WO2021103639A1 - 一种内腔凸起多点分布式灌浆套筒及制作方法 - Google Patents

一种内腔凸起多点分布式灌浆套筒及制作方法 Download PDF

Info

Publication number
WO2021103639A1
WO2021103639A1 PCT/CN2020/106736 CN2020106736W WO2021103639A1 WO 2021103639 A1 WO2021103639 A1 WO 2021103639A1 CN 2020106736 W CN2020106736 W CN 2020106736W WO 2021103639 A1 WO2021103639 A1 WO 2021103639A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusions
metal tube
inner cavity
metal
metal pipe
Prior art date
Application number
PCT/CN2020/106736
Other languages
English (en)
French (fr)
Inventor
郑永峰
解鸣
张新
李秀领
崔冠科
Original Assignee
山东建筑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东建筑大学 filed Critical 山东建筑大学
Publication of WO2021103639A1 publication Critical patent/WO2021103639A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/163Connectors or means for connecting parts for reinforcements the reinforcements running in one single direction
    • E04C5/165Coaxial connection by means of sleeves

Definitions

  • the invention relates to the technical field of civil engineering, in particular to a multi-point distributed grouting sleeve with protruding inner cavity and a manufacturing method.
  • Prefabricated concrete structure has the advantages of high degree of industrialization, material saving, low pollution, convenient construction, small amount of on-site wet work and small number of workers, easy control of the quality of prefabricated components, short construction period, and quick return on investment. It is the development direction of new building industrialization. .
  • the cost of steel bar connection is an important factor affecting the construction cost of fabricated structures.
  • the main connection methods of prefabricated steel bars are grout anchor lap connection and sleeve grouting connection.
  • the latter is not restricted by structural height, seismic grade, etc., and has a wider scope of application, and has become the main connection method for prefabricated steel reinforcement.
  • the connection mechanism is to realize force transmission through the mutual bonding between steel bar, filling grout, and steel sleeve.
  • the grouting sleeve has the following types according to the processing method:
  • Cast steel sleeves are made of nodular cast iron through casting process, which has higher requirements on casting materials and casting processes, resulting in higher production costs for cast steel sleeves;
  • the steel pipe is rolled and deformed to form an inner wall annular protrusion and an outer wall annular shape through a rolling process Grooves, but the protrusions are prone to form greater stress concentration.
  • the manufacturing process of the grouting sleeve directly affects the manufacturing cost of the sleeve.
  • the present invention provides a multi-point distributed grouting sleeve with inner cavity protrusions and a manufacturing method, which can improve sleeve processing efficiency and material utilization, and reduce sleeve prices. While using the protrusions to improve the restraining effect of the grouting sleeve, it reduces the stress concentration caused by the protrusions and improves the mechanical properties of the grouting sleeve.
  • the present invention provides the following solutions:
  • the present invention provides a multi-point distributed grouting sleeve with protrusions in an inner cavity, which includes a metal tube.
  • the inner cavity of the metal tube has a plurality of protrusions at both ends.
  • the protrusions are arranged toward the central axis of the metal tube and can effectively restrain
  • the grouting material poured inside the metal pipe prevents the grouting material from being taken out of the pipe body by the stressed steel bars and causing bonding damage.
  • each protrusion includes a vertical surface and an inclined surface, and the vertical surface is connected to the metal tube.
  • the central axis of the tube is vertical, and the vertical surface is arranged on the side of the inclined surface close to the center of the metal tube.
  • the protrusions are concentratedly arranged at both ends of the metal pipe, and multiple rows are arranged along the axis of the metal pipe.
  • a thrust ramp is formed between adjacent protrusions in the same row. The height of the end of the thrust ramp near the center of the metal tube is Less than the height of the end away from the center of the metal pipe.
  • one end of the metal pipe is provided with a grout hole, and the other end is provided with a grout hole, and both the grout hole and the grout hole penetrate the side wall of the metal pipe.
  • the thrust ramp is recessed inside the inner side wall of the metal tube.
  • a limit screw is fixed in the middle of the metal tube, the limit screw is arranged perpendicular to the central axis of the metal tube, and a part of the structure of the limit screw is arranged in the inner cavity of the metal tube; the limit screw The diameter and the length of the limit screw extending into the inner cavity of the metal tube are set so that the steel bar extending into the metal tube cannot pass through the limit screw.
  • both ends of the inner cavity of the metal tube are fixedly provided with annular reinforcing ribs, the inner side of the annular reinforcing rib is provided with an annular groove, and the annular groove on one side of the slurry hole is installed in the annular groove
  • the sealing plug is provided with a through hole for passing steel bars in the middle of the sealing plug.
  • the annular groove has a trapezoidal structure.
