WO2021103874A1 - Mtj器件的制作方法 - Google Patents

Mtj器件的制作方法 Download PDF

Info

Publication number
WO2021103874A1
WO2021103874A1 PCT/CN2020/123290 CN2020123290W WO2021103874A1 WO 2021103874 A1 WO2021103874 A1 WO 2021103874A1 CN 2020123290 W CN2020123290 W CN 2020123290W WO 2021103874 A1 WO2021103874 A1 WO 2021103874A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal
metal oxide
magnetron sputtering
oxide film
Prior art date
Application number
PCT/CN2020/123290
Other languages
English (en)
French (fr)
Inventor
简红
Original Assignee
浙江驰拓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江驰拓科技有限公司 filed Critical 浙江驰拓科技有限公司
Publication of WO2021103874A1 publication Critical patent/WO2021103874A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to the technical field of magnetic memory, in particular to a manufacturing method of an MTJ device.
  • STT-MRAM Spin Transfer Torque Magnetic Random Access Memory
  • a typical MTJ device is mainly composed of a reference layer, an insulating barrier layer and a free layer. The magnetization direction of the reference layer remains unchanged, and only the magnetization direction of the free layer is changed to make it the same or opposite to the reference layer.
  • Rp low resistance state
  • Rap high resistance state
  • MRAM uses the Rp state and Rap state of the MTJ device to represent the logic states "1" and "0" respectively, thereby realizing data storage.
  • the memory cell of MRAM generally adopts perpendicular magnetization MTJ (p-MTJ), and the magnetization directions of the free layer and reference layer of p-MTJ are perpendicular to the surface of the film.
  • p-MTJ perpendicular magnetization MTJ
  • an oxide coating layer such as MgO
  • PMA perpendicular magnetic anisotropy
  • the oxide coating of MTJ devices is generally selected as a metal oxidation method.
  • a layer of metal is deposited on the free layer, and then O 2 is introduced to oxidize the metal to form an oxide coating.
  • the problem with this method is that it is difficult to guarantee the uniform oxidation of the metal, especially the degree of oxidation at the interface between the metal layer and the free layer.
  • the coercivity of the free layer (Hc ) The distribution is large, which affects the yield of the device.
  • the present invention provides a method for manufacturing an MTJ device, which can improve the uniformity of the coercivity of the free layer of the MTJ device, thereby improving the yield of the device.
  • the present invention provides a method for manufacturing an MTJ device, including:
  • the first metal film is oxidized to form a second metal oxide film.
  • the conditions of the radio frequency magnetron sputtering process are: the deposition power is 200 to 400 W, the pressure is 5 to 10 mTorr, the Ar flow rate is 20 to 50 sccm, and the deposition rate is 0.005 to 0.01 A/s.
  • the conditions of the DC magnetron sputtering process are: the deposition power is 200-600 W, the pressure is 6-20 mTorr, the Ar flow rate is 25-40 sccm, and the deposition rate is 0.008-0.02 A/s.
  • the oxidation treatment of the first metal film includes: oxygen (O 2 ) is introduced to oxidize the first metal film, or oxygen atoms generated by plasma are used to oxidize the first metal film.
  • the metal film is oxidized.
  • the material of the first metal oxide film includes one of MgO, AlO x , MgAlO x , TiO x , TaO x , GaO x and FeO x , and the thickness is 0.1-0.5 nm.
  • the material of the first metal film used to form the second metal oxide film includes one of Mg, Al, Ti, Ta, Ga, and Fe, with a thickness of 0.3 to 1 nm.
  • the method further includes:
  • a DC magnetron sputtering process is used to deposit a second metal film on the second metal oxide film, or a radio frequency magnetron sputtering process is used to deposit a third metal oxide film on the second metal oxide film and A second metal film is deposited on the third metal oxide film using a DC magnetron sputtering process.
  • the material of the second metal thin film includes one of Mg, Al, Ti, Ta, Ga, and Fe.
  • the thickness of the second metal film is 0.1-0.5 nm.
  • the manufacturing method of the MTJ device provided by the present invention firstly adopts the radio frequency magnetron sputtering process to deposit a layer of metal oxide film on the free layer film, because the metal oxide film deposited by the radio frequency magnetron sputtering can be well controlled
  • the ratio of metal to oxygen atoms and the uniformity of oxygen atoms make the free layer and the oxide covering layer form a uniformly oxidized interface structure, better control the oxygen atom content at the interface, and form uniformly distributed hybrid bonds.
  • Hc coercive force
  • DC magnetron sputtering is used to deposit a layer of metal, and then oxidized. This method can reduce the device RA and adjust the free layer in a larger range.
  • Perpendicular magnetic anisotropy (Hk) is used to reduce the device RA and adjust the free layer in a larger range.
  • FIG. 1 is a schematic flowchart of a manufacturing method of an MTJ device according to an embodiment of the present invention
  • 2A-2E are schematic diagrams of the device structure in each step of the manufacturing method of the MTJ device according to an embodiment of the present invention.
  • An embodiment of the present invention provides a manufacturing method of an MTJ device. As shown in FIG. 1, the method includes:
  • S104 Perform oxidation treatment on the first metal film to form a second metal oxide film.
  • a reference layer film 201, a barrier layer film 202, and a free layer film 203 are sequentially deposited on a substrate (not shown). Physical vapor deposition or chemical vapor deposition can be used.
