WO2021103861A1 - 摄像装置 - Google Patents

摄像装置 Download PDF

Info

Publication number
WO2021103861A1
WO2021103861A1 PCT/CN2020/122620 CN2020122620W WO2021103861A1 WO 2021103861 A1 WO2021103861 A1 WO 2021103861A1 CN 2020122620 W CN2020122620 W CN 2020122620W WO 2021103861 A1 WO2021103861 A1 WO 2021103861A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
lens
mirror
reflecting mirror
camera
Prior art date
Application number
PCT/CN2020/122620
Other languages
English (en)
French (fr)
Inventor
戴付建
张凯元
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2021103861A1 publication Critical patent/WO2021103861A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application relates to the field of optical elements, and in particular, to an imaging device.
  • the built-in camera device presents a development trend of high resolution, large field of view, lightweight and versatility.
  • the characteristics of the optical imaging lens built into the camera device are mainly reflected in the large aperture, long focal length, wide field of view, high image quality, low distortion, and compact structure.
  • the market needs a camera device that integrates an optical imaging lens with advantages such as large aperture, long focal length, and wide field of view.
  • An aspect of the present application provides such a camera device, the camera device comprising: a first camera module; and a second camera module, the second camera module is an off-axis three-reflection camera module; wherein, The equivalent focal length f1 of the first camera module and the equivalent focal length f2 of the second camera module satisfy: f2/f1>20.
  • the first camera module includes in order from the object side to the image side along the first optical axis: a first lens with optical power; a second lens with positive optical power, and the object side It is a convex surface and the image side surface is concave; the third lens with positive refractive power has a convex object side surface and the image side surface is convex; the fourth lens with negative power has a concave object side surface and the image side surface has a convex surface; The fifth lens with refractive power has a convex image side surface; a sixth lens with refractive power; and a seventh lens with negative refractive power.
  • the equivalent focal length f2 of the second camera module satisfies: 348mm ⁇ f2 ⁇ 358mm.
  • the entrance pupil diameter EPD of the second camera module is 8.5 mm.
  • the field angles of the second camera module in two directions perpendicular to each other are 4.56° and 6°, respectively.
  • the module size D of the second camera module satisfies: D ⁇ 30mm ⁇ 31mm.
  • the second camera module includes: a first reflecting mirror; a second reflecting mirror, the second reflecting mirror being arranged on the reflection light path of the first reflecting mirror; and a third reflecting mirror, The third reflecting mirror is arranged on the reflection light path of the second reflecting mirror; wherein the center normal of the first reflecting mirror, the center normal between the second reflecting mirrors, and the third reflecting The center normals of the mirrors all intersect.
  • the second camera module further includes: an image sensor, the image sensor is on the reflection light path of the third mirror, and the image sensor is located in the imaging of the second camera module Noodles.
  • an aperture stop is further included, and the aperture stop is disposed at the first reflector.
  • the reflecting surface of each of the first reflecting mirror to the third reflecting mirror is a polynomial free-form surface.
  • the radius of curvature R1 of the reflecting surface of the first reflecting mirror, the radius of curvature R2 of the reflecting surface of the second reflecting mirror, and the radius of curvature R3 of the reflecting surface of the third reflecting mirror satisfy: 100 ⁇
  • the distance d1 from the center of the first mirror to the center of the second mirror and the image-side focal length f22 of the second camera module satisfy: d1/f22>0.4
  • the The distance d3 from the third mirror to the imaging surface of the second camera module and the image-side focal length f22 of the second camera module satisfy: d3/f22>0.5.
  • the camera device provided in this application adopts two camera module settings. By reasonably setting the equivalent focal lengths of the first camera module and the second camera module, as well as the optical zoom magnification of the camera device, the camera device has a large aperture, a long focal length, and a wide field of view. Image quality.
  • Fig. 1 shows a schematic structural diagram of a camera device according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a first camera module according to Embodiment 1 of the present application
  • 3A to 3D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the first camera module of Embodiment 1;
  • FIG. 4 shows a schematic structural diagram of a first camera module according to Embodiment 2 of the present application
  • 5A to 5D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the first camera module of Embodiment 2;
  • FIG. 6 shows a schematic structural diagram of a second camera module according to Embodiment 3 of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of description.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the paraxial area refers to the area near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • Fig. 1 shows a schematic structural diagram of a camera device according to an embodiment of the present application.
  • the camera device includes a first camera module and a second camera module.
  • the second camera module is an off-axis three-reflection camera module.
  • Off-axis three-reflection camera module has the advantages of no chromatic aberration, no obstruction, large field of view, high image quality, and convenient light path folding.
  • the use of an off-axis three-reflection camera module for the second camera module is beneficial to realize the characteristics of the long focal length and wide field of view of the camera device.
  • the coordinated arrangement of the first camera module and the second camera module helps to improve the imaging quality of the camera device.
  • the first camera module includes in order from the object side to the image side along the first optical axis: a first lens with optical power; a second lens with positive optical power, and the object side is Convex surface, the image side surface is concave; the third lens with positive power has a convex object side surface and the image side surface is convex; the fourth lens with negative power has a concave object side surface and the image side surface is convex; it has light The fifth lens with power, the image side surface is convex; the sixth lens with refractive power; and the seventh lens with negative refractive power.
  • the equivalent focal length f1 of the first camera module and the equivalent focal length f2 of the second camera module satisfy: f2/f1>20.
  • f2/f1>20 Reasonably increasing the optical zoom magnification of the camera device is conducive to expanding the focal area of the wide-angle end and the telephoto end, and improving the imaging quality of the ultra-long-distance camera of the camera device.
  • the equivalent focal length f2 of the second camera module satisfies: 348mm ⁇ f2 ⁇ 358mm. Setting the equivalent focal length of the second camera module to be within a reasonable focal length range to meet the above conditions is beneficial to realize the telephoto characteristics of the camera device.
  • the entrance pupil diameter EPD of the second camera module is 8.5 mm.
  • Reasonable setting of the entrance pupil diameter of the second camera module is beneficial to control the amount of light entering the optical system and realize the characteristics of the optical system with high pixels and large aperture.
  • the field angles of the second camera module in two directions perpendicular to each other are 4.56° and 6°, respectively.
  • Reasonably setting the field of view of the second camera module is beneficial to make the optical system have a wide field of view while having an ultra-long equivalent focal length, which overcomes the shortcomings of the conventional telephoto system with a small field of view.
  • the module size D of the second camera module satisfies: D ⁇ 30mm ⁇ 31mm.
  • the module size of the second camera module satisfies: D ⁇ 30mm ⁇ 31mm.
  • the module size D specifically refers to the surface size exposed on the camera device carrier after the second camera module is installed in the camera device.