  • the convex parts at both ends of the metal tube inner cavity form convex sections, and the distance between the convex sections and the adjacent metal tube end faces is a smooth section, and the grout hole, the grout hole and the annular reinforcement The ribs are all set in the smooth section.
  • the limiting screw is inserted into the metal tube along the diameter direction of the metal tube, and both ends of the limiting screw are respectively penetrated from the wall of the metal tube.
  • the present invention also provides a method for manufacturing a multi-point distributed grouting sleeve with protrusions in the inner cavity, which includes the following steps:
  • Step 1 Fix one end of the metal pipe in the working area of the cutting lathe with a clamp
  • Step 2 Extend the squeezing tool into the inner cavity of one end of the metal tube away from the clamp, so that the squeezing tool contacts the set position of the inner cavity of the metal tube, and the squeezing tool and the center axis of the metal tube form a set angle;
  • Step 3 The squeezing tool inclines and cuts into the inner side wall of the metal tube along the set included angle.
  • the squeezing tool squeezes out the thrust ramp on the inner side wall of the metal tube, and the metal inner wall material at the position where the thrust ramp is located It is squeezed into a bulge; after squeezing, the bulge has a vertical surface and an inclined surface;
  • Step 4 After the extrusion of a protrusion and thrust ramp is completed, the extrusion tool is reset and used as the feed direction along the axis of the metal pipe to sequentially complete the extrusion molding of the same row of protrusions;
  • Step 5 After the same row of protrusions and thrust ramps are extruded, the metal tube is rotated to set an angle, and the extrusion tool completes the molding of the next row of protrusions.
  • the protrusions on the inner wall of the metal pipe are uniformly distributed in dots, which can reduce the impact of stress concentration caused by the machining of the sleeve; It is concentratedly arranged at the two ends of the metal pipe (the section where the stress of the steel bar is connected), and the middle of the sleeve is a smooth section, which is not machined. It can be guaranteed in the section where the stress of the steel bar is relatively large: the boss and the thrust ramp are sleeved.
  • the filling of the grouting material in the cylinder has sufficient mechanical engagement and restraint; it can also ensure the strength requirements of the middle part of the grouting sleeve (the part of the sleeve with the highest stress).
  • the multi-point distributed grouting sleeve for inner cavity protrusions and the manufacturing method provided by the present invention are different from the known nodular cast iron cast steel sleeve, section steel cutting processing sleeve or rolling processing forming sleeve.
  • the special lathe's cutter cuts and extrudes seamless steel pipes.
  • the material utilization rate is high and the processing efficiency is high, which can effectively reduce the processing and manufacturing cost of the grouting sleeve.
  • the extrusion tool cuts and squeezes from the end of the sleeve to the middle of the sleeve, and the protrusion can be formed in the sleeve at the same time.
  • the inner wall produces a thrust ramp with high outside and low inside, which improves the thrust of the grouting material.
  • Figure 1 is a schematic diagram of the overall structure in Embodiment 1 of the present invention.
  • Figure 2 is an enlarged view of the structure of part A in Figure 1;
  • Fig. 3 is a schematic diagram of the multi-point distribution of protrusions on the inner wall of the cylinder in embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of the structure of the annular reinforcing rib in Embodiment 1 of the present invention.
  • Figure 5 is a schematic structural view of the sealing plug in Embodiment 1 of the present invention.
  • Fig. 6 is a schematic diagram of the overall structure in Embodiment 2 of the present invention.
  • the purpose of the present invention is to provide a multi-point distributed grouting sleeve with protrusions in the inner cavity and a manufacturing method thereof to solve the problems existing in the prior art.
  • This embodiment provides a multi-point distributed grouting sleeve with protrusions in the inner cavity, as shown in Figs. 1-5, comprising a metal tube 1.
  • the inner cavity of the metal tube 1 has a plurality of protrusions 2 at both ends.
  • the protrusion 2 is arranged toward the central axis of the metal pipe 1 so that the protrusion 2 can restrain the grouting material 11 poured inside the metal pipe 1.
  • the metal pipe 1 in this embodiment may be a seamless steel pipe structure.
  • the metal pipe 1 formed by crimping and welding a steel strip may also be used.
  • the specific material and forming process of the metal tube 1 can be set by those skilled in the art.
  • the metal tube 1 can be purchased from the market.
  • each protrusion 2 includes a vertical surface and an inclined surface.
  • the straight surface is perpendicular to the central axis of the metal pipe 1, and the vertical surface is arranged on the side of the inclined surface close to the center of the metal pipe 1.
  • the protrusion 2 is a ring-shaped structure, and the protrusions 2 of a plurality of ring-shaped structures are arranged in sequence along the axis of the grouting sleeve.
  • the protrusions 2 are evenly distributed on the axis of the metal pipe 1 and the circumferential direction.