  • any material that meets the performance requirements of the reference layer of the MTJ device can be selected as the material of the reference layer film 201.
  • W and Hf One or more of, W and Hf.
  • the reference layer film 201 is usually a multilayer film structure, and the type and thickness of each film layer need to be adjusted so that the magnetization direction is perpendicular to its interface, and the thickness of each film structure is between 0.1 nm and 1.5 nm.
  • any material that meets the performance requirements of the insulating barrier layer of the MTJ device can be selected as the material of the insulating barrier layer 202.
  • one or more of MgO, AlO x , MgAlO x , TiO x , TaO x , GaO x and FeO x can be selected.
  • the oxygen content of these oxides fluctuates, so x is used to represent the ratio of the number of oxygen atoms to other atoms in a molecule.
  • the thickness of the insulating barrier layer 202 is between 0.2 and 2 nm. This can achieve a lower MTJ junction resistance (RA) while ensuring a high TMR value.
  • any material that meets the performance requirements of the free layer of the MTJ device can be selected as the material of the free layer 203.
  • Co, Fe, Ni, CoB, FeB, NiB, CoFe, NiFe, CoNiB, CoFeNiB, FePt, FePd, CoPt, CoPd, CoFePd, FePtPd, CoPtPd, and CoFePtPd One or more.
  • a first metal oxide film 204 is deposited on the free layer film 203 using a radio frequency magnetron sputtering process.
  • the deposition power of the RF magnetron sputtering process is 200-400W
  • the pressure is 5-10mTorr
  • the Ar flow rate is 20-50sccm
  • the deposition rate is 0.005-0.01A/ s
  • the use of smaller power and slower deposition rate is more conducive to control the structure of the interface.
  • the first metal oxide film 204 is used to enhance the perpendicular magnetic anisotropy at the interface of the free layer 203, and the material that can be selected includes one of MgO, AlO x , MgAlO x , TiO x , TaO x , GaO x and FeO x .
  • the thickness of the first metal oxide film 204 is between 0.1 nm and 0.5 nm. Since the metal oxide deposited by radio frequency magnetron sputtering has fewer structural defects, which will cause the device to have a high RA, it is necessary to control the thickness of the metal oxide deposited by radio frequency magnetron sputtering.
  • a DC magnetron sputtering process is used to deposit the first metal film 2051 on the first metal oxide film 204.
  • the DC magnetron sputtering process has a deposition power of 200-600W, a pressure of 6-20 mTorr, and an Ar flow rate. It is 25-40sccm, and the deposition rate is 0.008-0.02A/s.
  • the material of the first metal thin film 2051 includes one of Mg, Al, Ti, Ta, Ga, and Fe.
  • the thickness of the first metal film 2051 is between 0.3 and 1 nm.
  • oxidation treatment is performed on the first metal thin film 2051, and the structure after oxidation treatment is as shown in FIG. 2D.
  • the method of introducing oxygen (O 2 ) into the deposition chamber oxidizes the first metal film 2051 to form the second metal oxide film 2052.
  • the second metal oxide film 2052 is formed by controlling the amount and time of oxygen supply. 2.
  • argon (Ar) and oxygen (O 2 ) are passed into the deposition chamber, and the radio frequency power is used to dissociate them into oxygen atoms, or the oxygen is dissociated to form oxygen atoms in other chambers, and then passed Into the deposition chamber.
  • the second metal oxide film 2052 and the first metal oxide film 204 together form an oxide covering layer above the free layer.
  • a layer of MgO (denoted as RF MgO) is deposited by radio frequency magnetron sputtering to form a uniform Fe-O hybrid bond at the interface.
  • DC magnetron sputtering is used to deposit Mg, and an appropriate amount of O 2 is introduced to oxidize it to form MgO (recorded as DC MgO).
  • a method for manufacturing an MTJ device is provided.
  • a layer of metal oxide film is deposited on the free layer film by the radio frequency magnetron sputtering process.
  • the metal oxide film deposited by the radio frequency magnetron sputtering The material film can well control the ratio of metal and oxygen atoms and the uniformity of oxygen atoms, so that a uniformly oxidized interface structure is formed between the free layer and the oxide coating layer, and the oxygen atom content at the interface is better controlled to form a uniform
  • the distributed hybrid bond after being etched into a device, is beneficial to improve the uniformity of the coercive force (Hc) of the device, thereby improving the yield of the device.
  • the second metal oxide film is formed on the first metal oxide film by the DC magnetron sputtering process and the oxidation process.
  • the oxidation degree of the second metal oxide film can be controlled by controlling the amount and time of oxygen supply, thereby adjusting The RA of the MTJ (RA is the product of the resistance area of the MTJ device, which is a parameter used to reflect the thickness of the barrier layer in the MTJ device).
  • a DC magnetron sputtering process is used to deposit a second metal film 206 on the second metal oxide film 2052, and the material of the second metal film 206 includes One of Mg, Al, Ti, Ta, Ga, and Fe, and the thickness of the second metal thin film 206 is 0.1-0.5 nm.
  • the third metal film 206 can also be deposited on the second metal oxide film 2052 by radio frequency magnetron sputtering. Layer metal oxide film, and then deposit a second metal film on the third metal oxide film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明提供一种MTJ器件的制作方法,所述方法包括:在衬底上沉积参考层薄膜、势垒层薄膜和自由层薄膜;在所述自由层薄膜上采用射频磁控溅射工艺沉积第一金属氧化物薄膜;在所述第一金属氧化物薄膜上采用直流磁控溅射工艺沉积第一金属薄膜;对所述第一金属薄膜进行氧化处理,以形成第二金属氧化物薄膜。本发明能够在自由层薄膜和第一金属氧化物薄膜之间形成均匀氧化的界面结构,使得自由层的矫顽力比较均匀。