  • the second camera module includes: a first reflecting mirror; a second reflecting mirror, the second reflecting mirror is arranged on the reflection light path of the first reflecting mirror; and a third reflecting mirror, the third reflecting mirror is arranged On the reflection light path of the second mirror; where the center normal of the first mirror, the center normal between the second mirrors, and the center normal of the third mirror all intersect.
  • the second camera module further includes an image sensor, the image sensor is on the reflection light path of the third mirror, and the image sensor is located on the imaging surface of the second camera module.
  • an aperture stop is further included, and the aperture stop is disposed at the first reflecting mirror.
  • the reflecting surface of each of the first reflecting mirror to the third reflecting mirror is a polynomial free surface.
  • the ever-increasing requirements of the market for imaging performance and imaging quality of camera equipment have brought huge challenges to traditional aspheric optical systems.
  • the free-form optical element has a non-rotationally symmetrical surface shape, which can optimize the degree of freedom to the maximum, which is beneficial to improve the ability of the optical system to balance high-order and off-axis aberrations, expand the effective field of view of the optical system, and enable the optical system
  • the structure layout is more flexible.
  • the second camera module uses three mirrors to fold back the light path.
  • the reflective surfaces of the three mirrors are all polynomial free-form surfaces, so that the optical system not only meets the characteristics of ultra-long focal length and high image quality, but also meets the requirements of small size and compact structure.
  • the radius of curvature R1 of the reflecting surface of the first reflecting mirror, the radius of curvature R2 of the reflecting surface of the second reflecting mirror, and the radius of curvature R3 of the reflecting surface of the third reflecting mirror satisfy: 100 ⁇
  • the relationship between the radius of curvature of the reflecting surface of the first reflecting mirror, the radius of curvature of the reflecting surface of the second reflecting mirror, and the radius of curvature of the reflecting surface of the third reflecting mirror is reasonably set to meet the above conditions, which is conducive to constraining the three reflections.
  • the shape of the mirror controls the aberration contribution rate of the three mirrors to effectively balance the aberrations related to the optical system and the aperture band, thereby improving the imaging quality of the optical system.
  • the distance d1 from the center of the first mirror to the center of the second mirror and the image-side focal length f22 of the second camera module satisfy: d1/f22>0.4
  • the distance d3 between the imaging surface of the camera module and the image-side focal length f22 of the second camera module satisfy: d3/f22>0.5.
  • the ratio of the focal length of the image side is not only conducive to the optical characteristics of the ultra-long focal length of the camera device and the structural characteristics of the compact structure and ultra-small size of the system, but also beneficial to the processing and assembly of the camera device.
  • the camera device adopts an off-axis three-reflection camera module, which is compact in structure, small in size, and has an equivalent focal length of 353 mm, and has the characteristics of large diameter and high image quality.
  • the optical zoom can reach more than 20 times.
  • Exemplary embodiments of the present application also provide an electronic device including the above-described camera device.
  • FIG. 2 is a schematic diagram showing the structure of a first camera module according to Embodiment 1 of the present application.
  • the first camera module includes in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a stop STO, a third lens E3, a fourth lens E4, and a fifth lens.
  • Lens E5 sixth lens E6, seventh lens E7, filter E8 and imaging surface S17.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a convex surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 1 shows the basic parameter table of the first camera module of Embodiment 1, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the distance from the object side S1 of the first lens E1 to the imaging surface S17 on the optical axis TTL 8.40mm
  • the object side and image side of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical formula :
  • x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2-1 and table 2-2 show the higher order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A that can be used for each aspheric mirror surface S1-S14 in Example 1. 16 , A 18 , A 20 , A 22 , A 24 , A 26 , A 28 and A 30 .
  • FIG. 3A shows the on-axis chromatic aberration curve of the first camera module of Embodiment 1, which represents the deviation of the focus point of light of different wavelengths after passing through the lens.
  • FIG. 3B shows the astigmatism curve of the first camera module of Embodiment 1, which represents meridional field curvature and sagittal field curvature.
  • FIG. 3C shows the distortion curve of the first camera module of Embodiment 1, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 3D shows the chromatic aberration curve of magnification of the first camera module of Embodiment 1, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 3A to 3D, it can be seen that the first camera module provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 4 shows a schematic structural diagram of a first camera module according to Embodiment 2 of the present application.
  • the first camera module includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens.
  • Lens E5 sixth lens E6, seventh lens E7, filter E8 and imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a convex surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the distance from the object side S1 of the first lens E1 to the imaging surface S17 on the optical axis TTL 6.87 mm
  • Table 3 shows the basic parameter table of the first camera module of Embodiment 2, where the units of the radius of curvature, thickness/distance and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • Table 4 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror S1-S14 in Example 2.
  • each aspheric surface type can be defined by the formula (1) given in the above-mentioned embodiment 1.
  • FIG. 5A shows the on-axis chromatic aberration curve of the first camera module of Embodiment 2, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • FIG. 5B shows the astigmatism curve of the first camera module of Embodiment 2, which represents meridional field curvature and sagittal field curvature.
  • FIG. 5C shows a distortion curve of the first camera module of Embodiment 2, which represents the distortion magnitude values corresponding to different image heights.
  • Fig. 5D shows the chromatic aberration curve of magnification of the first camera module of Embodiment 2, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 5A to 5D that the first camera module provided in Embodiment 2 can achieve good imaging quality.
  • Fig. 6 shows a schematic structural diagram of a second camera module according to an embodiment of the present application.
  • the second camera module includes a first reflector, a second reflector, and a third reflector.
  • Table 5 shows the basic parameter table of the second camera module of the embodiment, where the units of the radius of curvature and the distance are millimeters (mm).
  • the reflective surface of any one of the first mirror to the third mirror is a polynomial free-form surface, and the surface shape z of each mirror can be defined by but not limited to the following free-form surface formula:
  • z is the surface vector height of the free surface at (x, y); c is the surface vector height, k is the quadric surface coefficient; Ai is the coefficient of the i-th term of the free surface.
  • Table 6 shows the high-order term coefficients A 2 , A 3 , A 5 , A 7 , A 9 , A 10 , A that can be used in the first mirror to the third mirror in the first embodiment. 12 , A 14 , A 16 , A 18 , A 20 , A 21 , A 23 , A 25 , A 27 , A 29 , A 31 , A 33 and A 35 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像装置,摄像装置包括第一摄像模组以及第二摄像模组,第二摄像模组为离轴三反摄像模组;其中,第一摄像模组的等效焦距f1与第二摄像模组的等效焦距f2满足:f2/f1>20。