  • the multi-point setting method can relatively increase the number of protrusions 2, reduce the stress concentration caused by the protrusions 2, and improve the structural strength of the two ends of the metal tube 1.
  • the protrusions 2 are concentratedly arranged at both ends of the metal pipe, and multiple rows are arranged along the axis of the metal pipe 1.
  • the thrust ramp 3 is formed between adjacent protrusions 2 in the same row, and the thrust ramp 3 is close to
  • the height of the center end of the metal tube 1 is smaller than the height of the end far away from the center of the metal tube 1.
  • the thrust ramp 3 is recessed in the inner side wall of the metal tube 1.
  • One end of the metal pipe 1 is provided with a grout hole 6 and the other end is provided with a grout hole 7. Both the grout hole 6 and the grout hole 7 penetrate the side wall of the metal pipe 1.
  • a limit screw 8 is fixed in the middle of the metal tube 1.
  • the limit screw 8 is arranged perpendicular to the central axis of the metal tube 1, and a part of the structure of the limit screw 8 is arranged in the inner cavity of the metal tube 1;
  • the diameter of the limiting screw 8 and the length of the limiting screw 8 extending into the inner cavity of the metal tube 1 are set such that the steel bar extending into the metal tube 1 cannot pass through the limiting screw 8.
  • the two ends of the inner cavity of the metal pipe 1 are fixedly provided with annular reinforcing ribs 4, the inner side of the annular reinforcing rib 4 is arranged in the annular groove 5, and the annular groove on one side of the slurry hole 7 A sealing plug 9 is installed in 5, and the middle part of the sealing plug 9 is provided with a through hole for passing steel bars.
  • the annular groove 5 has a trapezoidal structure.
  • the part with protrusions 2 at both ends of the inner cavity of the metal tube 1 forms a protrusion 2 section, and the distance between the protrusion 2 section and the end surface of the adjacent metal tube 1 is a smooth section, the grout hole 6, the grout hole 7 and the annular reinforcing rib 4 are all arranged in the smooth section.
  • the limiting screw 8 is inserted into the metal tube 1 along the diameter direction of the metal tube 1, and two ends of the limiting screw are respectively penetrated from the wall of the metal tube 1.
  • a grouting sleeve is pre-embedded in the component, and the stressed longitudinal ribs of the component are inserted into the grouting sleeve with a sealing plug 9 at the end, and the end of the steel bar extends to the limit screw 8 ,
  • the other end port of the grouting sleeve is fixed with the template of the prefabricated component, and the PVC pipe is connected and fixed with the grouting hole 6 and the grouting hole 7, leading to the outside of the template, and the component concrete is poured and cured to the specified strength.
  • This embodiment also provides a method for manufacturing a multi-point distributed grouting sleeve with protrusions in the inner cavity, which includes the following steps:
  • Step 1 Fix one end of the metal pipe 1 in the working area of the cutting lathe with a clamp.
  • Step 2 Extend the squeezing tool into the inner cavity of one end of the metal tube 1 away from the clamp, so that the squeezing tool contacts the set position of the inner cavity of the metal tube 1, and the squeezing tool and the central axis of the metal tube 1 form a set angle.
  • Step 3 The squeezing tool inclines and cuts and squeezes the inner side wall of the metal tube 1 along the set included angle.
  • the squeezing tool squeezes out the thrust ramp 3 on the inner side wall of the metal tube 1 and the thrust ramp 3
  • the metal inner wall material at the position is squeezed and deformed to form the protrusion 2; the shape of the extrusion tool is set such that the protrusion 2 has a vertical surface and an inclined surface after the extrusion.
  • Process parameters such as spacing.
  • the height of the protrusion 2 is 0.5-1.5mm, the width is 2.0-3.0mm, and the thickness is 0.3-0.8mm.
  • the inner wall protrusions 2 are only provided at both ends of the sleeve. According to different specifications of the connecting steel bars 10, the distribution length of the protrusions 2 may be 1/6 to 1/3 of the total length of the sleeve.
  • Step 4 After the extrusion of a protrusion 2 and the thrust ramp 3 is completed, the extrusion tool is reset and the direction along the axis of the metal tube 1 is used as the feed direction to sequentially complete the extrusion molding of the protrusions 2 of the same row.
  • Step 5 After the same row of protrusions 2 and the thrust ramp 3 are extruded, the metal tube 1 rotates to a set angle, and the extrusion tool completes the molding of the next row of protrusions 2.
  • Step 6 After the protrusion 2 at one end of the metal tube 1 is formed, the metal tube 1 is turned over 180 degrees to complete the formation of the protrusion 2 at the other end.
  • this embodiment only provides a grouting sleeve and a manufacturing method thereof.
  • the corresponding cutting lathe can satisfy the clamping of the metal pipe, and can make the extrusion tool feed according to the set feed direction.
  • the specific structure setting of the cutting lathe does not belong to the improvement direction of this solution, and those skilled in the art can purchase or improve the corresponding lathe by themselves to realize the corresponding extrusion and cutting processing functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