Description

MTJ器件的制作方法 技术领域
本发明涉及磁性存储器技术领域,尤其涉及一种MTJ器件的制作方法。
背景技术
自旋转移力矩磁性随机存储器(Spin Transfer Torque Magnetic Random Access Memory,简称STT-MRAM)是一种新型非易失存储器,其核心存储单元为磁性隧道结(MTJ器件)。典型的MTJ器件主要由参考层、绝缘势垒层和自由层组成,其中参考层的磁化方向保持不变,仅改变自由层的磁化方向使之与参考层同向或反向。当参考层与自由层的磁化方向相同时,MTJ器件表现为低电阻状态(Rp);而当参考层与自由层磁化方向相反时,MTJ器件表现为高电阻状态(Rap)。MRAM分别利用MTJ器件的Rp状态和Rap状态来表示逻辑状态“1”和“0”,从而实现数据的存储。
MRAM的存储单元普遍采用垂直磁化MTJ(p-MTJ),p-MTJ的自由层和参考层磁化方向均垂直于薄膜表面。随着p-MTJ尺寸的缩小,为保证p-MTJ器件中数据能够长时间保存,需要在自由层顶部增加一层氧化物覆盖层(如MgO),来增强自由层与势垒层和氧化物覆盖层之间界面的垂直磁各向异性(PMA),从而增强自由层的热稳定性。
目前制作MTJ器件的氧化物覆盖层,普遍选用金属氧化的方式,在自由层上先沉积一层金属,然后通入O 2使得金属氧化,形成氧化物覆盖层。这种方法存在的问题是,很难保证金属均匀氧化,特别是在金属层与自由层的界面处的氧化程度难以保证均匀性,在刻蚀成器件后,导致自由层的矫顽力(Hc)分布较大,影响器件良率。
发明内容
为解决上述问题,本发明提供一种MTJ器件的制作方法,能够提高MTJ器件自由层矫顽力的均一性,从而提高器件良率。
本发明提供一种MTJ器件的制作方法,包括:
在衬底上沉积参考层薄膜、势垒层薄膜和自由层薄膜;
在所述自由层薄膜上采用射频磁控溅射工艺沉积第一金属氧化物薄膜;
在所述第一金属氧化物薄膜上采用直流磁控溅射工艺沉积第一金属薄膜;
对所述第一金属薄膜进行氧化处理,以形成第二金属氧化物薄膜。
可选地,所述射频磁控溅射工艺的条件为:沉积功率为200~400W,压力为5~10mTorr,Ar流量为20~50sccm,沉积速率为0.005~0.01A/s。
可选地,所述直流磁控溅射工艺的条件为:沉积功率为200~600W,压力为6~20mTorr,Ar流量为25~40sccm,沉积速率为0.008~0.02A/s。
可选地,所述对所述第一金属薄膜进行氧化处理,包括:通入氧气(O 2)使所述第一金属薄膜发生氧化,或者,利用等离子体产生的氧原子使所述第一金属薄膜发生氧化。
可选地,所述第一金属氧化物薄膜的材料包括MgO、AlO x、MgAlO x、TiO x、TaO x、GaO x和FeO x中的一种,厚度为0.1~0.5nm。
可选地,用于形成所述第二金属氧化物薄膜的所述第一金属薄膜的材料包括Mg、Al、Ti、Ta、Ga和Fe中的一种,厚度为0.3~1nm。
可选地,所述方法还包括:
在所述第二金属氧化物薄膜上采用直流磁控溅射工艺沉积第二金属薄膜,或者,在所述第二金属氧化物薄膜上采用射频磁控溅射工艺沉积第三金属氧化物薄膜并在所述第三金属氧化物薄膜上采用直流磁控溅射工艺沉积第二金属薄 膜。
可选地,所述第二金属薄膜的材料包括Mg、Al、Ti、Ta、Ga和Fe中的一种。
可选地,所述第二金属薄膜的厚度为0.1~0.5nm。