Description

摄像装置
相关申请的交叉引用
本申请要求于2019年11月29日提交于中国国家知识产权局(CNIPA)的专利申请号为201911201485.X的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本申请涉及光学元件领域,具体地,涉及一种摄像装置。
背景技术
随着智能手机等小型化电子设备的不断发展,其内置的摄像装置呈现出高分辨率、大视场、轻量化以及多功能性的发展趋势。其中内置在摄像装置中的光学成像镜头的特性主要体现在大口径、长焦距、宽视场、高像质、低畸变以及结构紧凑等。为了适应电子设备的发展,市场需要一种集成有大口径、长焦距、宽视场等优势的光学成像镜头的摄像装置。
发明内容
本申请的一方面提供了这样一种摄像装置,该摄像装置包括:第一摄像模组;以及第二摄像模组,所述第二摄像模组为离轴三反摄像模组;其中,所述第一摄像模组的等效焦距f1与所述第二摄像模组的等效焦距f2满足:f2/f1>20。
在一个实施方式中,所述第一摄像模组沿着第一光轴由物侧至像侧依序包括:具有光焦度的第一透镜;具有正光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面,像侧面为凸面;具有光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;以及具有负光焦度的第七透镜。
在一个实施方式中,所述第二摄像模组的等效焦距f2满足:348mm<f2<358mm。
在一个实施方式中,所述第二摄像模组的入瞳直径EPD为8.5mm。
在一个实施方式中,所述第二摄像模组在彼此垂直的两个方向上的视场角分别是4.56°和6°。
在一个实施方式中,所述第二摄像模组的模组尺寸D满足:D≤30mm×31mm。
在一个实施方式中,所述第二摄像模组包括:第一反射镜;第二反射镜,所述第二反射镜设置在所述第一反射镜的反射光路上;以及第三反射镜,所述第三反射镜设置在所述第二反射镜的反射光路上;其中,所述第一反射镜的中心法线、所述第二反射镜之间的中心法线以及所述第三反射镜的中心法线均相交。
在一个实施方式中,所述第二摄像模组还包括:图像传感器,所述图像传感器在所述第三反射镜的反射光路上,且所述图像传感器位于所述第二摄像模组的成像面处。
在一个实施方式中,还包括孔径光阑,所述孔径光阑设置于所述第一反射镜处。
在一个实施方式中,所述第一反射镜至所述第三反射镜中各反射镜的反射面均为多项式自由曲面。
在一个实施方式中,所述第一反射镜的反射面的曲率半径R1、所述第二反射镜的反射面的曲率半径R2以及所述第三反射镜的反射面的曲率半径R3满足: 100×|1/R1+1/R3-1/R2|≤0.5。
在一个实施方式中,所述第一反射镜的中心至所述第二反射镜的中心的距离d1与所述第二摄像模组的像方焦距f22满足:d1/f22>0.4,且所述第三反射镜至所述第二摄像模组的成像面的距离d3与所述第二摄像模组的像方焦距f22满足:d3/f22>0.5。
本申请提供的摄像装置采用两个摄像模组设置。通过合理设置第一摄像模组和第二摄像模组的等效焦距,以及合理设置摄像装置的光学变焦倍率,以使摄像装置在具有大口径、长焦距、宽视场的同时,具有良好的成像质量。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例的摄像装置的结构示意图;
图2示出了根据本申请实施例1的第一摄像模组的结构示意图;
图3A至图3D分别示出了实施例1的第一摄像模组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图4示出了根据本申请实施例2的第一摄像模组的结构示意图;
图5A至图5D分别示出了实施例2的第一摄像模组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图6示出了根据本申请实施例3的第二摄像模组的结构示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
图1示出了根据本申请实施例的摄像装置的结构示意图。如图1所示,该摄像装置包括:第一摄像模组以及第二摄像模组,第二摄像模组为离轴三反摄像模组。离轴三反摄像模组具有无色差、无遮拦、视场大、像质高、方便光路折叠的优势。本实施例中,第二摄像模组采用离轴三反摄像模组有利于实现摄像装置长焦距、宽视场特性。第一摄像模组和第二摄像模组配合设置,有利于提高摄像装置的成像质量。
在示例性实施方式中,第一摄像模组沿着第一光轴由物侧至像侧依序包括:具有光焦度的第一透镜;具有正光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面,像侧面为凸面;具有光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;以及具有负光焦度的第七透镜。
在示例性实施方式中,第一摄像模组的等效焦距f1与第二摄像模组的等效焦距f2满足:f2/f1>20。合理增大摄像装置的光学变焦倍率,有利于扩大广角端和远摄端的焦点区域,提高摄像装置超远距离摄像的成像质量。
在示例性实施方式中,第二摄像模组的等效焦距f2满足:348mm<f2<358mm。设置第二摄像模组的等效焦距在合理的焦距范围内,使其满足上述条件,有利于实现摄像装置的长焦特性。
在示例性实施方式中,第二摄像模组的入瞳直径EPD为8.5mm。合理设置第二摄像模组的入瞳直径,有利于控制光学系统的进光量,实现光学系统高像素、大口径的特点。
在示例性实施方式中,第二摄像模组在彼此垂直的两个方向上的视场角分别是4.56°和6°。合理设置第二摄像模组的视场角,有利于使得光学系统在具有超长等效焦距的同时还具有较宽的视场,克服了常规长焦系统视场角较小的缺点。
在示例性实施方式中,第二摄像模组的模组尺寸D满足:D≤30mm×31mm。合理设置第二摄像模组的模组尺寸,使其小于30mm×31mm,有利于使得摄像装置在满足高像质、超长焦距的同时兼具超小尺寸的特点,使得装置结构更加紧凑、小型化。其中,模组尺寸D具体指第二摄像模组安装在摄像装置中后,在摄像装置载体上显露出的面型尺寸。