一种内腔凸起多点分布式灌浆套筒及制作方法。该灌浆套筒包括金属管(1)及其内腔两端的多个凸起(2),凸起(2)朝向金属管(1)的中心轴线设置以约束浇筑在金属管(1)内部的灌浆料,同时凸起(2)沿金属管(1)的轴线方向和圆周方向都均匀分布以减少金属管(1)在凸起(2)处的应力集中。其中每个凸起(2)均包括竖直面和倾斜面;凸起(2)沿金属管(1)的轴线方向设置多列,同一列中相邻凸起(2)之间形成止推斜台(3),止推斜台(3)中靠近金属管(1)中心一端的高度小于远离金属管(1)中心一端的高度。

Description

一种内腔凸起多点分布式灌浆套筒及制作方法 技术领域
本发明涉及土木工程技术领域,具体的是一种内腔凸起多点分布式灌浆套筒及制作方法。
背景技术
装配式混凝土结构具有工业化程度高、节省材料、污染小、施工方便、现场湿作业量及工人数量少、预制构件质量便于控制、建造周期短、投资回收快等优点,是新型建筑工业化发展的方向。钢筋连接成本是影响装配式结构建造成本的重要因素。
目前,预制构件的钢筋连接方式主要有浆锚搭接连接和套筒灌浆连接。后者由于不受结构高度、抗震等级等的限制,适用范围更广,已成为预制构件钢筋连接的主要连接方式。其连接机理是通过钢筋、填充灌浆料、钢套筒三者之间的相互粘结实现力的传递。
对于灌浆套筒的成型工艺来说,灌浆套筒按照加工方式有以下类型:
(1)铸钢套筒,采用球墨铸铁通过铸造工艺加工而成,对铸造材料及铸造工艺的要求较高,导致铸钢套筒的制作成本较高;(2)切削加工套筒,通过车床对圆钢或多角型钢进行切削加工,从而形成空心管状套筒,切削量较大,材料利用率偏低;(3)钢管滚压变形套筒,通过滚压工艺形成内壁环形凸起和外壁环形凹槽,但凸起处容易形成较大的应力集中。灌浆套筒的制作工艺直接影响套筒的制造成本。
综上,现有的灌浆套筒在套筒成型时,存在加工工艺复杂、耗费的原材料较多或内壁凸起处存在较大的应力集中等问题。
发明内容
为了解决现有的技术问题,本发明提供了一种内腔凸起多点分布式灌浆套筒及制作方法,能够提高套筒加工效率及材料利用率,降低套筒价格。在利用凸起提高灌浆套筒约束作用的同时,减少因为凸起设置而造成的应力集中现象,提高灌浆套筒的力学性能。
为实现上述目的,本发明提供了如下方案:
本发明提供一种内腔凸起多点分布式灌浆套筒,包括金属管,所述金属管内腔的两端具有多个凸起,所述凸起朝向金属管的中心轴线设置,能够有效约束浇筑在金属管内部的灌浆料,避免灌浆料被受力钢筋带出管体而发生黏结破坏。
所述凸起沿金属管的轴线方向和圆周方向都均匀分布,以减小金属管在凸起处的应力集中;每个凸起均包括竖直面和倾斜面,所述竖直面与金属管的中心轴线垂直,所述竖直面设置在倾斜面靠近金属管中心的一侧。
所述凸起集中布置在金属管两端,沿金属管的轴线方向设置多列,同一列中相邻凸起之间形成止推斜台,所述止推斜台中靠近金属管中心一端的高度小于远离金属管中心一端的高度。
优选地,所述金属管的一端设有灌浆孔,另一端设有出浆孔,所述灌浆孔及出浆孔均贯穿金属管的侧壁。
优选地,所述止推斜台内凹于金属管的内侧壁。
优选地,所述金属管的中部固定设有限位螺杆,所述限位螺杆垂直金属管的中心轴线设置,所述限位螺杆的部分结构设置在金属管的内腔中;所述限位螺杆的直径以及限位螺杆伸入金属管内腔的长度被设置为:伸入金属管的钢筋无法从限位螺杆处通过。
优选地,所述金属管内腔的两端固定设有环状加强肋,所述环状加强肋的内侧面设有环状凹槽,所述出浆孔一侧的环状凹槽中安装有密封塞,所述密封塞的中部设有用于通过钢筋的通孔。
优选地,所述环状凹槽为梯形结构。
优选地,所述金属管内腔两端具有凸起的部分形成凸起段,所述凸起段距离相邻的金属管端面之间为光滑段,所述灌浆孔、出浆孔及环状加强肋均设置在光滑段。