本发明提供的一种MTJ器件的制作方法,先采用射频磁控溅射工艺在自由层薄膜上沉积一层金属氧化物薄膜,由于射频磁控溅射沉积的金属氧化物薄膜可以很好地控制金属和氧原子的比例以及氧原子的均匀性,使得自由层与氧化物覆盖层之间形成氧化均匀的界面结构,较好地控制界面处的氧原子含量,形成均匀分布的杂化键,在刻蚀成器件后,有利于提高器件矫顽力(Hc)的均一性,从而提高器件良率。同时,在射频磁控溅射沉积的金属氧化物的基础上利用直流磁控溅射沉积一层金属,然后再氧化,改用该方法可降低器件RA,同时在较大范围内调节自由层的垂直磁各向异性(Hk)。
附图说明
图1为本发明一实施例的MTJ器件的制作方法的流程示意图;
图2A-图2E为本发明一实施例的MTJ器件的制作方法的各步骤器件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明一实施例提供一种MTJ器件的制作方法,如图1所示,所述方法包 括:
S101、在衬底上沉积参考层薄膜、势垒层薄膜和自由层薄膜;
S102、在所述自由层薄膜上采用射频磁控溅射工艺沉积第一金属氧化物薄膜;
S103、在所述第一金属氧化物薄膜上采用直流磁控溅射工艺沉积第一金属薄膜;
S104、对所述第一金属薄膜进行氧化处理,以形成第二金属氧化物薄膜。
如图2A所示,在衬底(未图示)上依次沉积参考层薄膜201、势垒层薄膜202和自由层薄膜203,可以使用物理气相沉积或者化学气相沉积。
本实施例中,可以选择任何满足MTJ器件参考层性能要求的材料作为参考层薄膜201的材料。例如可以选择Co、Ni、Fe、CoFe、CoNi、NiFe、CoFeNi、CoB、FeB、CoFeB、NiFeB、Pt、Pd、PtPd、FePt、Ir、Re、Rh、B、Zr、V、Nb、Ta、Mo、W与Hf中的一种或多种。参考层薄膜201通常是多层膜结构,需要调节各层薄膜的种类和厚度使其磁化方向垂直于其界面,且每层膜结构的厚度均在0.1~1.5nm之间。
本实施例中,可以选择任何满足MTJ器件绝缘势垒层性能要求的材料作为绝缘势垒层202的材料。例如可以选择MgO、AlO x、MgAlO x、TiO x、TaO x、GaO x与FeO x中的一种或几种。实际制备过程中这些氧化物的氧含量是有波动的,所以用x表示一个分子里氧原子与其他原子的个数比。绝缘势垒层202的厚度在0.2~2nm之间。这样可以实现较低的MTJ结电阻(RA),同时保证高的TMR值。
本实施例中,可以选择任何满足MTJ器件自由层性能要求的材料作为自由层203的材料。例如可以选择Co、Fe、Ni、CoB、FeB、NiB、CoFe、NiFe、 CoNi、CoFeNi、CoFeB、NiFeB、CoNiB、CoFeNiB、FePt、FePd、CoPt、CoPd、CoFePt、CoFePd、FePtPd、CoPtPd与CoFePtPd中的一种或几种。
如图2B所示,在自由层薄膜203上采用射频磁控溅射工艺沉积第一金属氧化物薄膜204。为了保证较好的沉积效果,本申请的一个实施例中,射频磁控溅射工艺沉积功率为200~400W,压力为5~10mTorr,Ar流量为20~50sccm,沉积速率为0.005~0.01A/s,采用较小的功率和较慢的沉积速率更有利于控制界面的结构。第一金属氧化物薄膜204用于增强自由层203界面处的垂直磁各向异性,可以选择的材料包括MgO、AlO x、MgAlO x、TiO x、TaO x、GaO x和FeO x中的一种。第一金属氧化物薄膜204的厚度在0.1~0.5nm之间。由于射频磁控溅射沉积的金属氧化物结构缺陷比较少,会导致器件RA偏高,因此,需要控制射频磁控溅射沉积金属氧化物的厚度。