在示例性实施方式中,第二摄像模组包括:第一反射镜;第二反射镜,第二反射镜设置在第一反射镜的反射光路上;以及第三反射镜,第三反射镜设置在第二反射镜的反射光路上;其中,第一反射镜的中心法线、第二反射镜之间的中心法线以及第三反射镜的中心法线均相交。合理设置上述三个反射镜的位置关系,有利于方便摄像装置中的光路折叠。
在示例性实施方式中,第二摄像模组还包括:图像传感器,图像传感器在第三反射镜的反射光路上,且图像传感器位于第二摄像模组的成像面处。
在示例性实施方式中,还包括孔径光阑,孔径光阑设置于第一反射镜处。
在示例性实施方式中,第一反射镜至第三反射镜中各反射镜的反射面均为多项式自由曲 面。市场对摄像设备成像性能和成像质量的要求不断提高给传统的非球面光学系统带来了巨大的挑战。自由曲面光学元件具有非旋转对称的面型,能够最大限度地优化自由度,有利于提升光学系统平衡高阶和轴外像差的能力,扩宽光学系统的有效视场,同时可以使光学系统的结构布局更加灵活。在本实施例中,第二摄像模组采用三个反射镜设置来折返光路。三个反射镜的反射面均为多项式自由曲面使得光学系统在满足超长焦距、高像质特点的同时,也满足尺寸小、结构紧凑的要求。
在示例性实施方式中,第一反射镜的反射面的曲率半径R1、第二反射镜的反射面的曲率半径R2以及第三反射镜的反射面的曲率半径R3满足:100×|1/R1+1/R3-1/R2|≤0.5。合理设置第一反射镜的反射面的曲率半径、第二反射镜的反射面的曲率半径以及第三反射镜的反射面的曲率半径的相互关系,使其满足上述条件,有利于约束三个反射镜的形状,进而控制三个反射镜的像差贡献率,以有效平衡光学系统与孔径带相关的像差,从而提高光学系统的成像质量。
在示例性实施方式中,第一反射镜的中心至第二反射镜的中心的距离d1与第二摄像模组的像方焦距f22满足:d1/f22>0.4,且第三反射镜至第二摄像模组的成像面的距离d3与第二摄像模组的像方焦距f22满足:d3/f22>0.5。合理设置第一反射镜的中心至第二反射镜的中心的距离与第二摄像模组的像方焦距的比例关系以及第三反射镜至摄像装置的成像面的距离与第二摄像模组的像方焦距的比例关系,既有利于摄像装置具有超长焦距的光学特性和系统结构紧凑、尺寸超小的结构特点,又有利于摄像装置的加工组装。
根据本申请的摄像装置采用离轴三反式摄像模组,结构紧凑、尺寸小、等效焦距达353mm且兼具口径大、像质高等特点。其光学变焦倍数能达到20倍以上。
本申请的示例性实施方式还提供一种电子设备,该电子设备包括以上描述的摄像装置。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图2至图3D描述根据本申请实施例1的第一摄像模组。图2是示出了根据本申请实施例1的第一摄像模组的结构示意图。
如图2所示,第一摄像模组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的第一摄像模组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020122620-appb-000001
Figure PCTCN2020122620-appb-000002
表1
在本实施例中,第一摄像模组的总有效焦距f=3.49mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.40mm,以及第一摄像模组的最大视场角FOV=103.4°。
在实施例1中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020122620-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2-1和表2-2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18、A 20、A 22、A 24、A 26、A 28和A 30
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.6814E-01 -1.0752E-01 3.2206E-02 -2.3568E-02 5.0175E-04 1.6683E-03 -1.8986E-03
S2 -8.5673E-01 1.7221E-03 -8.0437E-02 -2.8426E-03 -1.6371E-02 -3.7299E-04 -3.1485E-03
S3 -4.4235E-02 -3.6236E-02 5.8673E-03 1.5246E-03 5.9492E-04 -3.8658E-04 -8.2181E-05
S4 -6.7395E-03 3.0630E-02 -2.2317E-02 8.7022E-03 -2.3995E-03 3.6389E-04 -1.7406E-04
S5 2.5612E-02 -1.7995E-02 7.1939E-03 -2.8332E-03 9.9992E-04 -2.9205E-04 4.9631E-05
S6 1.1946E-01 -2.8693E-02 2.3852E-02 -9.7993E-03 4.5305E-03 -1.3900E-03 3.2803E-04
S7 1.0267E-01 9.2995E-02 -7.6032E-03 3.2625E-03 3.0226E-04 7.0557E-04 -8.3791E-04
S8 -4.6882E-02 1.3585E-01 -2.3221E-02 1.0411E-02 8.7203E-04 -3.1439E-04 -4.6633E-05
S9 3.0221E-01 -3.4485E-01 1.7846E-01 -7.4016E-02 2.8757E-02 -1.1063E-02 5.6324E-03
S10 2.8087E-03 -2.0533E-01 3.4350E-01 1.3620E-01 -4.9014E-02 3.3952E-04 1.2303E-02
S11 1.1689E+00 6.8997E-01 -3.8496E-01 7.5093E-02 7.8220E-02 -5.3261E-02 2.4763E-02
S12 5.7175E-01 -1.5912E-02 -2.3083E-01 6.4630E-02 -1.6080E-01 -6.0984E-02 -1.1698E-02
S13 -5.6738E-01 1.0288E-01 2.9204E-01 4.0081E-01 3.5220E-01 5.3871E-02 -5.5655E-02
S14 1.5684E+00 8.2811E-01 1.7512E-01 3.0571E-01 3.2908E-01 -1.1019E-02 8.3132E-02
表2-1
面号 A18 A20 A22 A24 A26 A28 A30
S1 5.4650E-04 -6.5455E-05 -4.6624E-06 2.5341E-07 0.0000E+00 0.0000E+00 0.0000E+00
S2 -7.8640E-05 -6.1467E-04 6.8682E-06 -3.1071E-07 0.0000E+00 0.0000E+00 0.0000E+00
S3 6.9910E-06 3.4483E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 8.5224E-05 -5.2070E-05 1.1723E-07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 5.1687E-06 -1.4925E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S6 -7.8163E-05 1.1328E-05 8.2744E-07 -1.1189E-07 0.0000E+00 0.0000E+00 0.0000E+00
S7 3.7219E-04 -3.6688E-05 2.3183E-07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 7.8973E-05 5.2803E-06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.5235E-03 8.6312E-04 1.8142E-06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 4.1278E-03 -4.4582E-03 1.1027E-04 -9.6542E-06 0.0000E+00 0.0000E+00 0.0000E+00
S11 2.2256E-03 -8.2457E-03 6.9737E-03 -3.4953E-03 7.5514E-04 6.7114E-08 0.0000E+00
S12 -1.8692E-02 -6.2488E-04 -4.1981E-03 1.1455E-03 5.8921E-04 -3.9008E-07 1.0125E-07
S13 -3.9157E-02 -1.8901E-02 -1.3886E-02 -6.5433E-03 -1.4971E-03 -2.9297E-06 0.0000E+00
S14 1.6924E-02 -9.9340E-04 1.5116E-02 -3.4394E-03 2.8377E-03 -8.4166E-06 7.0375E-08
表2-2
图3A示出了实施例1的第一摄像模组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图3B示出了实施例1的第一摄像模组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图3C示出了实施例1的第一摄像模组的畸变曲线,其表示不同像高对应的畸变大小值。图3D示出了实施例1的第一摄像模组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图3A至图3D可知,实施例1所给出的第一摄像模组能够实现良好的成像品质。
实施例2
以下参照图4至图5D描述根据本申请实施例2的第一摄像模组。图4示出了根据本申请实施例2的第一摄像模组的结构示意图。
如图4所示,第一摄像模组沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,第一摄像模组的总有效焦距f=4.40mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=6.87mm,以及第一摄像模组的最大视场角FOV=102.5°。
表3示出了实施例2的第一摄像模组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020122620-appb-000004
表3
在实施例2中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表4给出了可用于实施例2中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.9050E-02 2.7201E-04 -9.8131E-04 4.3070E-04 -7.4331E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 2.8303E-02 -1.1794E-03 -5.0756E-04 7.5537E-04 -1.7796E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 2.7064E-03 -1.7680E-02 3.8132E-02 -5.4951E-02 4.3550E-02 -1.8077E-02 3.1657E-03 0.0000E+00 0.0000E+00
S4 3.6584E-02 -9.1771E-02 1.1953E-01 -1.2835E-01 9.7366E-02 -4.3384E-02 8.9052E-03 0.0000E+00 0.0000E+00