优选地,所述限位螺杆沿金属管的直径方向插入金属管中,所述限位螺杆的两端分别从金属管的管壁处穿出。
本发明还提供一种内腔凸起多点分布式灌浆套筒的制作方法,包括以下步骤:
步骤1,将金属管的一端通过夹具固定在刻切车床的作业区间;
步骤2,将挤压刀具伸入金属管远离夹具一端的内腔,使得挤压刀具与金属管内腔设定位置接触,挤压刀具与金属管的中心轴线呈设定夹角;
步骤3,挤压刀具沿设定夹角倾斜刻切入金属管的内侧壁,所述挤压刀具在金属管内侧壁上挤压出止推斜台,止推斜台所在位置的金属内侧壁材料被挤压变形成凸起;挤压后凸起具有垂直面和倾斜面;
步骤4,当一个凸起及止推斜台被挤压完成后,挤压刀具复位并沿着金属管轴线方向作为进给方向,依次完成同一列凸起的挤压成型;
步骤5,当同一列凸起及止推斜台被挤压成型后,金属管转动设定角度,挤压刀具完成下一列凸起的成型。
本发明相对于现有技术取得了以下有益技术效果:
(1)、本发明提供的内腔凸起多点分布式灌浆套筒及制作方法,金属管内壁的凸起呈点式均匀分布,可减小因套筒机械加工产生的应力集中影响;凸起集中布置在金属管两端(连接钢筋应力较大的区段),套筒中部为光滑段,不进行机械加工,可保证在钢筋应力较大区段:凸起和止推斜台对套筒内填充灌浆料有足够机械咬合和约束;又可保证灌浆套筒中部(套筒应力最大部位)的强度要求。
(2)、本发明提供的内腔凸起多点分布式灌浆套筒及制作方法,成型工艺不同于公知的球墨铸铁铸钢套筒、型钢切削加工套筒或滚压加工成型套筒,采用专用车床的刻刀对无缝钢管刻切、挤压加工而成,材料利用率高,加工效率高,可有效降低灌浆套筒的加工制作成本。
(3)、本发明提供的内腔凸起多点分布式灌浆套筒及制作方法,挤压刀具从套筒末端向套筒中部刻切、挤压,在形成凸起的同时可在套筒内壁产生外高内低的止推斜台,提高对灌浆料的止推作用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1中整体结构示意图;
图2是图1中A部分的结构放大图;
图3是本发明实施例1中凸起在筒体内壁多点分布的示意图;
图4是本发明实施例1中环形加强肋的结构示意图;
图5是本发明实施例1中密封塞的结构示意图;
图6是本发明实施例2中整体结构示意图。
其中,1、金属管;2、凸起;3、止推斜台;4、环状加强肋;5、凹槽;6、灌浆孔;7、出浆孔;8、限位螺杆;9、橡胶塞;10、连接钢筋;11、灌浆料。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种内腔凸起多点分布式灌浆套筒及制作方法,以解决现有技术存在的问题。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本实施例提供了一种内腔凸起多点分布式灌浆套筒,如图1-5所示,包括金属管1,所述金属管1内腔的两端具有多个凸起2,所述凸起2朝向金属管1的中心轴线设置,以使得凸起2能够约束浇筑在金属管1内部的灌浆料11。
具体的,本实施例中的金属管1可以为无缝钢管结构,在另外一些实施方式中,也可以采用由钢带卷曲焊接形成的金属管1。具体的金属管1材质以及成型工艺可由本领域技术人员自行设置,本领域技术人员在利用金属管1制造得到本实施例的灌浆套筒时,可以由市场采购金属管1。
所述凸起2沿金属管1的轴线方向和圆周方向都均匀分布,以减少金属管1在凸起2处的应力集中;每个凸起2均包括竖直面和倾斜面,所述竖直面与金属管1的中心轴线垂直,所述竖直面设置在倾斜面靠近金属管1中心的一侧。
具体的,现有技术中凸起2为环状结构,多个环状结构的凸起2沿灌浆套筒的轴线依次布置,而本方案中凸起2在金属管1轴线和圆周方向均匀分布、多点设置的方式能够相对的增加凸起2的数量,减少因凸起2而造成的应力集中现象,提高金属管1两端的结构强度。
