WO2021103393A1 - 麻花钻 - Google Patents

麻花钻 Download PDF

Info

Publication number
WO2021103393A1
WO2021103393A1 PCT/CN2020/085178 CN2020085178W WO2021103393A1 WO 2021103393 A1 WO2021103393 A1 WO 2021103393A1 CN 2020085178 W CN2020085178 W CN 2020085178W WO 2021103393 A1 WO2021103393 A1 WO 2021103393A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting edge
cutting
composite
edge
angle
Prior art date
Application number
PCT/CN2020/085178
Other languages
English (en)
French (fr)
Inventor
王宏嘉
Original Assignee
上海钰工机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海钰工机电有限公司 filed Critical 上海钰工机电有限公司
Priority to EP20893462.0A priority Critical patent/EP3967432A4/en
Publication of WO2021103393A1 publication Critical patent/WO2021103393A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/009Stepped drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/18Configuration of the drill point

Definitions

  • This application relates to the technical field of metal cutting and metal cutting tools, in particular to twist drills.
  • FIG 1 is a schematic diagram of a conventional structure twist drill.
  • the left side of the upper row in Figure 1 is the front view of the twist drill, the right side is the top view of the drill tip, and the next row in Figure 1 is a partially truncated 3D perspective view of the twist drill.
  • Twist drills are mostly used in workplaces far away from other metal cutting machine tools such as drill presses.
  • Hand-held power tools are used for drilling operations, which are limited by human arm strength and power of electric tools.
  • the efficiency of the prior art twist drills in drilling holes It is subject to great constraints-difficult positioning, slow speed, and low efficiency.
  • the conventional structure twist drill shown in Fig. 1 is shown in Fig. 2 for an analysis of the machining and cutting process.
  • Fig. 2 The conventional structure twist drill shown in Fig. 1 is shown in Fig. 2 for an analysis of the machining and cutting process.
  • the chip is a whole piece (the cross-sectional area of the chip is large), which makes the power required for drilling Larger, at the same time, the reaction force on the two cutting edges is also great, and the cutting edges are easily damaged.
  • the present application provides a twist drill, comprising a handle and a working part connected with the handle.
  • the working part includes a cone part and a cylindrical part fixedly connected to the cone part.
  • the outer surface of the working part Provided with a spiral groove for shunt cutting and chip removal, the spiral groove is wound from the front end of the vertebral body portion to the cylindrical portion;
  • the outer surface of the cone portion is provided with multiple groups of composite cutting edges whose diameters increase in order from the front end to the tail end, and each group of composite cutting edges is distributed on adjacent cutting surfaces and smoothing surfaces;
  • the tip of the cone part is provided with a drill tip top edge.
  • the top ends of the groove sidewalls on both sides of the spiral groove are connected as a plurality of spiral lines
  • the line segment that intersects each of the cutting surfaces and the groove walls on both sides of the spiral groove is the main cutting edge, and the space between each of the cutting surfaces is connected to the outer cylindrical surface of the stepped cylinder and the spiral groove.
  • the line segment where the groove wall intersects is the secondary cutting edge, the intersection point of the main cutting edge and the secondary cutting edge is the tip of the composite cutting edge, and the tips of the composite cutting edge are distributed on the multiple spiral lines on.
  • the cutting surfaces are distributed (connected) in the circumferential direction around the axis around the main cutting edge and are respectively the main cutting edge flank surface and the main cutting edge back;
  • the flank surfaces of the secondary cutting edges and the backs of the secondary cutting edges that are distributed (connected) with the axis in the circumferential direction are the flank face of the secondary cutting edge and the back of the secondary cutting edge respectively after the secondary cutting edge;
  • the main cutting edge, the secondary cutting edge and the tool tip constitute a unit compound edge
  • the unit teeth corresponding to the unit compound edge are composed of a rake face, a flank face of the main cutting edge, and a flank face of the secondary cutting edge.
  • the rake face is located in front of the knife groove in the spiral groove.
  • each group of composite cutting edges are coaxial with the vertebral body part
  • the angle of each group of composite cutting edges is determined according to different linear velocities at different diameter positions of each group of composite cutting edges.
  • the included angle between the spiral line and the axis of the cone (or cylinder) in the axial section projection is the helix angle ⁇ 0
  • each group of composite cutting edge angles includes:
  • the entering angle ⁇ r the angle range is 10° ⁇ 80°;
  • the secondary deflection angle ⁇ r′ the angle range of which is 0.5° ⁇ 5°;
  • the normal back angle ⁇ n the angle range is 0.5° ⁇ 8°;
  • Normal front angle ⁇ n it is determined by the side wall of the spiral groove and each unit tooth is different, and its angle range is - ⁇ n ⁇ + ⁇ n;
  • the main cutting edge inclination angle ⁇ s is determined by the side wall of the spiral groove and the editor angle ⁇ r, and each unit tooth is different, and its angle range is - ⁇ s ⁇ + ⁇ s;
  • the inclination angle of the secondary cutting edge ⁇ s' is determined by the helix angle ⁇ 0 and the secondary deflection angle ⁇ r', and each unit tooth is different, and its value is + ⁇ s';
  • the axial inclination angle ⁇ zz of the main cutting edge is determined by the sidewall position of the spiral groove (that is, the core thickness of the drill bit), the helix angle and the editor angle ⁇ r, and each unit tooth is different, and its value is - ⁇ zz ⁇ + ⁇ zz;
  • the secondary cutting edge axial inclination angle ⁇ fz which is determined by the helix angle ⁇ 0 and the secondary deflection angle ⁇ r′, and each unit tooth is different, and its value is + ⁇ fz;
  • the axial clearance angle ⁇ wz of the main cutting edge is determined by the normal clearance angle ⁇ n of the main cutting edge and the secondary deflection angle ⁇ r', and each unit tooth is different, and its value is + ⁇ wz.
  • the height of the multiple sets of composite cutting blades arranged from the front end to the rear end of the outer surface of the cone portion varies non-uniformly.
  • the top edge of the drill tip includes one chisel edge, two auxiliary cutting edges, and two in-line main cutting edges. One end of the two auxiliary cutting edges is connected to the two in-line main cutting edges, and one end is connected to the chisel edge. intersect.
  • the vertebral body portion is coaxial with the cylindrical portion, and the diameter of a group of composite cutting edges at the rearmost end of the vertebral body portion is equal to the diameter of the cylindrical portion, and the diameter of the cylindrical portion is equal to the diameter of the cylindrical portion.
  • the core thickness of the top edge of the drill tip is smaller than the core thickness of the twist drill.
  • the non-groove area of the cylindrical portion is a spiral blade
  • the connecting band between the spiral groove and the spiral blade is a spiral blade
  • the chip cross-sectional area of the nth group of composite main cutting edges is defined as Sn
  • the length of the main cutting edge of the nth group of composite cutting edges is Wn
  • the chip thickness of the nth group of composite cutting edges is hn.
  • the cross-sectional area of the single-slot single-tooth chip is: S1...Si...Sn;
  • W1 is the length of the main cutting edge of the drill tip
  • H1 is W1 is the length of the secondary cutting edge of the drill point
  • h1 is the thickness of chips on the main cutting edge of the drill tip; and: H1>>h1;
  • Wi is the length of each main cutting edge of the composite cutting edge
  • Hi is the length of each secondary cutting edge of the compound cutting edge
  • hi is the thickness of the chips on each main cutting edge of the composite cutting edge, and Hi>>hi;
  • the area mentioned above is the cross-sectional area of the chip, not the cutting area.
  • the embodiment of the application provides a twist drill, a cone part is provided at the front end of the operating part, and the outer side of the working part is provided with a spiral groove for shunt cutting and chip removal; the outer side of the cone part is provided from the front end to the rear end.
  • the amount of the removed object is gradually decomposed and cut, and the cutting force is at each cutting edge.
  • the upper surface is dispersed, the reaction force received by each cutting edge is also reduced, there are fewer burrs on the cutting edge, the drilling process is smoother, and the drilling efficiency is higher.
  • This avoids the problem of “two symmetrically distributed in-line main cutting edges simultaneously completing the processing of the metal cutting amount of the corresponding size” in the prior art twist drill, which makes the power required for drilling a larger amount, and at the same time, the two cutting edges are affected.
  • the reaction force is also great, and the problem of "easy damage to the cutting edge" appears.