如图2C所示,在第一金属氧化物薄膜204上采用直流磁控溅射工艺沉积第一金属薄膜2051,直流磁控溅射工艺沉积功率为200~600W,压力为6~20mTorr,Ar流量为25~40sccm,沉积速率为0.008~0.02A/s。第一金属薄膜2051的材料包括Mg、Al、Ti、Ta、Ga和Fe中的一种。第一金属薄膜2051的厚度在0.3~1nm之间。接着,对第一金属薄膜2051进行氧化处理,氧化处理后的结构如图2D所示。本申请的一个实施例中,在沉积腔室中通入氧气(O 2)的方法使第一金属薄膜2051发生氧化,形成第二金属氧化物薄膜2052,通过控制氧气通入量和时间控制第二金属氧化物薄膜的氧化程度;本申请的另一个实施例中,利用等离子体产生的氧原子使第一金属薄膜2051发生氧化,形成第二金属氧化物薄膜2052。具体地,在沉积腔室中通入氩气(Ar)和氧气(O 2),利用射频电源使其解离成氧原子,或者在别的腔室中将氧气解离形成氧原子,然后通入沉积腔室内。
最终,第二金属氧化物薄膜2052和第一金属氧化物薄膜204一起构成自由层上方的氧化物覆盖层。
在射频磁控溅射沉积的金属氧化物的基础上利用直流磁控溅射沉积一层金属,然后再氧化,改用该方法可降低MTJ器件的RA,同时在较大范围内调节自由层的垂直磁各向异性(Hk)。
列举一个实际工艺中常用的例子进行举例说明,在自由层薄膜沉积完成后,先利用射频磁控溅射沉积一层MgO(记为RF MgO),使界面形成均匀的Fe-O杂化键,然后再利用直流磁控溅射沉积Mg,通入适量O 2使其氧化,形成MgO(记为DC MgO)。通过在DC MgO和自由层之间插入一层RF MgO,使得自由层薄膜与MgO之间形成良好的界面结构,较好地控制界面处的氧原子含量,形成均匀的Fe-O键,在刻蚀成器件后,有利于提高自由层Hc的均一性,从而提高器件良率。
应用本发明实施例的技术方案,提供了一种MTJ器件的制作方法,先采用射频磁控溅射工艺在自由层薄膜上沉积一层金属氧化物薄膜,由于射频磁控溅射沉积的金属氧化物薄膜可以很好地控制金属和氧原子的比例以及氧原子的均匀性,使得自由层与氧化物覆盖层之间形成氧化均匀的界面结构,较好地控制界面处的氧原子含量,形成均匀分布的杂化键,在刻蚀成器件后,有利于提高器件矫顽力(Hc)的均一性,从而提高器件良率。然后再采用直流磁控溅射工艺和氧化工艺在第一金属氧化物薄膜上形成第二金属氧化物薄膜,可以通过控制氧气通入量和时间控制第二金属氧化物薄膜的氧化程度,从而调节MTJ的RA(RA为MTJ器件的电阻面积乘积,用于反映MTJ器件中势垒层厚度的参数)。
可选地,本申请的另一个实施例中,如图2E所示,在第二金属氧化物薄膜2052上采用直流磁控溅射工艺沉积第二金属薄膜206,第二金属薄膜206的材 料包括Mg、Al、Ti、Ta、Ga和Fe中的一种,第二金属薄膜206的厚度为0.1~0.5nm。通过沉积第二金属薄膜206,能够避免位于氧化物覆盖层以上的其他金属层发生氧化。
另外说明的是,在第二金属氧化物薄膜2052上采用直流磁控溅射工艺沉积第二金属薄膜206之前,还可以在第二金属氧化物薄膜2052上再利用射频磁控溅射沉积第三层金属氧化物薄膜,然后在第三层金属氧化物薄膜上沉积一层第二金属薄膜。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (9)