所述凸起2集中布置在金属管两端,沿金属管1的轴线方向设置多列,同一列中相邻凸起2之间形成止推斜台3,所述止推斜台3中靠近金属管1中心一端的高度小于远离金属管1中心一端的高度。
所述止推斜台3内凹于金属管1的内侧壁。
所述金属管1的一端设有灌浆孔6,另一端设有出浆孔7,所述灌浆孔6及出浆孔7均贯穿金属管1的侧壁。
所述金属管1的中部固定设有限位螺杆8,所述限位螺杆8垂直金属管1的中心轴线设置,所述限位螺杆8的部分结构设置在金属管1的内腔中;
所述限位螺杆8的直径以及限位螺杆8伸入金属管1内腔的长度被设置为:伸入金属管1的钢筋无法从限位螺杆8处通过。
所述金属管1内腔的两端固定设有环状加强肋4,所述环状加强肋4的内侧面设于环状凹槽5,所述出浆孔7一侧的环状凹槽5中安装有密封塞9,所述密封塞9的中部设有用于通过钢筋的通孔。
所述环状凹槽5为梯形结构。
所述金属管1内腔两端具有凸起2的部分形成凸起2段,所述凸起2段距离相邻的金属管1端面之间为光滑段,所述灌浆孔6、出浆孔7及环状加强肋4均设置在光滑段。
所述限位螺杆8沿金属管1的直径方向插入金属管1中,所述限位螺杆的两端分别从金属管1的管壁处穿出。
使用方法:预制混凝土构件在工厂预制时,构件内预埋入灌浆套筒,并将构件受力纵筋插入端部带有密封塞9的灌浆套筒内,钢筋末端伸至限位螺杆8处,灌浆套筒的另一端端口与预制构件的模板固定,并将PVC管与灌浆孔6和出浆孔7连接固定,引至模板外侧,浇筑构件混凝土并养 护至规定强度。预制构件在施工现场装配时,先将构件吊起,并将灌浆套筒对准下部或另一侧预制构件被连接钢筋10,并缓慢插入,预制构件就位并可靠支撑后,将构件拼缝处进行封堵,封堵材料达到一定强度后,将拌制好高强无收缩水泥基灌浆料11从灌浆套筒灌浆孔6压力灌入,灌浆料11从排浆孔排出,随后封堵排浆孔,灌浆料11养护至设计强度后即形成钢筋灌浆套筒灌浆连接对接接头。内腔凸起多点分布式灌浆套筒钢筋连接示意图见图6。
本实施例还提供一种内腔凸起多点分布式灌浆套筒的制作方法,包括以下步骤:
步骤1,将金属管1的一端通过夹具固定在刻切车床的作业区间。
步骤2,将挤压刀具伸入金属管1远离夹具一端的内腔,使得挤压刀具与金属管1内腔设定位置接触,挤压刀具与金属管1的中心轴线呈设定夹角。
步骤3,挤压刀具沿设定夹角倾斜刻切、挤压金属管1的内侧壁,所述挤压刀具在金属管1内侧壁上挤压出止推斜台3,止推斜台3所在位置的金属内侧壁材料被挤压变形以形成凸起2;所述挤压刀具的形状被设置为,挤压后凸起2具有垂直面和倾斜面。
通过调整挤压刀具切削刃倾角、被加工金属管的轴向移动量和环向移动量,控制止推斜台3的坡角和长度以及凸起2的凸起高度、轴向间距和环向间距等工艺参数。根据连接钢筋10规格的不同选择不同的工艺参数,凸起2高度为0.5~1.5mm,宽度2.0~3.0mm,厚度0.3~0.8mm。内壁凸起2仅在套筒两端设置,根据连接钢筋10规格的不同,凸起2分布长度可取套筒总长度的1/6~1/3。
步骤4,当一个凸起2及止推斜台3被挤压完成后,挤压刀具复位并沿着金属管1轴线方向作为进给方向,依次完成同一列凸起2的挤压成型。
步骤5,当同一列凸起2及止推斜台3被挤压成型后,金属管1转动设定角度,挤压刀具完成下一列凸起2的成型。
步骤6,当金属管1一端的凸起2成型后,将金属管1翻转180度,完成另一端的凸起2成型。
需要指出的是,本实施例仅提供一种灌浆套筒及其制作方法,相应的刻切车床只要能够满足金属管的夹持,并能够使得挤压刀具按照设定的进给方向进给即可,刻切车床的具体结构设置不属于本方案改进的方向,可由本领域技术人员自行购买或改进相应的车床以实现相应的挤压、刻切加工功能。