  • Figure 1 is a schematic diagram of the structure of a twist drill in the prior art
  • Fig. 2 is a schematic diagram of cutting edge when drilling a twist drill in the prior art
  • FIG. 3 is a schematic diagram of the structure of the twist drill working part of an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a composite cutting edge of a twist drill tip (viewed in the direction of K) according to an embodiment of the present application;
  • FIG. 5 is a cross-sectional analysis of the relationship between the working surface and the cutting angle of the composite edge of the twist drill unit of an embodiment of the present application, and a schematic diagram of the cutting mechanism;
  • Fig. 6 is an enlarged schematic diagram of the tip tip of a twist drill according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of cutting edge when drilling a twist drill according to an embodiment of the present application.
  • the terms “connected”, “fixed”, etc. should be understood in a broad sense.
  • “fixed” can be a fixed connection, a detachable connection, or a whole; It is a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components, unless specifically defined otherwise.
  • “fixed” can be a fixed connection, a detachable connection, or a whole; It is a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components, unless specifically defined otherwise.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
  • an embodiment of the present application provides a twist drill 100, which includes a shank 2 and a working part 1 connected to the shank 2.
  • the operating part 1 includes a cone (composite cutting edge group) ) Portion 11 and a groove cylindrical portion 12 fixedly connected to the cone (composite cutting edge group) portion 11.
  • the outer surface of the working part 1 is provided with a spiral groove IV for shunt cutting and chip removal, and the spiral groove IV is wound from the front end of the cone portion 11 to the groove cylindrical portion 12;
  • the outer surface of the cone portion 11 is provided with multiple sets of composite cutting blades whose diameters increase sequentially from the front end to the rear end.
  • Each group of composite cutting edges includes adjacent identical stepped (conical) surfaces 141 and identical stepped (cylindrical) surfaces 142, as shown in FIG. 3.
  • the tip of the cone portion 11 is provided with a drill tip top edge II.
  • the design has: one chisel edge VII, two auxiliary edges VIII, and two in-line main cutting edges. As shown in Figure 4.
  • the inner anterior wall of the spiral groove IV intersects with the vertebral body to form a plurality of spiral lines 131; in the 12 part of the groove cylinder, the inner and anterior side wall of the spiral groove IV is connected to the vertebral body.
  • the cylindrical surfaces of the largest diameter are intersected and connected as a groove (drill body) cylindrical spiral 132, as shown in Figs. 3 and 4.
  • non-helical groove IV area of the groove cylindrical portion 12 is a spiral blade back V
  • the inner front side wall of the spiral groove IV and the spiral blade back V have spiral ligaments VI with the same helix angle and equal width.
  • the intersection of the same step (cone) surface 141 and the inner front side wall of the spiral groove IV is the main cutting edge 143, and the same step (cylinder) surface 142 is connected to the spiral groove IV.
  • the intersection of the inner front side wall is the secondary cutting edge 144, and the intersection point of the main cutting edge 143 and the secondary cutting edge 144 is the tip 1411 of the composite cutting edge, and the tips of the composite cutting edge are distributed on the Multiple spiral lines 131.
  • the tips of each group of composite cutting edges are distributed on the two conical spiral lines 131, and this distribution is very important to the efficiency, quality, power, etc. of the drilling process.
  • the left side is a top view of the twist drill 100
  • the right side is a three-dimensional (3D) schematic diagram of the composite cutting edge.
  • 3D three-dimensional
  • the main cutting edges 143 on the same step (cone) surface 141 are connected in sequence after the main cutting edge flank surface 145 and the main cutting edge (cone) back 146;
  • the secondary cutting edge 144 of the stepped (conical) surface 142 After the secondary cutting edge 144 of the stepped (conical) surface 142, the secondary cutting edge flank surface 147 and the secondary cutting edge (cylindrical) back 148 are respectively connected in sequence;
  • the main cutting edge 143, the secondary cutting edge 144 and the tool tip 1411 constitute a unit composite edge, as shown in Figure 2 and Figure 4, the unit tooth 1410 corresponding to the unit composite edge is formed by the rake face 133
  • the flank surface 145 of the main cutting edge 143 and the flank surface 147 of the secondary cutting edge 144 are formed as a trihedral prism, and the rake surface 133 is the connection in the spiral groove IV of the main cutting
  • the sidewall surfaces of the edge 143 and the secondary cutting edge 144 can also be said to be the front face of the sipe in the spiral groove IV.
  • the plane where the main cutting edge back 146 is located can be approximately regarded as an inclined surface or a conical side surface, and the main cutting edge back 146 is called the main cutting edge (cone) back.
  • the secondary cutting edge back 148 can be approximately regarded as the secondary cutting edge (cylindrical) back. Although the axial inclination angle of the secondary cutting edge is not 0 degrees, there is a certain chamfer.
  • the plane where the secondary cutting edge back 148 is located can be approximately regarded as a cylindrical surface. .
  • each group of composite cutting edges is coaxial with the cone portion 11; the angle of each group of composite cutting edges is determined according to the different linear velocities at different diameter positions of each group of composite cutting edges.
  • IV Twist drill spiral groove.
  • V Twist drill spiral blade back.
  • VI-Twist drill spiral ligament ⁇ 0 ——Twist drill helix angle.
  • ⁇ ——Twist drill peak (top) angle which usually takes a value of 118° ⁇ 135°.
  • FIG. 5 is a cross-sectional analysis of the relationship between the working surface and the cutting angle of the composite edge I of the twist drill 100 unit, and a schematic diagram of the cutting mechanism. Please refer to Figure 5, each group of composite cutting edge angles include:
  • the entering angle ⁇ r the angle range is 10° ⁇ 80°;
  • the secondary deflection angle ⁇ r′ the angle range of which is 0.5° ⁇ 5°;
  • the normal back angle ⁇ n the angle range is 0.5° ⁇ 8°;
  • Normal front angle ⁇ n it is determined by the side wall of the spiral groove IV and each unit cutter tooth is different, and its angle range is - ⁇ n ⁇ + ⁇ n;
  • the inclination angle ⁇ s of the main cutting edge 143 is determined by the position of the sidewall of the spiral groove IV (that is, the core thickness of the drill bit) and the editor angle ⁇ r, and the position of each unit tooth is determined by its position (axial and radial). The difference is different, the angle range is - ⁇ s ⁇ + ⁇ s;
  • the inclination angle ⁇ s' of the secondary cutting edge 144 is determined by the helix angle ⁇ 0 and the secondary deflection angle ⁇ r', and each unit tooth is also different due to the difference in its position (axial and radial), but its The angle value can only be + ⁇ s′;
  • the axial inclination angle ⁇ zz of the main cutting edge 143 is determined by the sidewall position of the spiral groove IV (that is, the bit core thickness), the helix angle and the editor angle ⁇ r, and each unit tooth is also different.
  • the angle The range is - ⁇ zz ⁇ + ⁇ zz;
  • the secondary cutting edge 144 axial blade inclination angle ⁇ fz is jointly determined by the helix angle ⁇ 0 and the secondary deflection angle ⁇ r′, and each unit tooth is also different, but its value can only be + ⁇ fz;
  • the axial clearance angle ⁇ wz of the main cutting edge is determined by the normal clearance angle ⁇ n of the main cutting edge 143 and the main deflection angle ⁇ r and the secondary deflection angle ⁇ r′. Each unit tooth is also different, but the angle value can only be Is + ⁇ wz.
  • a group of composite cutting edges is also called unit composite edge I.
  • the unit compound edge I is composed of the main cutting edge 143 + the secondary cutting edge 144 + the tip 1411.
  • the unit tooth 1410 is a three-sided (prismatic) body composed of a rake surface 133 (front of the twist drill groove) + a major cutting edge flank surface 145 + a secondary cutting edge flank surface 147.
  • the diameters of the multiple sets of composite cutting blades on the outer surface of the cone portion 11 are optional for the diameters of the multiple sets of composite cutting blades on the outer surface of the cone portion 11 to increase sequentially from the front end to the tail end.
  • the diameters of the multiple sets of composite cutting blades sequentially change uniformly or non-uniformly. Large, for example, the diameter of the next level of composite cutting edge is 1mm larger than the previous level, or 50 threads larger, depending on the core size of the twist drill and the size and depth of the drilled hole, the material being processed, the condition of the utility tool, etc. Design is sufficient, and this application does not restrict it.