  1. 一种MTJ器件的制作方法,其特征在于,所述方法包括:
    在衬底上沉积参考层薄膜、势垒层薄膜和自由层薄膜;
    在所述自由层薄膜上采用射频磁控溅射工艺沉积第一金属氧化物薄膜;
    在所述第一金属氧化物薄膜上采用直流磁控溅射工艺沉积第一金属薄膜;
    对所述第一金属薄膜进行氧化处理,以形成第二金属氧化物薄膜。
  2. 根据权利要求1所述的方法,其特征在于,所述射频磁控溅射工艺的条件为:沉积功率为200~400W,压力为5~10mTorr,Ar流量为20~50sccm,沉积速率为0.005~0.01A/s。
  3. 根据权利要求1所述的方法,其特征在于,所述直流磁控溅射工艺的条件为:沉积功率为200~600W,压力为6~20mTorr,Ar流量为25~40sccm,沉积速率为0.008~0.02A/s。
  4. 根据权利要求1所述的方法,其特征在于,所述对所述第一金属薄膜进行氧化处理,包括:通入氧气(O 2)使所述第一金属薄膜发生氧化,或者,利用等离子体产生的氧原子使所述第一金属薄膜发生氧化。
  5. 根据权利要求1所述的方法,其特征在于,所述第一金属氧化物薄膜的材料包括MgO、AlO x、MgAlO x、TiO x、TaO x、GaO x和FeO x中的一种,厚度为0.1~0.5nm。
  6. 根据权利要求1所述的方法,其特征在于,用于形成所述第二金属氧化物薄膜的所述第一金属薄膜的材料包括Mg、Al、Ti、Ta、Ga和Fe中的一种,厚度为0.3~1nm。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第二金属氧化物薄膜上采用直流磁控溅射工艺沉积第二金属薄膜, 或者,在所述第二金属氧化物薄膜上采用射频磁控溅射工艺沉积第三金属氧化物薄膜并在所述第三金属氧化物薄膜上采用直流磁控溅射工艺沉积第二金属薄膜。
  8. 根据权利要求7所述的方法,其特征在于,所述第二金属薄膜的材料包括Mg、Al、Ti、Ta、Ga和Fe中的一种。
  9. 根据权利要求7所述的方法,其特征在于,所述第二金属薄膜的厚度为0.1~0.5nm。
PCT/CN2020/123290 2019-11-27 2020-10-23 Mtj器件的制作方法 WO2021103874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911187275.X 2019-11-27
CN201911187275.XA CN112864315B (zh) 2019-11-27 2019-11-27 Mtj器件的制作方法