本发明应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种内腔凸起多点分布式灌浆套筒,其特征在于,包括金属管,所述金属管内腔的两端具有多个凸起,所述凸起朝向金属管的中心轴线设置,以使得凸起能够约束浇筑在金属管内部的灌浆料;
    所述凸起沿金属管的轴线方向和圆周方向都均匀分布,以减少金属管在凸起处的应力集中;
    每个凸起均包括竖直面和倾斜面,所述竖直面与金属管的中心轴线垂直,所述垂直面设置在倾斜面靠近金属管中心的一侧;
    所述凸起沿金属管的轴线方向设置多列,同一列中相邻凸起之间形成止推斜台,所述止推斜台中靠近金属管中心一端的高度小于远离金属管中心一端的高度。
  2. 根据权利要求1所述的内腔凸起多点分布式灌浆套筒,其特征在于,所述金属管的一端设有灌浆孔,另一端设有出浆孔,所述灌浆孔及出浆孔均贯穿金属管的侧壁。
  3. 根据权利要求1所述的内腔凸起多点分布式灌浆套筒,其特征在于,所述止推斜台内凹于金属管的内侧壁。
  4. 根据权利要求1所述的内腔凸起多点分布式灌浆套筒,其特征在于,所述金属管的中部固定设有限位螺杆,所述限位螺杆垂直金属管的中心轴线设置,所述限位螺杆的部分结构设置在金属管的内腔中;
    所述限位螺杆的直径以及限位螺杆伸入金属管内腔的长度被设置为:伸入金属管的钢筋无法从限位螺杆处通过。
  5. 根据权利要求2所述的内腔凸起多点分布式灌浆套筒,其特征在于,所述金属管内腔的两端固定设有环状加强肋,所述环状加强肋的内侧面设有环状凹槽,所述出浆孔一侧的环状凹槽中安装有密封塞,所述密封塞的中部设有用于通过钢筋的通孔。
  6. 根据权利要求5所述的内腔凸起多点分布式灌浆套筒,其特征在于,所述环状凹槽为梯形结构。
  7. 根据权利要求6所述的内腔凸起多点分布式灌浆套筒,其特征在,所述金属管内腔两端具有凸起的部分形成凸起段,所述凸起段距离相邻的金属管端面之间为光滑段,所述环状加强肋设置在光滑段。
  8. 根据权利要求4所述的内腔凸起多点分布式灌浆套筒,其特征在于,所述限位螺杆沿金属管的直径方向插入金属管中,所述限位螺杆的两端分别从金属管的管壁处穿出。
  9. 一种内腔凸起多点分布式灌浆套筒的制作方法,其特征在于,包括以下步骤:
    步骤1,将金属管的一端通过夹具固定在刻切车床的作业区间;
    步骤2,将挤压刀具伸入金属管远离夹具一端的内腔,使得挤压刀具与金属管内腔设定位置接触,挤压刀具与金属管的中心轴线呈设定夹角;
    步骤3,挤压刀具沿设定夹角倾斜刻切、挤压金属管的内侧壁,所述挤压刀具在金属管内侧壁上挤压出止推斜台,止推斜台所在位置的金属内侧壁材料被挤压变形成凸起;
    步骤4,当一个凸起及止推斜台被挤压完成后,挤压刀具复位并沿着金属管轴线方向作为进给方向,依次完成同一列凸起的挤压成型;
    步骤5,当同一列凸起及止推斜台被挤压成型后,金属管转动设定角度,挤压刀具完成下一列凸起的成型;
    步骤6,当金属管一端的凸起成型后,将金属管翻转180度,完成另一端的凸起成型。
PCT/CN2020/106736 2019-11-25 2020-08-04 一种内腔凸起多点分布式灌浆套筒及制作方法 WO2021103639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911167122.9 2019-11-25
CN201911167122.9A CN111005502A (zh) 2019-11-25 2019-11-25 一种内腔凸起多点分布式灌浆套筒及制作方法