  • the height of the multiple sets of composite cutting blades arranged from the front end to the rear end of the outer surface of the cone portion 11 changes uniformly or non-uniformly.
  • l 1 , l 2 , l 3 ... l n refer to the height of each composite cutting edge.
  • the length of L 1 is the composite drill point.
  • the length of l j is the drill tip;
  • the length of l 1 , l 2 , l 3 ... l n is the height of the corresponding composite cutting edge group.
  • the total length of the cone portion 11 of the twist drill 100 is L 1
  • the total length of the twist drill 100 is L.
  • l n is greater than, less than or equal to l n-1 , and it can be designed according to the type of drilling required and the required performance.
  • the characteristics of such a cutter tooth are: better cutting strength; easy to design and process a reasonable cutting angle; and a wider range of adaptability.
  • Figure 6 is an enlarged schematic diagram of the tip II of a twist drill 100 drill tip.
  • the left side of the upper row is the enlarged front view of II in Fig. 3, the right side is the enlarged left view of II in Fig. 3, and the lower row is the enlarged top sectional view of II in Fig. 3, which is convenient for comparison of core thickness.
  • the top edge of the drill tip II includes a cross blade VII, two auxiliary blades VIII, and two in-line main blades 153.
  • One end of the two auxiliary blades VIII is connected with the two in-line main blades 153, and the other end intersects with the cross blade VII, so that the length of the original chisel edge of the drill is shortened to reduce the axial resistance of the drill when drilling.
  • the top edge of the drill tip II is composed of one cross blade VII+two auxiliary blades VIII+two in-line main blades 153.
  • Multiple sets of (l 1 , l 2 , l 3 ??l n ) composite cutting edges (I) extend axially (toward the shank of the twist drill 100) along the two tapered spiral lines 131 (as shown in Figure 3 and Figure 4)
  • the two spiral blades VI to the cylindrical part 12 of the twist drill 100 form a complete twist drill working part 1 in this way.
  • the vertebral body portion 11 is coaxial with the cylindrical portion 12, and the diameter of a group of composite cutting edges at the rearmost end of the vertebral body portion 11 is equal to the diameter of the cylindrical portion 12.
  • the diameter of 12 is the final drilling diameter of the core thickness of the twist drill 100, and the core thickness of the tip edge II is smaller than the core thickness of the twist drill.
  • the bottom line in Figure 6 is the core thickness comparison chart. The annotations are as follows:
  • K 1 The core thickness at the tip of a high-efficiency (composite drill tip) twist drill
  • The included angle of the drill point core thickness.
  • Twist drills have standards at home and abroad, and their core size has certain requirements, and its numerical value is determined by its outer diameter value.
  • the twist drill in the prior art as described in Figure 1 has a large bit core thickness and a large chisel edge value.
  • drilling The axial resistance is large, the drilling is time-consuming and laborious, and it is not easy to locate.
  • the number of composite blades should be as many as possible, and the diameter of the first group should be as small as possible; but at the same time, the reduction of the diameter of the first group is restricted by the core thickness of the drill itself. For this reason, this design should take into account the core thickness of the drill bit specified in this standard as much as possible.
  • the chisel edge dressing process should be increased to reduce the core thickness value at the drill tip. .
  • the core thickness K 1 of the drill tip tip II of the embodiment of the present application is much smaller than the original core thickness K at the twist drill tip, so that the centering of the drill tip is easy and accurate.
  • the shank of the twist drill 100 has various forms, such as a round shank, a hexagonal shank, etc. in FIG. 1.
  • Fig. 7 takes a schematic diagram of cutting edge cutting when drilling a round shank twist drill 100 as an example, marking the tip edge II of the drill tip and the edge parameters of each composite cutting edge.
  • the cutting area of the nth group of compound cutting edges as Sn
  • the length of the main cutting edge 143 of the nth group of compound cutting edges is Wn
  • the chip thickness of the nth group of compound cutting edges is hn
  • the chip cross-sectional area of the compound cutting edge The calculation formula for Sn and the total chip cross-sectional area S of the twist drill is as follows:
  • the cross-sectional area of the single-slot single-tooth chip is: S1...Si...Sn;
  • W1 is the length of the main cutting edge of the drill tip
  • H1 is W1 is the length of the secondary cutting edge of the drill point
  • h1 is the thickness of chips on the main cutting edge of the drill tip; and: H1>>h1;
  • Wi is the length of each main cutting edge of the composite cutting edge
  • Hi is the length of each secondary cutting edge of the compound cutting edge
  • hi is the thickness of the chips on each main cutting edge of the composite cutting edge, and Hi>>hi;
  • the main cutting edge length at the drill tip is W1, and W1 ⁇ Wi, which is much smaller than the cutting edge length W of conventional twist drills, which disperses the width of the cutting layer ⁇ ;
  • the cutting thickness h1 at the drill tip, and h1 hi, and is greater than or equal to the cutting layer thickness h of conventional twist drills, which increases the cutting amount (ie, the feed speed) ⁇ ;
  • the length of the secondary cutting edge at the drill point is H1, and H1>Hi;
  • each main cutting edge of the composite cutting edge is Wi, and Wi ⁇ W1, which is much smaller than the cutting edge length W of conventional twist drills, which disperses the width of the cutting layer ⁇ ;
  • each secondary cutting edge of the composite cutting edge is Hi, and Hi ⁇ H1;
  • each secondary cutting edge of the composite cutting edge has a certain axial secondary deflection angle (also called a backlash angle), it only plays a role in polishing (not cutting) the machined surface and improving the surface quality ⁇ .
  • the total amount of the removed objects is gradually decomposed and cut, turning the original large chips into small chips.
  • the cutting force is dispersed on each cutting edge, and the reaction force received by each cutting edge is also reduced. There are fewer burrs on the edge of the tool and better drilling. Smooth, high drilling efficiency.
  • the chisel edge of the conventional twist drill (such as the prior art described in Figure 1) is ground away by 80% to 90%, and two auxiliary (inner) blades are formed.
  • the rake angle of the auxiliary (inner) blade is determined by Approximately -60° is increased to 0° ⁇ -10°, so that the axial resistance is reduced by more than 50%, so that the axial feed of the twist drill 100 is light and fast, which greatly reduces the extrusion force and cutting heat at the chisel edge of the drill tip .
  • the centering accuracy is greatly improved, and multiple sets of composite cutting edges can achieve multi-level centering, which greatly improves the smoothness, roundness and accuracy of the drilling.
  • multiple sets of composite cutting edges can divide chips in multiple sections, and the amount of metal removed can be decomposed in multiple sections, so that the chip width is narrow, which plays a role in chip separation and smooth chip removal.
  • the angle of the composite cutting edge is reasonably designed to greatly reduce the torque resistance, reduce the generation and accumulation of cutting heat, reduce the wear of the cutting edge, and improve the cutting edge
  • the uneven degree of wear caused by different cutting speeds everywhere makes drilling and cutting easier, greatly increasing drilling efficiency, and greatly extending the life of the drill.
  • the embodiment of the present application provides a twist drill 100.
  • a cone part 11 is provided at the front end of the operating part 1, and the outer surface of the working part 1 is provided with a spiral groove IV for shunt cutting and chip removal;
  • the outer surface of the portion 11 is provided with multiple sets of composite cutting blades whose diameters increase in sequence from the front end to the tail end, and the tip of the cone portion 11 is provided with a drill tip tip II. When in use, it is positioned by the top edge of the drill tip II, and the cutting process is completed by the top edge of the drill tip II and multiple sets of composite cutting edges.
  • the cutting object allowance is reasonably distributed according to the diameter of the drilled hole.
  • the drilling force is small and uniform during the entire processing process. , Reasonable, the amount of removed objects is gradually decomposed and cut, and the cutting force is dispersed on each cutting edge, and the reaction force on each cutting edge is also reduced.
  • Manual hand-held power tools are more stable and can be operated for a long time; there are less burrs on the edge of the knife , The drilling process is smoother and the drilling efficiency is higher.
  • the cutting edge of the tool is uniformly worn on each step, prolonging the service life of the tool; reducing the unnecessary damage of the tool in use and the scrap of the workpiece; reducing the difficulty and cost of processing , Improve the processing efficiency.