S5 -2.4924E-02 3.4395E-03 -4.7643E-02 9.9075E-02 -1.2016E-01 8.4775E-02 -3.1738E-02 4.9355E-03 0.0000E+00
S6 -3.8125E-02 5.8806E-03 -5.1176E-02 9.9500E-02 -1.1000E-01 7.1963E-02 -2.5573E-02 3.7982E-03 0.0000E+00
S7 -8.9961E-02 5.8110E-02 -1.5929E-01 2.5728E-01 -2.7062E-01 1.9684E-01 -9.2037E-02 2.4328E-02 -2.7134E-03
S8 -7.5962E-02 7.3692E-02 -9.0669E-02 7.0023E-02 -3.3597E-02 1.0110E-02 -1.7669E-03 1.3526E-04 2.0521E-06
S9 -8.8807E-02 1.7029E-01 -1.4507E-01 7.3092E-02 -2.2318E-02 3.6937E-03 -1.7331E-04 -3.6689E-05 4.5046E-06
S10 -2.7462E-02 4.8371E-02 -4.3015E-02 2.2157E-02 -6.4095E-03 9.1906E-04 -2.6559E-05 -7.9555E-06 6.7279E-07
S11 1.2183E-01 -8.0709E-02 2.5750E-02 -4.9618E-03 5.7384E-04 -4.2180E-05 2.5507E-06 -1.4435E-07 4.3934E-09
S12 9.5135E-02 -6.9531E-02 2.4069E-02 -5.3251E-03 7.8592E-04 -7.7085E-05 4.8209E-06 -1.7337E-07 2.7167E-09
S13 -2.7673E-02 -1.8679E-02 8.3315E-03 -1.5247E-03 1.5926E-04 -1.0180E-05 3.9441E-07 -8.5158E-09 7.8626E-11
S14 -4.0948E-02 4.6734E-03 2.2449E-05 -6.4986E-05 7.2317E-06 -3.4139E-07 4.9822E-09 1.2912E-10 -3.8108E-12
表4
图5A示出了实施例2的第一摄像模组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图5B示出了实施例2的第一摄像模组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图5C示出了实施例2的第一摄像模组的畸变曲线,其表示不同像高对应的畸变大小值。图5D示出了实施例2的第一摄像模组的倍率色差曲线,其表示光线经 由镜头后在成像面上的不同的像高的偏差。根据图5A至图5D可知,实施例2所给出的第一摄像模组能够实现良好的成像品质。
实施例3
图6示出了根据本申请实施例的第二摄像模组的结构示意图。如图6所示,该第二摄像模组包括第一反射镜、第二反射镜以及第三反射镜。
表5示出了实施例的第二摄像模组的基本参数表,其中,曲率半径、间距的单位均为毫米(mm)。
镜面 曲率半径(mm) 间距(mm)
第一反射镜 252.6869 21.1701
第二反射镜 250.4067 -19.0451
第三反射镜 198.0273 25.0000
表5
在实施例3中,第一反射镜至第三反射镜中的任意一个透镜的反射面均为多项式自由曲面,各反射镜的面型z可利用但不限于以下自由曲面公式进行限定:
Figure PCTCN2020122620-appb-000005
其中,z为自由曲面在(x,y)处的曲面矢高量;c为曲面矢高量,k为二次曲面系数;Ai是自由曲面第i项的系数。下表6给出了可用于实施例1中第一反射镜至第三反射镜的各自由曲面镜面的高次项系数A 2、A 3、A 5、A 7、A 9、A 10、A 12、A 14、A 16、A 18、A 20、A 21、A 23、A 25、A 27、A 29、A 31、A 33和A 35
面号 第一反射镜 第二反射镜 第三反射镜
Conic 0 0 0
A2 8.2036E-02 3.4317E-02 -3.3132E-01
A3 -3.5953E-03 1.2096E-03 -4.6387E-03
A5 -9.6375E-04 5.2915E-03 1.5773E-03
A7 4.1639E-06 -8.5708E-07 -7.3522E-06
A9 1.9842E-05 -1.2386E-05 -7.3727E-05
A10 7.4206E-07 1.5967E-06 2.3098E-06
A12 2.3789E-06 3.3398E-06 9.3701E-06
A14 1.6960E-06 1.9910E-06 7.2236E-06
A16 -1.4892E-08 -3.2726E-08 -1.8123E-07
A18 5.2052E-08 -4.0925E-09 1.7555E-09
A20 2.9379E-08 -2.9026E-09 -2.7714E-08
A21 2.0760E-09 7.3595E-10 1.6689E-08
A23 4.2374E-09 3.0208E-10 4.3098E-08
A25 -2.0924E-09 -3.2961E-10 4.3922E-09
A27 3.8931E-09 9.6752E-10 9.7518E-10
A29 1.5430E-09 1.6489E-09 1.4282E-08
A31 -3.5399E-10 1.1549E-11 2.9264E-09
A33 -1.1901E-09 -4.0432E-10 -9.4505E-09
A35 -8.4824E-11 -3.9539E-13 -8.0712E-10
表6
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (12)