Publications (1)

Publication Number Publication Date
WO2021103874A1 true WO2021103874A1 (zh) 2021-06-03

Family

ID=75985884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123290 WO2021103874A1 (zh) 2019-11-27 2020-10-23 Mtj器件的制作方法

Country Status (2)

Country Link
CN (1) CN112864315B (zh)
WO (1) WO2021103874A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488609B1 (en) * 2007-11-16 2009-02-10 Hitachi Global Storage Technologies Netherlands B.V. Method for forming an MgO barrier layer in a tunneling magnetoresistive (TMR) device
US20110032644A1 (en) * 2009-08-10 2011-02-10 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
CN102334207A (zh) * 2009-03-02 2012-01-25 高通股份有限公司 磁性隧道结装置及制造
CN102769100A (zh) * 2011-05-06 2012-11-07 索尼公司 存储元件和存储装置
CN103000805A (zh) * 2011-09-09 2013-03-27 克罗科斯科技公司 具有改进的隧穿势垒的磁隧道结
CN106605311A (zh) * 2014-05-15 2017-04-26 海德威科技公司 减少阻障层电阻面积(ra)的产品与磁性装置应用的垂直磁性各向异性(pma)的保护

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602033B2 (en) * 2007-05-29 2009-10-13 Headway Technologies, Inc. Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
JP5782715B2 (ja) * 2011-01-07 2015-09-24 ソニー株式会社 記憶素子及び記憶装置
US11264557B2 (en) * 2017-12-30 2022-03-01 Integrated Silicon Solution, (Cayman) Inc. High retention storage layer using ultra-low RA MgO process in perpendicular magnetic tunnel junctions for MRAM devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488609B1 (en) * 2007-11-16 2009-02-10 Hitachi Global Storage Technologies Netherlands B.V. Method for forming an MgO barrier layer in a tunneling magnetoresistive (TMR) device
CN102334207A (zh) * 2009-03-02 2012-01-25 高通股份有限公司 磁性隧道结装置及制造
US20110032644A1 (en) * 2009-08-10 2011-02-10 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
CN102769100A (zh) * 2011-05-06 2012-11-07 索尼公司 存储元件和存储装置
CN103000805A (zh) * 2011-09-09 2013-03-27 克罗科斯科技公司 具有改进的隧穿势垒的磁隧道结
CN106605311A (zh) * 2014-05-15 2017-04-26 海德威科技公司 减少阻障层电阻面积(ra)的产品与磁性装置应用的垂直磁性各向异性(pma)的保护

Also Published As

Publication number Publication date
CN112864315B (zh) 2022-09-20
CN112864315A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
EP3264481B1 (en) Perpendicularly magnetized ferromagnetic layers having an oxide interface allowing for improved control of oxidation
US8736004B2 (en) Magnetic tunnel junction for MRAM applications
US7045841B2 (en) Oxidation structure/method to fabricate a high-performance magnetic tunneling junction MRAM
US8318510B2 (en) Method and apparatus for manufacturing magnetoresistive element
TW201936488A (zh) 用於自旋力矩轉移磁阻隨機讀取記憶體之氮化物覆蓋層
US20100080894A1 (en) Fabricating method of magnetoresistive element, and storage medium
US20100078310A1 (en) Fabricating method of magnetoresistive element, and storage medium
CN110495000B (zh) 包括垂直磁化磁穿隧接面的磁性装置
US10134981B1 (en) Free layer sidewall oxidation and spacer assisted magnetic tunnel junction (MTJ) etch for high performance magnetoresistive random access memory (MRAM) devices
KR20200033185A (ko) 듀얼 자기 터널 접합(dmtj) 스택 설계
CN104995685A (zh) 用以改善磁隧道结元件短路的不连续镁插入层
JPWO2009157064A1 (ja) トンネル磁気抵抗素子の製造方法および製造装置
TWI821274B (zh) 磁性穿隧接合結構及其製造方法
WO2002093661A1 (fr) Element magnetoresistif
KR100988081B1 (ko) 이종방식으로 형성된 중간 산화막을 구비하는 자기 램 및그 제조 방법
JPWO2009110469A1 (ja) 磁気トンネル接合デバイスの製造方法及び磁気トンネル接合デバイスの製造装置
KR20160011069A (ko) 자기 소자의 제조 방법
WO2010023833A1 (ja) 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体
JP4541861B2 (ja) ホイスラー合金膜の成膜方法
US20150072439A1 (en) Method of manufacturing magnetoresistive element
US20120199470A1 (en) Mtj film and method for manufacturing the same
WO2021103874A1 (zh) Mtj器件的制作方法
TWI811334B (zh) 具有耦合釘紮層晶格匹配的磁性穿隧接面
WO2022048092A1 (zh) Mtj的制作方法和mtj
TW201417361A (zh) 磁阻元件之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892713

Country of ref document: EP

Kind code of ref document: A1