Abstract

一种麻花钻,在工作部(1)前端设置锥体部(11),工作部(1)的外侧面设有用于分流切割排屑的螺旋沟槽(IV);锥体部(11)的外侧面从前端到尾端设有直径按顺序依次变大的多组复合切割刃,每组复合切割刃包括相邻的主切割刃(143)和副切割刃(144),主切削刃与副切削刃相交点为复合切割刃的刀尖(1411),复合切割刃的刀尖(1411)分布在多条锥度螺旋线上,锥体部最尖端设有钻尖顶刃(II)。使用时,钻尖顶刃可以起到初始定位的作用,切割过程由钻尖顶刃和多组复合切割刃共同完成,切削力度在各切削刃上被分散,每个切削刃受到的反作用力也变小,出刀边毛刺少,钻孔加工更顺利,钻孔效率较高。

Description

麻花钻 技术领域
本申请涉及金属切削加工及金属切削刀具技术领域,尤其涉及麻花钻。
背景技术
图1为常规结构麻花钻的示意图。图1中上一行左侧为麻花钻主视图,右侧为钻尖俯视图,图1中下一行为麻花钻部分截断3D立体图。麻花钻大多是用在远离钻床等其他金属切削机床的工作场所,使用手持电动工具进行打孔作业,受人的手臂力、电动工具功率等限制,现有技术的麻花钻在打孔时的效率就受到很大的制约——打孔定位难、速度慢、效率低。
图1所示的常规结构的麻花钻,其加工切削过程分析示意如图2所示。在钻孔时,是由两个对称分布的一字形主刀刃同时完成相应尺寸的金属切削量的加工,切屑是一整块(切屑的横断面面积大),使得其钻孔时所需的功率较大,同时其两个刃口上受到的反作用力也很大,刃口易受损。
发明内容
为了解决现有技术的麻花钻打孔定位难、速度慢、效率低的技术问题,本申请提出以下技术方案。
本申请提供一种麻花钻,包括柄部及与所述柄部连接的工作部,所述工作部包括锥体部和与所述锥体部固定连接的圆柱部,所述工作部的外侧面设有用于分流切割排屑的螺旋沟槽,所述螺旋沟槽从所述椎体部前端绕至所述圆柱部;
所述锥体部的外侧面从前端到尾端设有直径按顺序依次变大的多组复合切割刃,每组复合切割刃分布在相邻的切削面和修光面上;
所述锥体部最尖端设有钻尖顶刃。
在一些实施例中,所述螺旋沟槽的两侧沟槽侧壁顶端连接为多条螺旋线;
所述的每个切割面与所述螺旋沟槽的两侧沟槽壁面相交的线段均为所述的主切割刃,所述的每个切割面之间与所述台阶圆柱外圆表面及螺旋沟槽壁面相交的线段为所的副切割刃,所述主切削刃与副切削刃相交点为所述复合切割刃的刀尖,所述复合切割刃的刀尖分布在所述多条螺旋线上。
在一些实施例中,各切割面上绕轴线沿圆周方向分布(连接)在所述主切削刃之后的分别是主切削刃后刀面和主切削刃后背;所述各修光面上绕轴线沿圆周方向分布(连接)的在所述副切削刃之后的分别是副切削刃后刀面和副切削刃后背;
所述主切削刃、副切削刃和刀尖组成单元复合刃,所述单元复合刃对应的单元刀齿是由前刀面、所述主切削刃后刀面、所述副切削刃后刀面组成的三面棱体,所述前刀面位于所述螺旋沟槽内的刀沟前面。
在一些实施例中,每组复合切割刃均与所述椎体部同轴;
所述每组复合切削刃角度根据每组复合切割刃所处的不同直径位置上的不同线速度来确定。
在一些实施例中,所述螺旋线与锥体(或柱体)部轴线在轴剖面投影的夹角为螺旋角ω 0,每组复合切削刃角度包括:
主偏角κr,其角度范围为10°~80°;
副偏角κr′,其角度范围为0.5°~5°;
法向后角αn,其角度范围为0.5°~8°;
法向前角γn:由所述螺旋沟槽的侧壁确定且各个单元刀齿都不相同,其角度范围为-γn~+γn;
主切削刃刃倾角λs,由所述螺旋沟槽的侧壁和主编角κr共同确定且各个单元刀齿都不相同,其角度范围为-λs~+λs;
副切削刃刃倾角λs′,由所述螺旋角ω 0和副偏角κr′共同确定且各个单 元刀齿都不相同,其值为+λs′;
主切削刃轴向刃倾角λzz,由所述螺旋沟槽的侧壁位置(即钻头芯厚)、螺旋角和主编角κr共同确定且各个单元刀齿都不相同,其值为-λzz~+λzz;
副切削刃轴向刃倾角λfz,由所述螺旋角ω0和副偏角κr′共同确定且各个单元刀齿都不相同,其值为+λfz;
主切削刃轴向后角αwz,由主切削刃法向后角αn和副偏角κr′共同确定且各个单元刀齿都不相同,其值为+αwz。
在一些实施例中,所述锥体部的外侧面从前端到尾端排列的多组复合切割刃的高度非均匀变化。
在一些实施例中,所述钻尖顶刃包括一条横刀刃、两条辅刀刃和两条一字形主刀刃,所述两条辅刀刃一端和两条一字形主刀刃相连、一端与所述横刀刃相交。
在一些实施例中,所述椎体部与所述圆柱部同轴,所述椎体部最尾端的一组复合切割刃的直径等于所述圆柱部的直径,所述圆柱部的直径为所述麻花钻的钻孔直径,所述钻尖顶刃的钻芯厚度小于所述麻花钻的钻芯厚度。
在一些实施例中,所述圆柱部非沟槽区域为螺旋刃背,所述螺旋沟与螺旋刃背的连接带即螺旋刃带。
在一些实施例中,定义第n组复合主切削刃切屑横断面面积为Sn,第n组复合切割刃的主切割刃长度为Wn,第n组复合切割刃的切屑厚度为hn,所述复合切割刃的切屑横断面面积Sn和所述麻花钻的总切屑横断面面积S的计算算式如下:
单槽单齿切屑横断截面面积为:S1…Si…Sn;
其中:S1=W1×h1;
Si=Wi×hi;
Sn=Wn×hn;
单槽总切削面积:S=S1+…+Si+…+Sn;
双槽总切削面积:Sz=2S=2(S1+…+Si+…+Sn)。
其中,W1为钻尖主切削刃长度;
H1为W1为钻尖副切削刃长度;
h1为钻尖主切削刃上切屑的厚度;且:H1>>h1;
Wi为复合切削刃各主切削刃长度;
Hi为复合切削刃各副切削刃长度;
hi为复合切削刃各主切削刃上切屑的厚度,且Hi>>hi;
以上所述的面积均为切屑的横断面面积,而非切削面积。
本申请实施例提供麻花钻,在操作部前端设置锥体部,所述工作部的外侧面设有用于分流切割排屑的螺旋沟槽;所述锥体部的外侧面从前端到尾端设有直径按顺序依次变大的多组复合切割刃,所述锥体部最尖端设有钻尖顶刃。使用时,通过钻尖顶刃来定位,切割过程由钻尖顶刃和多组复合切割刃共同完成。由于钻尖顶刃和多组复合切割刃的直径从尖端到尾翼依次变大,可以说其切削物体余量根据钻孔直径大小合理地分配,切除物体量被逐渐分解切削,切削力度在各切削刃上被分散,每个切削刃受到的反作用力也变小,出刀边毛刺少,钻孔加工更顺利,钻孔效率较高。避免了现有技术麻花钻“两个对称分布的一字形主刀刃同时完成相应尺寸的金属切削量的加工”时“使得其钻孔时所需的功率较大,同时其两个刃口上受到的反作用力也很大,刃口易受损”的问题出现。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是现有技术麻花钻结构示意图;