Publications (1)

Publication Number Publication Date
WO2021103639A1 true WO2021103639A1 (zh) 2021-06-03

Family

ID=70113845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106736 WO2021103639A1 (zh) 2019-11-25 2020-08-04 一种内腔凸起多点分布式灌浆套筒及制作方法

Country Status (2)

Country Link
CN (1) CN111005502A (zh)
WO (1) WO2021103639A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111005502A (zh) * 2019-11-25 2020-04-14 山东建筑大学 一种内腔凸起多点分布式灌浆套筒及制作方法
CN111900634B (zh) * 2020-07-07 2022-04-01 贵州电网有限责任公司 一种可伸缩的变电设备防护盒

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120098159A (ko) * 2011-02-28 2012-09-05 김사현 철근 이음장치
CN203393905U (zh) * 2013-07-09 2014-01-15 东南大学 一种钢筋浆锚对接连接的灌浆变形钢管套筒
US20180051464A1 (en) * 2016-08-19 2018-02-22 Nucor Steel Birmingham, Inc. Threaded rebar hoop and method of forming and use thereof
CN207228480U (zh) * 2017-09-30 2018-04-13 合肥建工集团有限公司 一种装配式剪力墙结构外墙钢筋半灌浆连接装置
CN107905455A (zh) * 2017-12-01 2018-04-13 武汉理工大学 一种预制混凝土构件钢筋连接用灌浆套筒及其制备方法
KR20190027066A (ko) * 2017-09-06 2019-03-14 기언관 나선철근용 철근연결구
CN208702011U (zh) * 2018-08-20 2019-04-05 内蒙古蒙匠建筑工程有限责任公司 一种装配式建筑施工用灌浆套筒
CN111005502A (zh) * 2019-11-25 2020-04-14 山东建筑大学 一种内腔凸起多点分布式灌浆套筒及制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051798A (ja) * 2012-09-06 2014-03-20 Splice Sleeve Japan Ltd 鉄筋の継手工法
CN103452246B (zh) * 2013-07-09 2016-08-10 中国建筑股份有限公司 一种钢筋浆锚对接连接的灌浆变形钢管套筒
CN104929318A (zh) * 2014-03-18 2015-09-23 宁波市镇海路石建筑科技有限公司 一种螺纹钢连接用灌浆套筒
CN105064625A (zh) * 2015-08-02 2015-11-18 长安大学 一种钢筋连接用灌浆套筒及钢筋连接方法
CN106812258B (zh) * 2016-12-29 2019-05-14 合肥工业大学 一种gfrp全灌浆套筒
CN206769209U (zh) * 2017-05-08 2017-12-19 上海城建建设实业集团新型建筑材料有限公司 一种灌浆套筒
CN208235804U (zh) * 2018-03-08 2018-12-14 中冶建工集团有限公司 装配式预制剪力墙构件的灌浆套筒结构
CN211286302U (zh) * 2019-11-25 2020-08-18 山东建筑大学 一种内腔凸起多点分布式灌浆套筒

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120098159A (ko) * 2011-02-28 2012-09-05 김사현 철근 이음장치
CN203393905U (zh) * 2013-07-09 2014-01-15 东南大学 一种钢筋浆锚对接连接的灌浆变形钢管套筒
US20180051464A1 (en) * 2016-08-19 2018-02-22 Nucor Steel Birmingham, Inc. Threaded rebar hoop and method of forming and use thereof
KR20190027066A (ko) * 2017-09-06 2019-03-14 기언관 나선철근용 철근연결구
CN207228480U (zh) * 2017-09-30 2018-04-13 合肥建工集团有限公司 一种装配式剪力墙结构外墙钢筋半灌浆连接装置
CN107905455A (zh) * 2017-12-01 2018-04-13 武汉理工大学 一种预制混凝土构件钢筋连接用灌浆套筒及其制备方法
CN208702011U (zh) * 2018-08-20 2019-04-05 内蒙古蒙匠建筑工程有限责任公司 一种装配式建筑施工用灌浆套筒
CN111005502A (zh) * 2019-11-25 2020-04-14 山东建筑大学 一种内腔凸起多点分布式灌浆套筒及制作方法

Also Published As

Publication number Publication date
CN111005502A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2021103639A1 (zh) 一种内腔凸起多点分布式灌浆套筒及制作方法
CN104975652B (zh) 一种预制混凝土构件对接连接结构
CN105464289B (zh) 装配式钢管混凝土组合柱
CN103758291B (zh) 一种剪力增强型半灌浆套筒
CN201660972U (zh) 一种新型水泥灌浆钢筋连接接头
CN103452246A (zh) 一种钢筋浆锚对接连接的灌浆变形钢管套筒
CN102116075B (zh) 一种新型水泥灌浆钢筋连接接头
CN204326248U (zh) 一种带有螺旋形凹凸肋的钢筋对接连接灌浆套筒
CN202850360U (zh) 浆锚式钢筋连接套筒及其制造模具
CN203393905U (zh) 一种钢筋浆锚对接连接的灌浆变形钢管套筒
CN103899044B (zh) 内嵌锥状体的全灌浆套筒
CN103758292A (zh) 一种剪力增强型全灌浆套筒
CN102587587A (zh) 水泥灌浆钢筋连接接头
CN103899043A (zh) 内嵌锥状体的半灌浆套筒
CN113718765A (zh) 一种预应力高强混凝土空心支护桩
CN107905455A (zh) 一种预制混凝土构件钢筋连接用灌浆套筒及其制备方法
CN105178516A (zh) 带内嵌套管的挤压半灌浆钢筋套筒、连接结构及施工方法
CN104563396A (zh) 一种墩头挤压半灌浆钢筋套筒、连接结构及其施工方法
CN210827939U (zh) 一种双钢板组合剪力墙
CN204475676U (zh) 一种挤压半灌浆钢筋套筒、其连接结构、应用该套筒的混凝土构件及混凝土构件的连接结构
CN202730755U (zh) H型支护桩
CN102900201A (zh) 浆锚式钢筋连接套筒及其制造模具和制造方法
CN104563103A (zh) 一种复合配筋部分预应力混凝土实心方桩及其制作方法
CN103953163A (zh) 用低合金钢铸造与机加工而成的钢筋连接器
CN210067238U (zh) 一种半灌浆套筒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894583

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20894583

Country of ref document: EP

Kind code of ref document: A1