  1. 一种摄像装置,其特征在于,包括:
    第一摄像模组;以及
    第二摄像模组,所述第二摄像模组为离轴三反摄像模组;
    其中,所述第一摄像模组的等效焦距f1与所述第二摄像模组的等效焦距f2满足:f2/f1>20。
  2. 根据权利要求1所述的摄像装置,其特征在于,所述第一摄像模组沿着第一光轴由物侧至像侧依序包括:
    具有光焦度的第一透镜;
    具有正光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;
    具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;
    具有负光焦度的第四透镜,其物侧面为凹面,像侧面为凸面;
    具有光焦度的第五透镜,其像侧面为凸面;
    具有光焦度的第六透镜;以及
    具有负光焦度的第七透镜。
  3. 根据权利要求1所述的摄像装置,其特征在于,所述第二摄像模组的等效焦距f2满足:
    348mm<f2<358mm。
  4. 根据权利要求1所述的摄像装置,其特征在于,所述第二摄像模组的入瞳直径EPD为8.5mm。
  5. 根据权利要求1所述的摄像装置,其特征在于,所述第二摄像模组在彼此垂直的两个方向上的视场角分别是4.56°和6°。
  6. 根据权利要求1所述的摄像装置,其特征在于,所述第二摄像模组的模组尺寸D满足:
    D≤30mm×31mm。
  7. 根据权利要求1-6任一项所述的摄像装置,其特征在于,所述第二摄像模组包括:
    第一反射镜;
    第二反射镜,所述第二反射镜设置在所述第一反射镜的反射光路上;以及
    第三反射镜,所述第三反射镜设置在所述第二反射镜的反射光路上;其中,所述第一反射镜的中心法线、所述第二反射镜之间的中心法线以及所述第三反射镜的中心法线均相交。
  8. 根据权利要求7所述的摄像装置,其特征在于,所述第二摄像模组还包括:图像传感器,所述图像传感器在所述第三反射镜的反射光路上,且所述图像传感器位于所述第二摄像模组的成像面处。
  9. 根据权利要求7所述的摄像装置,其特征在于,还包括孔径光阑,所述孔径光阑设置于所述第一反射镜处。
  10. 根据权利要求7所述的摄像装置,其特征在于,所述第一反射镜至所述第三反射镜中各反射镜的反射面均为多项式自由曲面。
  11. 根据权利要求7所述的摄像装置,其特征在于,所述第一反射镜的反射面的曲率半径R1、所述第二反射镜的反射面的曲率半径R2以及所述第三反射镜的反射面的曲率半径R3满足:
    100×|1/R1+1/R3-1/R2|≤0.5。
  12. 根据权利要求7所述的摄像装置,其特征在于,所述第一反射镜的中心至所述第二反射镜的中心的距离d1与所述第二摄像模组的像方焦距f22满足:d1/f22>0.4,且所述第三反射镜至所述第二摄像模组的成像面的距离d3与所述第二摄像模组的像方焦距f22满足:
    d3/f22>0.5。
PCT/CN2020/122620 2019-11-29 2020-10-22 摄像装置 WO2021103861A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911201485.X 2019-11-29
CN201911201485.XA CN112882188A (zh) 2019-11-29 2019-11-29 摄像装置

Publications (1)

Publication Number Publication Date
WO2021103861A1 true WO2021103861A1 (zh) 2021-06-03

Family

ID=76038576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122620 WO2021103861A1 (zh) 2019-11-29 2020-10-22 摄像装置

Country Status (2)

Country Link
CN (1) CN112882188A (zh)
WO (1) WO2021103861A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406398B (zh) * 2023-12-14 2024-03-08 江西联创电子有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246053A (zh) * 2013-04-09 2013-08-14 长春理工大学 使用自由曲面的宽幅离轴三反光学系统
CN108873253A (zh) * 2018-07-02 2018-11-23 浙江舜宇光学有限公司 摄像镜头
CN109491051A (zh) * 2018-12-28 2019-03-19 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN110031957A (zh) * 2018-01-12 2019-07-19 清华大学 自由曲面离轴三反成像系统
US20190339490A1 (en) * 2018-05-07 2019-11-07 Calin Technology Co., Ltd. Wide-angle lens assembly
CN110794557A (zh) * 2019-11-29 2020-02-14 浙江舜宇光学有限公司 摄像装置
CN211123452U (zh) * 2019-11-29 2020-07-28 浙江舜宇光学有限公司 摄像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246053A (zh) * 2013-04-09 2013-08-14 长春理工大学 使用自由曲面的宽幅离轴三反光学系统
CN110031957A (zh) * 2018-01-12 2019-07-19 清华大学 自由曲面离轴三反成像系统
US20190339490A1 (en) * 2018-05-07 2019-11-07 Calin Technology Co., Ltd. Wide-angle lens assembly
CN108873253A (zh) * 2018-07-02 2018-11-23 浙江舜宇光学有限公司 摄像镜头
CN109491051A (zh) * 2018-12-28 2019-03-19 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN110794557A (zh) * 2019-11-29 2020-02-14 浙江舜宇光学有限公司 摄像装置
CN211123452U (zh) * 2019-11-29 2020-07-28 浙江舜宇光学有限公司 摄像装置

Also Published As

Publication number Publication date
CN112882188A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020082814A1 (zh) 成像镜头
WO2020119172A1 (zh) 光学成像镜头
WO2020113985A1 (zh) 光学成像镜片组
WO2020001066A1 (zh) 摄像镜头
WO2021103862A1 (zh) 摄像装置
WO2019228064A1 (zh) 成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2020073702A1 (zh) 光学成像镜片组
WO2021068753A1 (zh) 光学成像系统
WO2020186759A1 (zh) 光学成像镜头
WO2020107936A1 (zh) 光学成像系统
WO2019233040A1 (zh) 摄像透镜组
WO2020024635A1 (zh) 光学成像镜头
WO2020151251A1 (zh) 光学透镜组
WO2021008232A1 (zh) 光学成像镜头
WO2020042799A1 (zh) 光学成像镜片组
WO2021042992A1 (zh) 光学成像系统
WO2020164247A1 (zh) 光学成像系统
WO2019237776A1 (zh) 光学成像系统
WO2019233159A1 (zh) 光学成像镜头
WO2021047304A1 (zh) 光学成像镜头
WO2020029613A1 (zh) 光学成像镜头
WO2021057229A1 (zh) 光学成像镜头
WO2020098328A1 (zh) 摄像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892507

Country of ref document: EP

Kind code of ref document: A1