图2是本现有技术麻花钻钻孔时刃口切削示意图;
图3是本申请一个实施例的麻花钻工作部结构示意图;
图4是本申请一个实施例的麻花钻钻尖(K向视)复合切削刃口示意图;
图5是本申请一个实施例的麻花钻单元复合刃有关工作面及切削角度间关系的剖面分析、及切削机理示意图;
图6是本申请一个实施例的麻花钻钻尖顶刃放大示意图;
图7是本申请一个实施例的麻花钻钻孔时刃口切削示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
如图2~图7所示,本申请实施例提供一种麻花钻100,包括柄部2及与所述柄部2连接的工作部1,所述操作部1包括锥体(复合切削刃组)部11和与所述锥体(复合切削刃组)部11固定连接的沟槽圆柱部12。
所述工作部1的外侧面设有用于分流切割排屑的螺旋沟槽Ⅳ,所述螺旋沟槽Ⅳ从所述锥体部11前端绕至所述沟槽圆柱部12;
所述锥体部11的外侧面从前端到尾端设有直径按顺序依次变大的多组复合切割刃。
每组复合切割刃包括相邻的同一阶梯(的圆锥)面141和同一阶梯(的圆柱)面142,如图3所示。
所述锥体部11最尖端设有钻尖顶刃Ⅱ。其上,设计有:一条横刃Ⅶ、两条辅助刃Ⅷ、两条一字形主切削刃。如图4所示。
在所述椎体11部,螺旋沟槽Ⅳ的内前侧壁与椎体相交连接为多条螺旋线131;在所述的沟槽圆柱体12部,螺旋沟槽Ⅳ的内前侧壁与最大直径的圆柱表面相交连接为一条沟槽(钻身)圆柱螺旋线132,如图3、图4。
进一步地,沟槽圆柱部12非螺旋沟槽Ⅳ区域为螺旋刃背Ⅴ,所述螺旋沟槽Ⅳ的内前侧壁与螺旋刃背Ⅴ存在有相同螺旋角且等宽度的螺旋韧带Ⅵ。
所述同一阶梯(的圆锥)面141与所述螺旋沟槽Ⅳ的内前侧壁相交处为所述主切削刃143,所述同一阶梯(的圆柱)面142与所述螺旋沟槽Ⅳ的内前侧壁相交处为所述副切削刃144,所述主切削刃143与副切削刃144相交点为所述复合切割刃的刀尖1411,所述复合切割刃的刀尖分布在所述多条螺旋线131上。各组复合切削刃的刀尖就分布在两条圆锥螺旋线131上,这样的分布对钻孔加工的功效、质量、动力等都是至关重要的。
图4中左侧为麻花钻100俯视图,右侧为复合切削刃立体(3D)示意图。具体的,如图4所示,螺旋线131有两条,复合切割刃的刀尖1411分布在所述两条螺旋线131上。当然,也可以设计3条、4条或5条螺旋线131,依据麻花钻100的钻芯尺寸设计即可,本申请对此不作限制。
如图3所示,同一阶梯(的圆锥)面141上的主切削刃143之后依次连接的分别是所述的主切削刃后刀面145和主切削刃(圆锥)后背146;所述同一阶梯(的柱锥)面142上副切削刃144之后依次连接的分别是副切削刃后刀面147和副切削刃(圆柱)后背148;
所述主切削刃143、副切削刃144和刀尖1411组成单元复合刃,如图示2及图示4中的I处,所述单元复合刃对应的单元刀齿1410是由前刀面133、所述主切削刃143的后刀面145、所述副切削刃144的后刀面147组成的三面棱体,所述前刀面133为所述螺旋沟槽Ⅳ内的连接所述主切削刃143和副切削刃144侧壁表面,也可以说是所述螺旋沟槽Ⅳ内的刀沟前面。
主切削刃后背146所在平面可近似认为是倾斜面或圆锥侧面,将主切削刃后背146称为主切削刃(圆锥)后背。副切削刃后背148可近似认为是副切削 刃(圆柱)后背,尽管副切削刃轴向刃倾角非0度,存在一定倒角,副切削刃后背148所在平面可近似认为是圆柱面。
进一步地,每组复合切割刃均与所述锥体部11同轴;所述每组复合切削刃角度根据每组复合切割刃所处的不同直径位置上的不同线速度来确定。
参照图3,标注解释如下:
Ⅳ——麻花钻螺旋沟槽。       Ⅴ——麻花钻螺旋刃背。
Ⅵ——麻花钻螺旋韧带。       ω 0——麻花钻螺旋角。
φ——麻花钻峰(顶)角,其通常取值例如118°~135°。
所述螺旋线131与椎体部11(或钻头整体)轴线在周剖面内投影的夹角为螺旋角ω 0。图5为麻花钻100单元复合刃I有关工作面及切削角度间关系的剖面分析、及切削机理示意图。请参阅图5,每组复合切削刃角度包括:
主偏角κr,其角度范围为10°~80°;
副偏角κr′,其角度范围为0.5°~5°;
法向后角αn,其角度范围为0.5°~8°;
法向前角γn:由所述螺旋沟槽Ⅳ的侧壁确定且各个单元刀齿都不相同,其角度范围为-γn~+γn;
主切削刃143刃倾角λs,由所述螺旋沟槽Ⅳ的侧壁位置(即钻头芯厚)和主编角κr共同确定,且各个单元刀齿因其所处位置(轴向和径向)的不同都不相同,其角度范围为-λs~+λs;
副切削刃144刃倾角λs′,由所述螺旋角ω 0和副偏角κr′共同确定且各个单元刀齿因其所处位置(轴向和径向)的不同亦都不相同,但其角度值只能为+λs′;
主切削刃143轴向刃倾角λzz,由所述螺旋沟槽Ⅳ的侧壁位置(即钻头 芯厚)、螺旋角和主编角κr共同确定,且各个单元刀齿同样也都不相同,其角度范围为-λzz~+λzz;
副切削刃144轴向刃倾角λfz,由所述螺旋角ω 0和副偏角κr′共同确定且各个单元刀齿同样也都不相同,但其值只能为+λfz;
主切削刃轴向后角αwz,由主切削刃143法向后角αn和主偏角κr及副偏角κr′共同确定,且各个单元刀齿同样也都不相同,但其角度值只能为+αwz。
一组复合切割刃也称为单元复合刃I。单元复合刃I由主切削刃143+副切削刃144+刀尖1411组成。单元刀齿1410是由前刀面133(麻花钻刃沟前面)+主切削刃后刀面145+副切削刃后刀面147组成的三面(棱)体。
锥体部11的外侧面从前端到尾端的多组复合切割刃的直径按顺序依次变大是可选的,在一些实施例中,多组复合切割刃的直径按顺序依次均匀或非均匀变大,例如下一级复合切割刃的直径比上一级的大1mm,或者大50丝,依据麻花钻的钻芯尺寸及钻孔的大小、深度、被加工的材质、实用工具的情况等等设计即可,本申请对此不作限制。
进一步地,所述锥体部11的外侧面从前端到尾端排列的多组复合切割刃的高度均匀或非均匀变化。图3中的l 1、l 2、l 3……l n指各复合切割刃的高度。其中,L 1长度部分就是复合钻尖。其中,l j长度部分为钻尖;l 1、l 2、l 3……l n长度部分为对应复合切削刃组的高度。麻花钻100的锥体部11总长为L 1,麻花钻100总长为L。具体地,l n大于、小于或等于l n-1都有可能,根据需要钻孔的类型、所需性能来设计即可。
具有这样的刀齿特点是:具有更好的切削强度;便于设计、加工出合理的 切削角度;适应范围更广。
图6为麻花钻100钻尖顶刃Ⅱ放大示意图。上面一行左侧为图3中Ⅱ的放大主视图,右侧为图3中Ⅱ的放大左视图,下面一行是图3中Ⅱ的放大俯视剖面图,便于钻芯厚度比较。如图4和图6所示,钻尖顶刃Ⅱ包括一条横刀刃Ⅶ、两条辅刀刃Ⅷ和两条一字形主刀刃153。所述两条辅刀刃Ⅷ的一端和两条一字形主刀刃153相接,另一端与所述横刀刃Ⅶ相交,使得钻头原横刃长度缩短,以减小钻头钻孔时的轴向抗力。
即,在图4的示意中,钻尖顶刃Ⅱ是由一条横刀刃Ⅶ+两条辅刀刃Ⅷ+两条一字形主刀刃153组成。多组(l 1、l 2、l 3……l n)复合切削刃(Ⅰ)沿两条锥型螺旋线131(如图3、图4)轴向(向麻花钻100柄部方向)延伸至麻花钻100圆柱部12的两条螺旋刃带Ⅵ,这样就形成一个完整的麻花钻工作部1。
在一些实施例中,所述椎体部11与所述圆柱部12同轴,所述椎体部11最尾端的一组复合切割刃的直径等于所述圆柱部12的直径,所述圆柱部12的直径为所述麻花钻100的钻芯厚度最终钻孔直径,所述钻尖顶刃Ⅱ的钻芯厚度小于所述麻花钻的钻芯厚度。图6中下面一行是钻芯厚度比较图中标注说明如下:
K:麻花钻钻尖处原始钻芯厚度;
K 1:高效(复合钻尖)麻花钻钻尖处的钻芯厚度;
δ:钻尖芯厚修磨夹角。
麻花钻国内外标准,其钻芯尺寸是有一定要求的,其数值大小由其外径值大小决定。当钻头外径较大时(以使用手工具操作来说)如附图1中描述的现有技术中的麻花钻,其钻头芯厚值就大,钻尖横刃值就大,钻削时轴向抗力就大,钻孔就费时费力,还不易定位。
鉴于以上两方面:复合刃应尽可能的多些、第一组直径越小越好;但同时 第一组直径的减小又受到钻头本身的钻芯厚度的制约。为此,本设计尽可能要顾及到其本标准规定的钻头芯厚值。对于较大直径的规格,为尽可能的减少切削力且定位性能好,当第一组直径小于其本身芯厚值的,要增加其修磨横刃工序,以减少钻尖处的芯厚度值。本申请实施例的钻尖顶刃Ⅱ的钻头芯厚值K 1远小于麻花钻钻尖处原始钻芯厚度K,这样的钻尖定心容易且准确。
如附图1中描述的现有技术中的麻花钻,由两个对称分布的一字形主刀刃153同时完成相应尺寸的金属切削量的加工,单槽切削面积:S1=S2=W×h;两槽的总切削面积:S=2S1=2S2=2×W×h。
在本申请一些实施例中,麻花钻100的柄部有多种形式,如图一中的圆柄、六角柄等。在这里,图7以圆柄麻花钻100钻孔时刃口切削示意图为例,标注出钻尖顶刃Ⅱ和各个复合切割刃的刃口参数。
定义第n组复合切割刃的切削面积为Sn,第n组复合切割刃的主切削刃143长度为Wn,第n组复合切割刃的切屑厚度为hn,所述复合切割刃的切屑横断面面积Sn和所述麻花钻的总切屑横断面面积S的计算算式如下:
单槽单齿切屑横断截面面积为:S1…Si…Sn;
其中:S1=W1×h1;
Si=Wi×hi;
Sn=Wn×hn;
单槽总切削面积:S=S1+…+Si+…+Sn;
双槽总切削面积:Sz=2S=2(S1+…+Si+…+Sn)。
其中,W1为钻尖主切削刃长度;
H1为W1为钻尖副切削刃长度;
h1为钻尖主切削刃上切屑的厚度;且:H1>>h1;
Wi为复合切削刃各主切削刃长度;
Hi为复合切削刃各副切削刃长度;
hi为复合切削刃各主切削刃上切屑的厚度,且Hi>>hi;
如图7:
1、钻尖处的主切削刃长为W1,而W1≥Wi,且远远小于常规麻花钻的切削刃长W,分散了切削层的宽度↓;
2、钻尖处的切削厚度h1,而h1=hi,且大于或等于常规麻花钻的切削层厚度h,增加了走刀量(即进刀速度)↑;
3、钻尖处的副切削刃长为H1,而H1>Hi;
4、复合切削刃各主切削刃长为Wi,而Wi<W1,且远远小于常规麻花钻的切削刃长W,分散了切削层的宽度↓;
5、复合刃各切削层切屑厚度为hi,而hi=h1,且大于或等于常规麻花钻的切削层厚度h,增加了走刀量(即进刀速度)↑;
6、复合切削刃各副切削刃长为Hi,而Hi<H1;
7、复合切削刃各副切削刃因有一定的轴向副偏角(亦可称为侧隙角),只起到修光(而非切削)已加工表面的作用,提高表面质量↑。
切除物体总量被逐渐分解切削,使原来的大切屑变成小切屑,切削力度在各切削刃上被分散,每个切削刃受到的反作用力也变小,出刀边毛刺少,钻孔加工更顺利,钻孔效率较高。
在制作中,把常规麻花钻(如附图1描述的现有技术中的)横刃磨去80%~90%,并形成两条辅助(内)刃,辅助(内)刃的前角由大约-60°加大为0°~-10°,从而使轴向阻力减少50%以上,如此麻花钻100的轴向进给轻快,极 大减少钻尖横刃处的挤压力和切削热。
在轴向受力情况改善后,定心精度也大为提高,且多组复合切削刃可达到多级定心的作用,使钻孔的光洁度、圆度、精度极大提升。
而且,多组复合切削刃可以多段分屑,切除金属量多段分解,切屑宽度便窄,起到了分屑作用,排屑流畅。并根据每组复合切削刃所处的不同直径位置上的不同线速度合理设计复合切削刃角度,极大减少转矩阻力,分散减少切削热的产生和聚集,减少切削刃磨损,并改善切削刃各处因切削速度不同带来的磨损程度不均匀状况,使钻孔切削轻松,钻孔效率大增,并极大延长钻头寿命。
综上所述,本申请实施例提供麻花钻100,在操作部1前端设置锥体部11,所述工作部1的外侧面设有用于分流切割排屑的螺旋沟槽Ⅳ;所述锥体部11的外侧面从前端到尾端设有直径按顺序依次变大的多组复合切割刃,所述锥体部11最尖端设有钻尖顶刃Ⅱ。使用时,通过钻尖顶刃Ⅱ来定位,切割过程由钻尖顶刃Ⅱ和多组复合切割刃共同完成。由于钻尖顶刃Ⅱ和多组复合切割刃的直径从尖端到尾翼依次变大,可以说其切削物体余量根据钻孔直径大小合理地分配,在整个加工过程中,钻削力较小且均匀、合理,切除物体量被逐渐分解切削,切削力度在各切削刃上被分散,每个切削刃受到的反作用力也变小,人工手持电动工具较平稳、可持久操作;出刀边翻边毛刺少,钻孔加工更顺利,钻孔效率较高。保证了钻孔加工精度,避免设备及人身事故的发生;刀具各台阶刃口磨损均匀一致,延长了刀具使用寿命;降低了刀具在使用中不必要的损害及工件的报废;降低了加工难度及成本、提高了加工效率。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种麻花钻,包括柄部及与所述柄部连接的工作部,其特征在于,所述工作部包括复合切割工作部和与所述复合切割工作部固定连接的圆柱部,所述工作部的外侧面设有用于分流切割排屑的螺旋沟槽,所述螺旋沟槽从所述复合切割工作部前端绕至所述圆柱部;
    所述复合切割工作部的外侧面从前端到尾端设有直径按顺序依次变大的多组复合切割刃,每组复合切割刃包括相邻的第一切割面和第二切割面;所述复合切割工作部最尖端设有钻尖顶刃。
  2. 如权利要求1所述的麻花钻,其特征在于,所述螺旋沟槽的两侧沟槽侧壁顶端连接为多条螺旋线;
    所述的每个切割面与所述螺旋沟槽的两侧沟槽壁面相交的线段均为所述的主切割刃,所述的每个切割面之间与所述台阶圆柱外圆表面及螺旋沟槽壁面相交的线段为所的副切割刃,所述主切削刃与副切削刃相交点为所述复合切割刃的刀尖,所述复合切割刃的刀尖分布在所述多条锥度螺旋线上。
  3. 如权利要求2所述的麻花钻,其特征在于,各切割面上绕轴线沿圆周方向分布在所述主切削刃之后的分别是主切削刃后刀面和主切削刃后背;所述各修光面上绕轴线沿圆周方向分布的在所述副切削刃之后的分别是副切削刃后刀面和副切削刃后背;
    所述主切削刃、副切削刃和刀尖组成单元复合刃,所述单元复合刃对应的单元刀齿是由前刀面、所述主切削刃后刀面、所述副切削刃后刀面组成的三面棱体,所述前刀面位于所述螺旋沟槽内的刀沟前面。
  4. 如权利要求2所述的麻花钻,其特征在于,每组复合切割刃均与所述复合切割工作部同轴;
    所述每组复合切削刃角度根据每组复合切割刃所处的不同直径位置上不同线速度来确定。
  5. 如权利要求4所述的麻花钻,其特征在于,所述螺旋线与锥体部轴线 的夹角为螺旋角ω 0,每组复合切削刃角度包括:
    主偏角κr,其角度范围为10°~80°;
    副偏角κr′,其角度范围为0.5°~5°;
    法向后角αn,其角度范围为0.5°~8°;
    法向前角γn:由所述螺旋沟槽的侧壁确定,其角度范围为-γn~+γn且各个单元刀齿都不相同;
    主切削刃刃倾角λs,由所述螺旋沟槽的侧壁和主编角κr共同确定,其角度范围为-λs~+λs,且各个单元刀齿都不相同;
    副切削刃刃倾角λs′,由所述螺旋角ω 0和副偏角κr′共同确定,其值为+λs′,且各个单元刀齿都不相同;
    主切削刃轴向刃倾角λzz,且各个单元刀齿都不相同;由所述螺旋沟槽的侧壁位置、螺旋角ω 0和主偏角κr共同确定且各个单元刀齿都不相同,其值为-λzz~+λzz
    副切削刃轴向刃倾角λfz,由所述螺旋角ω 0和副偏角κr′共同确定,其值为+λfz,且各个单元刀齿都不相同;
    主切削刃轴向后角αwz,由主切削刃法向后角αn和副偏角κr′共同确定,其值为+αwz,且各个单元刀齿都不相同。
  6. 如权利要求1所述的麻花钻,其特征在于,所述复合切割工作部的外侧面从前端到尾端排列的多组复合切割刃的高度非均匀变化。
  7. 如权利要求1所述的麻花钻,其特征在于,所述钻尖顶刃包括一条横刀刃、两条辅刀刃和两条一字形主刀刃,所述两条辅刀刃一端和两条一字形主刀刃相连、另一端与所述横刀刃相交。
  8. 如权利要求1所述的麻花钻,其特征在于,所述复合切割工作部与所述圆柱部同轴,所述复合切割工作部最尾端的一组复合切割刃的直径等于所 述圆柱部的直径,所述圆柱部的直径为所述麻花钻的钻孔直径,所述钻尖顶刃的钻芯厚度小于所述麻花钻的钻芯厚度。
  9. 如权利要求1所述的麻花钻,其特征在于,所述圆柱部非沟槽区域为螺旋刃背,所述螺旋沟与螺旋刃背的连接带即螺旋刃带。
  10. 如权利要求1所述的麻花钻,其特征在于,定义第n组复合切割刃的主切削刃切屑横断面面积为Sn,第n组复合切割刃的主切割刃长度为Wn,第n组复合切割刃的切屑厚度为hn,所述复合切割刃的切屑横断面面积Sn和所述麻花钻的总切屑横断面面积S的计算算式如下:
    单槽单齿切屑横断截面面积为:S1…Si…Sn;
    其中:S1=W1×h1;
    Si=Wi×hi;
    Sn=Wn×hn;
    单槽总切削面积:S=S1+…+Si+…+Sn;
    双槽总切削面积:Sz=2S=2(S1+…+Si+…+Sn);
    其中,W1为钻尖主切削刃长度;
    H1为W1为钻尖副切削刃长度;
    h1为钻尖主切削刃上切屑的厚度;且:H1>>h1;
    Wi为复合切削刃各主切削刃长度;
    Hi为复合切削刃各副切削刃长度;
    hi为复合切削刃各主切削刃上切屑的厚度,且Hi>>hi。
PCT/CN2020/085178 2019-11-28 2020-04-16 麻花钻 WO2021103393A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20893462.0A EP3967432A4 (en) 2019-11-28 2020-04-16 TWIST DRILL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911189475.9A CN110802259B (zh) 2019-11-28 2019-11-28 麻花钻
CN201911189475.9 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021103393A1 true WO2021103393A1 (zh) 2021-06-03

Family

ID=69491857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085178 WO2021103393A1 (zh) 2019-11-28 2020-04-16 麻花钻

Country Status (3)

Country Link
EP (1) EP3967432A4 (zh)
CN (1) CN110802259B (zh)
WO (1) WO2021103393A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101566A1 (en) * 2021-06-11 2022-12-14 Danyang Kaiyiyuan Tools Co., Ltd. Spiral step twist drill bit
CN116890131A (zh) * 2023-08-14 2023-10-17 苏州富莱克精密工具有限公司 一种麻花钻进刀角和槽前角的选取方法及麻花钻

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110802259B (zh) * 2019-11-28 2021-07-06 上海钰工机电有限公司 麻花钻
CN117655377A (zh) * 2022-08-24 2024-03-08 上海钰工工具有限公司 阶梯钻和利用阶梯钻对工件进行钻孔切削的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810414A (ja) * 1981-07-06 1983-01-21 Sanki Kogyo Kk 鋼板用自在削孔拡大円錘形ドリル
CN202180238U (zh) * 2011-06-09 2012-04-04 上海钰工机电有限公司 复合刃背定进给量阶梯钻
US20140023445A1 (en) * 2012-07-18 2014-01-23 Milwaukee Electric Tool Corporation Power tool accessory
CN205551557U (zh) * 2016-02-14 2016-09-07 上海钰工机电有限公司 分层钻削高效麻花钻
CN110802259A (zh) * 2019-11-28 2020-02-18 上海钰工机电有限公司 麻花钻

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9414659U1 (de) * 1994-09-09 1994-11-17 Duerr Praezisionswerkzeuge Gmb Mehrstufenbohrer
WO2009114958A1 (zh) * 2008-03-19 2009-09-24 Li Shiqing 螺旋刀具
CN202137424U (zh) * 2011-01-22 2012-02-08 李仕清 复合定位切削的螺旋刀具
US9731358B2 (en) * 2013-06-06 2017-08-15 Milwaukee Electric Tool Corporation Step drill bit
EP3305447B1 (en) * 2016-02-14 2023-03-29 Tec-Spiral Enterprises Tools Co., Ltd. Step-structured twist drill
US20210154749A1 (en) * 2018-01-29 2021-05-27 Milwaukee Electric Tool Corporation Drill bit
US11273501B2 (en) * 2018-04-26 2022-03-15 Milwaukee Electric Tool Corporation Step drill bit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810414A (ja) * 1981-07-06 1983-01-21 Sanki Kogyo Kk 鋼板用自在削孔拡大円錘形ドリル
CN202180238U (zh) * 2011-06-09 2012-04-04 上海钰工机电有限公司 复合刃背定进给量阶梯钻
US20140023445A1 (en) * 2012-07-18 2014-01-23 Milwaukee Electric Tool Corporation Power tool accessory
CN205551557U (zh) * 2016-02-14 2016-09-07 上海钰工机电有限公司 分层钻削高效麻花钻
CN110802259A (zh) * 2019-11-28 2020-02-18 上海钰工机电有限公司 麻花钻

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3967432A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101566A1 (en) * 2021-06-11 2022-12-14 Danyang Kaiyiyuan Tools Co., Ltd. Spiral step twist drill bit
CN116890131A (zh) * 2023-08-14 2023-10-17 苏州富莱克精密工具有限公司 一种麻花钻进刀角和槽前角的选取方法及麻花钻
CN116890131B (zh) * 2023-08-14 2024-02-02 苏州富莱克精密工具有限公司 一种麻花钻进刀角和槽前角的结构的选取方法

Also Published As

Publication number Publication date
EP3967432A1 (en) 2022-03-16
EP3967432A4 (en) 2023-08-02
CN110802259A (zh) 2020-02-18
CN110802259B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021103393A1 (zh) 麻花钻
US11007583B2 (en) Twist drill
CN201147858Y (zh) 一种高性能强力麻花钻
WO2017136966A1 (zh) 分层钻削高效麻花钻
CN218983220U (zh) 一种复合精镗刀
CN216828695U (zh) 一种孔加工刀具
CN214053814U (zh) 一种立式安装刀片的螺旋铣削刀具
CN211939198U (zh) 一种宝塔钻
CN212793236U (zh) 一种高硬度拼接式铣刀
CN105252089A (zh) 一种高硬度模具钢精密刀具
CN215786950U (zh) 一种非金属复合材料用复合刀具
CN217647567U (zh) 一种高性能快钻
CN216990021U (zh) 一种整体硬质合金深孔钻头
JPH0310451B2 (zh)
CN213969319U (zh) 一种倒角刀
CN217095847U (zh) 四平面sr型高精度钻头
CN217727373U (zh) 一种金刚石铰刀
US11839921B2 (en) Spiral step twist drill bit
CN218656969U (zh) 钻孔工具
CN216502583U (zh) 一种同时加工孔与槽的成型铣刀
CN215238096U (zh) 一种球头铣刀
CN216325380U (zh) 一种高效钻铰刀
CN213257493U (zh) 一种深孔加工铰刀
CN215145016U (zh) 钻铣复合式刀具
CN112139566B (zh) U钻

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020893462

Country of ref document: EP

Effective date: 20211206

NENP Non-entry into the national phase

Ref country code: DE