接。
  17. 根据权利要求15所述的失效处理方法,其中,经所述开口(131a)将所述失效电池单体(15)的电极组件(12)取出之后,所述失效处理方法还包括:
    将支撑部件(41)经所述开口(131a)放置于所述第一容纳腔(133)内,以使所述支撑部件(41)与所述壳体(13)的内壁沿长度方向(X)抵接。
PCT/CN2020/130735 2019-11-29 2020-11-23 电池模块、装置及失效电池单体的失效处理方法 WO2021104187A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20892860.6A EP3930074B1 (en) 2019-11-29 2020-11-23 Battery module, apparatus, and failure processing method for failed battery cell
KR1020227020006A KR102565543B1 (ko) 2019-11-29 2020-11-23 배터리 모듈, 장치 및 실효 배터리 셀의 실효 처리 방법
US17/564,953 US11799142B2 (en) 2019-11-29 2021-12-29 Battery module, device, and failure handling method for failed battery cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911205556.3A CN112310492B (zh) 2019-11-29 2019-11-29 电池模块、装置及失效电池单体的失效处理方法
CN201911205556.3 2019-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/564,953 Continuation US11799142B2 (en) 2019-11-29 2021-12-29 Battery module, device, and failure handling method for failed battery cell

Publications (1)

Publication Number Publication Date
WO2021104187A1 true WO2021104187A1 (zh) 2021-06-03

Family

ID=74336565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130735 WO2021104187A1 (zh) 2019-11-29 2020-11-23 电池模块、装置及失效电池单体的失效处理方法

Country Status (6)

Country Link
US (1) US11799142B2 (zh)
EP (1) EP3930074B1 (zh)
KR (1) KR102565543B1 (zh)
CN (1) CN112310492B (zh)
HU (1) HUE061665T2 (zh)
WO (1) WO2021104187A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049870A (ja) * 2008-08-20 2010-03-04 Kawasaki Heavy Ind Ltd 電池モジュールの外部短絡システム
US20120315518A1 (en) * 2011-06-08 2012-12-13 Stmicroelectronics Sa Method and device for extending the lifetime of a battery in particular of a vehicle
CN103996816A (zh) * 2013-02-14 2014-08-20 三星Sdi株式会社 电池模块
CN109728346A (zh) * 2017-10-30 2019-05-07 比亚迪股份有限公司 一种锂离子电池及电池组
CN110010833A (zh) * 2019-05-06 2019-07-12 江苏元瑞新能源科技有限公司 一种插拔式电池柜的电连接结构
CN209199991U (zh) * 2018-12-03 2019-08-02 河北银隆新能源有限公司 一种电池盖板组件及电池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012124238A1 (ja) * 2011-03-14 2014-07-17 三洋電機株式会社 電源システム
CN202395111U (zh) * 2011-11-28 2012-08-22 上海比亚迪有限公司 一种动力电池包
CN103247828A (zh) * 2012-02-02 2013-08-14 凹凸电子(武汉)有限公司 电池异常处理装置和方法、电池系统以及用电设备
KR101382297B1 (ko) 2012-11-07 2014-04-08 기아자동차(주) 배터리 모듈
KR102257678B1 (ko) * 2014-03-28 2021-05-28 삼성에스디아이 주식회사 이차 전지
JP6407665B2 (ja) * 2014-11-05 2018-10-17 株式会社東芝 組電池
KR20160091124A (ko) * 2015-01-23 2016-08-02 삼성에스디아이 주식회사 이차전지 유닛을 수납하는 하우징을 구비하는 배터리 모듈
JP6582489B2 (ja) * 2015-03-30 2019-10-02 三洋電機株式会社 角形二次電池及びそれを用いた組電池
JP2018037184A (ja) * 2016-08-30 2018-03-08 株式会社豊田自動織機 電池モジュール
CN209447876U (zh) * 2018-12-30 2019-09-27 宁德时代新能源科技股份有限公司 一种电池模组
HUE061347T2 (hu) * 2019-10-31 2023-06-28 Contemporary Amperex Technology Co Ltd Akkumulátormodul, akkumulátorcsomag, eszköz és hibakezelési eljárás
CN112331983B (zh) * 2019-11-29 2021-10-08 宁德时代新能源科技股份有限公司 电池模块、装置及失效电池单体的失效处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049870A (ja) * 2008-08-20 2010-03-04 Kawasaki Heavy Ind Ltd 電池モジュールの外部短絡システム
US20120315518A1 (en) * 2011-06-08 2012-12-13 Stmicroelectronics Sa Method and device for extending the lifetime of a battery in particular of a vehicle
CN103996816A (zh) * 2013-02-14 2014-08-20 三星Sdi株式会社 电池模块
CN109728346A (zh) * 2017-10-30 2019-05-07 比亚迪股份有限公司 一种锂离子电池及电池组
CN209199991U (zh) * 2018-12-03 2019-08-02 河北银隆新能源有限公司 一种电池盖板组件及电池
CN110010833A (zh) * 2019-05-06 2019-07-12 江苏元瑞新能源科技有限公司 一种插拔式电池柜的电连接结构

Also Published As

Publication number Publication date
US11799142B2 (en) 2023-10-24
EP3930074A4 (en) 2022-06-08
US20220123380A1 (en) 2022-04-21
EP3930074A1 (en) 2021-12-29
KR20220099119A (ko) 2022-07-12
KR102565543B1 (ko) 2023-08-09
EP3930074B1 (en) 2023-03-22
HUE061665T2 (hu) 2023-08-28
CN112310492A (zh) 2021-02-02
CN112310492B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
JP5490406B2 (ja) 車両用の電源装置
JP4652415B2 (ja) 新規な構造のバッテリーカートリッジ及びそれを含む開放型バッテリーモジュール
US8728643B2 (en) Fuse unit for rechargeable battery with supporting member
KR102152347B1 (ko) 배터리 팩
JP5297441B2 (ja) 二次電池
US9680138B2 (en) Battery pack
US20120270096A1 (en) High-power and large-capacity lithium battery of electric bus
KR20180107569A (ko) 배터리 팩
US20230170535A1 (en) Battery module, device, and failure handling method for failed battery cell
KR101864918B1 (ko) 배터리 모듈 및 배터리 모듈 제조방법
WO2021104187A1 (zh) 电池模块、装置及失效电池单体的失效处理方法
US20230275287A1 (en) Battery, power consumption device, and method and device for producing battery
CN217158410U (zh) 电池单体、电池以及用电装置
JP7442623B2 (ja) 電池モジュール
KR20090008087A (ko) 안전성이 향상된 중대형 전지팩
CN112310493B (zh) 失效电池单元的处理方法、电池模块、电池组和装置
KR20180012568A (ko) 전극 리드 연결용 커넥터 및 이를 이용한 배터리 모듈
KR102563880B1 (ko) 냉각 효율 증대 카트리지
KR102159145B1 (ko) 울트라 커패시터 모듈용 부스바 및 울트라 커패시터 모듈
CN220672722U (zh) 电池单体、电池和用电装置
US20220123440A1 (en) Battery module, battery group, power consumption device, and failure handling method
EP4343934A1 (en) Battery, electrical device, and battery preparation method and device
US20230268601A1 (en) Battery, power consumption device, and method and device for producing battery
US20230268604A1 (en) Battery, power consumption device, and method and device for producing battery
KR20230012355A (ko) 배터리 팩 및 이를 포함하는 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020892860

Country of ref document: EP

Effective date: 20210920

ENP Entry into the national phase

Ref document number: 20227020006

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE